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Abstract— MultiCore Processor System-on-Chip (MPSoC) is 
one of the promising technique to satisfy computing demands of 
the future consumer devices. While MPSoC has an advantage in 
energy consumption in comparison with high-frequency 
microprocessor-based system, it is still threatened by increasing 
energy consumption due to process-voltage-temperature (PVT) 
variations. It requires large design margins in the supply voltage, 
resulting in large energy consumption. This paper proposes to 
utilize a dual-sensing flip-flop (FF), named Canary FF, in order 
to reduce the overestimated voltage margin. We adopt canary FF 
to an MPSoC based on Toshiba’s MeP and estimate its energy 
reduction by cycle-based simulations. We find 20.5% energy 
reduction. 

I. INTRODUCTION 

The current trend towards increasing mobile devices 
requires high-performance and low-energy microprocessors. 
Generally, high performance and low energy conflict with 
each other and it is very difficult to achieve both of them 
simultaneously. While energy is already the first-class design 
constraint in embedded systems, it has also become a limiting 
factor in general-purpose microprocessors, such as those used 
in data centers. In order to solve the problem, we can exploit 
parallelism. MultiCore Processor Systems on Chip (MPSoC) 
is one of the solutions for high-performance and low-energy 
and it is already adopted in embedded microprocessors. 

Unfortunately, MPSoC is still threatened by increasing 
energy consumption. This is because process-voltage-
temperature (PVT) variations require large voltage margins in 
deep submicron semiconductor technologies. Process 
variation is predicted to present critical challenges for 
manufacturability in the future LSIs [1, 5, 13]. The traditional 
worst-case design may not work since the variation increases 
design margins it requires. The trend toward lower supply 
voltage and higher clock frequency makes voltage variations 
and temperature variations more serious. One of the keys to 
solve the serious problem is exploiting typical cases. Since 
worst cases rarely occur, it is better for designers to focus on 
typical cases. We call it typical-case design methodologies. 
Recently, several typical-case designs are investigated, such 
as Razor [2, 3], approximation circuits [7], constructive 
timing violation (CTV) [8], algorithmic noise tolerance 
(ANT) [10], and TEAtime [12]. We proposed Canary flip-flop 
(FF) [9], which is a variation of dual-sensing FF such as 
Razor FF. Canary FF is utilized to eliminate the overestimated 
voltage margin. We adopt it to an MPSoC based on Toshiba’s 
MeP [11] and find that it reduces MPSoC energy 
consumption by 20.5% on average. 

This paper is organized as follows. Section II explains the 
typical-case design methodology. Section III describes related 
works with an emphasis on Razor. Section IV describes 
Canary FF. Section V explains our evaluation methodology 
and Section VI presents experimental results. Finally, Section 
VII concludes. 

II. TYPICAL-CASE DESIGN METHODOLOGIES 

Deep submicron semiconductor technologies increase PVT 
variations, and hence design margins that the traditional 
worst-case design methodology requires, are increased. The 
conservative approach may not work. Considering this 
situation, design methodology should be reconsidered for 
manufacturability. Typical-case design methodologies are one 
of the promising ones. It exploits an observation that worst 
cases are rare. Designers should focus on typical cases rather 
than worst cases. Since they do not have to consider worst 
cases, design constraints are relieved, resulting in easy 
designs. 

In the typical-case design methodologies, designers adopt 
two methods to a circuit design at a time. One is performance-
oriented design, where only typical cases are under 
consideration. Since worst cases are not considered, design 
constraints are relaxed, resulting in easy designs. The other is 
function-guaranteed design. While worst cases are considered, 
designers don’t have to consider performance. They only have 
to guarantee functions, and thus design must be simple, 
resulting in easy verifications. 
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Fig. 1   Typical-Case Design. 
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We propose one of the typical-case design methodologies. 
Its concept is as follows. Every critical function in an LSI 
chip is designed by two methods. The design consists of two 
components as shown in Fig.1. One is called main part, and 
the other is called checker part. While two parts share the 
single function, their roles and implementations are mutually 
different. On designing the main part, performance is 
optimized to increase, but correct function is ignored to 
guarantee. The main part might cause errors. That is, it is 
implemented by the performance-oriented design. The 
checker part is provided as a safety net for the unreliable main 
part. It detects errors that occur in the main part, and thus it 
has to satisfy all design constrains in the chip. However, on 
the checker part design, while designers have to guarantee the 
function, they do not have to optimize neither of performance 
and power. That is, it is implemented by the function-
guaranteed design. If an error is detected by the checker part, 
the circuit state has to be recovered to a safe point where the 
error is detected by any means. 

