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Abstract. The behavior to decide the action according to the current situation is seen well in
humans. We consider the prisoner’s dilemma in which the variable probability of cooperation is
allowed. Here, we define a wait-and-see strategy as the strategy that an individual cooperates at
the same probability as the proportion of cooperation in the population. In addition, we consider a
game between relatives in which an individual is more likely to meet an opponent using the same
strategy. To examine the reasonableness of a wait-and-see strategy from the viewpoint of survival,
we analyze the three strategies in the prisoner’s dilemma between relatives by means of a replicator
dynamics. We prove that our wait-and-see strategy survives in almost all conditions for the prisoner’s
dilemma between relatives. Therefore, we conclude a wait-and-see behavior is reasonable.

Keywords. wait-and-see strategy, prisoner’s dilemma, game between relatives, survival, replicator
dynamics

1. Introduction

The behavior to decide the action according to the situa-
tion is seen well in humans. In this paper, we consider a
strategy that depends on the current situation in the pris-
oner’s dilemma. We define a wait-and-see strategy as the
strategy that an individual cooperates at the same proba-
bility as the proportion of cooperation in the population.
Many authors investigated the prisoner’s dilemma in which
variable probabilities of cooperation is allowed (Nowak [9];
Verhoeff [16]; Frean [2]; Doebeli and Knowlton [1]; Killing-
back et al. [8]; Wahl and Nowak [18], [19]; Killingback and
Doebeli [7]). They proposed various mechanisms that co-
operation can emerge in the prisoner’s dilemma. However,
in these models, the probability of cooperation depends
either on previous payoffs or on an opponent’s previous
action. In contrast, a wait-and-see strategy depends on
the current situation, but does not bring the emergence of
cooperation. Furthermore, a wait-and-see strategy is not
rational. Nevertheless we can often see humans doing a
wait-and-see behavior.

Evolutionary game theory, replicator dynamics, implic-
itly assumes that all individuals are randomly matched
(Taylor and Jonker [14]; Weibull [20]; Hofbauer and Sig-
mund [5], [6]). On the other hand, there exist some re-
searches relaxing this assumption (Grafen [3]; Hines and
Maynard Smith [4]; Thomas [15]; Taylor [13]; Vincent and
Cressman [17]; Tao and Lessard [10]; Taylor and Nowak
[11]). Grafen [3], Hines and Maynard Smith [4] studied
games between relatives. Grafen proposed a concept of
“personal fitness” and introduced this concept into the
hawk-dove game. The “personal fitness” approach mod-

ifies the fitness of an individual by allowing for the fact
that an individual is more likely to meet an opponent us-
ing the same strategy. If we introduce the concept of “per-
sonal fitness” into the prisoner’s dilemma, cooperation can
emerge. Indeed, the cooperator will not intend to approach
the defector in the prisoner’s dilemma. Therefore, it seems
realistic to relax the assumption that all individuals are
randomly matched. However, neither cooperation nor de-
fection is guaranteed, regardless of the conditions for the
prisoner’s dilemma between relatives. It is natural to ask
whether there exists a strategy that survives in all condi-
tions.

For these reasons, to examine the reasonableness of a
wait-and-see strategy from the viewpoint of survival, we
analyze the three strategies (cooperation, defection and a
wait-and-see strategy) in the prisoner’s dilemma between
relatives by means of a replicator dynamics. As a result,
we show that a wait-and-see strategy survives in almost all
conditions for the prisoner’s dilemma between relatives. In
this sense, we can say that the behavior to cooperate at
the same probability as the proportion of cooperation in
the population is reasonable.

The organization of this paper is as follows: In section
2, we state the “personal fitness” approach, proposed by
Grafen [3], and give a preliminary result. In section 3,
we define a wait-and-see strategy and prove that a wait-
and-see strategy survives in almost all conditions for the
prisoner’s dilemma between relatives. Finally, in section 4
we conclude with some discussions.
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2. The prisoner’s dilemma between
relatives

In this section, we state the prisoner’s dilemma between
relatives, and in the framework of evolutionary game the-
ory, see that cooperation can emerge in this game.
In the prisoner’s dilemma, the available strategies are

cooperation and defection. The payoff matrix is given by

A =

[
R S
T P

]
.

