
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

MultiCore Energy Reduction Utilizing Canary FF

Otsuka, Yoshimi
Department of Engineering, Fukuoka University

Sato, Toshinori
System LSI Research Center, Kyushu University | Department of Engineering, Fukuoka University

Yoshiki, Takahito
Department of Engineering, Fukuoka University

Hayashida, Takanori
Department of Engineering, Fukuoka University

http://hdl.handle.net/2324/18501

出版情報：SLRC 論文データベース, pp.922-927, 2010-10. IEEE
バージョン：
権利関係：

MultiCore Energy Reduction Utilizing Canary FF
Yoshimi Otsuka1 Toshinori Sato1,2 Takahito Yoshiki1 Takanori Hayashida1

1 Fukuoka University, Japan
2 Kyushu University, Japan

E-mail: toshinori.sato@computer.org Tel: +81-92-871-6631

Abstract— MultiCore Processor System-on-Chip (MPSoC) is
one of the promising technique to satisfy computing demands of
the future consumer devices. While MPSoC has an advantage in
energy consumption in comparison with high-frequency
microprocessor-based system, it is still threatened by increasing
energy consumption due to process-voltage-temperature (PVT)
variations. It requires large design margins in the supply voltage,
resulting in large energy consumption. This paper proposes to
utilize a dual-sensing flip-flop (FF), named Canary FF, in order
to reduce the overestimated voltage margin. We adopt canary FF
to an MPSoC based on Toshiba’s MeP and estimate its energy
reduction by cycle-based simulations. We find 20.5% energy
reduction.

I. INTRODUCTION

The current trend towards increasing mobile devices
requires high-performance and low-energy microprocessors.
Generally, high performance and low energy conflict with
each other and it is very difficult to achieve both of them
simultaneously. While energy is already the first-class design
constraint in embedded systems, it has also become a limiting
factor in general-purpose microprocessors, such as those used
in data centers. In order to solve the problem, we can exploit
parallelism. MultiCore Processor Systems on Chip (MPSoC)
is one of the solutions for high-performance and low-energy
and it is already adopted in embedded microprocessors.

Unfortunately, MPSoC is still threatened by increasing
energy consumption. This is because process-voltage-
temperature (PVT) variations require large voltage margins in
deep submicron semiconductor technologies. Process
variation is predicted to present critical challenges for
manufacturability in the future LSIs [1, 5, 13]. The traditional
worst-case design may not work since the variation increases
design margins it requires. The trend toward lower supply
voltage and higher clock frequency makes voltage variations
and temperature variations more serious. One of the keys to
solve the serious problem is exploiting typical cases. Since
worst cases rarely occur, it is better for designers to focus on
typical cases. We call it typical-case design methodologies.
Recently, several typical-case designs are investigated, such
as Razor [2, 3], approximation circuits [7], constructive
timing violation (CTV) [8], algorithmic noise tolerance
(ANT) [10], and TEAtime [12]. We proposed Canary flip-flop
(FF) [9], which is a variation of dual-sensing FF such as
Razor FF. Canary FF is utilized to eliminate the overestimated
voltage margin. We adopt it to an MPSoC based on Toshiba’s
MeP [11] and find that it reduces MPSoC energy
consumption by 20.5% on average.

This paper is organized as follows. Section II explains the
typical-case design methodology. Section III describes related
works with an emphasis on Razor. Section IV describes
Canary FF. Section V explains our evaluation methodology
and Section VI presents experimental results. Finally, Section
VII concludes.

II. TYPICAL-CASE DESIGN METHODOLOGIES

Deep submicron semiconductor technologies increase PVT
variations, and hence design margins that the traditional
worst-case design methodology requires, are increased. The
conservative approach may not work. Considering this
situation, design methodology should be reconsidered for
manufacturability. Typical-case design methodologies are one
of the promising ones. It exploits an observation that worst
cases are rare. Designers should focus on typical cases rather
than worst cases. Since they do not have to consider worst
cases, design constraints are relieved, resulting in easy
designs.

In the typical-case design methodologies, designers adopt
two methods to a circuit design at a time. One is performance-
oriented design, where only typical cases are under
consideration. Since worst cases are not considered, design
constraints are relaxed, resulting in easy designs. The other is
function-guaranteed design. While worst cases are considered,
designers don’t have to consider performance. They only have
to guarantee functions, and thus design must be simple,
resulting in easy verifications.

Main
part

Checker
part

Inputs Outputs

Error

Main
part

Checker
part

Inputs Outputs

Error

Fig. 1 Typical-Case Design.