III. RELATED WORKS 

Examples of the typical-case designs include Razor [2, 3], 
approximation circuits [7], CTV [8], ANT [10], and TEAtime 
[12]. 

In the approximation circuits [7], instead of implementing 
the complete circuit necessary to realize a desired 
functionality, a simplified circuit is implemented to 
approximate it. The approximation circuit works at higher 
frequency than the complete circuit does, and usually 
produces correct results. If it fails, the system utilizing the 
approximation circuit has to recover to a safe point. 

CTV [8] exploits input value variations. Considering that 
the critical path in the system is not always active, clock 
frequency and supply voltage, which violate critical path 
delay, are selected in use. In order to guarantee correct 
operations, the system utilizing CTV has a conservative 
circuit that realizes a desired functionality to find timing 
violation. 

In ANT [10], information theoretic technique is employed 
to determine the lower bounds on energy and performance. In 
order to approach these bounds, circuit- and algorithmic-level 
techniques are evolved. 

TEAtime [12] uses a tracking circuit to mimic the worst-
case delay. As long as the tracking circuit works correctly, 
clock frequency can be increased and supply voltage can be 
decreased. Usually, a 1-bit-wise critical path is used for the 
tracking circuit. 

A. Razor 
Razor [2, 3] permits to violate timing constraints to 

improve energy efficiency. Razor works at higher clock 
frequency than that determined by the critical path delay, and 
removes voltage margin for power reduction. The voltage 
control adapts the supply voltage based on timing error rates. 
Figure 2 shows the Razor’s dynamic voltage scaling (DVS) 
system. If the error rate is low, it indicates that the supply 
voltage could be decreased. On the other hand, if the rate is 

high, it indicates that the supply voltage should be increased. 
Note that clock frequency is not changed; that is, it is not a 
dynamic voltage frequency scaling (DVFS) system. The 
control system works to maintain a predefined error rate, Eref. 
At regular intervals the error rate, Esample, is computed and the 
rate differential, Ediff = Eref – Esample, is calculated. If the 
differential is positive, it indicates that supply voltage could 
be decreased. The otherwise indicates that the supply voltage 
should be increased. 
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Fig. 2   Razor’s DVS System. 

In order to detect timing errors, a dual-sensing FF called 
Razor FF is utilized. Figure 3 shows Razor FF. Each timing-
critical FF (main FF) has its shadow FF, where a delayed 
clock is delivered to meet timing constrains. In other words, 
the shadow FFs are expected to always hold correct values. If 
the values latched in the main and shadow FFs do not match, 
a timing error is detected. When the timing error is detected in 
microprocessor pipelines, the processor state is recovered to a 
safe point. One of the difficulties on Razor is how it is 
guaranteed that the shadow FF could always latch correct 
values. The delayed clock has to be carefully designed 
considering so-called short path problem [3]. 
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Fig. 3   Razor Flip-Flop. 

IV. CANARY 

While Razor is a smart technique to eliminate design 
margins, its circuit implementation could be further improved. 
We propose a variation of the dual-sensing FFs and coin it 
Canary FF [9]. Figure 4 shows it. 
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Fig. 4   Canary Flip-Flop. 

A. Canary FF 
Each FF (main FF) is augmented with a delay buffer and a 

redundant FF (shadow FF). The shadow FF is used as a 
canary in a coal mine to help detect whether a timing error is 
about to occur. Timing errors are predicted by comparing the 
main FF value with that of the shadow FF, which runs into the 
timing error a little bit before the main FF. Alert signal 
triggers voltage or frequency control. Utilizing canary FFs has 
the following three advantages. 
- Elimination of the delayed clock: Using single phase clock 

significantly simplifies clock tree design. It also eliminates 
the short path problem [3] in Razor FF, and hence its 
minimum-path length constraint should not be considered. 

- Protection offered against timing errors: As explained 
above, in Canary, the shadow FF protects the main FF 
against timing errors. This freedom from timing errors 
eliminates any complex recovery mechanism. Hence, 
Canary is applicable to the common LSIs as well as modern 
microprocessors that have the recovery mechanism for 
branch miss-predictions. If Canary FF predicts a timing 
error, the supply voltage is increased to satisfy timing 
constraints. 

- Robustness for variations: Canary FF is variation resilient. 
The delay buffer always has a positive delay, even though 
parameter variations affect it. Hence, the shadow FF always 
encounters a timing error before the main FF. 