If both individuals cooperate, they have payoff R. If one in-
dividual cooperates while the other individual defects, the
cooperator receives S, and the defector receives T . If both
individuals defect, they have P . The prisoner’s dilemma is
defined by the conditions T > R > P > S and 2R > T +S.
Let xC and xD be the proportion of the population co-

operating and defecting at time t, respectively. Then, we
have xC , xD ≥ 0, and xC + xD = 1. Following Taylor and
Jonker [14], Weibull [20], Hofbauer and Sigmund [5], [6],
we can write the evolutionary dynamics by the replicator
equation:

ẋC = (fC − fD)xDxC ,

ẋD = (fD − fC)xCxD,

where fC and fD denote the fitness of cooperators and
defectors, respectively. If we assume that all individuals
are randomly matched, the fitness fC and fD are given by

fC = RxC + SxD,

fD = TxC + PxD.

Therefore, we have xC → 0 as t → ∞.
Now, we suppose that all individuals are not randomly

matched. Grafen [3] proposed a concept of “personal fit-
ness” to account for the fact that an individual is more
likely to meet an opponent with the same strategy. This
game is called a game between relatives. In Grafen’s model,
the fitness of cooperators fC and defectors fD are given by

fC = rR+ (1− r)(RxC + SxD),

fD = rP + (1− r)(TxC + PxD),

where r is the probability that an individual meets an oppo-
nent with the same strategy because they are related, and
1 − r is the probability that all individuals are randomly
matched. Since

fC − fD

= r(R− P ) + (1− r)((R− T )xC + (S − P )xD)

= r(R− S)− (P − S) + (1− r)(R+ P − T − S)xC ,

we have

ẋC = {r(R− S)− (P − S)(1)

+ (1− r)(R+ P − T − S)xC}(1− xC)xC .

Let

q =
(P − S)− r(R− S)

(1− r)(R+ P − T − S)
.

Then, we have the following result from (1).

If xC(0) = 0 or 1, we have xC(t) = 0 or 1, respectively.
Therefore, we consider the case where 0 < xC(0) < 1.

(1) The case where R+ P − T − S > 0.
(i) If r ≤ (T −R)/(T − P ), we have limt→∞ xC(t) = 0.
(ii) If (P − S)/(R− S) ≤ r, we have limt→∞ xC(t) = 1.
(iii) If (T − R)/(T − P ) < r < (P − S)/(R − S), we have
the following result.
When xC(0) < q, we have limt→∞ xC(t) = 0.
When xC(0) > q, we have limt→∞ xC(t) = 1.
When xC(0) = q, we have xC(t) = xC(0) = q.

(2) The case where R+ P − T − S < 0.
(i) If r ≤ (P − S)/(R− S), we have limt→∞ xC(t) = 0.
(ii) If (T −R)/(T − P ) ≤ r, we have limt→∞ xC(t) = 1.
(iii) If (P − S)/(R − S) < r < (T − R)/(T − P ), we have
limt→∞ xC(t) = q.

(3) The case where R+ P − T − S = 0.
(i) If r < (P − S)/(R− S), we have limt→∞ xC(t) = 0.
(ii) If (P − S)/(R− S) < r, we have limt→∞ xC(t) = 1.
(iii) If r = (P − S)/(R− S), we have xC(t) = xC(0).

3. Survival strategy in the prisoner’s
dilemma between relatives

In this section, we define a wait-and-see strategy, and ana-
lyze the three strategies (cooperation, defection and a wait-
and-see strategy) in the prisoner’s dilemma between rela-
tives by means of a replicator dynamics.

Here, we introduce a new strategy.

Definition 1. We define a wait-and-see strategy as the
strategy that an individual cooperates at the same proba-
bility as the proportion of cooperation in the population.

We extend the prisoner’s dilemma. In this game, we
introduce a wait-and-see strategy as the third strategy.
Therefore, there are three allowed strategies: (1) always
cooperating, (2) always defecting, and (3) using a wait-
and-see strategy. Let x, y and z be the proportion of the
population always cooperating, always defecting and using
a wait-and-see strategy at time t, respectively. Then, we
have x, y, z ≥ 0 and x+ y + z = 1. From now on, we sup-
pose that 0 < z(0) < 1. Let xC and xD be the proportion
of the cooperation and defection in the population at time
t, respectively. Then, we have xC , xD ≥ 0, xC + xD = 1,
and xC = x+ xCz. Hence, we have

xC =
x

1− z
=

x

x+ y
.
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Therefore, we have

ẋC =
ẋy − xẏ

(x+ y)2

=

(
ẋ

x
− ẏ

y

)
xy

(x+ y)2

= (fAC − fAD)(1− xC)xC ,

where fAC and fAD denote the fitness of the individual
always cooperating and always defecting, respectively.

