
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Minimizing Inter-Task Interferences in Scratch-
Pad Memory Usage for Reducing the Energy
Consumption of Multi-Task Systems

Gauthier, Lovic
System LSI Research Center, Kyushu University

Ishihara, Tohru
System LSI Research Center, Kyushu University

Takase, Hideki
Graduate School of Information Science, Nagoya University

Tomiyama, Hiroyuki
Department of VLSI System Design College of Science and Engineering, Ritsumeikan University

他

https://hdl.handle.net/2324/18607

出版情報：Proceedings of the 2010 international conference on Compilers, architectures and
synthesis for embedded systems, pp.157-166, 2010-10. ACM Press
バージョン：
権利関係：© ACM, 2010



Minimizing Inter-Task Interferences in Scratch-Pad Memory 
Usage for Reducing the Energy Consumption of Multi・Task

Systems 

Lovic Gauthier 
System LSI Research Center 
3rd Floor， Institute of System 
LSI Design Industry， Fukuoka 

Tohru Ishihara 
System LSI Research Center 
3rd Floor， Institute of System 
LSI Design Industry， Fukuoka 

Hideki Takase 
Graduate School of 
Information Science 
Naogoya University 

C3-1 (631)， Furo-cho， 
Chikusa-ku， Nagoya， 

464-8603 Japan 

3-8-33 Momochihama， 
Sawara-ku， Fukuoka 
814-0001 Japan 

lovic@slrc.kyushu-u.ac.jp 

3-8-33 Momochihama， 
Sawara-ku， Fukuoka 
814-0001 Japan 

ishihara@slrc.kyushu-u.ac.jp takase@ertl.jp 

ABSTRACT 

Hiroyuki Tomiyama 
Dept. of VLSI System Design 

College of Science and 
Engineering 

Ritsumeikan University 
1-1-1 Noji-Higashi 

Kusatsu， Shiga 525-8577， 
Japan 

hiroyuki@acm.org 

This paper presents a new technique for reducing the energy 

consumption of a multi-t剖 ksystem by sharing its scratch-
pad memory (SPM) space among the tasks. With this tech-
nique， tasks can interfere by using common areas of the 
SPM. However， this requires to update these areas dur-
ing context switchesぅwhichinvo1ves considerab1e overheads. 
Hence， an integer 1inear programming formu1ation is used 
at compi1e time for 自ndingthe best assignment of memory 

objects to the SPM and their respective 10cations inside it. 
Experiments show that the technique achieves up to 85% en-
ergy reduction with 8Kb of SPM and surpasses other sharing 
approaches. 
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1. INTRODUCTION 

Scratch-pad memories (SPM) are on-chip static random 
access memories (SRAM) which are often integrated with 
embedded processors. SPM are more area-expensive but 
faster and consume far 1ess energy than externa1 dynamic 
random access memories (DRAM). HenceぅonlySPM of small 
capacity can actually be used. Like caches， SPM are used 
as fast and 10w energy consuming bu旺'ersfor frequent1y ac-
cessed code or dataう butun1ike them， they are not trans-
parent to the software. Indeed， code and data are to be 
exp1icit1y put into the SPM by the app1ication. While more 
complex to use， SPM are faster than ca舵.ch悶 (i凶nterm 0ぱfd白e白

lay) and consume significantly less energyl (about 26% of 

what consumes the 4-way cache of the MeP processor we 
used in our experiments [9，20]). Moreover， the behavior of 
SPM is much more predictab1e than the one of caches so 
that SPM are also preferred for real-time applications. 

In a multi-task environment the SPM is to be shared 
among the tasks. The sharing can be done following two 

lThis is due to the additiona1 tags and logic of the caches. 









example of白gure4. The table corresponds to a state where 

task tl has preempted task t2 and task to is not ready. 
When a context switch occursう theblock table is first 

looked up for finding the areas that will be used by the 

next active task. Thenう foreach found areaう thearea table 
is looked up for determining which block occupies it. If the 
block is from another taskう thecorresponding area of the 
new taskうsblock is loaded from the MM  (the former area is 
first stored if it is a data block). Finallyぅ thearea table is 
updated accordingly to its new state. 

N ote: Accessing and computing the evolution of the SPM 
state table implies additional costs which are taken into ac-

count into the average costs for storing and loading bytes 
between the SPM and the MM. For nowぅthetables are kept 
into the MM. 