B. Power Reductions with Canary FFs 
Figure 5 explains how DVS system utilizes Canary FFs. 

The horizontal and vertical lines present time and supply 
voltage, respectively. At regular intervals, the supply voltage 
is decreased step by step if a timing error is not predicted 
during the last interval. This exploits input variations. It is 
well known that input values activating the circuit critical 
path are limited to a few variations. For example, it is 
reported that nearly 80% of paths have delays of half the 
critical time [14]. Timing errors rarely occur even if the 
timing constraints on the critical path are not satisfied. Input 
variations can be exploited to decrease the supply voltage. 
Because the supply voltage is lower than that determined by 
the critical path delay, significant power reduction is achieved 

in Canary [9] as in Razor [2, 3]. When a timing error is 
predicted to occur, the supply voltage is increased. 
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Fig. 5   DVS system utilizing Canary FFs. 

C. MultiCore Power Reductions 
The target MPSoC is an asymmetric multicore processor 

(AMP). In an AMP, every task runs on its dedicated core. In 
this study, it is assumed that different cores process different 
programs, which are independent of each other.  
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Fig. 6   DVS with Multiple Supplies. 
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Fig. 7   DVS with Single Supply. 

DVS system is utilized for multicore energy reduction. 
DVS system has been shown to be one of the most energy-
efficient design techniques for single-core processors. For 
multicore processors, two implementations of DVS systems 
can be considered. One is the MPSoC where different cores 
operate at different voltage levels based on the operation load 
as shown in Fig. 6. With multiple supply voltages, only cores 
with heavy workload run at higher supply voltage to provide 
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required performance while other cores operate at lower 
supply voltage or are completely shut down. The other is the 
one where all cores operate at the same voltage level as 
shown in Fig. 7. With one scalable supply voltage, all cores 
run at the voltage that satisfies the demand of the heaviest 
workload. While the former will achieve larger energy 
savings than the latter one will do, it requires voltage islands, 
which increases design complexity and chip area, resulting in 
larger manufacturing cost. Since we adopt Canary to 
embedded devices, where cost is one of the most important 
design constraints, we chose the latter DVS system in this 
study. 

V. EVALUATION METHODOLOGY 

MeP simulators provided by Toshiba are used to generate 
execution traces. They are cycle-based simulators and model 
a single-core and a dual-core MeP processors [11] in details, 
respectively. We use Stanford Integer Benchmarks; bubble is 
a program sorting an array using Bubble-sort, matmul is a 
program multiplying two matrices, perm is a heavily 
recursive permutation program, qsort is a program sorting an 
array using Quick-sort, queen is a program solving the eight 
queens problem, and sieve is a prime sieve of Erasthones 
program. 

Each trace is injected into the trace-driven simulator we 
built. The number of cores can be configured in the in-house 
simulator. The details of Canary DVS system are 
implemented. Since the yield of pipeline is mainly determined 
by the timing error in the execution stage [6], we observe the 
length of carry in ALUs. If the carry is longer than the 
threshold value that determined by the supply voltage, a 
timing error is predicted. The combination of the threshold 
and the voltage is estimated by the combination of the clock 
frequency and the supply voltage of Intel Pentium M [4], 
which is shown in Table I. We also consider the rule of 
thumb; PVT variations require 50-100% design margins [15]. 
The thresholds are also summarized in Table I. For example, 
the carry longer than 18 bits at 1.132V signals the error 
prediction, when we do not consider design margin. 

TABLE I.   VOLTAGE-THRESHOLD SPECIFICATIONS. 

Supply (V) Freq (GHz) Threshold (bit) 
Margin 0% Margin 50%

1.340 2.1 32 32 
1.260 1.8 27 32 
1.228 1.6 24 32 
1.180 1.4 21 32 
1.132 1.2 18 27 
1.084 1.0 15 22 
1.036 0.8 12 18 
0.988 0.6 9 13 

 
We evaluate 10 intervals between supply voltage scaling, 

which are 100, 200, 500, 1K, 2K, 5K, 10K, 20K, 50K, and 

100K clock cycles. It is assumed every supply voltage 
switching requires 100 clock cycles. 

In singe-core MeP simulations, each program is executed 
from beginning to end. On the other hand, in dual-core MeP 
simulations, each simulation is terminated when one of two 
programs finishes. We chose this methodology, because we 
afraid that longer program might dominate the simulation 
result. Hence, it should be noted that single-core and dual-
core simulation results cannot be directly compared with each 
other because the parts of programs simulated are different. 

