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ABSTRACT

This paper presents a new technique for reducing the energy
consumption of a multi-task system by sharing its scratch-
pad memory (SPM) space among the tasks. With this tech-
nique, tasks can interfere by using common areas of the
SPM. However, this requires to update these areas dur-
ing context switches, which involves considerable overheads.
Hence, an integer linear programming formulation is used
at compile time for finding the best assignment of memory
objects to the SPM and their respective locations inside it.
Experiments show that the technique achieves up to 85% en-
ergy reduction with 8Kb of SPM and surpasses other sharing
approaches.

Categories and Subject Descriptors
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; D.4.2 [OPERATING SYSTEMS]: Storage Manage-
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1. INTRODUCTION

Scratch-pad memories (SPM) are on-chip static random
access memories (SRAM) which are often integrated with
embedded processors. SPM are more area-expensive but
faster and consume far less energy than external dynamic
random access memories (DRAM). Hence, only SPM of small
capacity can actually be used. Like caches, SPM are used
as fast and low energy consuming buffers for frequently ac-
cessed code or data, but unlike them, they are not trans-
parent to the software. Indeed, code and data are to be
explicitly put into the SPM by the application. While more
complex to use, SPM are faster than caches (in term of de-
lay) and consume significantly less energy' (about 26% of
what consumes the 4-way cache of the MeP processor we
used in our experiments [9,20]). Moreover, the behavior of
SPM is much more predictable than the one of caches so
that SPM are also preferred for real-time applications.

In a multi-task environment the SPM is to be shared
among the tasks. The sharing can be done following two

1This is due to the additional tags and logic of the caches.



dimensions: spatial and temporal. For the first dimension,
illustrated in figure la, the SPM space is divided into sev-
eral areas, each of them being assigned to a single task (o,
t1, t2 and t3 in the figure) for placing its memory objects.
This sharing is simple but it limits the space for each task
to a small part of the SPM. For the second dimension, illus-
trated in figure 1b, the totality of the SPM space is provided
to each task but when a task ¢; is preempted by another
task t; the content of the SPM must be copied to the main
memory (MM) if it has been modified. When ¢; returns to
the active state, this content must be copied back to the
SPM (this second copy is always necessary). These addi-
tional copies consume time and energy and therefore limit
the possible gain. When both sharing dimensions are used

SPM space SPM space SPM space

(¢) Proposed

Figure 1: SPM sharing techniques

together, the SPM can be used more efficiently and lower
energy consumption can be expected.

This paper presents a new fully software management of
the SPM for multi-task preemptive real-time systems tar-
geting minimal energy consumption related to the memory
accesses. The approach uses both sharing dimensions and
consists in maximizing the SPM space available to each task
while keeping the required number of copies between the
SPM and the MM at context switches as low as possible
by minimizing the overlaps among the SPM blocks used by
different tasks.

For that purpose, the technique selects at compile time for
each task which memory objects are to be assigned to the
SPM. A memory object can be a piece of code, for instance
a function, or a piece of data, for instance a single variable
or an array. At run-time, during the context switches, only
the necessary number of bytes of the SPM are copied to
the MM. These bytes correspond to the memory objects, or
some parts of them, which have been modified and which
will be overwritten be the next active task. Symmetrically,
only the necessary number of bytes of the MM are copied
back to the SPM. These bytes correspond to the memory
objects, or some parts of them, which will be used by the
next active task and which were previously overwritten by
other tasks. In this paper, the operation which saves bytes
from the SPM to the MM is called store and the one which
restores bytes from the MM to the SPM is called load.

The more memory objects are assigned to the SPM the
less the tasks consume energy for their memory accesses, but
also the more energy is spent during the context switches
for the stores and the loads. This last energy can however
be reduced without changing which memory objects are as-
signed to the SPM if the sharing strategy reduces the over-
laps among them when they are used by different tasks. For
that purpose, the technique proposed in this paper assigns
to each task one block in the SPM for placing its memory
objects. The SPM update cost at the context switches is
then reduced by selecting the addresses of the blocks which

minimize the overlaps among them. Figure lc illustrates
such a sharing: as long as a task is active its SPM block is
intact, but when the task is not active it can be partly or
fully overlapped by the blocks of other tasks.

The optimizing problem is represented by an integer lin-
ear programming (ILP) formulation using profiling informa-
tion for the memory accesses costs and the context switches
rates. The objective of the formulation to minimize models
the energy consumption related to the memory accesses and
the solution indicates which memory objects are assigned to
an SPM block and the addresses of such blocks. The rela-
tive positions of the memory objects within their respective
blocks do not alter the resulting energy consumption and
can therefore be fixed afterward.

