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Abstract. We pick up and discus three topics from information theory and learning theory: stochas-
tic complexity, communication channel capacity, and portfolio theory in finance. At first glance,
they seem very different ones, but they have common game theoretic profiles. The purpose of this
article is to present brief introductions to each problem and describe the relation between them.
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1. Introduction

In information theory and learning theory, many problems
such as data compression, sequential prediction, determina-
tion of communication channel capacity, and portfolio the-
ory, can be discussed in similar game theoretic manners. It
is well known that the notion of the stochastic complexity
(SC), which is a central notion of the minimum description
length (MDL) principle, is closely related to the minimax
code with coding regret and redundancy in universal data
compression. Since code length is translated into cumu-
lative logarithmic loss in sequential prediction, such mini-
max codes are equivalent to minimax prediction strategies.
Moreover, such prediction strategies can be used in port-
folio theory in finance. Since the minimax redundancy is
equal to the maximin redundancy, which is translated as
the channel capacity in communication, the minimax re-
dundancy is equal to the channel capacity. In this paper,
we review the formulation of SC and some recent results.
Then we discuss determination of channel capacity and uni-
versal portfolio, with seeing their relations to the minimax
regret and redundancy.

In the rest of this section, we briefly describe each topic
and their relations. In Section 2, we give the formal defini-
tion of regret and redundancy, and discuss its basic prop-
erties. And then, we discuss MDL principle, channel ca-
pacity, and portfolio theory.

1.1. MDL principle

The MDL principle [21] primarily concerns information cri-
teria for model selection. The information criterion is used
as a measure to select the best parametric model given a
data sequence xn = x1x2 . . . xn. Usually, the model which
induces the minimum value of the information criterion is
selected as the best model. In the context of the MDL prin-
ciple, stochastic complexity (SC) (or MDL criterion) plays

a role of information criterion. Here, the SC for a given
parametric model is defined as the shortest code length of
the given data achievable with the help from the model
[23]. The problem of finding such shortest code length is
closely related to universal data compression, where it is
assumed that the information source is unknown.

Before describing the universal data compression, we will
mention about the Shannon code, which is a code for a
known information source. Suppose that a data sequence
xn ∈ Xn (n = 1, 2, . . .) is drawn according to a probability
mass function p(xn), where X denotes a finite set called
alphabet. Consider a problem to minimize the expected
code length Epl(x), where Ep denote the expectation with
respect to p and l(x) denotes a code length (bit) assigned
to x by a code φ. The code φ is a function which maps
x ∈ X to a binary sequence φ(x), where φ(x) for each x is
referred to as a code word. It is known that the solution
is given by a code with l(x) = − log2 p(x) (we neglect the
value less than 1 bit), provided that

∏n
t=1 φ(xt), the code

word for xn, is uniquely decodable in an efficient manner.
Note that this condition, referred to as ‘prefix condition’,
requires that the Kraft’s inequality

∑
x∈X 2−l(x) ≤ 1 is

satisfied (see [10] [19] for example). The codes satisfying
‘prefix condition’ are referred to as prefix code, and the code
with l(x) = − log2 p(x) is referred to as Shannon code with
respect to the information source p. Note that the Shan-
non code satisfies the Kraft’s inequality. By this fact, we
realize that there is essentially one to one correspondence
between a code for data compression and a probability dis-
tribution of the data. Let us consider the universal coding.
In particular in the context of the MDL, we assume that
the information source is an element of a parametric model
S = {p(·|u) : u ∈ U ⊂ Rd}. Imagine the situation in which
we prepare a code q but the true information source p(·|u)
is different from q. Then, the expected code length is larger
than the one which is achieved by the code p(·|u). The dif-
ference is referred to as redundancy. Denote it by Rn(q, u),
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which is defined as

Rn(q, u) = Eu log
1

q(xn)
− Eu log

1

p(xn|u)
,(1)

where Eu denotes the expectation with respect to p(·|u).
The redundancy is equal to the Kullback-Leibler divergence
from p(·|u) to q with random variable xn:

D(n)(p(·|u)|q) = Eu log
p(xn|u)
q(xn)

.

Our main concern is the minimax redundancy

R̄n(S) = min
q

max
u∈U

Rn(q, u).

The code achieving the minimax redundancy is referred to
as the minimax code with respect to redundancy. Concern-
ing this notion, Clarke & Barron [7] proved that for fairly
general models satisfying usual regularity conditions, Bayes
mixture with Jeffreys prior [16] asymptotically achieves the
minimax redundancy, and it equals

d

2
log

n

2πe
+ log

∫
|J(u)|1/2du+ o(1),

where d is the dimension of u, J(u) is the Fisher informa-
tion matrix of u, and |J(u)| is its determinant, and o(1) is a
quantity converging to 0 as n goes to infinity. The Jeffreys
prior is the prior density proportional to |J(u)|1/2.
The code length of the minimax code for redundancy is a

candidate of SC, since it can measure a performance of the
model S, but it is not sufficient, since we need the shortest
code length for the particular data sequence for the purpose
of model selection, that is, we concerns not averaged code
length but pointwise shortest code length. In [23], Rissanen
gave the final definition of SC as the optimal code length
for another minimax problem in which regret (or pointwise
redundancy) is employed as a loss function. The regret of
a code q with respect to a data sequence xn and the model
S, denoted as r(q, xn), is defined as

r(q, xn) = log
1

q(xn)
−min

u∈U
log

1

p(xn|u)
(2)

= log
1

q(xn)
− log

1

p(xn|û)
,

where û = û(xn) is the maximum likelihood estimate given
xn. Note that log(1/p(xn|û)) is the code length of the most
suitable code to xn in S. As for this problem, Shtar’kov
showed that the normalized maximum likelihood (NML),
which is defined as

mn(x
n) =

p(xn|û(xn))∑
xn∈Xn p(xn|û(xn))

,(3)

is the exact minimax code [24]. Note that the regret of mn

does not depend on xn. This kind of solution is referred
to as the equalizer. It is interesting that the regret of the
NML is shown to be

d

2
log

n

2π
+ log

∫
|J(u)|1/2du+ o(1),

under certain regularity conditions [23]. This almost equals
the minimax redundancy. Consequently, SC of a sequence
xn typically equals

log
1

p(xn|û)
+
d

2
log

n

2π
+ log

∫
|J(u)|1/2du+ o(1).(4)

Further, if the model S is an exponential family [6], then
the Bayes mixture with (slightly modified) Jeffreys prior
achieves the minimax regret asymptotically.
Efficiency of SC as an information criterion has been

shown in many literatures, and also its relation to the
other topics such as data compression, sequential predic-
tion, gambling, etc, has been discussed. See [21, 3, 4, 35,
13, 14] for example.