Now, we assume that all individuals are not randomly
matched. Let X and Y be stochastic process that take
values in S3 = {AC,AD,WS}, where the strategies AC,
AD and WS denote always cooperating, always defect-
ing and a wait-and-see strategy, respectively. Let P (X =
AC) = P (Y = AC) = x and so on. In this case, we as-
sume that the distribution of stochastic process (X,Y ) is
decided depending on the distribution of X and six param-
eters. Namely, we suppose that

P (Y = AD | X = AC) = (1− r1)y,

P (Y = WS | X = AC) = (1− r2)z,

P (Y = AC | X = AD) = (1− r3)x,

P (Y = WS | X = AD) = (1− r4)z,

P (Y = AC | X = WS) = (1− r5)x,

P (Y = AD | X = WS) = (1− r6)y,

where ri (i = 1, . . . , 6) does not depend on t. Hence, we
have

P (Y = AC | X = AC) = x+ r1y + r2z,

P (Y = AD | X = AD) = y + r3x+ r4z,

P (Y = WS | X = WS) = z + r5x+ r6y.

Therefore, Grafen’s model corresponds to the special case
where r1 = · · · = r6(= r).

In Grafen’s model, the fitness of an individual always
cooperating fAC and always defecting fAD are given by

fAC = rR+ (1− r)(RxC + SxD),

fAD = rP + (1− r)(TxC + PxD).

Then, we have

ẋC = {r(R− S)− (P − S)(2)

+ (1− r)(R+ P − T − S)xC}(1− xC)xC .

Therefore, we obtain the same equation as (1) which is ob-
tained in the case of 2×2 game (the case where the available
strategies are only cooperation and defection). Note that
(2) implies that with the probability r an individual coop-
erating at time t meets an opponent cooperating at time
t, regardless of always cooperating or using a wait-and-see
strategy, and with the probability 1− r all individuals are
randomly matched.

We denote by fWS the fitness of an individual using a
wait-and-see strategy. Then, we have

fWS = r{(RxC + SxD)xC + (TxC + PxD)xD}
+ (1− r){(RxC + TxD)xC + (SxC + PxD)xD}

= Rx2
C + SxCxD + TxCxD + Px2

D.

Hence, we have

ż = {(fWS − fAC)x+ (fWS − fAD)y}z(3)

= −r(R+ P − T − S)(1− xC)xC(1− z)z.

Therefore, we have the following theorem.

Theorem 1. A wait-and-see strategy survives in the pris-
oner’s dilemma between relatives, except for the case where
all of the following three conditions are fulfilled;

(i) R+ P − T − S > 0,

(ii)
T −R

T − P
< r <

P − S

R− S
,

(iii) xC(0) = q =
(P − S)− r(R− S)

(1− r)(R+ P − T − S)
.

To prove Theorem 1, we only have to show the following
proposition.

Proposition 1. If we introduce a wait-and-see strategy as
the third strategy into the prisoner’s dilemma between rel-
atives, we have the following result.

(0) If xC(0) = 0 or 1, we have z(t) = z(0).

From now on, we consider the case where 0 < xC(0) < 1.

(1) The case where R+ P − T − S > 0.
(i) If r ≤ (T −R)/(T −P ), we have limt→∞ xC(t) = 0 and
limt→∞ z(t) ̸= 0 (see Fig. 1 ).
(ii) If (P −S)/(R−S) ≤ r, we have limt→∞ xC(t) = 1 and
limt→∞ z(t) ̸= 0 (see Fig. 2 ).
(iii) If (T−R)/(T−P ) < r < (P−S)/(R−S), we have the
following result (see Fig. 3 ). When xC(0) < q, we have
limt→∞ xC(t) = 0 and limt→∞ z(t) ̸= 0. When xC(0) > q,
we have limt→∞ xC(t) = 1 and limt→∞ z(t) ̸= 0. When
xC(0) = q, we have xC(t) = q and limt→∞ z(t) = 0.