To our knowledge, this is the first time a technique moves
only the necessary bytes (i.e., from the overlaps) and not
the totality of the memory objccts of the SPM nor the full
content of a memory object. This is also the first technique
which uses the position of the blocks in the SPM as a pa-
rameter for reducing the overlaps’ sizes and therefore the
energy consumption of the stores and the loads to perform
during the context switches.

The rest of the paper is organized as follows: the next
section presents some related works. Section 3 explains how
the technique works, then section 4 details the proposed
ILP formulation and section 5 discusses about a possible
refinement of the approach. Finally, section 6 presents some
experimental results and section 7 concludes the paper.

2. RELATED WORKS

Optimizing the usage of the limited space of the SPM has
been a subject of research for several years. A lot of work has
been done for allocating memory objects of a single task to
the SPM. Some of these approaches, like [12,14,15,25] decide
the allocations at compile time, and others, like [2,6,11] do
it at run time. Other works deal with dynamic memory
objects like the stack [1,5,21] or arrays which are split and
dynamically spread between the SPM and the MM [24].

While a majority of the works regarding the SPM con-
sider only one task, several methods exist which use the
SPM for multi-task applications, either for increasing the
performances [16,17] or for reducing the energy consump-
tion [3,13,18,19,23]. As presented in the introduction, there
are two orthogonal ways to share the SPM space among the
tasks: the spatial sharing and the temporal sharing. Papers
like [18,19,23] explore both approaches and propose for each,
ILP formulations meant to find at compile time the optimal
sharing. Both approaches can also be merged for achieving
better results: [18,23] splits the SPM area into two parts,
one dedicated to the spatial sharing and one dedicated to
the temporal sharing. [19] goes farther allowing higher pri-
ority tasks to use the SPM space of lower priority ones, but
for the code memory objects only. The technique proposed
in this paper has more freedom for moving the memory ob-
jects than the previous ones and it can also move parts of
a memory object. [13] does propose a more general hybrid
approach as any memory objects can be moved between the
SPM and the MM at context switches, but only full mem-
ory objects can be moved. Furthermore, unlike the other
approaches, it requires the full execution of the system to
be fixed and known at compile time.

Some techniques are fully dynamic, i.e., they assign mem-
ory objects to the SPM at run time. For instance, [3] pro-



poses to handle the SPM with a paging system, which re-
quires the presence of an MMU in the target processor. Ad-
ditionally to its compile-time hybrid approach mentioned
earlier, [13] also proposes dynamic management methods
which make use of lists of free blocks within the SPM.
Although they target multi-task systems, some approaches
like [3,23] do not use the scheduling as a parameter for op-
timizing the usage of the SPM. This induces suboptimal
results, hence, the authors of [23] do consider the schedul-
ing for their optimizations in [13]. Yet, as stated earlier,
they assume that there is a global view of the entire execu-
tion flow of the system and propose to insert into this flow
control points where to change the allocations of the SPM.
Other approaches are more practical regarding the schedul-
ing. For instance, [16,17] are targeting systems with a static
scheduling. A few other approaches target preemptive sys-
tems. For instance, [18,19] optimizes the SPM usage while
using the properties of a static priority-based real-time pre-
emptive system. In this paper too, a static priority-based
preemptive scheduling has been used for the experiments,
but as explained in section 3.4, other policies are possible.

3. THE PROPOSED APPROACHES
3.1 Baseidea

The proposed approach is based on the observation that
if two tasks to and 1 do not occupy the totality of the SPM,
the sizes of the corresponding loads and stores at context
switches can be minimized by assigning the upper part of
the SPM space to to and the lower part to t1, as it can be
seen in figure 2a. In the figure, Bo and f; are the parts of
the SPM respectively used by to and t1. When a context
switch occurs between ¢y and t;, the proposed technique
stores and loads only the bytes of the overlap between So
and (. Figure 2b shows a sharing for three tasks. Again,
a good choice for the addresses of the blocks reduces the
overlap, but unlike figure 2a, a block is located in the middle
of the SPM for minimal overlaps.

SPM space (bytes)
) ‘1 R
512 512+
Bo

T T T, i
to t4 Tasks | | | | Tasks

1 t 1

SPM space (bytes)

(a) Two tasks (b) Three tasks
Figure 2: SPM shared between tasks (the horizontal
axis does not express the time)

When more than two tasks are present, the energy con-
sumption can be further reduced by using the fact that pre-
emptions are usually not uniform. For instance, figure 3
shows a portion of scheduling with three tasks, to, t1 and £2.
In the figure, each up arrow represents the firing of a task,
each down arrow represents a preemption and each dashed
line indicates the termination of a task. As seen in the fig-
ure, t1 is preempted by to two times while ¢y is preempted
by to only once. Provided that f2 and ¢: have about the
same requirement in SPM space, there would therefore be
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Figure 3: A portion of scheduling

less copies between the SPM and the MM during the context
switches if to shares its SPM space with ¢» than with ¢; as
it can be seen in figure 2b.