1.2. Channel Capacity

In the above discussions, the maximin risk other than the
minimax risk is also important. The maximin redundancy
is defined as

R
¯n(S) = max

w
min
q

∫
Rn(q, u)w(du)

= max
w

∫
Rn(qw, u)w(du),

where the maximum is taken for all prior measures. By
definition, R

¯n(S) ≤ R̄n(S) holds in general. In particular
for the redundancy, R

¯n(S) = R̄n(S) holds [12, 15]. The
quantity

∫
Rn(q, u)w(du) is referred to as the Bayes risk

with prior w. The prior which achieves the maximin risk is
referred to as the least favorable prior. Here, an important
point is that Bayes risk for redundancy equals mutual in-
formation between u and xn. It implies that the maximin
redundancy can be interpreted as channel capacity of the
channel with input u and output xn.
In information theory, a communication channel with in-

put x and output y is modeled by a conditional probability
distribution of y given x. Let p(y|x) denote its density func-
tion. We can think of p(y|x) as a “probabilistic function”,
where y is not determined by x, but y contains certain infor-
mation about x. Hence the conditional distribution p(y|x)
can model a communication channel which has a certain
noisy behaviour. If the input x is drawn from a probability
distribution, then we can measure the average amount of
the information about x possessed by y using mutual infor-
mation between x and y. Let w(x) be its density function,
then we have a joint probability density function p(x, y)
= w(x)p(y|x) and the mutual information between x and
y is defined as

Ix;y = Ix;y(w) =

∫
p(x, y) log

p(x, y)

w(x)pw(y)
dxdy,

where pw(y) is the marginal density of y determined by w,
and given as pw(y) =

∫
p(y|x)w(x)dx. The capacity C of

the channel modeled by p(y|x) is defined as the maximum
of Ix;y(w) with respect to w:

C = max
w

Ix;y(w).
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The operational meaning of channel capacity is given by
Shannon’s channel coding theorem as follows: assume that
a channel code for which the block size n is sufficiently
large, then nC bits is the supremum of the average informa-
tion which can be sent by one code word. In other words,
C is the supremum transfer rate which can be achieved for
the communication channel. The problem of determining
the capacity of a given communication channel is of special
importance for communication engineering.

The mutual information Ix;y can be rewritten as

Ix;y =

∫
w(x)p(y|x) log p(y|x)

pw(y)
dydx

=

∫
w(x)R1(pw, x)dx

= min
q

∫
w(x)R1(q, x)dx,

which turns out to be the minimum Bayes risk of redun-
dancy with respect to the prior w. This confirms that
finding the channel capacity is equivalent to finding the
maximin redundancy, which is equal to the minimax re-
dundancy.

1.3. Portfolio Theory

The last topic concerns portfolio theory. It has been stud-
ied in several fields, such as finance, Bayes theory, game
theory, information theory, etc. Related to information
theory, Cover [8], Cover & Ordentlich [9], Cross & Barron
[11], etc. have studied this topic. In [10] (Cover & Thomas’s
text book on information theory), one chapter is devoted
to portfolio theory. In particular, Cover [8] introduced a
model of portfolio referred to as universal portfolio, which
has the similar formulation as universal data compression
with coding regret.

Let us consider a stock market which consists ofm stocks.
Describe the market by a series of m-dimensional vectors
{xi}, where jth element xij of xi denotes the price rela-
tive of jth stock. The price relative xij denotes a ratio of
jth stock’s price at the end of the ith day to that at the
beginning of the day. The investor’s strategy (portfolio)
is specified by a portfolio vector, which is a non-negative
valued vector b normalized as

∑m
j=1 bj = 1. Its jth ele-

ment denotes a fraction of the capital invested in the jth
stock to the whole capital invested in all m stocks. Then,
b · xi denotes the growth rate of the whole capital (wealth
relative) at the ith day.

Define S(xn|b) =
∏n

i=1 b·xi, referred to as wealth growth
rate, then it denotes the wealth the investor has at the nth
day, provided he had the wealth of the amount 1 at the
beginning of ith day and he dealt everyday so as to keep
his portfolio as b. This strategy is referred to as constantly
rebalanced portfolio (CRP). If he knew the behaviour of
stock market xn in advance, he could optimize b so that
S(xn|b) was maximized. Let b∗ denote the optimal value
of b given xn. The portfolio b∗ is referred to as optimal

constantly rebalanced portfolio. Of course, to find b∗ in ad-
vance is impossible. Figure 1 shows the performance of the
b∗. In the figure, daily prices of 2 stocks Mobil and Kinar
over a period of 4500 days from 1962.07.03 until 1980.09.12
are indicated by blue and red lines respectively, where the
prices are normalized as they were 1 at the beginning of
the first day. Also, the black line shows the wealth growth
rate achieved by the optimal constantly rebalanced portfo-
lio applied to these two stocks. By this, we can see, if the

Figure 1: Performance of optimal CRP

investor knew these stocks’ behaviour in advance, it was
possible to increase the capital 5 times greater than the
case in which he keeps his capital in either one stock over
the period.
The goal of universal portfolio is to approach the optimal

constantly rebalanced portfolio. The real portfolio should
be determined by the past observations. Such portfolio
strategies are referred to as causal portfolio, and strictly de-
scribed as follows: it is a series of portfolio vectors {b̃(xi)},
where b̃(xi) is determined based on the past observations
xi = x1 . . .xi. This situation is similar to universal coding
game.
In fact, Cover considered the minimax problem for the

following risk (wealth ratio):

S(xn|b∗)
S̃(xn|b̃)

=

∏n
i=1 b

∗ · xi∏n
i=1 b̃(x

i−1) · xi

,(5)

where we let S̃(xn|b̃) =
∏n

i=1 b̃(x
i−1) · xi, which is the

wealth growth rate by {b̃(xi)}.
Here the optimal constantly rebalanced portfolio b∗ is

similar to the maximum likelihood estimate (MLE) in sta-
tistical inference and plays a similar role of the MLE in
universal coding with coding regret. It is known that the
logarithm of minimax wealth ratio inm stocks case is equal
to the minimax regret of universal coding of the multino-
mial Bernoulli model with alphabet size m [9, 10]. Further,
the minimax portfolio is similar to the one for the universal
coding.
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2. Preliminaries

