
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Stack Frames Placement in Scratch-Pad Memory
for Energy Reduction of Multi-task Applications

Gauthier, Lovic
System LSI Research Center,Kyushu University

Ishihara, Tohru
System LSI Research Center,Kyushu University

Takada, Hiroaki
Graduate School of Information Science, Nagoya University

https://hdl.handle.net/2324/18605

出版情報：DAシンポジウム 2010 論文集, pp.171-176, 2010-08. 情報処理学会
バージョン：
権利関係：



Stack Frames Placement in Scratch-Pad
Memory for Energy Reduction of Multi-task Applications∗

LOVIC GAUTHIER1, TOHRU ISHIHARA1, AND HIROAKI TAKADA2

1System LSI Research Center,
3rd Floor, Institute of System LSI Design Industry, Fukuoka, 3-8-33 Momochihama,
Sawara-ku, Fukuoka 814-0001 JAPAN, Email: {lovic,ishihara}@slrc.kyushu-u.ac.jp

2Dept. of Information Engineering, Graduate School of Information Science,
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN, Email hiro@ertl.jp

Abstract
Scratch-pad memories (SPM) are small on-chip mem-
ory devices whose access is much faster and consumes
much less energy than off-chip memories. While SPM
are usually too small for containing all the code or data
of an application, significant energy consumption re-
ductions can be achieved by assigning to them mem-
ory objects which are often accessed. The stack is one
of the most frequently accessed data memory object,
but its dynamic behavior makes it difficult to place into
the SPM. This paper presents a simple and practical
technique for placing frequently accessed parts of the
stack into the SPM. The technique has been designed
for multi-task environments where the SPM is shared
among several tasks. Results show that the proposed
technique achieves energy reductions which are compa-
rable to ones obtain by other techniques supporting only
single-task applications.

1 Introduction
Scratch-pad memories (SPM) are small on-chip mem-
ory devices. SPM are much smaller but also much faster
and consume much less energy than off-chip memories.
Accesses to SPM are done explicitly by the software
as opposed to caches whose accesses are transparent
to the software. This is why caches are often preferred
for desktop or server applications. However, caches are
poorly deterministic which favors SPM for real-time
applications. Moreover, accesses to caches have longer
delays and consume more energy than accesses to SPM.
Hence, the latter are often preferred for embedded
systems where energy constraints are tight.

When using the SPM for the data of a given task, the
main idea is to place in it the memory objects (static
variables, stack or heap) which are often accessed.
While placing static variables into the SPM is not diffi-
cult since their size do not vary during the execution of
the application, this is not the case for the stack nor for
the heap and both require sophisticated techniques to
benefit from the SPM. This get even more complicated
with multi-task systems which share the SPM among
several tasks because this requires to be cautious while

∗This work is supported by Toshiba and the CREST ULP program
of JST.

changing the state of memory objects like a stack and
because this reduces the energy consumption gain
that can be expected at the task-level. Nonetheless,
the stack is one of the most accessed memory object.
For instance, with the applications of the MiBench
benchmark suite [12], stack accesses represent about
60% of the data memory accesses.

This paper presents the implementation of a fully
software technique which uses the SPM in order to
reduce the energy consumption related to the stacks of
multi-task applications. For each task, the technique
manages three sub-stacks which are successively used
while the program goes deeper into the call graph. The
first and the third sub-stacks are located into the main
memory (MM) while the middle one is located into
the SPM and is meant to contain the frames which
are the most frequently accessed. An integer linear
programming (ILP) formulation is solved for selecting
at compile time which sub-stack is to use at each
function call in the program. This technique is simple
enough to allow the operating system (OS) to efficiently
share the SPM among the various memory objects of
the tasks including their stacks. The management of
the SPM by the OS is also taken into account into the
formulation of the technique.

The rest of the paper is organised as follows: the next
section presents some related works, section 3 explains
how the stack and the multi-task management of the
SPM are implemented in general then section 4 presents
the stack management proposed in this paper. Section 5
gives an implementation for the proposed management
before section 6 which presents some experimental
results and section 7 which concludes the paper.