In order to define more precisely the problem, the next
subsection defines a few terms regarding areas of the SPM
and the following one presents a few assumptions used in
the paper. Then, details about the proposed technique are
given by the subsequent sections.

3.2 Areas of the SPM

Various kind of contiguous areas (called segments) of the
SPM are required for representing the problem, they are
defined in this section.

First, tasks have access to the SPM through blocks which
are defined as follows:

Block: it is a segment of the SPM used by a task for placing
its memory objects. A block is noted §.

Considering several tasks, their sharing of same areas in

the SPM is a set of overlaps defined as follows:
Overlap: it is a segment of the SPM which is the intersec-
tion of two blocks. An overlap is noted 6. When an overlap
comes from more than two tasks, it is called multiple over-
lap.

The segments which are to be stored or loaded at con-
text switches are all overlaps. However, as explained in sec-
tion 4.5, not all the overlaps require to be stored or loaded.
The following definition is therefore required:

Effective overlap: it is the contribution of an overlap to
the number of bytes to be stored or loaded at some context
switches.

With these definitions, the problem can be stated as max-
imizing the sizes of the blocks while minimizing the effective
overlaps.

3.3 Preliminary assumptions

If a memory object is not modified by its task, it does
not need to be stored. Hence its context switch cost for
one byte is lower than the one for a memory object which
is modified. In this paper, it is assumed that code is never
modified and that data is always modified. Moreover, it is
assumed that code and data are assigned to different parts
of the memory architecture since it is often the case in prac-
tice. For instance, the MeP processor [9,20] used for the
experiments of this paper includes one SPM device for the
code and another one for the data. If the target architec-
ture includes only one SPM, this simplification can still be
applied by splitting the SPM in two parts, one for the code
memory objects and one for the data ones.

Another important point is about the consequence on the
execution time of the proposed technique. Principally, store
and load operations performed during the context switches
do not only consume energy, they also consume time. For
real-time systems this extra time must be taken into ac-



Table 1: Two preemption patterns

Pattern | Reference task | Executed tasks | Occurrences
Po 121 {to} 2
P1 2 {to,t1} 1

count. Fortunately, if the worst case is computed while not
using the SPM, optimizing the energy consumption by using
this internal memory also improves the execution time even
with the overhead of the stores and loads.

3.4 About the scheduling

When a task t2 is preempted by a task t; the number of
bytes to store (if data), and afterward to load, is the number
of bytes of the SPM which are into the overlap between the
block of t2 and the one of ¢;. If t; often preempts {2 there
will be as many stores and loads and the cost of the corre-
sponding overlap will be high. By contrast, if a task ¢y never
becomes active while £2 is ready there will be no additional
store nor load cost induced by the overlap between the block
of to and the one of t5. Hence, optimizing the placement of
the memory objects must take into account the scheduling
for an efficient sharing of the SPM among the tasks.

Now let us assume that task t2 is preempted by task t;.
Then task to preempts t1 before ¢35 returns to execution. The
overlap between t2 and t1 and the one between t; and to are
to be taken into account, but also the one between t; and
to. Hence, direct preemptions are not enough for computing
the total overlap cost related to a given task, the executions
of the other tasks must also be taken into account.

Therefore, in order to compute the context switches costs,

it is required to enumerate the patterns of preemption oc-
curring along the execution of the system. In this, paper,
these patterns are defined as follows:
Preemption set: it is a set of the tasks executed between
two active states of the same instance of a given task. This
latter task is called the reference task for this set®. A pre-
emption set is noted P.

Preemption pattern: it is the association of a reference
task with one of its preemption sets. Preemption patterns
are also called patterns.

For the example given in figure 3 the patterns are given
in table 1.

These preemptions patterns are used for determining the
effective overlaps and how often the corresponding bytes are
to be stored or loaded at some context switches. First, the
number of bytes to store (if data) then to load for the refer-
ence task of a pattern is the size of the union of the overlap
segments among this task’s block and the ones of the pre-
emption set’s tasks. By union, it is meant that each byte
to store or to load covered by one or more blocks is counted
only once. Then, the energy consumption for updating the
SPM during the context switches is computed by multiply-
ing the cost corresponding to the overlaps of each pattern
by its occurrence rate obtained from a set of profiling exe-
cutions of the multi-task system.