We introduce the detailed definition of redundancy and
regret, and discuss the relation between them.
Let p(·|u) (u ∈ U ⊂ Rk) denotes a probability mass func-

tion of a stochastic process with finite alphabet X , and we
regard it as an information source. We denote a model of
information sources as S = {p(·|u) : u ∈ U}. Let û = û(xn)
denote the maximum likelihood estimate of u given xn. It
is possible to discuss the case in which X is continuous, for
which we only have to introduce a density function with re-
spect to appropriate reference measure, instead of a mass
function.
For a space of parameters U , we assume Ū◦ = Ū . (For

A ⊂ Rk, we let A◦ denote the interior of A and Ā the
closure of A).
Let K denote a subset of U such that K̄◦ = K̄. We let

S(K) = {p(·|u) : u ∈ K} and Xn(K) = {xn : û(xn) ∈ K}.
We can construct a code (source code) based on a stochas-

tic process q, whose code length for xn is− log q(xn). Hence
we regard q itself as a code. Redundancy of q with respect
to p(·|u) is defined by (1). We can write

Rn(q, u) = Eu log
p(xn|u)
q(xn)

= D(n)(p(·|u)|q).

HereD(n)(p(·|u)|q) denotes the Kullback Leibler divergence
(KL divergence for short) of q from p regarding xn as a ran-
dom variable.
We introduce the minimax redundancy. We define q’s

maximum redundancy for S(K) as

R̄n(q, S(K)) = sup
u∈K

Rn(q, u),

and minimax redundancy with respect to S(K) as

R̄n(S(K)) = inf
q

sup
u∈K

Rn(q, u),

where inf is taken for all probability mass functions on Xn.
We refer to the q which achieves the minimax redundancy
as the minimax code for redundancy.
We also introduce the maximin redundancy. We define

minimum redundancy for a prior measure w and S(K) as

R
¯n(w,S(K)) = inf

q

∫
K

Rn(q, u)w(du).(6)

Then we have

R
¯n(w, S(K)) = inf

q

∫
D(n)(p(·|u)|q)w(du)

=

∫
D(n)(p(·|u)|pw)w(du),

where we let pw(·) =
∫
p(·|u)w(du). The maximin redun-

dancy is defined as

R
¯n(S(K)) = sup

w
inf
q

∫
K

Rn(q, u)w(du)

= sup
w

∫
K

Rn(pw, u)w(du),

where sup is taken for all prior measures on K. We refer to
the w achieving maximin redundancy as the least favorable
prior. Note that

R
¯n(w, S(K)) = inf

q

∫
K

Rn(q, u)w(du) ≤ inf
q

sup
u∈K

Rn(q, u)

holds for any w. Hence we have

R
¯n(S(K)) ≤ R̄n(S(K)).

In fact the equality holds for redundancy [12, 15].
Here we introduce the minimax and maximin regret. Re-

gret of code q for xn and S is defined by (2). The minimax
regret for Wn ⊂ Xnand S is defined by

r̄(Wn) = inf
q

sup
xn∈Wn

r(q, xn) = inf
q

sup
xn∈Wn

log
p(xn|û)
q(xn)

.

The maximin regret is defined as

r
¯
(Wn) = sup

v
inf
q

∑
xn∈Wn

r(q, xn)v(xn),

where sup is taken for all probability mass functions over
Wn. Note that we have

r
¯
(Wn) = sup

v
inf
q

∑
xn∈Wn

r(q, xn)v(xn)(7)

≤ sup
v

inf
q

sup
xn∈Wn

r(q, xn)

= inf
q

sup
xn∈Wn

r(q, xn) = r̄(Wn).

In fact, the equality holds for regret [24, 34].
We define empirical Fisher information Ĵ(u, xn), and

Fisher information J(u) by

Ĵ(u, xn) = Ĵ(u)

=
(−1

n

∂2 log p(xn|u)
∂ui∂uj

)
,

J(u) = lim
n→∞

Eu[Ĵ(u, x
n)].

Then the Jeffreys prior wK on K is defined by

wK(u) =
|J(u)|1/2

CJ(K)
,(8)

CJ(K) =

∫
K

|J(u)|1/2du.(9)

3. MDL principle

3.1. Foundation of MDL principle

The MDL criterion is given as follows [21, 3, 32, 26]. For a
model S = {p(·|u) : u ∈ U ⊂ Rd}, the total code length for
a data sequence xn = x1x2...xn with respect to S is given
as

− log p(xn|û(xn)) + d

2
log n+O(1),(10)
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where û(xn) is the maximum likelihood estimate of u given
xn. The first term is the data description length and the
second term is the parameter description length. Note
that the data description length is given by the Shan-
non code with respect to p(·|û) and is the minimum of
{− log p(xn|u) : u ∈ U}. Recall that the Shannon code
with respect to p is a prefix code which minimizes the ex-
pected code length with respect to p. Hence, − log p(xn|û)
is the optimal code length, but we cannot prepare such code
prior to seeing the data. In other words, the code whose
code length equals − log p(xn|û(xn)) for all xn ∈ Xn, does
not satisfy Kraft’s inequality:∑

xn

2−(− log p(xn|û(xn))) =
∑
xn

p(xn|û(xn)) > 1.

The parameter description length is added in order to make
the code to satisfy Kraft’s inequality. This encoding scheme
can be seen as follows:

1. Encode û(xn) (the model p(·|û(xn))) with appropri-
ate precision.

2. Encode the data xn with the Shannon code with re-
spect to p(·|û(xn)).

This type of source coding is referred to as two stage cod-
ing. Here, ‘appropriate precision is of order 1/

√
n, which is

determined by minimizing the total code length and of the
same order as standard deviation of MLE, i.e. the param-
eter description length itself is determined by MDL princi-
ple.

Performance of MDL criterion is theoretically shown, but
the code length (10) can be improved, if we employ Bayes
code rather than two stage coding, as pointed out by Ris-
sanen [22]. Bayes code with a model S is the Shannon code
with respect to the Bayes mixture

qw(x
n) =

∫
p(xn|u)w(du),

where w(du) is a prior measure on U . The code length of
Bayes code depends on the prior in general, hence choice
of prior is important.