922978-1-4244-7009-9/10/$26.00 ©2010 IEEE ISCIT 2010

We propose one of the typical-case design methodologies.
Its concept is as follows. Every critical function in an LSI
chip is designed by two methods. The design consists of two
components as shown in Fig.1. One is called main part, and
the other is called checker part. While two parts share the
single function, their roles and implementations are mutually
different. On designing the main part, performance is
optimized to increase, but correct function is ignored to
guarantee. The main part might cause errors. That is, it is
implemented by the performance-oriented design. The
checker part is provided as a safety net for the unreliable main
part. It detects errors that occur in the main part, and thus it
has to satisfy all design constrains in the chip. However, on
the checker part design, while designers have to guarantee the
function, they do not have to optimize neither of performance
and power. That is, it is implemented by the function-
guaranteed design. If an error is detected by the checker part,
the circuit state has to be recovered to a safe point where the
error is detected by any means.

III. RELATED WORKS

Examples of the typical-case designs include Razor [2, 3],
approximation circuits [7], CTV [8], ANT [10], and TEAtime
[12].

In the approximation circuits [7], instead of implementing
the complete circuit necessary to realize a desired
functionality, a simplified circuit is implemented to
approximate it. The approximation circuit works at higher
frequency than the complete circuit does, and usually
produces correct results. If it fails, the system utilizing the
approximation circuit has to recover to a safe point.

CTV [8] exploits input value variations. Considering that
the critical path in the system is not always active, clock
frequency and supply voltage, which violate critical path
delay, are selected in use. In order to guarantee correct
operations, the system utilizing CTV has a conservative
circuit that realizes a desired functionality to find timing
violation.

In ANT [10], information theoretic technique is employed
to determine the lower bounds on energy and performance. In
order to approach these bounds, circuit- and algorithmic-level
techniques are evolved.

TEAtime [12] uses a tracking circuit to mimic the worst-
case delay. As long as the tracking circuit works correctly,
clock frequency can be increased and supply voltage can be
decreased. Usually, a 1-bit-wise critical path is used for the
tracking circuit.

A. Razor
Razor [2, 3] permits to violate timing constraints to

improve energy efficiency. Razor works at higher clock
frequency than that determined by the critical path delay, and
removes voltage margin for power reduction. The voltage
control adapts the supply voltage based on timing error rates.
Figure 2 shows the Razor’s dynamic voltage scaling (DVS)
system. If the error rate is low, it indicates that the supply
voltage could be decreased. On the other hand, if the rate is

high, it indicates that the supply voltage should be increased.
Note that clock frequency is not changed; that is, it is not a
dynamic voltage frequency scaling (DVFS) system. The
control system works to maintain a predefined error rate, Eref.
At regular intervals the error rate, Esample, is computed and the
rate differential, Ediff = Eref – Esample, is calculated. If the
differential is positive, it indicates that supply voltage could
be decreased. The otherwise indicates that the supply voltage
should be increased.

Voltage
Controller

PipelinePipeline �

Ediff = Eref - Esample

EsampleEdiffEref error
signals

-
+

VddVoltage
Controller

PipelinePipeline ��

Ediff = Eref - Esample

EsampleEdiffEref error
signals

-
+

Vdd

Fig. 2 Razor’s DVS System.

In order to detect timing errors, a dual-sensing FF called
Razor FF is utilized. Figure 3 shows Razor FF. Each timing-
critical FF (main FF) has its shadow FF, where a delayed
clock is delivered to meet timing constrains. In other words,
the shadow FFs are expected to always hold correct values. If
the values latched in the main and shadow FFs do not match,
a timing error is detected. When the timing error is detected in
microprocessor pipelines, the processor state is recovered to a
safe point. One of the difficulties on Razor is how it is
guaranteed that the shadow FF could always latch correct
values. The delayed clock has to be carefully designed
considering so-called short path problem [3].

delayed
clk

clk

comparator

next
stage

previous
stage

error

delayed
clk

clk

comparator

next
stage

previous
stage

error

Fig. 3 Razor Flip-Flop.

IV. CANARY

While Razor is a smart technique to eliminate design
margins, its circuit implementation could be further improved.
We propose a variation of the dual-sensing FFs and coin it
Canary FF [9]. Figure 4 shows it.

923

clk

clk

comparator

next
stage

previous
stage

alert
delay

clk

clk

comparator

next
stage

previous
stage

alert
delay

Fig. 4 Canary Flip-Flop.