(2) The case where R+ P − T − S < 0.
(i) If r ≤ (P −S)/(R−S), we have limt→∞ xC(t) = 0 and
limt→∞ z(t) ̸= 0 (see Fig. 4 ).
(ii) If (T −R)/(T −P ) ≤ r, we have limt→∞ xC(t) = 1 and
limt→∞ z(t) ̸= 0 (see Fig. 5 ).
(iii) If (P − S)/(R − S) < r < (T − R)/(T − P ), we have
limt→∞ xC(t) = q and limt→∞ z(t) = 1 (see Fig. 6 ).

(3) The case where R + P − T − S = 0. In this case,
z(t) = z(0).
(i) If r < (P − S)/(R− S), we have limt→∞ xC(t) = 0.
(ii) If (P − S)/(R− S) < r, we have limt→∞ xC(t) = 1.
(iii) If r = (P − S)/(R − S), we have x(t) = x(0) and
y(t) = y(0).
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Proof. See section 5.

xz

y

Figure 1: The case where R+P −T −S > 0 and r ≤ (T −
R)/(T − S). In this case, for any 0 < v0, v1, v2 < 1 (v1 ̸=
v2), two initial points (xC(0), z(0)) = (v0, v1) and (v0, v2)
converge to different points, respectively (the dotted line
corresponds to xC = v0).

xz

y

Figure 2: The case where R + P − T − S > 0 and
(P−S)/(R−S) ≤ r. In this case, for any 0 < v0, v1, v2 < 1
(v1 ̸= v2), two initial points (xC(0), z(0)) = (v0, v1) and
(v0, v2) converge to different points, respectively (the dot-
ted line corresponds to xC = v0).

4. Conclusion

In this paper, to examine the reasonableness of a wait-and-
see strategy from the viewpoint of survival, we analyze the
three strategies (cooperation, defection and a wait-and-see
strategy) in the prisoner’s dilemma between relatives by
means of a replicator dynamics. The behavior to decide
the action according to the current situation is seen well in
humans. We define a wait-and-see strategy as the strategy

xz

y

Q = (q, 1− q, 0)

Figure 3: The case where R + P − T − S > 0 and
(T − R)/(T − S) < r < (P − S)/(R − S). In this case,
for any 0 < v0, v1, v2 < 1 (v0 ̸= q, v1 ̸= v2), two initial
points (xC(0), z(0)) = (v0, v1) and (v0, v2) converge to dif-
ferent points, respectively. Any initial point with xC(0) = q
converges to (x, y, z) = (q, 1− q, 0)(= Q) on xC = q.

xz

y

Figure 4: The case where R+P −T −S < 0 and r ≤ (P −
S)/(R − S). In this case, for any 0 < v0, v1, v2 < 1 (v1 ̸=
v2), two initial points (xC(0), z(0)) = (v0, v1) and (v0, v2)
converge to different points, respectively (the dotted line
corresponds to xC = v0).
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x

y

z

Figure 5: The case where R + P − T − S < 0 and
(T−R)/(T−P ) ≤ r. In this case, for any 0 < v0, v1, v2 < 1
(v1 ̸= v2), two initial points (xC(0), z(0)) = (v0, v1) and
(v0, v2) converge to different points, respectively (the dot-
ted line corresponds to xC = v0).

xz

y

Q = (q, 1− q, 0)

Figure 6: The case where R + P − T − S < 0 and (P −
S)/(R − S) < r < (T − R)/(T − P ). In this case, for
xC(0) ̸= q and 0 < z(0) < 1, any initial point converges
to (x, y, z) = (0, 0, 1), and xC = x/(x + y) converges to
q asymptotically. Any initial point with xC(0) = q and
0 < z(0) < 1 converges to (x, y, z) = (0, 0, 1) along xC = q.

that an individual cooperates at the same probability as the
proportion of cooperation in the population. In addition,
we adopt a game between relatives which formulate the
fact that an individual is more likely to meet an opponent
using the same strategy. These realistic features provide
an improved understanding of human behavior. By (2), we
describe the fact that with the probability r an individual
cooperating at time t meets an opponent cooperating at
time t, regardless of always cooperating or using a wait-
and-see strategy, and with the probability 1−r all individ-
uals are randomly matched. As a result, we show that a
wait-and-see strategy survives in almost all conditions for
the prisoner’s dilemma between relatives.
In particular, we remark on the case where R+P −T −