For this problem, Clarke & Barron [7] gave an answer
in terms of expected code length. Assuming that the data
xn is drawn from an i.i.d. source p(·|u) (u ∈ U ⊂ Rd),
they proved that the Bayes mixture mU with Jeffreys prior
wU (u) (see (8)) satisfies

Rn(mU , u) =
d

2
log

n

2πe
+ logCJ(U) + o(1),(11)

where o(1) converges to 0 as n → ∞. Letting K denote
a compact set interior to U , (11) holds uniformly for all
u ∈ K. Using the equation (11), we can show that redun-
dancy Rn(mU , u) does not depend on u asymptotically, if
u ∈ K. Actually, the following holds for a sequence of
Jeffreys mixtures {mKn}, for a sequence of parameter set

{Kn}, where the interior of Kn includes K and Kn slowly
converges to K [7].

max
u∈K

Rn(mKn , u) =
d

2
log

n

2πe
+ logCJ (K) + o(1).(12)

The codes with this property is referred to as asymptotic
minimax codes (with respect to redundancy). When K is
U and U essentially corresponds to the whole space, e.g. the
Bernoulli model p(x|u) = ux(1− ux) with U = [0, 1], then
the above treatment is impossible. Some of such cases can
be handled with a sequence of prior densities which have
higher density at near the boundary than the Jeffreys prior
and weakly converge to the Jeffreys prior over U . In fact,
Xie & Barron [33] treats the multinomial Bernoulli model
and [29] treats the one-dimensional exponential family case.
Note that, when X is not finite,

∫
U
|J(u)|1/2du with U

being the essential whole space is usually infinite.
After that, Rissanen founded the final definition of stochas-

tic complexity in [23]. It is known that the code based on
the normalized maximum likelihood (NML) [24] achieves
the minimax regret. The NML, denoted by mn(x

n), is
given by normalizing the maximum likelihood p(xn|û(xn))
(see (3)). Let Cn denote the normalization constant:

Cn =
∑

xn∈Xn

p(xn|û(xn)).

Then we have
r(mn, x

n) = logCn,

i.e. the regret of mn does not depend on xn. Note that we
can write

r(q, xn) = log
1

q(xn)
− log

1

Cnmn(xn|û(xn))

= logCn + log
mn(x

n)

q(xn)
.

Hence we have

max
xn

r(q, xn) = logCn +max
xn

log
mn(x

n)

q(xn)
≥ logCn,

where equality holds, iff q = mn. This implies mn is the
minimax solution with respect to regret.
Rissanen [23] defined stochastic complexity by code length

of xn based on mn, and shown that its value equals

log
1

p(xn|û(xn))
+
d

2
log

n

2π
+ logCJ(U) + o(1).(13)

This uniformly holds for xn satisfying û(xn) ∈ K, where
K is a compact set interior to U .

Example 1 (Bernoulli model). Assume the binary alpha-
bet X = {0, 1}. Let

Ber(x|u) = ux(1− u)1−x

denote a probability mass function on X . In this paper, we
refer to

S = {Ber(·|u) : u ∈ [0, 1]}.
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as the Bernoulli model.
For evaluation of the code length of the NML, we need to

compute
∑

xn Ber(xn|û(xn)), where û = û(xn) is the MLE
of u. Define

E(n, k) =
{
xn :

n∑
i=1

xi = k
}
,

which we call a type class of type (n, k). We have

|E(n, k)| = n!

k!(n− k)!
.

Since Ber(xn|u) = uk(1− u)n−k, we have∑
xn∈Xn

Ber(xn|û) =
n∑

k=0

ûk(1− û)n−k n!

k!(n− k)!
.(14)

By the Stirling’s formula

n! =
√
2πn

(n
e

)n

eλn (
1

12n+ 1
≤ λn ≤ 1

12n
),

we have∑
xn

Ber(xn|û) ≈
n∑

k=0

√
1

2πnû(1− û)

≈
√

n

2π

∫ 1

0

1√
û(1− û)

dû

=

√
n

2π

∫ 1

0

|J(u)|1/2du,

where J(u) is the Fisher information of u. Hence the code
length of mn equals (4).

The evaluation (4) is an analytic form, but it holds only
asymptotically. For the Bernoulli case, the strict value of
SC can be efficiently computed, since we can compute (14)
in linear time with respect to n. Recently, an efficient algo-
rithm was found for the multinomial Bernoulli model and
some extension [17, 18]. It provides an efficient method to
compute the SC and the joint probability mn(x

n) for those
models.
Here we review the outline of the proof of (13) by Rissa-

nen. The proof is given under the following assumptions,
where K is assumed to be a bounded open set and Xn(K)
denotes the set {xn : û(xn) ∈ K}.

i) ∀u ∈ K, 0 < c1 ≤ |J(u)| ≤ c2 <∞.

ii) The central limit theorem for MLE û(xn) holds, uni-
formly for u ∈ K: Let ξ =

√
n(û − u) and let Rr

denote a cube with side length 2r centered at the
origin. The following uniformly holds for all u ∈ U .

Pu(ξ ∈ Rr) =
|J(u)|1/2

(2π)d/2

∫
Rr

e−ξT J(u)ξ/2dξ + o(1).

iii) For all n ≥ 1, for all xn ∈ Xn(K), Ĵ(û, xn) < M <∞
holds, where M is a positive definite matrix. Also,
for all n ≥ 1, for all xn ∈ Xn(K), for all i, j, a family
of functions Jij(u(ξ), x

n) is equicontinuous at ξ = 0,
where u(ξ) = û+ ξ/

√
n.

Let Cn(K) denote the normalization constant of the NML
for Xn(K):

Cn(K) =
∑

xn∈Xn(K)

p(xn|û(xn)).

Note that it suffices to show

Cn(K) =
CJ(K)nd/2(1 + o(1))

(2π)d/2
.

First, we quantize the parameter space K into cubes with
side length 2r/

√
n. Let bi (i = 0,±1,±2, ...) denote such

cubes. Then we have

Cn(K) =
∑
i

∑
xn:û∈bi

p(xn|û).

For each i, we let ū denote bi’s center. Then, by the condi-
tions iii) etc, for û ∈ bi we have p(xn|û) ∼ p(xn|ū). Hence
we have ∑

xn:û∈bi

p(xn|û) ∼
∑

xn:û∈bi

p(xn|ū)

= Pū(û ∈ bi)

= Pū(ξ ∈ Rr).

This together with Condition ii) yields the following.

