
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Minimizing Inter-Task Interferences in Scratch-
Pad Memory Usage for Reducing the Energy
Consumption of Multi-Task Systems

Gauthier, Lovic
System LSI Research Center, Kyushu University

Ishihara, Tohru
System LSI Research Center, Kyushu University

Takase, Hideki
Graduate School of Information Science, Nagoya University

Tomiyama, Hiroyuki
Department of VLSI System Design College of Science and Engineering, Ritsumeikan University

他

https://hdl.handle.net/2324/18607

出版情報：Proceedings of the 2010 international conference on Compilers, architectures and
synthesis for embedded systems, pp.157-166, 2010-10. ACM Press
バージョン：
権利関係：© ACM, 2010

Minimizing Inter-Task Interferences in Scratch-Pad Memory
Usage for Reducing the Energy Consumption of Multi・Task

Systems

Lovic Gauthier
System LSI Research Center
3rd Floor， Institute of System
LSI Design Industry， Fukuoka

Tohru Ishihara
System LSI Research Center
3rd Floor， Institute of System
LSI Design Industry， Fukuoka

Hideki Takase
Graduate School of
Information Science
Naogoya University

C3-1 (631)， Furo-cho，
Chikusa-ku， Nagoya，

464-8603 Japan

3-8-33 Momochihama，
Sawara-ku， Fukuoka
814-0001 Japan

lovic@slrc.kyushu-u.ac.jp

3-8-33 Momochihama，
Sawara-ku， Fukuoka
814-0001 Japan

ishihara@slrc.kyushu-u.ac.jp takase@ertl.jp

ABSTRACT

Hiroyuki Tomiyama
Dept. of VLSI System Design

College of Science and
Engineering

Ritsumeikan University
1-1-1 Noji-Higashi

Kusatsu， Shiga 525-8577，
Japan

hiroyuki@acm.org

This paper presents a new technique for reducing the energy

consumption of a multi-t剖 ksystem by sharing its scratch-
pad memory (SPM) space among the tasks. With this tech-
nique， tasks can interfere by using common areas of the
SPM. However， this requires to update these areas dur-
ing context switchesぅwhichinvo1ves considerab1e overheads.
Hence， an integer 1inear programming formu1ation is used
at compi1e time for 自ndingthe best assignment of memory

objects to the SPM and their respective 10cations inside it.
Experiments show that the technique achieves up to 85% en-
ergy reduction with 8Kb of SPM and surpasses other sharing
approaches.

Categories and Subject Descriptors

D.2.2 [SOFTWARE ENGINEERING]: Design T，日O∞O仙lsa組n
Techniques-Comp叫 er-aidedsoβωαre engineering (CASE)

; D.4.2 [OPERATING SYSTEMS]: Storage Manage-
ment-Storage hienαγ'chies

; C.3 [SPECIAL-PURPOSE AND APPLICATION-
BASED SYSTEMS]: Real-timeαnd embedded systems

; B.3.1 [MEMORY STRUCTURES]: Semiconductor
Memories-Dynamic memory (DRAM)

Pennission to make digital or hard copies of all or part of this work for
personal or c1assroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise， to
republish， to post on servers or to redistribute to lists， requires prior specific
permission and/or a fee.
CASES'lO， October 24-29，2010， Scottsdale， Arizona， USA.
Copyright 2010 ACM 978・1・60558-903θ/10/10…$10.00.

Hiroaki Takada
Graduate School of
Information Science，
Naogoya University

C3・1(631)， Furo-cho，
Chikusa-ku， Nagoya，

464-8603 Japan
hiro@er七l.jp

; B.3.1 [MEMORY STRUCTURES]: Semiconductor

Memories-Stαtic memory (SRAM)
; B.3.2 [MEMORY STRUCTURES]: Design Sty1es-

Cαche memories

General Terms

Designう Performance

Keywords

Low energy， multi-task， scratch-pad memory

1. INTRODUCTION

Scratch-pad memories (SPM) are on-chip static random
access memories (SRAM) which are often integrated with
embedded processors. SPM are more area-expensive but
faster and consume far 1ess energy than externa1 dynamic
random access memories (DRAM). HenceぅonlySPM of small
capacity can actually be used. Like caches， SPM are used
as fast and 10w energy consuming bu旺'ersfor frequent1y ac-
cessed code or dataう butun1ike them， they are not trans-
parent to the software. Indeed， code and data are to be
exp1icit1y put into the SPM by the app1ication. While more
complex to use， SPM are faster than ca舵.ch悶 (i凶nterm 0ぱfd白e白

lay) and consume significantly less energyl (about 26% of

what consumes the 4-way cache of the MeP processor we
used in our experiments [9，20]). Moreover， the behavior of
SPM is much more predictab1e than the one of caches so
that SPM are also preferred for real-time applications.