A. Canary FF
Each FF (main FF) is augmented with a delay buffer and a

redundant FF (shadow FF). The shadow FF is used as a
canary in a coal mine to help detect whether a timing error is
about to occur. Timing errors are predicted by comparing the
main FF value with that of the shadow FF, which runs into the
timing error a little bit before the main FF. Alert signal
triggers voltage or frequency control. Utilizing canary FFs has
the following three advantages.
- Elimination of the delayed clock: Using single phase clock

significantly simplifies clock tree design. It also eliminates
the short path problem [3] in Razor FF, and hence its
minimum-path length constraint should not be considered.

- Protection offered against timing errors: As explained
above, in Canary, the shadow FF protects the main FF
against timing errors. This freedom from timing errors
eliminates any complex recovery mechanism. Hence,
Canary is applicable to the common LSIs as well as modern
microprocessors that have the recovery mechanism for
branch miss-predictions. If Canary FF predicts a timing
error, the supply voltage is increased to satisfy timing
constraints.

- Robustness for variations: Canary FF is variation resilient.
The delay buffer always has a positive delay, even though
parameter variations affect it. Hence, the shadow FF always
encounters a timing error before the main FF.

B. Power Reductions with Canary FFs
Figure 5 explains how DVS system utilizes Canary FFs.

The horizontal and vertical lines present time and supply
voltage, respectively. At regular intervals, the supply voltage
is decreased step by step if a timing error is not predicted
during the last interval. This exploits input variations. It is
well known that input values activating the circuit critical
path are limited to a few variations. For example, it is
reported that nearly 80% of paths have delays of half the
critical time [14]. Timing errors rarely occur even if the
timing constraints on the critical path are not satisfied. Input
variations can be exploited to decrease the supply voltage.
Because the supply voltage is lower than that determined by
the critical path delay, significant power reduction is achieved

in Canary [9] as in Razor [2, 3]. When a timing error is
predicted to occur, the supply voltage is increased.

V

T

Alert! Alert! Alert!

Fig. 5 DVS system utilizing Canary FFs.

C. MultiCore Power Reductions
The target MPSoC is an asymmetric multicore processor

(AMP). In an AMP, every task runs on its dedicated core. In
this study, it is assumed that different cores process different
programs, which are independent of each other.

Heavy
Load

Light
Load

High
Voltage

Low
Voltage

Core�#0 Core�#1

Fig. 6 DVS with Multiple Supplies.

Heavy
Load

Light
Load

High
Voltage

Core�#0 Core�#1

Fig. 7 DVS with Single Supply.

DVS system is utilized for multicore energy reduction.
DVS system has been shown to be one of the most energy-
efficient design techniques for single-core processors. For
multicore processors, two implementations of DVS systems
can be considered. One is the MPSoC where different cores
operate at different voltage levels based on the operation load
as shown in Fig. 6. With multiple supply voltages, only cores
with heavy workload run at higher supply voltage to provide

924

required performance while other cores operate at lower
supply voltage or are completely shut down. The other is the
one where all cores operate at the same voltage level as
shown in Fig. 7. With one scalable supply voltage, all cores
run at the voltage that satisfies the demand of the heaviest
workload. While the former will achieve larger energy
savings than the latter one will do, it requires voltage islands,
which increases design complexity and chip area, resulting in
larger manufacturing cost. Since we adopt Canary to
embedded devices, where cost is one of the most important
design constraints, we chose the latter DVS system in this
study.

V. EVALUATION METHODOLOGY

MeP simulators provided by Toshiba are used to generate
execution traces. They are cycle-based simulators and model
a single-core and a dual-core MeP processors [11] in details,
respectively. We use Stanford Integer Benchmarks; bubble is
a program sorting an array using Bubble-sort, matmul is a
program multiplying two matrices, perm is a heavily
recursive permutation program, qsort is a program sorting an
array using Quick-sort, queen is a program solving the eight
queens problem, and sieve is a prime sieve of Erasthones
program.

Each trace is injected into the trace-driven simulator we
built. The number of cores can be configured in the in-house
simulator. The details of Canary DVS system are
implemented. Since the yield of pipeline is mainly determined
by the timing error in the execution stage [6], we observe the
length of carry in ALUs. If the carry is longer than the
threshold value that determined by the supply voltage, a
timing error is predicted. The combination of the threshold
and the voltage is estimated by the combination of the clock
frequency and the supply voltage of Intel Pentium M [4],
which is shown in Table I. We also consider the rule of
thumb; PVT variations require 50-100% design margins [15].
The thresholds are also summarized in Table I. For example,
the carry longer than 18 bits at 1.132V signals the error
prediction, when we do not consider design margin.