Cn(K) ∼ nd/2
∫
K

|J(u)|1/2

(2π)d/2
du =

CJ (K)nd/2

(2π)d/2
.

Note that (13) is relevant to (11), since the following
holds

Eu[log
p(xn|û(xn))
p(xn|u)

] =
d

2
+ o(1)(15)

uniformly for u ∈ K [7], where K is a compact set inte-
rior to U . This equation and (13) yield (11). Hence, the
normalized maximum likelihood is asymptotically minimax
for redundancy, too. However, (11) does not always imply
(13). Then, Bayes code with slightly modified Jeffreys prior
(modified Jeffreys code for short) is not minimax with re-
spect to regret in general. Actually, it is known that the
modified Jeffreys code achieves minimax regret, if and only
if the target class is an exponential family.

3.2. Bayes procedure achieving Stochastic Com-
plexity

In this section, we see that the slightly modified Jeffreys
mixture asymptotically achieves SC for exponential fami-
lies including classes of Markov sources. Moreover, we will
see its modification to more general cases.
Let mw denote the Bayes mixture with a prior w(u) for

a target class S = {p(·|u) : u ∈ U ⊂ Rd}:

mw(x
n) =

∫
U

p(xn|u)w(u)du.
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First note that Taylor expansion of log p(xn|u) around û:

log p(xn|u) = log p(xn|û)− 1

2
(u− û)TnĴ(u′)(u− û).

where u′ is a certain point between u and û, and we used
∂ log p(xn|u)/∂ui = 0 at u = û. (Recall the definition of
Ĵ , which is the Hessian of (−1/n) log p(xn|u)). Hence we
have

p(xn|u)
p(xn|û)

= exp
(
−1

2
(u− û)TnĴ(u′)(u− û)

)
.

Let Bn denote a sphere with radius logn/
√
n centered at

û, then we have

mw(x
n)

p(xn|û)
∼

∫
Bn

exp(
−nuT Ĵ(û)u

2
)w(u)du

∼ (2π)d/2w(û)

nd/2|Ĵ(û)|1/2
.

Hence, we have the following asymptotic evaluation for the
regret of mw:

d

2
log

n

2π
+ log

|Ĵ(û)|1/2

w(û)
+ o(1).(16)

In particular, for the Jeffreys prior w = wU (recall (8)), its
regret r(mU , x

n) is evaluated to be

d

2
log

n

2π
+ log

∫
U

|J(u)|1/2du+
1

2
log

|Ĵ(û)|
|J(û)|

+ o(1).

This asymptotic holds uniformly for all sequences such that
the MLE û is contained in a compact subset K interior to
U .
Here, note that J(û) = Ĵ(û) holds always, when the

target class S is an exponential family defined as [6, 2]

S = {p(x|θ) : θ ∈ Θ ⊂ Rd},
p(x|θ) = exp

(
θ · x− ψ(θ)

)
.

Hence for that case, the above asymptotic implies that
the Jeffreys mixture is asymptotically an equalizer for se-
quences such that θ̂ ∈ K. The situation is similar to the
case of redundancy treated by Clarke & Barron [7]. Ac-
tually, the same sequence of Jeffreys mixtures for the se-
quence of the parameter sets {Kn}, which is used to obtain
(12), provides the following bound for the case in which S
is an exponential family.

max
xn:θ̂∈K

r(mKn , x
n) =

d

2
log

n

2π
+ logCJ(K) + o(1).(17)

Since the Markov model, which is not an exponential family
in strict sense, can be treated as an exponential family
when the sample size is large [20, 30], the bound holds for
the Jeffreys mixture for the Markov model [30].
In a manner parallel to the case of redundancy, the sim-

ilar modification for the boundary problem is also possible

for the regret case. Xie & Barron [34] treats the multino-
mial Bernoulli case, [29] treats the one-dimensional expo-
nential families, and [30] treats the Markov model case.

When the target model is not an exponential family, the
Jeffreys prior is no longer asymptotically minimax for re-
gret, since for such cases, there exist sequences xn such
that log(|Ĵ(û)|/|J(û)|) is significantly larger than 0. This
is an implication from the fact that Ĵ(u) − J(u) is essen-
tially embedding exponential curvature of S in the space
of all probability densities on X [1, 2]. Here, note that, the
embedding exponential curvature is equal to 0 everywhere,
if and only if the model is an exponential family. It seems
to imply that the Bayes procedure cannot achieve the SC,
even with the restriction to data xn so that the MLE be-
ing away from the boundary, because the regret bound of
NML implies that log(|Ĵ(û)|/|J(û)|) must vanish for the
minimax procedure.

However, it is still possible to overcome this difficulty
with the Bayes procedure [29, 31]. Consider the case in
which the target model is a curved exponential family em-
bedded in an exponential family M = {p̄(·|θ) : θ ∈ Θ ⊂
Rd̄}.

p̄(xn|θ) = exp(θ · x− ψ(θ)).

Then, define a curved exponential family as

S = {p(x|u) = p̄(x|ϕ(u)) : u ∈ U ⊂ Rd},

where d is less than d̄ and ϕ is a function from U to Θ. The
key is the usage of priors not on the target model S, but
on the full family M . Let K denote a compact subset of U
interior to U . We will consider the minimax problem for
{xn : û ∈ K} with the target class M . Define a sequence
of Bayes mixtures {m̄n} as

m̄n(x
n) = (1− ϵn)

∫
Kn

p(xn|u)wKn(u)du

+ϵn

∫
K̄

p̄(xn|θ)w̄(θ)dθ,

whereKn is a compact subset of U such thatK ⊂ K◦
n, K̄ is

a compact set interior to Θ such that K̄ ⊃ {ϕ(u) : u ∈ K},
and w̄ is the uniform prior over K̄. Further assume that
ϵn = o(1), and that Kn converges to K at appropriately
slow rate. Then, it is possible to show m̄n is asymptotically
minimax. The point is that, there is a point in M whose
likelihood is higher than the MLE û in S, whenever Ĵ(û)−
J(û) is not equal to 0. This follows from the identity

Ĵij(û)− Jij(û) = − ∂2ϕ

∂ui∂uj
· (η(ϕ(û))− η(θ̂)),

which is easily derived by the definition of the curved family
p(xn|u). By this, if Ĵij(û) − Jij(û) is not equal to 0, then

ϕ(û) is not equal to θ̂. Hence there exists a point θ̃ ∈
K̄ whose likelihood p(xn|θ̃) is higher than p(xn|û), so the
contribution from around θ̃ increases likelihood of m̄n to
the value corresponding to the minimax regret.
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3.3. Sequential Prediction

Let us consider the sequential prediction problem, in which
based on the past observations xt we want to predict the
next symbol xt+1 at each time t. Here, we assume proba-
bilistic prediction, i.e. at time t, we output the probability
distribution of xt+1, which we denote by q(xt+1|xt). Note
that q(xt+1|xt) is thought of as a conditional probability of
xt+1 given xt. Hence, we can reconstruct the probability
mass function of xn as

q(xn) =
n∏

t=1

q(xt|xt−1).