Preemption patterns can be built for any preemptive sys-
tems. However, their possible contents vary depending on
the scheduling policy: for a static priority-based policy, a

20Only the first task of the preemption set actually preempts
the reference task.

pattern set cannot contain any task whose priority is lower
than the one of the reference task whereas with policies like
the earliest deadline first (EDF) this restriction does not

apply.
3.5 Run-time Management of the SPM

The SPM management is performed during the context
switches. In the case of a preemption, a function is called
which stores the parts of the data blocks which overlap with
the one of the coming task. If a previously preempted task
returns to the active state, another function loads the parts
of its block which have been overwritten while the task was
inactive. For that purpose, the SPM space is split at compile
time into several areas delimited by the starting and the
ending addresses of the blocks. Areas are defined as follows:
Area: it is a part of the SPM delimited by two consecutive
bounding (starting or ending) addresses of the blocks; an
area is noted «.

Figure 4 illustrates such a splitting with three tasks (and
three blocks). In the figure, ap is bounded by the starting
addresses of 8o and B1, a1 is bounded by the starting address
of #1 and the ending address of 82 and so on.

S‘fM space (bytes)

Figure 4: SPM split into areas following the blocks’
bounds

When a context switch occurs, some of these areas are
stored or loaded. T'wo tables are used for that purpose. The
first table, built at compile time, is indexed by the blocks’
identifiers and gives the set of the areas which are covered
by each block. Table 3a is such a table which has been built
from the example of figure 4. It can be seen from this table
that the set of the areas covered by a given block is described
by the starting and ending areas only. This is indeed enough
as a single block is necessarily a range of contiguous areas.

Table 2: Tables for managing the areas at run time

Block Covered areas| | Area | Address | Size | Block
Start | End o a0000000| 384b B
Bo Qo e o a0000180| 128b 5
B o1 Qas o a0000200| 128b £
Ba o a s a0000280| 384b 51

(a) Blocks’ covers (b) Areas’ states

The second table, initialized at compile time and updated
at run time, is indexed by the areas’ identifiers. Each of its
entries gives the starting address and the size of the corre-
sponding area, and the identifier of the block currently oc-
cupying it. When the system starts, this last field is empty.
Table 3b is an instance of such a table at run time for the



example of figure 4. The table corresponds to a state where
task t; has preempted task t2 and task to is not ready.

When a context switch occurs, the block table is first
looked up for finding the areas that will be used by the
next active task. Then, for each found area, the area table
is looked up for determining which block occupies it. If the
block is from another task, the corresponding area of the
new task’s block is loaded from the MM (the former area is
first stored if it is a data block). Finally, the area table is
updated accordingly to its new state.

Note: Accessing and computing the evolution of the SPM
state table implies additional costs which are taken into ac-
count into the average costs for storing and loading bytes
between the SPM and the MM. For now, the tables are kept
into the MM.

4. FORMULATION FOR THE TASK-GRAIN
APPROACH

The goal of the ILP is to minimize the energy consumption
related to the memory accesses including the tasks accesses
and the stores and loads during the context switches. The
objective function to minimize can therefore be decomposed
into two parts as seen in equation (1): 0bjiasks Which ac-
counts for the tasks’ memory accesses costs, and objovertaps
which accounts for the costs of the loads and stores for over-
lapped parts within the SPM.

ObjeCt'l:'Ue = Objta.sk:s + Objoverlaps (1)

The parameters of the formulation include the tasks, the
blocks, and the memory objects. Their relevant character-
istics are described by the variables and the constants pre-
sented in the next subsection. When solved, the ILP gives
the address of each block in the SPM and which memory
objects are assigned to it.

Since it is assumed that the code and the data memory
objects are on different SPM devices, there is actually one
ILP for the code and one ILP for the data. As both ILP are
similar (apart from the unit costs of the memory accesses
and SPM updates during the context switches), no distinc-
tion is made between them in the rest of the paper unless it
is relevant.

Note: In all the sections about the ILP, the numerated
equations are part of the formulations used in the proposed
technique while the unenumerated ones are there for expla-
nation purpose only.

4.1 Main variables and constants

Several variables and constants are used in the ILP for
representing the characteristics of the architecture, the sys-
tem, the tasks, the blocks, and the memory objects. They
are indexed by 7 for the preemption patterns, j for the tasks
and the corresponding blocks, and k for the memory objects.

The variables are the following:

%j,, ¢ this binary variable is 1 if memory object k of task j
is in the SPM when the task is active;

s; + this integer variable gives the size of block j;

b; : this integer variable gives the starting ("begin”) address
of block j;

e; : this integer variable gives the ending (“end”) address of
block j;

0,4, = this integer variable is the size in bytes of the overlap
between blocks j and j';

ojffj,, : this binary variable is used for selecting the con-

straint defining the overlap o; ;;

oe; ; i+ : this integer variable is the size in bytes of the effec-
tive overlap between blocks j and j' for pattern i;

Jm;," ¢ this binary variable is used for selecting the con-

straint defining the effective overlap oe; ; ;.