In a multi-task environment the SPM is to be shared
among the tasks. The sharing can be done following two

lThis is due to the additiona1 tags and logic of the caches.

example of白gure4. The table corresponds to a state where

task tl has preempted task t2 and task to is not ready.
When a context switch occursう theblock table is first

looked up for finding the areas that will be used by the

next active task. Thenう foreach found areaう thearea table
is looked up for determining which block occupies it. If the
block is from another taskう thecorresponding area of the
new taskうsblock is loaded from the MM (the former area is
first stored if it is a data block). Finallyぅ thearea table is
updated accordingly to its new state.

N ote: Accessing and computing the evolution of the SPM
state table implies additional costs which are taken into ac-

count into the average costs for storing and loading bytes
between the SPM and the MM. For nowぅthetables are kept
into the MM.

4. FORMULATION FOR THE TASK-GRAIN
APPROACH

The goal of the ILP is to minimize the energy consumption
related to the memory accesses including the tasks accesses
and the stores and loads during the context switches. The
objective function to minimize can therefore be decomposed

into two parts as seen in equation (1): objω ks which ac-
counts for the tasksう memoryaccesses costsう andobjoverlaps
which accounts for the costs of the loads and stores for over-
lapped parts within the SPM.

objective = objt臼sks+ objoverl日ps (1)

The parameters of the formulation include the tasks， the
blocksぅ andthe memory objects. Their relevant character-
istics are described by the variables and the constants pre-
sented in the next subsection. When solvedう theILP gives
the address of each block in the SPM and which memory
objects are assigned to it.

Since it is assumed that the code and the data memory
objects are on di宜erentSP乱1{devicesう thereis actually one
ILP for the code and one ILP for the data. As both ILP are

similar (apart from the unit costs of the memory accesses
and SPM updates during the context switches)ヲ nodistinc-
tion is made between them in the rest of the paper unless it
is relevant.

N ote: In all the sections about the ILPう thenumerated
equations are part of the formulations used in the proposed
technique while the unenumerated ones are there for expla-
nation purpose only.

4.1 Main variables and constants
Several variables and constants are used in the ILP for

representing the characteristics of the architectureう thesys-
temぅ thetasksう theblocksぅ andthe memory objects. They
are indexed by i for the preemption patternsうjfor the tasks
and the corresponding blocksう andk for the memory objects.

The variables are the following:

Xj，k : this binary variable is 1 if memory object k of task j
is in the SPM when the task is active;

Sj this integer variable gives the size of block j;

bj : this integer variable gives the starting (門begin門)address

of block j;

ej this integer variable gives the ending ("end刊)address of

block j;

Oj，j' : this integer variable is the size in bytes of the overlap
between blocks j and j';

。ji，lj'/ this binary variable is used for selecting the con-

straint defining the overlap Oj，j';

Oei，j，j/ : this integer variable is the size in bytes of the effec-
tive overlap between blocks j and j' for pattern i;

017ル thisbinary variable is used for selecting the con-
straint de白ningthe e旺ectiveoverlap Oei，j，j/.

By defaultヲ theinteger variables are greater or equal to O.
The constants are the following:

Ri : it is the total number of occurrences for pattern i. It is
obtained by profiling the multi-task application;

Cspm;ヌitis the energy cost of the total accesses to mem-
ory object k of task j if the object is in the SPM. This
cost also includes the preliminary load required when a
task is fired. It is obtained by profiling the multi-task
application;

Cmm刀 itis the energy cost of the total accesses to mem-
ory object k of task j if the object is in the MM. If there
is a cache (e.g. k is a code memory object)ぅ thiscost ac-
counts for its accesses and the miss overheadう otherwise，
it accounts for the direct accesses to the external DRAM.
This cost also includes the lost of cache contents at con-
text switches (this content being overwritten by the next
active tasks). It is obtained by profiling the multi-task
application;

Ccxt: it is the average energy spent in context switches for
updating one byte of the SPM. In the case of codeう itis
the average cost for loading one byteう whereasin the case
of dataう itis the average cost for storing and loading one

byte;

Sk : it is the size of the memory object k;

Ssjax : it is the maximum size of block j. It is computed as
the min of the size of the SPM and the sum of the sizes
of all the memory objects of task j.

4.2 Tasks memory accesses formulation
The first part of the objective function is the sum of the

energy consumed by each task while accessing its memory
objects. For each memory objectう theenergy consumed de-
pend on whether it is assigned to the MM or to the SPM.

The Xjぅkvariables are used for selecting the cost correspond-
ing to the used memory， and objtasks is then computed as
follows:

objt吋 乞(Cspmj，k-Cmrr (2)

In the above equationう inorder to keep the linearity of the
objectiveぅ onlythe difference in energy consumptions be-
tween the accesses to the MM and the SPM is actually rep-
resented.