Here we let q(x1|x0) = q(x1) denote the initial prediction.
We regard q(xn) as a prediction strategy. Then, we can
define the regret of prediction strategy using regret of the
code based on the probability mass function q(xn). We
have

r(q, xn) =

n−1∑
t=1

log
1

q(xt+1|xt)
−

n−1∑
t=1

log
1

p(xt+1|xt, û(xn))
,

where log(1/q(xt+1|xt)) is a logarithmic loss of prediction
q(·|xt) when the actual observation is xt+1. The summa-

tion
∑n−1

t=1 log(1/q(xt+1|xt)) is regarded as cumulative log-
arithmic loss. Then, we see that p(·|û(xn)) is the prediction
strategy which minimizes the cumulative logarithmic regret
for xn among q ∈ S. Since we do not know û(xn) prior to
seeing xn, we cannot use p(·|û(xn)) for prediction. In other
words, p(·|û(xn)) is the ideal prediction strategy which we
cannot actually use. Then, the regret r(q, xn) measures
how worse q compared to the ideal prediction strategy for
xn.
With employing this measure, if we know the length n

of the sequence xn in advance, the normalized maximum
likelihoodmn performs as minimax prediction strategy. As
mentioned before, if the target class is an exponential fam-
ily, the modified Jeffreys code mKn achieves the minimax
regret asymptotically, hence it performs as the minimax
prediction strategy, asymptotically.
Since the normalized maximum likelihood is exactly min-

imax, it may seem that the modified Jeffreys mixture is
not needed. However, the NML code cannot be used when
we do not know n in advance. Further, the cost to com-
pute the conditionals mn(xt+1|xt) = mn(x

t+1)/mn(x
t) is

expensive. In fact, we have to marginalize the joint distri-
bution mn(x

n) as

mn(x
t) =

∑
xn
t+1∈Xn−t

mn(x
txnt+1).

It means that we cannot use it for prediction. Further it
is fatal when we are to use for data compression. In order
to use a probability mass function q(xn) for data compres-
sion, we usually utilize arithmetic coding algorithm (see
[10] for example), which is computed based on conditionals
q(xt+1|xt) for each t = 0, 1, · · · . In contrast for the Bayes

procedure including the modified Jeffreys mixture, compu-
tation of conditionals is rather easier in many cases, since
we have

mw(xt+1|xt) =
mw(x

t+1)

mw(xt)
=

∫
p(xt+1|xt, u)w(du|xt),

where w(du|xt) is the posterior measure given xt.

4. Channel Capacity

In this section, we review the derivations of communica-
tion channel capacities of basic channels, following stan-
dard text books of information theory such as [10], [19].
We also argue about the minimax redundancy for those
channels, which is not usually treated in the standard text
books.

4.1. Discrete Channel

For a general discrete channel, it is impossible to find the
channel capacity in closed form. However, as well known,
it is easy to find the channel capacity when the channel has
certain symmetries. First we describe the simplest case of
the binary symmetric channel.
Let x and y be binary random variables. Let p(y|x) be

a conditional probability distribution modeling a commu-
nication channel with input x and output y. We assume
ϵ = p(0|1) = p(1|0), i.e. ϵ represents the error probability of
this channel. This channel is referred to as binary symmet-
ric channel. Let w denote the probability mass function of
x. The mutual information can be written as

Ix;y(w) =
∑
x,y

p(y|x)w(x) log p(y|x)
pw(y)

= −
∑
y

pw(y) log pw(y)

+
∑
x

w(x)
∑
y

p(y|x) log p(y|x).

Define the binary entropy function as

h(u) = −u log u− (1− u) log(1− u).

Then, we have for x = 0, 1,∑
y

p(y|x) log p(y|x) = −h(ϵ).

Hence we have

Ix;y(w) = −
∑
y

pw(y) log pw(y)− h(ϵ).

The second term does not depend on w. The first term is
the entropy of y, which is maximized when pw(y) is uni-
form. Since the symmetry of p(y|x), it can be achieved
by letting w(x) be the uniform distribution u(x) = 1/2.
Finally, we have found

C = 1− h(ϵ).
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Since pu is uniform, we have for x = 0, 1

max
x

R1(pu, x) = R1(pu, x) = C = 1− h(ϵ),

that is, pu is the equalizer and the minimax solution.
For the cases of general finite sets X and Y, the similar

argument holds. Assume that
∑

y p(y|x) log p(y|x) is a con-
stant G independent of x, and (1/k)

∑
x p(y|x) is the uni-

form distribution, where we let k denote the number of ele-
ments of X . Then, for each x, the entropy of the conditional
distribution p(y|x) defined as g(x) = −

∑
y p(y|x) log p(y|x),

which equals the constant G. Hence for the conditional en-
tropy Hy|x of y given x, Hy|x =

∑
x w(x)g(x) = G does not

depend on w. Hence, to maximize Ix;y(w) = Hy −Hy|x, it
suffices to maximize Hy. The maximum is achieved, when
w equals the uniform distribution u(x) = 1/k. Then the
channel capacity is log k −Hy|x. In this case, we have for
all x ∈ X ,

R1(pu, x) =
∑
y

p(y|x) log p(y|x)
pu(y)

= −Hy|x + log k = C.

Hence, pu(x) is the equalizer and the minimax solution.
Further for the general case, it is not difficult to show

that the maximin solution equals the minimax solution.
Let w∗(x) denote the maximin input distribution. Define
a subset X ′ ⊂ X as

X ′ = {x ∈ X : w∗(x) > 0}.

By adopting Lagrange multiplier method to optimization
of Ix;y(w), w

∗ turns out to be a solution of the following
equalities for x′ ∈ X ′:

∂

∂w(x′)

∑
x,y

p(y|x)w(x) log p(y|x)
pw(y)

= λ,

where λ is a Lagrange multiplier. This yields∑
y

p(y|x′) log p(y|x
′)

pw(y)
−

∑
y

p(y|x′) = λ.