TABLE I. VOLTAGE-THRESHOLD SPECIFICATIONS.

Supply (V) Freq (GHz) Threshold (bit)
Margin 0% Margin 50%

1.340 2.1 32 32
1.260 1.8 27 32
1.228 1.6 24 32
1.180 1.4 21 32
1.132 1.2 18 27
1.084 1.0 15 22
1.036 0.8 12 18
0.988 0.6 9 13

We evaluate 10 intervals between supply voltage scaling,

which are 100, 200, 500, 1K, 2K, 5K, 10K, 20K, 50K, and

100K clock cycles. It is assumed every supply voltage
switching requires 100 clock cycles.

In singe-core MeP simulations, each program is executed
from beginning to end. On the other hand, in dual-core MeP
simulations, each simulation is terminated when one of two
programs finishes. We chose this methodology, because we
afraid that longer program might dominate the simulation
result. Hence, it should be noted that single-core and dual-
core simulation results cannot be directly compared with each
other because the parts of programs simulated are different.

VI. RESULTS

First, we evaluate Canary DVS system on the single-core
MeP. The interval between voltage switches is varied between
100 and 100K cycles. Figure 8 presents the results. The
horizontal line indicates the interval and the vertical line
indicates the percentage energy reduction rate. Note that the
horizontal line is in log scale. Two line graphs are shown. The
lower graph (denoted as margin 0%) presents the results
when the design margin is not considered. The upper one
(denoted as margin 50%) presents those when 50% of timing
margin is included. The difference between the two graphs is
the energy wastes due to the overestimation and is up to
24.1%. Canary DVS system eliminates the wastes and the
energy savings is 26.7% on average when the interval is 2000
cycles.

-30

-20

-10

0

10

20

30

100 1000 10000 100000

margin 50% margin 0%

Fig. 8 Energy Reduction Rate.

When the interval is small, energy consumption is rather
increased. This is because 100 cycles of overhead cannot be
negligible. On the other hand, after the peak, energy savings
is gradually decreased as the interval becomes larger. Longer
interval will lose the chances where the supply voltage is
decreased, as the voltage switch is infrequent.

An example of the distribution of the selected supply
voltages is presented in Fig. 9. This shows the case of bubble
and of 2000-cycle interval. As can be easily seen, Canary
DVS system chooses the supply voltage lower than that
determined by considering design margin. Over 70% of
execution cycles operates at lower than 1.084V.

925

1.340 V 1.260 V 1.228 V 1.180 V
1.132 V 1.084 V 1.036 V 0.988 V

Fig. 9 Supply Voltage Distribution.
(Single core)

TABLE II. (%) ENERGY REDUCTION RATE.
(1000 CYCLE INTERVAL)

 matmul perm qsort queen sieve
bubble 25.88 15.19 14.86 15.34 39.57
matmul 15.07 14.92 15.04 25.57
perm 14.59 14.97 14.92
qsort 14.46 14.39
queen 15.35

TABLE III. (%) ENERGY REDUCTION RATE.
(2000 CYCLE INTERVAL)

 matmul perm qsort queen sieve
bubble 26.46 18.31 17.78 18.79 37.22
matmul 18.31 17.72 18.43 26.70
perm 17.57 18.23 18.08
qsort 17.50 17.18

TABLE IV. (%) ENERGY REDUCTION RATE.
(5000 CYCLE INTERVAL)

 matmul perm qsort queen sieve
bubble 21.50 19.58 18.16 20.69 22.38
matmul 19.44 18.09 20.03 24.96
perm 18.18 19.48 19.04
qsort 18.10 17.10
queen 20.77
Queen 18.82

Next, we show the results for the dual-core MeP. Based on
the single-core results, we choose the intervals of 1000, 2000,
and 5000 cycles, where energy savings is largest. TABLEs II
to IV present the results for the cases of 1000, 2000, and 5000

intervals, respectively. Since a pair of six program are
selected, we perform 6C2=15 simulations for each interval.

When the interval is 1000 cycles, an average of 18.0%
energy reduction is achieved. Before simulations, we
expected that power saving would be significantly reduced.
This is because that the supply voltage can only be decreased
when both programs prefer lower supply voltage. Even if only
one program prefers higher voltage, the whole MPSoC
operates at higher supply voltage. However, fortunately, in
the most combinations of programs, energy savings is enough
large. As the interval becomes larger, energy consumption is
further reduced. When the interval is 5000 cycles, the average
energy reduction is 19.8%. Figure 10 presents the distribution
of the supply voltage. The executed programs are bubble and
matmul, and the interval is 2000 cycles. The voltage that is
most frequently selected is 1.180V. 57.9% of execution cycles
operate at this voltage. Interestingly, the highest two voltages
are rarely selected; at only 2% in total. This means that the
supply voltage switch occurs frequently. While it implies that
its overhead might increase the execution cycles and thus it
might result in energy increase, the simulation results shows
the overhead is not too large to make Canary DVS system
useless.