2 Related works
Several techniques exist for managing memory objects
of single-task applications between the SPM and the
MM in order to reduce the energy consumption or
increase the speed. Among them, a majority are limited
to static memory objects like [6, 7, 15, 14, 8]. A few
works [1, 11, 4] do consider dynamic objects like the
stack. In [3] we proposed a fully software technique
for managing the stack between the SPM and the MM
which supersets the techniques of [1, 4].

None of these papers studied the validity and the
efficiency of their approach in the case of multi-task



applications. Moreover, only [3] discussed about im-
plementation details but it still assumed that important
modifications of the code will not significantly increase
the resulting energy consumption (beside the energy
taken into account for managing the stack) nor change
the actual size of the stack’s frames. Those weaknesses
are specially addressed by the technique proposed here.

Several techniques also exist for sharing the SPM
space among several tasks for their static memory ob-
jects. The usual ideas are to either share the SPM
spatially, with the drawback of having less SPM space
available for each task, or temporally, which provides
the totality of the SPM space to each task but requires to
update its content at context switches. Papers like [13,
9] studied these approaches and proposed more efficient
hybrid spatial and temporal techniques. In this paper,
we are using the hybrid technique proposed by [9].

3 Context

3.1 Default stack management
The stack is organised as a set of frames. Each function
has its own frame for placing in it its local variables
which could not be assigned to registers. Figure 1 shows
how the stack is usually managed. In the figure, the con-
tent of the stack is shown evolving with a succession of
functions, f1 calling f2 then f2 returning to f1. At the
very beginning of each function a new frame is allocated
on top of the stack by decreasing the stack pointer regis-
ter (SP). Reciprocally, at the very end of each function,
its frame is destroyed by subtracting its size from SP.

Figure 1: Standard evolution of a stack

For a majority of the processors, a function accesses
its frame with register-relative addressing. Several
registers can be used for these accesses, but the com-
putations of their values are always rooted to SP which
points to the start of the current frame. Additionally,
when a function f calls another function g whose
number of arguments is large so that some of them
could not be assigned to registers, these extra arguments
are conventionally stored into the frame of f . They are
then accessed by g relatively to its own frame.

3.2 Multi-task management of the SPM
As introduced in section 2, the SPM can be shared
among several tasks spatially, temporally or with an hy-
brid mix of both dimensions. Figure 2 illustrates these
sharing approaches as presented in [9]. In the figure,
the content of the SPM is shown evolving with the suc-
cession of the active tasks. In figure 2c, the upper part
of the SPM is spatially shared, whereas the lower part
is temporally shared. When the SPM or a part of it is

temporally shared, the concerned memory objects need
to be saved to the MM when their task is preempted.
They are eventually restored when their task returns
to execution. The hybrid technique of [9] is actually

(a) Space (b) Time (c) Hybrid

Figure 2: SPM sharing techniques

more sophisticated: it allows tasks of high priority to
steal some spatially shared parts of the SPM from lower
priority tasks as in can be seen in the figure for task t3.

4 The proposed stack management
The technique proposed in this paper is based on two
observations. First, the functions close to the root of the
call graph of a task are not likely to be executed for a
long time compared to the other functions. Therefore,
their frames are not likely to be often accessed. Second,
it is common that the frames of some functions which
are close to the leaves cannot be put into the SPM.
This is the case for recursive functions and for some
library functions as it will be explained in section 4.1.
Consequently, the functions whose frames worth to be
placed into the SPM are mostly the ones located near
the middle of the call graph.