4. FORMULATION FOR THE TASK-GRAIN 
APPROACH 

The goal of the ILP is to minimize the energy consumption 
related to the memory accesses including the tasks accesses 
and the stores and loads during the context switches. The 
objective function to minimize can therefore be decomposed 

into two parts as seen in equation (1): objω ks which ac-
counts for the tasksう memoryaccesses costsう andobjoverlaps 
which accounts for the costs of the loads and stores for over-
lapped parts within the SPM. 

objective = objt臼sks+ objoverl日ps (1) 

The parameters of the formulation include the tasks， the 
blocksぅ andthe memory objects. Their relevant character-
istics are described by the variables and the constants pre-
sented in the next subsection. When solvedう theILP gives 
the address of each block in the SPM and which memory 
objects are assigned to it. 

Since it is assumed that the code and the data memory 
objects are on di宜erentSP乱1{devicesう thereis actually one 
ILP for the code and one ILP for the data. As both ILP are 

similar (apart from the unit costs of the memory accesses 
and SPM updates during the context switches)ヲ nodistinc-
tion is made between them in the rest of the paper unless it 
is relevant. 

N ote: In all the sections about the ILPう thenumerated 
equations are part of the formulations used in the proposed 
technique while the unenumerated ones are there for expla-
nation purpose only. 

4.1 Main variables and constants 
Several variables and constants are used in the ILP for 

representing the characteristics of the architectureう thesys-
temぅ thetasksう theblocksぅ andthe memory objects. They 
are indexed by i for the preemption patternsうjfor the tasks 
and the corresponding blocksう andk for the memory objects. 

The variables are the following: 

Xj，k : this binary variable is 1 if memory object k of task j 
is in the SPM when the task is active; 

Sj this integer variable gives the size of block j; 

bj : this integer variable gives the starting (門begin門)address 

of block j; 

ej this integer variable gives the ending ("end刊)address of 

block j; 

Oj，j' : this integer variable is the size in bytes of the overlap 
between blocks j and j'; 

。ji，lj'/ this binary variable is used for selecting the con-

straint defining the overlap Oj，j'; 

Oei，j，j/ : this integer variable is the size in bytes of the effec-
tive overlap between blocks j and j' for pattern i; 

017ル thisbinary variable is used for selecting the con-
straint de白ningthe e旺ectiveoverlap Oei，j，j/. 

By defaultヲ theinteger variables are greater or equal to O. 
The constants are the following: 

Ri : it is the total number of occurrences for pattern i. It is 
obtained by profiling the multi-task application; 

Cspm;ヌitis the energy cost of the total accesses to mem-
ory object k of task j if the object is in the SPM. This 
cost also includes the preliminary load required when a 
task is fired. It is obtained by profiling the multi-task 
application; 

Cmm刀 itis the energy cost of the total accesses to mem-
ory object k of task j if the object is in the MM. If there 
is a cache (e.g. k is a code memory object)ぅ thiscost ac-
counts for its accesses and the miss overheadう otherwise，
it accounts for the direct accesses to the external DRAM. 
This cost also includes the lost of cache contents at con-
text switches (this content being overwritten by the next 
active tasks). It is obtained by profiling the multi-task 
application; 

Ccxt: it is the average energy spent in context switches for 
updating one byte of the SPM. In the case of codeう itis 
the average cost for loading one byteう whereasin the case 
of dataう itis the average cost for storing and loading one 

byte; 

Sk : it is the size of the memory object k; 

Ssjax : it is the maximum size of block j. It is computed as 
the min of the size of the SPM and the sum of the sizes 
of all the memory objects of task j. 

4.2 Tasks memory accesses formulation 
The first part of the objective function is the sum of the 

energy consumed by each task while accessing its memory 
objects. For each memory objectう theenergy consumed de-
pend on whether it is assigned to the MM  or to the SPM. 

The Xjぅkvariables are used for selecting the cost correspond-
ing to the used memory， and objtasks is then computed as 
follows: 

objt吋 乞(Cspmj，k-Cmrr (2) 

In the above equationう inorder to keep the linearity of the 
objectiveぅ onlythe difference in energy consumptions be-
tween the accesses to the MM  and the SPM is actually rep-
resented. 