1.340 V 1.260 V 1.228 V 1.180 V
1.132 V 1.084 V 1.036 V 0.988 V

Fig. 10 Supply Voltage Distribution.
(Dual core)

When the interval is 2000 cycles, energy savings is highest
and is an average of 20.5%. This confirms that Canary DVS
system eliminates the overestimated energy consumption. It
chooses lower supply voltages as frequently as possible, and
predicts timing errors to prevent MPSoC from incorrect state.

VII. CONCLUSIONS

As the demand of computing power is increased even in the
embedded devices, MPSoC becomes more and more
attractive. While MPSoC has the advantage of power
efficiency in comparison with single-core alternatives, it still
consumes wasted energy. This is due to increasing PVT

926

variations. In order to satisfy timing constraints at the worst
case scenarios, the supply voltage should be overestimated.
We evaluate it on Toshiba’s dual-core MeP processor and
found that 20.5% of energy savings is possible even when
MPSoC does not have multiple voltage supplies.

ACKNOWLEDGMENT

This work is partially supported by the CREST (Core
Research for Evolutional Science and Technology) programs
of Japan Science and Technology Agency (JST), and by
Grant-in-Aid for Scientific Research (B) #20333319. The
authors would like to thank Shunitsu Kohara of Toshiba for
helping them use MeP simulators.

REFERENCES
[1] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi,

and V. De, “Parameter Variations and Impact on Circuits and
Microarchitecture,” 40th Design Automation Conference, 2003.

[2] S. Das, P. Sanjay, D. Roberts, L. S. Lee, D. Blaauw, T. Austin,
T. Mudge, and K. Flautner, “A Self-Tuning DVS Processor
Using Delay-Error Detection and Correction,” Symposium on
VLSI Circuits ,2005.

[3] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C.
Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge,
“Razor: A Low-Power Pipeline Based on Circuit-Level Timing
Speculation,” 36th International Symposium on
Microarchitecture, 2003.

[4] Intel Corporation, “Intel Pentium M Processor on 90nm Process
with 2-MB L2 Cache,” Datasheet, 2006.

[5] T. Karnik, S. Borkar, and V. De, “Sub-90nm Technologies:
Challenges and Opportunities for CAD,” International
Conference on Computer Aided Design, 2002.

[6] H. Li, Y. Chen, K. Roy, and C.-K. Koh, “SAVS: A Self-
Adaptive Variable Supply-Voltage Technique for Process-
Tolerant and Power-Efficient Multi-Issue Superscalar Processor
Design,” 11th Asia and South Pacific Design Automation
Conference, 2006.

[7] S.-L. Lu, “Speeding up Processing with Approximation
Circuits,” IEEE Computer, Vol. 37, No. 3, 2004.

[8] T. Sato and I. Arita, “Constructive Timing Violation for
Improving Energy Efficiency,” Compilers and Operating
Systems for Low Power, 2003.

[9] T. Sato and Y. Kunitake, “A Simple Flip-Flop Circuit for
Typical-Case Designs for DFM,” 8th International Symposium
on Quality Electronic Design, 2007.

[10] N. R. Shanbhag, “Reliable and Efficient System-on-chip
Design,” IEEE Computer, Vol. 37, No. 3, 2004.

[11] Toshiba Corporation, “Media embedded processor,”
www.semicon.toshiba.co.jp/eng/product/micro/mep/index.html.

[12] A. K. Uht, “Going beyond Worst-case Specs with TEAtime,”
IEEE Computer, Vol. 37, No. 3, 2004.

[13] O. S. Unsal, J. W. Tschanz, K. Bowman, V. De, X. Vera, A.
Gonzalez, and O. Ergin, “Impact of Parameter Variations on
Circuits and Microarchitecture,” IEEE Micro, Vol. 26, No. 6,
2006.

[14] K. Usami, M. Igarashi, F. Minami, T. Ishikawa, M. Kanazawa,
M. Ichida, and K. Nogami, “Automated Low-Power Technique
Exploiting Multiple Supply Voltages Applied to a Media
Processor,” IEEE Journal of Solid-State Circuits, Vol. 33, No. 3,
1998.

[15] Private communications with LSI designers.

927