In order to take advantage of this characteristic the
simplest possible way, the stack of each task is split into
three sub-stacks. The first one is located into the MM
and contains the frames of the functions close to the root
of the call graph, the second one is located into the SPM
and contains the frames of the functions close to the
middle of the call graph and the third one is located into
the MM again and contains the frames of the functions
close to the leaves of the call graph. In this paper, these
three sub-stacks are called respectively MM low, SPM
and MM high. With this approach, the only difference
with the standard stack management is that SP is to be
translated among the three sub-stacks just before calling
some functions and just after returning from them. This
translation is performed with four operations:

warp(SPM): translates SP to the start of the SPM
sub-stack.

warp(MM high): translates SP to the start of the MM
high sub-stack.

unwarp(SPM): translates SP back to the top of the
SPM sub-stack.

unwarp(MM low): translates SP back to the top of
the MM low sub-stack.

Warp operations are used for translating SP to the
next sub-stack and unwarp operations are used for
the reverse translations. Since a frame cannot move,
when a warp operation is inserted the opposite unwarp
operation must be inserted after the same call. Figure 3
shows how these operations work for managing the
stack. In the figure, the content of the sub-stacks is

2



Figure 3: Evolution of the three sub-stacks

shown evolving with a succession of functions, f1
calling f2 which then calls f3 before returning to f2
then f1. The frames of f1, f2 and f3 are respectively put
into the MM low, the SPM and the MM high sub-stacks,
warp and unwarp operations being inserted accordingly.

The decision to insert or not the operations for each
call of a program is taken from the resolution of an ILP
whose objective to minimize models the stack-related
energy consumption. The formulation is constrained so
that the state of the sub-stacks is valid, i.e., the size of
the SPM sub-stack must not exceed the space reserved
into the SPM for it and the transition order between the
sub-stacks must be from MM low to SPM and finally to
MM high when going from the root to the leaves of the
call graph.

For the multi-task point of view, it is considered
in this paper that the SPM sub-stacks are put into
the temporally shared part of the SPM since their
access number/size ratio is high. The costs of saving
and restoring the SPM sub-stacks at context switches
can then be taken into account in the objective of the
stack management as a function of the current sizes of
the SPM sub-stacks.

4.1 Difficulties
Stack-related difficulties. The stack management we
propose in this paper and the other fully software ones
proposed in [1, 11, 4, 3], require to modify the code for
allocating some of the frames to the SPM and accessing
them. This can only be done at assembly level since
the stack is abstracted in higher level languages like C.
In conventional programs, the stack is localized with
SP. Yet, this does not forbid to access it relatively to
other registers provided the computation of their value
takes root from SP. Therefore, if translation operations
are inserted in arbitrary places of the code, the value of
several registers, and also some memory contents (e.g.,
in case of spill code) have to be updated at the same
time. This requires both deep data dependency analysis
to identify the places to update and important assembly
code modifications. Both are complex to carry out,
but more importantly, the energy cost of the code
modifications can exceed the gain achieved by using
the SPM. Moreover, such modifications are likely to
change the size of the frames which could invalidate the
inserted stack operations. Thus, the technique proposed
in this paper has been defined so that such complex
analysis and code modifications were not necessary.
Indeed, warp and unwarp operations are inserted just
before and just after call instructions that is to say in
places where the sole reference to the current frame is

SP. References to a frame are safe too since the compu-
tation of their address takes root from the stack pointer
register. That would not be the case for a method which
moves frames or part of them like [3] does. With this
latter approach, such references which are passed as
argument to another function can become invalid if the
referenced frame is moved to a different memory.

Extra arguments which are present in some frames
can jeopardize the validity of the stack management
too. This is because a function using such arguments
will access them into its caller’s frame but relatively to
the address of its own frame. This is incorrect if both
frames are not contiguous. To avoid such an invalid
case, the frame of a function using extra arguments must
forced to be contiguous with the frame of the caller.

Another difficulty appears when a function f is
called from several points into the program: it can
happen that its frame is assigned to different memories
(SPM or MM) depending on where f has been called
from. This is not a problem as the stack operations
are inserted into the calling function. But it becomes
problematic if f calls another function g. Once again,
g’s frame might be assigned to different memories, but
depending on where f (and not only g) has been called
from. Such cases can be avoided by considering that
the corresponding calls are identical when selecting at
compile time the memory for each frame.