Table 3: Overlap sizes corresponding to figure 7 

Size (bytes) 

128 

640 

256 

(a) One block per task 

size (bytes) 

128 

experiments will show that the solution is often hardly better 

with additional blocks. 
N everthelessう theformulation is easily modified for sup-

porting several SPM blocks per task. Firstう variablesand 
constants are extended with an additional index which refers 
to the corresponding memory block. This index is noted 1 
and is now different from jう thetask index. The equations of 
the formulation are all updated with the extended variables 
and constants. When sums iterates on the tasksう indexesjう

they are extended for also iterating on the blocksう indexes1. 
New constraints are also required for forbidding two blocks 

of a same task to overlap with each other (as they are to be 
used simultaneously). Since the order of the blocks within 
the SPM is of no importanceう itis enough to impose the 
starting address of each block 1 + 1 of a given task to be 
greater or equal to the ending address of block 1 (Nbj is the 
number of blocks for task j): 

VI < Nbj bj，l+lと匂，l (14) 

6. EXPERIMENTS 

6.1 Experimental environment 
We applied our technique on a MeP [9ぅ20]processor con-

figuration including an instruction SPMう a4-way instruction 
cache and a data SPM. We used the Toshiba冶MePIntegra-
tor (MPI) tool chain [10] for compiling and simulating the 
applications. Energy characteristics of this architecture are 
given in table 4. Compilations were performed with the 
02 level of optimization. The multi-task was scheduled 

using static priorities and rate monotonic conditions. 

Table 4: A verage energy consumptions of memory 
accesses for a MeP processor 

Memory access type Energy (nJ per word) 

SPM (8Kb) j code fetch 0.3774 

SDRAMjcode fetch 62.541 

cache hit j code fetch 1.433 

cache miss j code fetch 57.897 

SPM (8Kb)jdata read 0.3774 

SPM (8Kb)jdata write 0.5053 

SDRAMjdata read 42.6466 

SDRAMjdata write 18.3986 

Five sets of tasks have been used. Tasks were taken from 
the EEMBC [4] and the MiBench [22] benchmark suites. 
Table 5 describes the used sets. For each setう taskswere 
co凶 guredto perform one round (e.g.う oneframe for the 
mp3) when firedう andfor their exec凶 onsぅ thetotal load of 
the processor was set to about 60%. 

Pro白lingwas performed in two steps. Firstう eachtask 
has been pro臼edindividually for enumerating its accesses to 

each of its memory objects and the number of cache misses of 
the code fetches. Thenう thescheduling of the multi-task ap-
plication is profiled for enumerating the context switches and 
deducing the preemption patterns and their occurrences. 

For purpose of comparisonぅaspace shari時 (Spαce)う atime
sharing (Time) and hybrid space and time sharing (H:υbrid) 
approaches were also implemented. For all of themう the
scheduling has been taken into account for optimizing the 
usage of the SPM. Two approaches were actually used for 

Hybrid: [19] was used for the code and [18] was used for the 
data. The approach proposed in this paper is experimented 

into its original form with one block per task (One) and into 
a refined version with two blocks per task (Two). 

Table 5: Tasks-sets used for the experiments 

Nb of mem-
Set Tasks ory objects 

Code Data 

Set 0 百sttrぅIIIIp3decodeぅ mp3decodeう 147 52 
ng search 

Set 1 patriciaぅ I1Pgasteraicricah う string 56 32 
searchヲ strine:search 2 

Set 2 cubicう e百atrcうhPatriciaう qsortう 108 28 
string s 

Set 3 cunbcoicdぅ q.saodrotう rad2cdoedgeう adpcm 64 20 
encode， adpcm de 

Set 4 

Cra8凱LdIrb1p12nIcCdgm ，esged，aerccpohadatde2 r，pICcsItm ar，1 qsort， 
206 82 

encodeう

ng searchう

Set 5 

cubIC，fh cmrm adadAed2cc3domedEmer，l，pe，eazdsptapntdcnrm ← I E 

333 196 
codeぅ mp3

ciaぅ dqesうoartdうp 
enco 
search 

6.2 Results 
The comparison of the different approaches is given in 

figure 8 and figure 9. In the figuresぅtheenergy consumption 
related to the memory accesses for each approach and each 
task set is given normalized to the energy consumed when 
the code and the data are in the MM. It is important to 
notice that when in the MMう thecode is accessed through 
the cache whereas the data is not. For白gure9 the results 

of Two for the code SPM are not given as the solving time 
exceeded 8 hours while not achieving a good solution. 

As seen in the figuresう bothOne and Two perform better 
than the other approaches. For the codeう withan 8Kb SPMう

Space achieves on average an energy reduction of 31 %う Time
35%う Hybrid39% and One 51%. The average of Two is 45% 
but set 5 is not taken into account. With the same SPMうthe
respective maximum energy reductions are 47%， 75%， 75% 
and 77%. For the data， with an 8Kb SPMう Spaceachieves 

on average an energy reduction of 60%ヲ Time52%う Hybrid
60%う Oneand Two 63%. With the same SPMうtherespective 
maximum energy reductions are 79%う 67%う 79%and 85%. 

Remarkablyぅ Twohardly achieves better than One. Ac-
tually the gain for Two is visible for set 2 only. This can be 
explained by the fact that having several blocks per task is 