(o]

By default, the integer variables are greater or equal to 0.
The constants are the following:

R; : it is the total number of occurrences for pattern i. It is
obtained by profiling the multi-task application;

Cspm!% : it is the energy cost of the total accesses to mem-

ory object k of task j if the object is in the SPM. This
cost also includes the preliminary load required when a
task is fired. It is obtained by profiling the multi-task
application;

Cmm§?£ : it is the energy cost of the total accesses to mem-
ory object k of task j if the object is in the MM. If there
is a cache (e.g. k is a code memory object), this cost ac-
counts for its accesses and the miss overhead, otherwise,
it accounts for the direct accesses to the external DRAM.
This cost also includes the lost of cache contents at con-
text switches (this content being overwritten by the next
active tasks). It is obtained by profiling the multi-task
application;

Cext @ it is the average energy spent in context switches for
updating one byte of the SPM. In the case of code, it is
the average cost for loading one byte, whereas in the case
of data, it is the average cost for storing and loading one
byte;

Sk : it is the size of the memory object k;

Sy ¢ it is the maximum size of block j. It is computed as

the min of the size of the SPM and the sum of the sizes
of all the memory objects of task j.

4.2 Tasks memory accesses formulation

The first part of the objective function is the sum of the
energy consumed by each task while accessing its memory
objects. For each memory object, the energy consumed de-
pend on whether it is assigned to the MM or to the SPM.
The x; i variables are used for selecting the cost correspond-
ing to the used memory, and 0bjiqsks is then computed as
follows:

Objrasks = Y _(Cspmyk — Cmm; i) * T (2)
3.k

In the above equation, in order to keep the linearity of the
objective, only the difference in energy consumptions be-
tween the accesses to the MM and the SPM is actually rep-
resented.



4.3 Constraints for the blocks

When a memory object is assigned to the SPM, it is put
into the block of its corresponding task. The blocks are
characterized by three variables: their size s;, their starting
address b; and their ending address e;. With them, blocks
are constrained to be within the SPM as follow:

e; < Sspm (3)

The sizes of the blocks are linked to the beginning and end-
ing addresses as follows:

sj =ej —bj 4)

Since by default, variables are bounded to be greater or
equal to 0, e;, b; and s; are never negative which implies
that e; > b;.

The size of a memory block is the sum of the sizes of its
memory objects:

S5 = ij’k * S}c (5)
k

4.4 Overlaps formulation

The size of the overlap between blocks §; and 3,/ can be
expressed by considering each case of their relative positions:

€; — bj if €; S Bj/ and bj Z bjl
e; — bj if e; < ey and b > b;

00 =X €5 —b; if e;s < e; and b; > by
e — b if e < e; and by > b;
0 otherwise

These cases are finally formulated as four constraints using

four mutually exclusive binary variables noted 0%, 0%,
Y Y 5,30 Y55
sel sel .
O]-/’j, O]-/’j/.
sel
05,41 > €5 —bj — Mj; (1 — 055 (6a)
sel
05,40 2 €5 — by — Mj jr % (1= 0575) (6b)
sel
Oj,j’ 2 ej/ — bj — Mj/,j * (1 — Oj’,j) (GC)
sel
05,50 2 €50 — bjr — My ;0 % (1 — 057 51) (6d)
sel + sel + sel + sel 1 (7)
05,5 T 0575 T 050, T 0505/ =

In equations (6) the constants M are used as "big M” [8]:
they have to be large enough to ensure the equality to be
correct when the corresponding 0*¢ variable is 0, but short
solving time also requires them to be as small as possible.
Here, M;; and M;/ ;; can be the maximum size of the re-
spective blocks j and j' (i.e., S§;** and Sp77) while M
and M ; are the size of the SPM. Equation (7) ensures
that exactly one 0% is 1.

When there is no overlap, these equations are still valid
as then, either e; — b;; or e;» — b; is negative so that o; ;/
will be set to 0.

4.5 Effective overlaps

Figure 5 illustrates the necessity to distinguish between
the overlaps and the effective overlaps. In the figure, parts
A of the SPM are used by tp and by ¢, part B is used by
to and t2, and part C is used by t2, t1 and tg. In the case of
figure 5a, the total overlap cost for task ¢z is the sum of the

SPM space (bytes)

1K & 1K
. fa
512

SPM space (bytes)

Figure 5: Cases of overlaps between three blocks

overlap costs of 82 with Sy and the one of B2 with 31, that
is to say:

02,0 * Cext + 02,1 * Cext = 02,0 * Cext

Yet, the full overlap cost can be more complicated to com-
pute: some parts of the SPM can be used by more than two
tasks as it is the case of part C in figure 5b which is used
by to, t1 and t3. When to is preempted by ¢1, this part is
stored so that it is not necessary to store it again when ¢
preempts t1. The same goes for the loads.