The same kind of problem arises with library func-
tions and recursions. Library functions are often called
from a large number of different points. Moreover, it is
often impossible for the user to modify their code. A
solution is to consider that each call to one of them is ac-
tually a call to a large monolithic function whose frame
size is the sum of the sizes of its own frame and all the
frames of the functions that are subsequently called.
This size can be obtained from the specification of the
library or from exhaustive profiling information, but if it
cannot be ascertained, library functions’ frames must be
assigned to the MM. For the case of recursive functions,
the same method can be employed but it is often
impossible to bound the depth of recursion. [4, 3] actu-
ally proposed better solutions using circular buffers of
frames inside the SPM in place of the monolithic frames
proposed in this paper, but it does not work if references
to frames are passed to functions as arguments.

Multi-task-related difficulties. A first difficulty
is that a context switch which update the content of
the SPM (including the parts dedicated to the stacks)
can happen anytime during the execution of a task.
Therefore, if we want to merge efficiently the stack
management of the SPM into the sharing of this
memory among several task, this management must
be always consistent and known by the OS so that it
can safely save and restore the only necessary number
of bytes of the SPM space dedicated to a stack. Both
the approach presented in the paper and the one of [3]
manage the SPM like a real stack. Hence, the OS only
needs to know the top address of the current SPM
stack (the bottom address is fixed at compile time).
The consistency of the stacks’ state is also guarantied
for the approach proposed in this paper because the

3



implementation of the warp and unwarp operations
ensures that this state is always consistent as it will be
shown in section 5.1. The consistency for the technique
of [3] would be however guarantied only if the oper-
ations moving the frames are either consistent at each
instruction of their implementation or non-interruptible.

Finally, additional difficulties regard the access rights
of the tasks. Typically, it is often forbidden for a task to
modify directly an internal variable of the OS. Instead,
expensive system calls are to be used. This strongly
limits the possibility for informing at low cost the OS
about the state of the stack management even with
the case where the SPM is managed like an additional
stack. In the proposed implementation, whole the
necessary information can be found in SP so that no
additional task-OS communication is required.

5 Implementation of the stack
management

5.1 Implementation code
Warp and unwarp operations’ code. Either opera-
tion translates SP from one sub-stack to another, but
their implementations differ since the warps translate
this pointer from a sub-stack containing frames to an
empty one and the unwarps does it from an empty sub-
stack to one with contents. Consequently, the warp op-
erations require to save SP before updating it but it is
enough for the unwarp operations to restore it for return-
ing to the top of the former sub-stack. In our implemen-
tation, the top addresses of the MM low and the SPM
sub-stacks are saved into two small areas in the SPM. If
the system uses a 32-bit addressing range, the required
space is 4 bytes for each that is to say 8 bytes in total.

If the processor includes instructions with immediate
addressing, either warp and unwarp operations can be
implemented without using any other register than SP.
Figure 4 gives the implementation of these operations
for the MeP [10] processor. In the figure, for each warp

(a) Warp(SPM) (b) Warp(MM high)

(c) Unwarp (MM low) (d) Unwarp (SPM)

Figure 4: Implementation for the MeP processor of the
warp and unwarp operations

operation, the first instruction saves SP to the save area
for the current sub-stack’s top address (spm sav and
mml sav). The two next instructions set SP with the
address of the next sub-stack’s start address (start spm
and start mmh). For the operation which warps to the
SPM sub-stack, the least significant bits of SP are set
first whereas for the warp to MM high, the most signif-
icant bits are set first. This way, when SP points to the
SPM, its value is always consistent. Unwarp operations
only need one instruction which loads SP from the save
area for the corresponding sub-stack’s top.