VI. RESULTS 

First, we evaluate Canary DVS system on the single-core 
MeP. The interval between voltage switches is varied between 
100 and 100K cycles. Figure 8 presents the results. The 
horizontal line indicates the interval and the vertical line 
indicates the percentage energy reduction rate. Note that the 
horizontal line is in log scale. Two line graphs are shown. The 
lower graph (denoted as margin 0%) presents the results 
when the design margin is not considered. The upper one 
(denoted as margin 50%) presents those when 50% of timing 
margin is included. The difference between the two graphs is 
the energy wastes due to the overestimation and is up to 
24.1%. Canary DVS system eliminates the wastes and the 
energy savings is 26.7% on average when the interval is 2000 
cycles. 
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Fig. 8   Energy Reduction Rate. 

When the interval is small, energy consumption is rather 
increased. This is because 100 cycles of overhead cannot be 
negligible. On the other hand, after the peak, energy savings 
is gradually decreased as the interval becomes larger. Longer 
interval will lose the chances where the supply voltage is 
decreased, as the voltage switch is infrequent. 

An example of the distribution of the selected supply 
voltages is presented in Fig. 9. This shows the case of bubble 
and of 2000-cycle interval. As can be easily seen, Canary 
DVS system chooses the supply voltage lower than that 
determined by considering design margin. Over 70% of 
execution cycles operates at lower than 1.084V. 
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Fig. 9   Supply Voltage Distribution. 
(Single core) 

TABLE II.   (%) ENERGY REDUCTION RATE. 
(1000 CYCLE INTERVAL) 

 matmul perm qsort queen sieve 
bubble 25.88 15.19 14.86 15.34 39.57
matmul  15.07 14.92 15.04 25.57
perm   14.59 14.97 14.92
qsort    14.46 14.39
queen     15.35

TABLE III.   (%) ENERGY REDUCTION RATE. 
(2000 CYCLE INTERVAL) 

 matmul perm qsort queen sieve 
bubble 26.46 18.31 17.78 18.79 37.22
matmul  18.31 17.72 18.43 26.70
perm   17.57 18.23 18.08
qsort    17.50 17.18

TABLE IV.   (%) ENERGY REDUCTION RATE. 
(5000 CYCLE INTERVAL) 

 matmul perm qsort queen sieve 
bubble 21.50 19.58 18.16 20.69 22.38
matmul  19.44 18.09 20.03 24.96
perm   18.18 19.48 19.04
qsort    18.10 17.10
queen     20.77
Queen     18.82
 

Next, we show the results for the dual-core MeP. Based on 
the single-core results, we choose the intervals of 1000, 2000, 
and 5000 cycles, where energy savings is largest. TABLEs II 
to IV present the results for the cases of 1000, 2000, and 5000 

intervals, respectively. Since a pair of six program are 
selected, we perform 6C2=15 simulations for each interval. 

When the interval is 1000 cycles, an average of 18.0% 
energy reduction is achieved. Before simulations, we 
expected that power saving would be significantly reduced. 
This is because that the supply voltage can only be decreased 
when both programs prefer lower supply voltage. Even if only 
one program prefers higher voltage, the whole MPSoC 
operates at higher supply voltage. However, fortunately, in 
the most combinations of programs, energy savings is enough 
large. As the interval becomes larger, energy consumption is 
further reduced. When the interval is 5000 cycles, the average 
energy reduction is 19.8%. Figure 10 presents the distribution 
of the supply voltage. The executed programs are bubble and 
matmul, and the interval is 2000 cycles. The voltage that is 
most frequently selected is 1.180V. 57.9% of execution cycles 
operate at this voltage. Interestingly, the highest two voltages 
are rarely selected; at only 2% in total. This means that the 
supply voltage switch occurs frequently. While it implies that 
its overhead might increase the execution cycles and thus it 
might result in energy increase, the simulation results shows 
the overhead is not too large to make Canary DVS system 
useless. 

1.340 V 1.260 V 1.228 V 1.180 V
1.132 V 1.084 V 1.036 V 0.988 V

 

Fig. 10   Supply Voltage Distribution. 
(Dual core) 

When the interval is 2000 cycles, energy savings is highest 
and is an average of 20.5%. This confirms that Canary DVS 
system eliminates the overestimated energy consumption. It 
chooses lower supply voltages as frequently as possible, and 
predicts timing errors to prevent MPSoC from incorrect state. 

VII. CONCLUSIONS 

As the demand of computing power is increased even in the 
embedded devices, MPSoC becomes more and more 
attractive. While MPSoC has the advantage of power 
efficiency in comparison with single-core alternatives, it still 
consumes wasted energy. This is due to increasing PVT 
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variations. In order to satisfy timing constraints at the worst 
case scenarios, the supply voltage should be overestimated. 
We evaluate it on Toshiba’s dual-core MeP processor and 
found that 20.5% of energy savings is possible even when 
MPSoC does not have multiple voltage supplies. 
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