As soon as an overlap is included into another overlap built
from the same pattern, it should not be take into account
for the context switches cost and its corresponding effective
overlap is 0. Let oe; ; ;» (effective overlap) be the number of
bytes of the block of task ¢; which will be overwritten at a
context switch because of task t;; during pattern i®. When
t; is the only task of preemption set, oe; ; ;+ is simply equal
to o0;4. Otherwise, this effective overlap is expressed as
follows:

_ 0, lf Elj// G PZ - {]/} 6j,j/ C (sjyj//
OLgd! = 05/, otherwise
In the equation, §, ;- represents the overlap segment between
the block of task j and the one of task j’, and P; is the
preemption set i. For instance, in figure 6a, is tp is the
reference task, do,1 is not effective since it is included into
do,2-

The actual computation of an effective overlaps is then
deduced from the fact that a multiple overlap, if present, is
also one of the single overlaps made of two of its blocks, the
smallest of them. Therefore, when an overlap is included
into another overlap, it is the smallest overlap of the three
obtained from the concerned memory blocks, hence the over-
lap segments inclusion can be tested as follows:

85,4+ C 0557 < 05,50 = min(0j,, 05,1, 05/ )

Figure 6 illustrates this by giving the three possible cases: in
the case 6a, the overlap 6,1 is really included into the overlap
do,2 (hence, 00,1 is not effective). It is also included into the
overlap 41 2, which is necessary due to the definition of the
overlap segments. This first case also shows symmetrically
that dg.2 is not included into dp,1 and is not the smallest of
the three. In the case 6b of the figure, f2 does not overlap
with B;, therefore the corresponding overlap is 0 which is the
minimum of the three. In the case 6¢ B2 does not overlap
with 8o and the corresponding overlap is 0.

3¢, is thence the reference task of P;.
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inclusion

The linear formulation of each effective overlap oe; ; ;7 is
then expressed using a binary variable o}*/",, which is 1

when §; ; is included into a §; j» where j” is from P; —{j'}:

min - max max max
(1 — Oj,j',j”) * mzn(SBj ,Sﬁj/ y 22857t ) Z

05, — 0557 + €55 — €557 (8a)

min . max  QMmax max
(1= 05557 j1) * min(Sg;™, g1, Sgjr”) >

05,5 — 05,5 + €550 — €55 (8b)

0€; 5.5 > 05,5 — min(SZ}”, Sg;?x) * E
jer;—{j’}

0;’?’7]” (9)

In the above equations, the constants computed with the
min of the maximum possible sizes of the blocks B;, B;
or B;~ are the tightest which ensure that o;-'?jiffj// and oe; ; ;/
will be forced to 0 when required. Additionally, the €; ;» con-
stants are there to ensure that at least one effective overlap
is not set to 0 when several overlaps are equal. These posi-
tive constants are strictly smaller than 1 and are all different
from one another. This artificially forces the subtraction of
overlaps of equations (8) to be different from 0.

Sometimes, effective overlaps are also required to be sub-
tracted when computing the context switches costs, they are
called subtractive in this paper. For instance, in figure 6a,
if the reference task is t2, both o2 and §1,2 are effective as
none is included into another overlap, but they still inter-
sect. This intersection, which is §; 2 should be counted only
once instead of twice. For that purpose, the correspond-
ing effective overlap is to subtract once. Such a subtractive
effective overlap corresponds to overlaps between tasks of
the pattern, while the previous effective overlaps correspond
to overlaps between the reference task and one task of the
pattern. Subtractive effective overlap oe; ;s ;+ is non zero
only if the corresponding overlap segment is counted twice,
that is to say when both oe; ; ;; and oe; ;s j» are non-zero.
Moreover, it is to be counted only if it is not included into
another subtractive effective overlap (as for the previously
formulated additive effective overlaps). Hence the formu-
lation for oe; j/ j» is close in principle to the previous one,
but with the differences that it is removed from the cost so
that the solver will try to maximize it and that it can be
non zero only if both effective overlaps oe; ; ;» and oe; ;7 ;1
are non zero. Equations (10) ensure this last property, and
equation (11) performs their actual computation.

oem/,ju S mzn(Sg;?z, g;%w) * Oe?j?j/ (10&)
“en (10b)

oe; i1 5 < min(Sgyr”, Spiit) x oel's

In the above equation, the binary variable oe}'3% is one when

oe; ; ; is non zero and is formulated straight forwardly.

o€y jr 51 < 041 g1 (11a)

vj/// cp - {jl,j“} oe; i1 <
mln(Sg;?w, SEHJC/L/:U) * (2 — O;‘rllfﬁlyjnl — Oezz,ej///) (11b)