Handling of the stack state by the OS. When a task
is preempted, all its objects which are in the time-shared
part of the SPM must be copied to the MM. While with
static memory objects it is enough for the OS to check
SPM allocation tables built at compile time, doing the
same with a SPM sub-stack area which is not full will
induce copies of non-utilized space. This overhead can
be avoided by simply using the value of SP. First it is
checked which sub-stack SP is pointing at. This is done
by looking at the most significant bits of this register in
order to keep the consistency with the warp operations.
When it points to the MM low sub-stack, the content of
the SPM sub-stack is not to be saved at all. When SP
points to the SPM sub-stack, its content is to be saved
from this register. Finally, when SP points to the MM
high sub-stack, the totality of the SPM sub-stack area is
to save. With the last case, several bytes might be saved
while not being used. Even so, they are not numerous in
practice and this approximation allows the technique to
work without requiring the tasks to modify any internal
variable of the OS.

5.2 ILP for optimal frame placement
The variables of the formulation are there to control
the insertion of the stack operations. These variables
are indexed with i for the frames and j for the call
instructions and are the followings:

xi,j : this binary variable is 1 when frame i is into the
SPM sub-stack for call j;

yi,j : this binary variable is 1 when frame i is not into
the MM low sub-stack for call j;

zi,j : this binary variable is 1 when frame i is into the
MM high sub-stack for call j1;

wj : this binary variable is 1 when warp and unwarp
operations are inserted around call j.

The parameters used for the formulation include
characteristics of the processor, metrics extracted from
the application code and from profiling information.
They are represented by the following constants:

Sstk : it is the maximum size of the SPM sub-stack;
Cspmi,j : it is the energy cost of the total accesses to

frame i if it is in the SPM during the executions of
the function called from j;

Cmmi,j : it is the energy cost of the total accesses to
frame i if it is in the MM during the executions of
the function called from j;

Cw : it is the energy cost of one warp plus one unwarp;
Si : it is the size of the frames of function i;
Ncxti,j : it is the total number of context switches

which happen when frame i, j is allocated;
Ccxt : it is the energy cost for saving and restoring a

byte of the SPM during a context switch.

The objective function models the energy consump-
tion related to the stack. It is made of three parts: the
first one, noted objstk, represents the energy consumed
while accessing the stack, the second one, noted objop,
represents the energy consumed by the stack operations

1By definition, zi,j is necessarily inferior to yi,j .

4



inserted into the assembly code and the last part, noted
objcxt represents the energy consumed during the
context switches for saving and restoring the SPM
sub-stack.

The first part of the objective function is the sum of
the energy consumed when accessing each frame. For a
frame, the corresponding energy depends on whether it
is assigned to the MM or to the SPM. Therefore objstk
is computed using the x variables as follows:

objstk =
∑
i,j

(
(Cspmi,j − Cmmi,j) ∗ xi,j

)
(1)

In the above equation only the difference in energy con-
sumption between the accesses to the MM and the SPM
is actually represented. The x variables are computed
from the y and z using their definition presented earlier:

∀i, j xi,j ≤ yi,j (2)
xi,j ≤ 1− zi,j (3)
xi,j ≥ yi,j − zi,j (4)

Equations (2) and (3) ensure that xi,j is 0 when the
current sub-stack is respectively MM low and MM high
and equation (4) ensures that this variable is 1 when the
current sub-stack is in the SPM. For preventing a frame
to be moved, the value of the corresponding y and z
variables need to be fixed as long as the frame exists.
This is done as follows where Called(j) is the index of
the function called by j:

∀i, j yi,j = yi,Called(j) (5)

zi,j = zi,Called(j) (6)

Finally, the definition of both y and z variables requires
the following constraint:

∀i, j yi,j ≥ zi,j (7)

The second part of the objective function is the sum
of the energy consumed by each inserted warp and
unwarp operation. These operations are inserted on
both sides of a call instruction anytime the sub-stack
of the coming frame is different from the current one.
Hence, objop can be formulated as follows:

objop =
∑
j

Cw ∗ wj (8)

Variable wj is 1 if the frame of the function called by
j is in a different sub-stack from the current one. It
can be computed by comparing the corresponding x
variables as follows where Current(j) is the index of
the current frame before call j and Frame(j) is the
index of the frame which is allocated at call j:

∀j wj ≥ xCurrent(j),j − xFrame(j),j (9)

wj ≥ xFrame(j),j − xCurrent(j),j (10)

The third part of the objective function is the sum
of the energy consumed during each context switch for
saving and restoring an SPM sub-stack. The x variables
are used for computing the size of the SPM sub-stack
at each context switch and the formulation of objcxt is
then the following:

objcxt =
∑
i,j

(
(Ccxt ∗Ncxti,j) ∗ Si ∗ xi,j

)
(11)

Any value are not possible for the x variables since
the size of the SPM sub-stack is bounded. This is
constrained as follows:

∀j
∑
i

Si ∗ xi,j ≤ Sstk (12)

Finally, the frames which include the arguments of a
called function must be contiguous to the frame of this
function. Furthermore, the frames of some recursive or
library functions cannot be put into the SPM. For both
cases correspond the respective predicates Argj and
Outj which are used as follows:

∀j Argj ⇒ xCurrent(j),j = xFrame(j),j (13)

∀j Outj ⇒ xCurrent(j),j = 0 (14)

6 Experiments
6.1 Experimental environment
We applied our technique on a MeP [10] processor
configuration including an 8kb data SPM. We used
the Toshiba’s MeP Integrator (MPI) tool chain [5, 10]
for compiling and simulating the applications. Energy
characteristics of this architecture are given in table 1.
Compilations were performed with the −O2 level of
optimization. Executions were performed for a static
priority-based rate monotonic preemptive system with
a processor utilization of about 60%.

Memory access type Energy (nJ per word)
SPM/data read 0.3774
SPM/data write 0.5053
SDRAM/data read 42.6466
SDRAM/data write 18.3986

Table 1: Energy consumptions of memory accesses for
a MeP processor

Both the multi-task and stack techniques where
applied on the tasks of the sets given in table 2. Tasks
were taken from the EEMBC [2] and the Mibench [12]
benchmark suites. The size dedicated to the SPM
sub-stacks have been selected for maximizing the
energy gain/size ratio for the stack accesses.

Set Tasks
Set A aes, des, md5, cubic, fft, rad2deg, mpeg, mp3, patricia
Set B aes, des, md5, cubic, fft, rad2deg, patricia
Set C aes, des, md5, cubic, fft
Set D cubic, fft, rad2deg

Table 2: Tasks-set used for the experiments

6.2 Results
The results of the stack management technique pro-
posed in this paper are shown in figure 5. The technique,
noted our, is compared with the stack management
technique of [1] noted free. Additionally, cxt gives the
results where the context switch costs are taken into
account when optimizing with our method for the case
of set A. The results are given for each application
with SPM sub-stack sizes which are 1/3, 2/3 and the
totality of the stack memory usage. On average, for the

5



respective 1/3 and 2/3 sizes, the free approach achieves
about 22% and 78% of stack-related energy reduction,
our achieves quasi identical results (differences are
not visible in the averaged figures) which shows that
the heuristic with three sub-stacks is efficient. Finally,
cxt achieves respectively 22% and 77% which is only
slightly less than the other cases. The results of the
patricia application are not good because it contains
recursive functions which were not handled by any of
the stack management techniques used here.

Figure 5: Stack-related energy consumption normalized
to the case where the stack is fully kept into the MM

Figure 6 shows how effective our proposed manage-
ment is when merged into a technique which shares the
SPM among several tasks. In the figure, static shows the
data memory access-related energy consumption when
sharing the SPM among several tasks for the technique
presented in [9] while ours shows the results of the
same technique but merged with our stack management
approach. For fairness of the comparison, we consid-
ered that for static, the stack of each task were a static
object whose size is its maximum memory requirement.
It can therefore be put into the SPM without any specific
management provided it is not too large. It can be seen

Figure 6: Data memory access-related energy consump-
tion normalized to the case where the SPM is not used

in the figure that the proposed merged approach achives
often much better results than static. On average,
static achives about 56% of energy reduction and ours
achieves about 65% for the case of a 1Kb SPM.