Hence we have∑
y

p(y|x′) log p(y|x
′)

pw(y)
= λ+ 1.

The left hand side equals R1(pw, x
′). Hence, for all x ∈ X ′,

R1(x, pw∗) is independent of x. Let C = λ + 1, then we
have∑

x∈X
w∗(x)R1(pw∗ , x) =

∑
x∈X ′

w∗(x)R1(pw∗ , x) = C.

Hence C equals the channel capacity.
As for x̄ ∈ X \ X ′, the assumption w(x̄) = 0 implies

∂

∂w(x̄)

∑
x,y

p(y|x)w(x) log p(y|x)
pw(y)

≤ λ,

Hence we have

R1(pw∗ , x̄) ≤ λ+ 1 = C.

Finally we have for all x ∈ X ,

R1(pw∗ , x) ≤ C,

which implies that pw∗ is the minimax solution. Note that
pw∗ is not the equalizer in general.

4.2. Gaussian Channel

The Gaussian channel is a model with continuous input
and output. Here we consider a basic case of scalar input
and output. It is represented as

y = x+ z,

where x is an input signal, y an output signal, and z an ad-
ditive Gaussian noise with mean 0. The noise z is assumed
to be independent of the signal x. Let N be averaged power
of the noise, then we can write the conditional probability
density function given x as

p(y|x) = 1√
2πN

exp
(
− (y − x)2

2N

)
.

The channel capacity of the Gaussian channel is usually
given as

C =
1

2
log

(
1 +

P

N

)
,(18)

where P denotes the limitation on the average signal power.
Note that the average power equals the variance of the
random variable.
We review its derivation. Let w(x) denote the proba-

bility density function of x. Then the mutual information
between x and y is given by

Ix;y(w) =

∫
p(y|x)w(x) log p(y|x)

pw(y)
dxdy,

where pw(y) denotes the marginal density of y determined
by w;

pw(y) =

∫
p(y|x)w(x)dx.

We have

Ix;y =

∫
p(y|x)w(x) log p(y|x)dxdy−

∫
pw(y) log pw(y)dy.

Since p(y|x) is a Gaussian density with mean x and vari-
ance N , we have∫

p(y|x) log p(y|x)dy = −1

2
log(2πeN),

which equals minus differential entropy of z. It is defined
as

Hz = −
∫
p(z) log p(z)dz.
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where p(z) is a probability density function of z. Then,
letting Hy denote the differential entropy of y, we have

Ix;y = −Hz +Hy.

Since Hz is fixed, our task is to maximize Hy under the
condition that x’s variance is fixed to be P . Since x and z
is independent, y’s variance is P +N . It is known that the
Gaussian density maximizes the differential entropy, when
the variance is given. If w(x) is Gaussian, then pw(y) is
also Gaussian. Hence, the maximum of Ix;y is achieved
when w(x) is Gaussian. Then, we have

max
w∈SP

Hy =
1

2
log(2πe(N + P )),(19)

where SP is the class of probability densities whose variance
are P . This implies (18). We can write

C = max
w∈SP

∫
w(x)R1(pw, x).

This type of restriction on w is special one for analogue
channel case. If we do not put any restriction, the channel
capacity is infinite. In fact, it is trivial that we can send
infinite information with infinite power.
However, by this speciality, we cannot argue the mini-

max problem in usual manner. Let w∗ be the Gaussian
density with mean 0 and variance P . Then the redundancy
R1(pw∗ , x) is not bounded, hence the minimax redundancy
is infinite. This is consistent with

max
w

∫
w(x)R1(pw, x) = ∞.

However, as discussed in [25], it is possible to define the
minimax problem by changing the risk function.
Here we assume that the mean of w equals 0 without loss

of generality. Define a Lagrangian L as

L(w) = min
q

(∫
w(x)(R1(q, x)

−λ1(x2 − P ))dx− λ2

∫
w(x)dx

)
= min

q

∫
w(x)(R1(q, x)− λ1(x

2 − P )− λ2)dx

where λ1 and λ2 are the Lagrange multipliers. In a sim-
ilar manner to the discussion in the former section, w∗ is
thought of as the maximizer of L(w) with a certain λ1 and
λ2. With those λ1 and λ2, define a new risk R̃(x, q) as

R̃(q, x) = R1(q, x)− λ1(x
2 − P )− λ2.

Then we have

w∗ = argmax
w

L(w) = argmax
w

min
q

∫
w(x)R̃(q, x)dx.

Hence, w∗ is the maximin for R̃. When w equals w∗ (Gaus-
sian with variance P ), pw∗(y) is Gaussian with variance
P +N , we have

L(w∗) =

∫
w∗(x)(R1(pw∗ , x)− λ2)dx = C − λ2.

As for the minimax risk, we have

R̃(x, pw∗) = R1(pw∗ , x)− λ1(x
2 − P )− λ2.

Note that w∗ satisfies L(w∗+δw) = 0 for any variation δw.
Hence we have for all x ∈ R,

R1(pw∗ , x)− λ1(x
2 − P )− λ2 − 1 = 0.

This implies

R̃(pw∗ , x) = 1

for all x ∈ R, that is, pw∗ is the equalizer and the minimax
solution. By this, we can determine λ2 by C − λ2 = 1.
Hence, we have λ2 = C − 1.
In the literature [25], a different setting to determine

the Gaussian channel capacity is employed, where x is re-
stricted as |x| ≤ A. The setting is analogous to the situ-
ation of source coding considered by Clarke & Barron [7],
that is, they considered the case in which the parameter
space is compact, while their problem concerns the asymp-
totic behaviour of redundancy. For the Gaussian channel
case, it is interesting that the input distribution achieving
the channel capacity is discrete.