S < 0 and (P − S)/(R − S) < r < (T − R)/(T − P ). If
the available strategies are only cooperation and defection,
we obtain a realistic result that both strategies coexist.
However, if the available strategies are always cooperat-
ing, always defecting and using a wait-and-see strategy, we
obtain a more realistic result that all individuals will use
a wait-and-see strategy and they will cooperate with the
probability q.
Here, we compare the case where we introduce a wait-

and-see strategy as the third strategy into the prisoner’s
dilemma between relatives and the case where we introduce
the mixed strategy. We assume that an individual using the
mixed strategy cooperates with probability p. Let x, y and
w be the proportion of the population always cooperating,
always defecting and using the mixed strategy at time t,
respectively. Then, we have x, y, w ≥ 0 and x+ y+w = 1.
From now on, we suppose that 0 < p < 1 and 0 < w(0) < 1.
Let xC and xD be the proportion of the cooperation and
defection in the population at time t, respectively. Then,
we have xC , xD ≥ 0, xC + xD = 1, and xC = x + pw.
Hence, we have

ẋ = {r(R− S)− (P − S) + (1− r)(R+ P − T − S)xC}
× xDx+ rp(1− p)(R+ P − T − S)wx,

ẏ = {(P − S)− r(R− S)− (1− r)(R+ P − T − S)xC}
× xCy + rp(1− p)(R+ P − T − S)wy,

ẇ = {(P − S)− r(R− S)− (1− r)(R+ P − T − S)xC}
× (xC − p)w − rp(1− p)(R+ P − T − S)(1− w)w,

ẋC = {r(R− S)− (P − S) + (1− r)(R+ P − T − S)xC}
× {xy + (1− p)2xw + p2yw}
+ rp(1− p)(R+ P − T − S)(xC − p)w.

Consequently, we have the following result.

(1) If R+P −T −S > 0, we have limt→∞ w(t) = 0, that is,
the mixed strategy can not survive regardless of the value
of r and p.
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(2) If R + P − T − S < 0, we have limt→∞ w(t) = 0 when
either of the following two conditions are fulfilled;

(i) r <
P − S

R− S
, p >

(P − S)− r(T − P )

r(R+ P − T − S)
,

(ii) r >
T −R

T − P
, p <

(T −R)− r(T − P )

r(R+ P − T − S)
.

(3) If R + P − T − S = 0, we have limt→∞ w(t) = 0 when
r ̸= (P − S)/(R − S), that is, the mixed strategy can not
survive except for r = (P − S)/(R− S).

Therefore, from the viewpoint of survival, our wait-and-see
strategy is superior to all the mixed strategies.
Furthermore, we consider a wait-and-see strategy in the

“inclusive fitness” approach. Taylor and Nowak [12] an-
alyzed various mechanisms for the emergence of coopera-
tion in the prisoner’s dilemma. One of these mechanisms
is kin selection, based on the concept of “inclusive fitness”.
The “inclusive fitness” approach modifies the original pay-
off matrix A to

A′ =

[
(1 + r′)R S + r′T
T + r′S (1 + r′)P

]
,

where r′ is the coefficient of relationship (0 < r′ < 1). An
individual obtains the sum of his own payoff plus r′ times
his opponent’s payoff. In this framework, all individuals of
the population are randomly matched. Hence, we have

ẋC = {r′(T − P )− (P − S)

+ (1 + r′)(R+ P − T − S)xC}(1− xC)xC .

Consequently, we can see that cooperation can emerge in
this game. On the other hand, the calculated thresholds
of the personal fitness approach and inclusive fitness ap-
proach are different. Moreover, if we introduce a wait-and-
see strategy into the game based on the transformed payoff
matrix A′, then we have

ż = {(fWS − fAC)x+ (fWS − fAD)y}z = 0.

Therefore, we can obtain z(t) = z(0) regardless of the value
of r′. This is because the inclusive fitness approach sim-
ply modifies payoff matrix. Namely, even if a mechanism
for the emergence of cooperation in the prisoner’s dilemma
transforms the payoff matrix, a wait-and-see strategy can
survive in the game based on the transformed payoff matrix
as long as we assume that all individuals of the population
are randomly matched.
Naturally, there exist many mechanisms for the emer-

gence of cooperation in the prisoner’s dilemma. Also, there
exist a lot of strategies that vary in time the probability of
cooperation in the prisoner’s dilemma besides a wait-and-
see strategy. Moreover, it is not clear whether a wait-and-
see strategy is the best strategy among these strategies.
However, our result suggests that the behavior to cooper-
ate at the same probability as the proportion of cooperation
in the population is reasonable.