7 Conclusion
This paper presented a technique for reducing the en-
ergy consumption of the accesses to the stacks of tasks
in a multi-task embedded system. The technique has
been carefully implemented in order to be efficiently
supported by an OS which shares the SPM among
several tasks. It also takes into account the cost of
this sharing while determining, at compile time which
frame is to allocate to which memory.

Experimental results show that even though simple,
the technique achieves results comparable to a more

refined technique which is limited to single-task appli-
cations. When taking into account the multi-task, the
technique achieves about 65% of data access-related
energy reduction on average with a 1Kb SPM.

As future work we plan to enhance the technique
with finer controls of the frames, like allowing to move
them, while still keeping a reasonable feasibility of its
implementation and the compatibility with an efficient
OS-level sharing of the SPM.

References
[1] O. Avissar, R. Barua, and D. Stewart. An optimal mem-

ory allocation scheme for scratch-pad-based embedded
systems. ACM Trans. Embed. Comput. Syst., 1(1):6–26,
2002.

[2] Embedded Microprocessor Benchmark Con-
sortium. EEMBC benchmark suite. http:
//www.eembc.org/home.php.

[3] L. Gauthier and T. Ishihara. Partitioning and allocation of
scratch-pad memory for priority-based preemptive multi-
task systems. In ESTIMedia ’9, Grenoble, France, 2009.

[4] A. Kannan, A. Shrivastava, A. Pabalkar, and J.-e. Lee.
A software solution for dynamic stack management on
scratch pad memory. In ASP-DAC ’09, pages 612–617,
Piscataway, NJ, USA, 2009. IEEE Press.

[5] A. Mizuno, H. Uetani, and H. Eichel. Design method-
ology and system for a configurable media embedded
processor extensible to vliw architecture. In ICCD ’02,
page 2, Washington, DC, USA, 2002. IEEE Computer
Society.

[6] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient uti-
lization of scratch-pad memory in embedded processor
applications. In EDTC ’97, page 7, Washington, DC,
USA, 1997. IEEE Computer Society.

[7] J. Sjödin and C. von Platen. Storage allocation for
embedded processors. In CASES ’01, pages 15–23, New
York, NY, USA, 2001. ACM.

[8] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel.
Assigning program and data objects to scratchpad for
energy reduction. In DATE ’02, page 409, Washington,
DC, USA, 2002. IEEE Computer Society.

[9] H. Takase, H. Tomiyama, and H. Takada. Partitioning
and allocation of scratch-pad memory for priority-
based preemptive multi-task systems. In DATE ’10,
Washington, DC, USA, 2010. IEEE Computer Society.

[10] Toshiba. MeP processor. http://www.semicon.
toshiba.co.jp/eng/product/micro/mep/
document/index.html.

[11] S. Udayakumaran, A. Dominguez, and R. Barua.
Dynamic allocation for scratch-pad memory using
compile-time decisions. ACM Trans. Embed. Comput.
Syst., 5(2):472–511, 2006.

[12] University of Michigan. MiBench benchmark suite.
http://www.eecs.umich.edu/mibench/.

[13] M. Verma, K. Petzold, L. Wehmeyer, H. Falk, and
P. Marwedel. Scratchpad sharing strategies for multipro-
cess embedded systems: a first approach. In Estimedia
’05, volume 0, pages 115–120, Los Alamitos, CA, USA,
2005. IEEE Computer Society.

[14] M. Verma, S. Steinke, and P. Marwedel. Data partition-
ing for maximal scratchpad usage. In ASP-DAC ’03,
pages 77–83, New York, NY, USA, 2003. ACM.

[15] L. Wehmeyer, U. Helmig, and P. Marwedel. Compiler-
optimized usage of partitioned memories. In WMPI ’04,
pages 114–120, New York, NY, USA, 2004. ACM.

6-E