] 1 use
In equations (11b), oe;'S%;

where the subtractive overlap coming from 5" is not used
so that oe, ;s ;» is not subtract along with oe; ;s ;j» even if
Oj',j” c Oj/l}jlll‘

These effective overlap variables are finally used for com-
puting the second part of the objective function (j; is the
index of the reference task for pattern 4):

/1 there for eliminating the cases
7

Objo'uerlaps =

Cext * Z(Rl * ( Z 0€i55,5" — Z Oei,j',j”)> (12)

i'EP; i’ EP,

While not necessary for the completeness of the model,
a final set of constraints is added for reducing the solving
time. They set the minimum sizes for the overlap variables
depending on the sizes of their corresponding blocks as fol-
lows:

0j,5' 2 8j + 851 — Sspm (13)

These last constraints allow the LP-solver to cut off several
continuous solutions which do not correspond to any good
integer solutions [8].

5. REFINING THE TECHNIQUE

The technique can be refined by assigning more than one
block per task in order to give more opportunities for re-
ducing the overlaps. For instance, in figure 7, three tasks,
to, t1 and t2 are sharing the SPM. It is assumed that tp is
preempted by to and t1, and that ¢; is preempted by to. In
figure 7a, there is one block per task and the corresponding
overlap sizes are given in table 4a. But if task ¢ has two
blocks which can be placed as shown in figure 7b, the over-
lap size between t2 and to is reduced while not increasing
the other overlaps. Table 4b gives the sizes of the overlaps
for this second case.

SPM space (bytes)
K g

SPM space (bytes)
1K &

512 512

Bo Bo

to t 1o Task

(b) Two blocks for ta

to ty t2 Tasks

(a) One block per task

Figure 7: Less overlap when using more than one
block per task

Thence, better solutions should be found by increasing the
number of blocks. Ideally, the true optimal solution could
be reached if enough blocks are added. However, the solving
time quickly grows with the number of blocks. Moreover,



Table 3: Overlap sizes corresponding to figure 7

Overlap | Size (bytes) Overlap | size (bytes)
BoN B 128 Bo N B 128
Bo N B2 640 BoN PBa 512
810 B2 256 BN Pa 256

(a) One block per task (b) Two blocks for t,

experiments will show that the solution is often hardly better
with additional blocks.

Nevertheless, the formulation is easily modified for sup-
porting several SPM blocks per task. First, variables and
constants are extended with an additional index which refers
to the corresponding memory block. This index is noted [
and is now different from j, the task index. The equations of
the formulation are all updated with the extended variables
and constants. When sums iterates on the tasks’ indexes 7,
they are extended for also iterating on the blocks’ indexes .

New constraints are also required for forbidding two blocks
of a same task to overlap with each other (as they are to be
used simultaneously). Since the order of the blocks within
the SPM is of no importance, it is enough to impose the
starting address of each block [ + 1 of a given task to be
greater or equal to the ending address of block I (Nb; is the
number of blocks for task j):

VI < Nb;  bjiq1 > esy (14)

6. EXPERIMENTS

6.1 Experimental environment

We applied our technique on a MeP [9, 20] processor con-
figuration including an instruction SPM, a 4-way instruction
cache and a data SPM. We used the Toshiba’s MeP Integra-
tor (MPI) tool chain [10] for compiling and simulating the
applications. Energy characteristics of this architecture are
given in table 4. Compilations were performed with the
—02 level of optimization. The multi-task was scheduled
using static priorities and rate monotonic conditions.

Table 4: Average energy consumptions of memory
accesses for a MeP processor

Memory access type Energy (nJ per word)
SPM (8Kb)/code fetch 0.3774
SDRAM/code fetch 62.541

cache hit/code fetch 1.433

cache miss/code fetch 57.897

SPM (8Kb)/data read 0.3774

SPM (8Kb)/data write 0.5053
SDRAM/data read 42.6466
SDRAM/data write 18.3986

Five sets of tasks have been used. Tasks were taken from
the EEMBC [4] and the MiBench [22] benchmark suites.
Table 5 describes the used sets. For each set, tasks were
configured to perform one round (e.g., one frame for the
mp3) when fired, and for their executions, the total load of
the processor was set to about 60%.

Profiling was performed in two steps. First, each task
has been profiled individually for enumerating its accesses to
each of its memory objects and the number of cache misses of
the code fetches. Then, the scheduling of the multi-task ap-
plication is profiled for enumerating the context switches and
deducing the preemption patterns and their occurrences.

For purpose of comparison, a space sharing (Space), a time
sharing (Time) and hybrid space and time sharing ( Hybrid)
approaches were also implemented. For all of them, the
scheduling has been taken into account for optimizing the
usage of the SPM. Two approaches were actually used for
Hybrid: [19] was used for the code and [18] was used for the
data. The approach proposed in this paper is experimented
into its original form with one block per task (One) and into
a refined version with two blocks per task (Two).