5. The proof of Proposition 1

In this section, we prove Proposition 1.

(0) If xC(0) = 0 or 1, we have xC(t) = 0 or 1 from (2),
respectively. Then, we have ż(t) = 0 from (3). Therefore,
we have z(t) = z(0).

From now on, we consider the case where 0 < xC(0) < 1.

(1) (i) If r ≤ (T −R)/(T − P ), we have

ẋC(t)

xC(t)
≤ {r(R− S)− (P − S)

+ (1− r)(R+ P − T − S)xC(0)}(1− xC(0))

= −C1(< 0)

from (2). Since

xC(t) ≤ xC(0)e
−C1t,(4)

we have xC → 0, i.e. x → 0 as t → ∞. Let g(t) = z(t)/y(t).
Then, we have

ġ(t)

g(t)
= {r(T − P )− (T −R)(5)

− (R+ P − T − S)(1− xC(t))}xC(t).

From (4), we have∣∣∣∣ ġ(t)g(t)

∣∣∣∣ ≤ {(T −R)− r(T − P )

+ (R+ P − T − S)(1− xC(t))}xC(0)e
−C1t

≤ {(T −R)− r(T − P )

+ (R+ P − T − S)}xC(0)e
−C1t.

Therefore, the right hand side of (5) is integrable in [0 ∞).
Since

g(t) = g(0) exp

(∫ t

0

{r(T − P )− (T −R)

− (R+ P − T − S)(1− xC(s))}xC(s)ds

)
,

we have

lim
t→∞

g(t) = g(0) exp

(∫ ∞

0

{r(T − P )− (T −R)

− (R+ P − T − S)(1− xC(s))}xC(s)ds

)
.

(1) (ii) If (P−S)/(R−S) ≤ r, we can show that xD → 0,
i.e. y → 0 as t → ∞. Let h(t) = z(t)/x(t). Then, we have

ḣ(t)

h(t)
= {(P − S)− r(R− S)

− (R+ P − T − S)xC(t)}(1− xC(t)).



Shin-ichiro Takazawa 233

In the same way as (i), we have

lim
t→∞

h(t) = h(0) exp

(∫ ∞

0

{(P − S)− r(R− S)

− (R+ P − T − S)xC(s)}(1− xC(s))ds

)
.

(1) (iii) If (T − R)/(T − P ) < r < (P − S)/(R − S)
and xC(0) < q, we see that xC → 0, as t → ∞. Let
g(t) = z(t)/y(t). Then, we have

lim
t→∞

g(t) = g(0) exp

(∫ ∞

0

{r(T − P )− (T −R)

− (R+ P − T − S)(1− xC(s))}xC(s)ds

)
in the same way as (i).
If xC(0) > q, we see that xD → 0, as t → ∞. Let

h(t) = z(t)/x(t). Then, we have

lim
t→∞

h(t) = h(0) exp

(∫ ∞

0

{(P − S)− r(R− S)

− (R+ P − T − S)xC(s)}(1− xC(s))ds

)
in the same way as (ii).
If xC(0) = q, we can show that xC(t) = q from (2).

Then, from (3), we have

ż(t)

z(t)
= −r(R+ P − T − S)(1− q)q(1− z(t)).

Therefore, we have z → 0 as t → ∞.

(2) (i) If r ≤ (P − S)/(R − S), we have xC → 0, i.e.
x → 0 as t → ∞ from (2). Let g(t) = z(t)/y(t). Then, we
have

lim
t→∞

g(t) = g(0) exp

(∫ ∞

0

{r(T − P )− (T −R)

− (R+ P − T − S)(1− xC(s))}xC(s)ds

)
.

(2) (ii) If (T − R)/(T − P ) ≤ r, we have xD → 0, i.e.
y → 0 as t → ∞. Let h(t) = z(t)/x(t). Then, we have

lim
t→∞

h(t) = h(0) exp

(∫ ∞

0

{(P − S)− r(R− S)

− (R+ P − T − S)xC(s)}(1− xC(s))ds

)
.

(2) (iii) If (P − S)/(R − S) < r < (T −R)/(T − P ), we
can show that xC → q from (2). Since

ż(t)

z(t)
= −r(R+ P − T − S)(1− xC(t))xC(t)(1− z(t)),

we have z → 1 as t → ∞.

(3) If R + P − T − S = 0, we have ż(t) = 0 from (3).
Therefore, we have z(t) = z(0).
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