5. Universal Portfolio

In this section, we briefly review universal portfolio, fol-
lowing [10]. As mentioned in Subsection 1.3, the goal of
universal portfolio is to find a causal portfolio which mini-
mizes the worst case wealth ratio:

max
xn∈Xn

maxb S(x
n|b)

S̃(xn|b̃)
= max

xn∈Xn

∏n
i=1 b

∗ · xi∏n
i=1 b̃(x

i−1) · xi

,(20)

where b and b̃(xi−1) are portfolio vectors, and xi is a price
relative vector. Recall that the range of b is the probability
simplex and the range of each element of xi is [0,∞), that
is, X = [0,∞)m.
In [10], it is shown that a strategy like the NML achieves

the minimax risk for the m = 2 case. (As noted in [10],
extension to generalm is straightforward.) It is remarkable
that the minimax risk is given as

min
b̃

max
xn

S(xn|b̂)
S(xn|b̃)

=
∑

yn∈{0,1}n

Ber(yn|û(yn)),

which equals and the normalization constant of NML for
the Bernoulli model (recall (14)). This implies that log
of the minimax risk of universal portfolio is equal to the
minimax regret of universal coding for the Bernoulli model.
In the sequel, we assume m = 2 and let b = (b0, b1) =

(1− b, b).
The key idea of the proof is the following modification

of S(xn|b).

S(xn|b) =
n∏

i=1

b · xi =
∑

yn∈{0,1}n

n∏
i=1

byixiyi .
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Since b = (b0, b1) = (1− b, b), we have

Ber(yn|b) =
∏
i

byi(1− b)1−yi =

n∏
i=1

byi .

Further define the function mapping yn ∈ {0, 1}n to a real
number as

x(yn) =

n∏
i=1

xiyi .(21)

Then we have

S(xn|b) =
n∏

i=1

b · xi =
∑

yn∈{0,1}n

Ber(yn|b)x(yn).(22)

As for S̃(xn|b̃) we can do a similar treatment. Let q(yn)
be an arbitrary probability mass function on {0, 1}n. We
will show below, that there exists a series b̃(xi−1) such that
the following holds.

n∏
i=1

b̃(xi−1) · xi =
∑

yn∈{0,1}n

q(yn)x(yn).(23)

Define

b̃j(x
i−1) =

∑
yi−1∈{0,1}i−1 q(yi−1j)x(yi−1)∑
yi−1∈{0,1}i−1 q(yi−1)x(yi−1)

.

Then, b̃0(x
i−1) + b̃1(x

i−1) = 1 and

b̃(xi−1) · xi = b̃0(x
i−1)xi0 + b̃1(x

i−1)xi1

=

∑
yi∈{0,1}i q(yi)x(yi)∑

yi−1∈{0,1}i−1 q(yi−1)x(yi−1)

hold. This yields (23). Note that (22) is a special case of
(23).
Since (22) and (23), for any q, there exists a b̃ such that

S(xn|b∗)
S(xn|b̃)

=

∑
yn∈{0,1}n Ber(yn|b∗)x(yn)∑

yn∈{0,1}n q(yn)x(yn)
.

Hence for the upper bound, we have

S(xn|b∗)
S(xn|b̃)

≤ max
yn∈{0,1}n

Ber(yn|b∗)x(yn)
q(yn)x(yn)

(24)

=
Ber(ŷn|b∗)
q(ŷn)

,

where ŷn is defined as

ŷn = arg max
yn∈{0,1}n

Ber(yn|b∗)x(yn)
q(yn)x(yn)

.

Then we have

S(xn|b∗)
S(xn|b̃)

≤ Ber(ŷn|b∗)
q(ŷn)

≤ Ber(ŷn|b̂(ŷn))
q(yn)

,(25)

where b̂(ŷn) denotes the MLE of b given ŷn for the Bernoulli
model Ber(yn|b). Hence, letting q be the normalized max-
imum likelihood (3) for the Bernoulli model:

q(yn) =
Ber(yn|b̂(yn))∑

yn∈{0,1}n Ber(yn|b̂(yn))
,

an upper bound on the worst case wealth ratio as

max
xn∈Xn

S(xn|b∗)
S(xn|b̃)

≤
∑

yn∈{0,1}n

Ber(yn|b̂(yn)).(26)

To obtain the matching lower bound, we utilize the max-
imin log wealth ratio, whose lower bound provides a lower
bound on the log minimax wealth ratio (recall (7)). Ac-
tually, as we will see soon, the maximin log wealth ratio
with respect to the set Kn = {(0, 1), (1, 0)}n ⊂ Xn is suf-
ficient. (Recall that X = [0,∞)2.) The set Kn consists
of sequences such as (0, 1)(1, 0)(0, 1) . . . (1, 0). In [10], such
sequences are referred to as extremal stock market vector.
It corresponds to a series of events that one stock is lost
(the company fails) every day. For every xn ∈ Kn, assign
yn ∈ {0, 1}n by yi = xi1. (xi = (1 − yi, yi)). Then define
for yi ∈ {0, 1}i,

q(yi|yi−1) = b̃yi

(i−1∏
t=1

(yt, 1− yt)
)
= b̃yi(x

i−1).

Note that q(yi|yi−1) is a conditional probability mass func-
tion of yi given y

i−1. Then we have for any xn ∈ Kn,

S̃(xn|b̃) =
n∏

i=1

b̃(xi−1) · xi =
n∏

i=1

q(yi|yi−1) = q(yn),

which is a probability mass function on {0, 1}n. Note that
q can be an arbitrary probability mass function by appro-
priately defining b̃. In particular for S(xn|b), we have for
xn ∈ Kn,

S(xn|b) = Ber(yn|b).

Hence we have for any xn ∈ Kn,

maxb S(x
n|b)

S̃(xn|b̃)
=

maxb Ber(y
n|b)

q(yn)
=

Ber(yn|b̂(yn))
q(yn)

holds. Note that b∗ = b̂(yn) in this case. Therefore, we
have

max
v∈P(Xn)

min
b̃

∫
log

S(xn|b∗)
S̃(xn|b̃)

v(dxn)

≥ max
v∈P(Kn)

min
b̃

∫
log

S(xn|b∗)
S̃(xn|b̃)

v(dxn)

= max
v∈P({0,1}n)

min
q

∫
log

Ber(yn|b̂(yn))
q(yn)

v(dyn),

where P(A) denotes the set of all probability measures on
A. Since the last expression equals the maximin regret of
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the Bernoulli model, we have

max
v∈P(Xn)

min
b̃

∫
log

S(xn|b∗)
S̃(xn|b̃)

v(dxn)

≥ log
∑

yn∈{0,1}n

Ber(yn|b̂(yn)).

Since this provides a lower bound on the minimax log
wealth ratio, together with (26), we have

min
b̃

max
xn

S(xn|b∗)
S̃(xn|b̃)

=
∑

yn∈{0,1}n

Ber(yn|b̂(yn)).

By this, we see that log of the minimax wealth ratio equals
the minimax regret of universal coding of the Bernoulli
model.
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