Table 3: Overlap sizes corresponding to figure 7

Size (bytes)

128

640

256

(a) One block per task

size (bytes)

128

experiments will show that the solution is often hardly better

with additional blocks.
N everthelessう theformulation is easily modified for sup-

porting several SPM blocks per task. Firstう variablesand
constants are extended with an additional index which refers
to the corresponding memory block. This index is noted 1
and is now different from jう thetask index. The equations of
the formulation are all updated with the extended variables
and constants. When sums iterates on the tasksう indexesjう

they are extended for also iterating on the blocksう indexes1.
New constraints are also required for forbidding two blocks

of a same task to overlap with each other (as they are to be
used simultaneously). Since the order of the blocks within
the SPM is of no importanceう itis enough to impose the
starting address of each block 1 + 1 of a given task to be
greater or equal to the ending address of block 1 (Nbj is the
number of blocks for task j):

VI < Nbj bj，l+lと匂，l (14)

6. EXPERIMENTS

6.1 Experimental environment
We applied our technique on a MeP [9ぅ20]processor con-

figuration including an instruction SPMう a4-way instruction
cache and a data SPM. We used the Toshiba冶MePIntegra-
tor (MPI) tool chain [10] for compiling and simulating the
applications. Energy characteristics of this architecture are
given in table 4. Compilations were performed with the
02 level of optimization. The multi-task was scheduled

using static priorities and rate monotonic conditions.

Table 4: A verage energy consumptions of memory
accesses for a MeP processor

Memory access type Energy (nJ per word)

SPM (8Kb) j code fetch 0.3774

SDRAMjcode fetch 62.541

cache hit j code fetch 1.433

cache miss j code fetch 57.897

SPM (8Kb)jdata read 0.3774

SPM (8Kb)jdata write 0.5053

SDRAMjdata read 42.6466

SDRAMjdata write 18.3986

Five sets of tasks have been used. Tasks were taken from
the EEMBC [4] and the MiBench [22] benchmark suites.
Table 5 describes the used sets. For each setう taskswere
co凶 guredto perform one round (e.g.う oneframe for the
mp3) when firedう andfor their exec凶 onsぅ thetotal load of
the processor was set to about 60%.

Pro白lingwas performed in two steps. Firstう eachtask
has been pro臼edindividually for enumerating its accesses to

each of its memory objects and the number of cache misses of
the code fetches. Thenう thescheduling of the multi-task ap-
plication is profiled for enumerating the context switches and
deducing the preemption patterns and their occurrences.

For purpose of comparisonぅaspace shari時 (Spαce)う atime
sharing (Time) and hybrid space and time sharing (H:υbrid)
approaches were also implemented. For all of themう the
scheduling has been taken into account for optimizing the
usage of the SPM. Two approaches were actually used for

Hybrid: [19] was used for the code and [18] was used for the
data. The approach proposed in this paper is experimented

into its original form with one block per task (One) and into
a refined version with two blocks per task (Two).

Table 5: Tasks-sets used for the experiments

Nb of mem-
Set Tasks ory objects

Code Data

Set 0 百sttrぅIIIIp3decodeぅ mp3decodeう 147 52
ng search

Set 1 patriciaぅ I1Pgasteraicricah う string 56 32
searchヲ strine:search 2

Set 2 cubicう e百atrcうhPatriciaう qsortう 108 28
string s

Set 3 cunbcoicdぅ q.saodrotう rad2cdoedgeう adpcm 64 20
encode， adpcm de

Set 4

Cra8凱LdIrb1p12nIcCdgm ，esged，aerccpohadatde2 r，pICcsItm ar，1 qsort，
206 82

encodeう

ng searchう

Set 5

cubIC，fh cmrm adadAed2cc3domedEmer，l，pe，eazdsptapntdcnrm ← I E

333 196
codeぅ mp3

ciaぅ dqesうoartdうp
enco
search

6.2 Results
The comparison of the different approaches is given in

figure 8 and figure 9. In the figuresぅtheenergy consumption
related to the memory accesses for each approach and each
task set is given normalized to the energy consumed when
the code and the data are in the MM. It is important to
notice that when in the MMう thecode is accessed through
the cache whereas the data is not. For白gure9 the results

of Two for the code SPM are not given as the solving time
exceeded 8 hours while not achieving a good solution.

As seen in the figuresう bothOne and Two perform better
than the other approaches. For the codeう withan 8Kb SPMう

Space achieves on average an energy reduction of 31 %う Time
35%う Hybrid39% and One 51%. The average of Two is 45%
but set 5 is not taken into account. With the same SPMうthe
respective maximum energy reductions are 47%， 75%， 75%
and 77%. For the data， with an 8Kb SPMう Spaceachieves

on average an energy reduction of 60%ヲ Time52%う Hybrid
60%う Oneand Two 63%. With the same SPMうtherespective
maximum energy reductions are 79%う 67%う 79%and 85%.

Remarkablyぅ Twohardly achieves better than One. Ac-
tually the gain for Two is visible for set 2 only. This can be
explained by the fact that having several blocks per task is