Table 5: Tasks-sets used for the experiments

Nb of mem-
Set Tasks ory objects
Code Data
Set 0 | fft, mp3 decode, mp3 decode, 147 52
string search
Set 1 | patricia, patricia, string 56 32
search, string search 2
Set 2 | cubic, fft, patricia, qgsort, 108 28
string search
Set 3 | cubic, gsort, rad2deg, adpcm 64 20
encode, adpcm decode
Set 4 | cubic, patricia, gsort, 206 82
rad2deg, adpcm  encode,
adpcm decode, string search,
string search 2
Set 5 | cubic, fft, mad, mpeg de- 333 196
code, mp3 decode, patri-
cia, gsort, rad2deg, adpcm
encode, adpcm decode, string
search

6.2 Results

The comparison of the different approaches is given in
figure 8 and figure 9. In the figures, the energy consumption
related to the memory accesses for each approach and each
task set is given normalized to the energy consumed when
the code and the data are in the MM. It is important to
notice that when in the MM, the code is accessed through
the cache whereas the data is not. For figure 9 the results
of Two for the code SPM are not given as the solving time
exceeded 8 hours while not achieving a good solution.

As seen in the figures, both One and Two perform better
than the other approaches. For the code, with an 8Kb SPM,
Space achieves on average an energy reduction of 31%, Time
35%, Hybrid 39% and One 51%. The average of Two is 45%
but set 5 is not taken into account. With the same SPM, the
respective maximum energy reductions are 47%, 75%, 75%
and 77%. For the data, with an 8Kb SPM, Space achieves
on average an energy reduction of 60%, Time 52%, Hybrid
60%, One and Two 63%. With the same SPM, the respective
maximum energy reductions are 79%, 67%, 79% and 85%.

Remarkably, Two hardly achieves better than One. Ac-
tually the gain for Two is visible for set 2 only. This can be
explained by the fact that having several blocks per task is



beneficial only if for several tasks some memory objects are
better left into the SPM all the time, or if preemptions are
irregular so that some overlaps are significantly more expen-
sive than others. Moreover, the more the tasks are present,
the more these irregularities tend to dilute.

When comparing the code to the data cases, higher energy
reduction should be expected while using the SPM since the
data is accessed directly in the external DRAM whereas the
code is accessed through the cache. This is indeed the case
provided the SPM is large enough to include enough data
(e.g. for set 3).

When solving the ILP formulations, the worst solving time
for One was about 10 minutes for set 5 which contains 12
tasks, 10 seconds with set 4 which contains 8 tasks and less
than one second with the other sets. Actually the solving
time depends significantly on the number of tasks but not
much on the number of memory objects. This is because
the solver we used [7] deals very efficiently with the knap-
sack constraints which can be deduced from the size of the
blocks. Solving Two is much slower, indeed, good solutions
could not be found with set 5 after several hours. This time,
no knapsack constraint could be extracted because for each
memory objects, there are two possible blocks.

7. CONCLUSION

This paper presented a technique for optimizing the shar-
ing of scratch-pad memories among several tasks targeting
the minimization of the energy consumption regarding the
memory accesses. The technique maximizes the number of
accesses to the SPM by tasks while minimizing the number
of copies between the SPM and the MM which are required
during the context switches for updating the areas of the
SPM used by several different tasks. For that purpose, the
technique selects which memory objects are to be assigned
to which blocks and the location of these blocks within the
SPM. The SPM allocation is obtained by solving an ILP
whose complexity can be tuned by choosing the number of
blocks available to each task. Experimental results have
shown that even when tuned for the fastest answer, the pro-
posed technique achieves better results than other recent
approaches and up to 85% energy reduction with an SPM
size of 8Kb.

As future work, we plan to improve the formulation to
allow blocks which are modified and blocks which are not,
to be located in a same part of the SPM. Another planned
improvement is to bring support of memory objects shared
among several tasks. Also, while our technique with one
block per task did achieve better than hybrid space and
time approaches in our experiments, it does not supersets
them. Therefore, cases may happen where an hybrid ap-
proach does perform better. However, when there is at least
two blocks per task, it does supersets the hybrid techniques,
but the solving time can be prohibitively long. A possible
faster compromise to explore could then be to merge our
technique using one block per task with the space sharing.
Finally, several techniques exist for reducing the energy con-
sumption through the management of the SPM at the task
level. Some of them handle efficiently the stack, and oth-
ers pre-load parts of large arrays. Greater energy reduction
would be achieved if those task-level techniques could be
merged with the multi-task-level technique presented in the

paper.
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Figure 8: Energy consumption related to the mem-
ory accesses normalized to the case where the SPM
is not used (percentage)
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