
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A variation of the minimum spanning tree
problem for the application to mathematical OCR

Fujiyoshi, Akio
Department of Computer and Information Sciences, Ibaraki University

Suzuki, Masakazu
Faculty of Mathematics, Kyushu University

https://hdl.handle.net/2324/18494

出版情報：Journal of Math-for-Industry (JMI). 2 (B), pp.183-197, 2010-10-04. Faculty of
Mathematics, Kyushu University
バージョン：
権利関係：

Journal of Math-for-Industry, Vol.2(2010B-8), pp.183–197

A案 B案

D案 E案 F案

C案

A variation of the minimum spanning tree problem for the application to
mathematical OCR

Akio Fujiyoshi and Masakazu Suzuki

Received on September 23, 2010

Abstract. In this paper, we introduce a variation of the minimum spanning tree problem for the
application to mathematical OCR. The problem is obtained from the original minimum spanning
tree problem by importing the notions of “candidate selection” and “link-label selection.” It is
shown that the problem is NP-hard. However, we find that, for the application to mathematical
OCR, it is sufficient to deal with only a class of graphs that is recursively defined with some graph-
rewriting rules. For the class of graphs, it is shown that the problem can be solved in linear-time in
the number of vertices of a graph.

Keywords. the minimum spanning tree problem, NP-completeness, treewidth, mathematical OCR,
mathematical formula recognition.

1. Introduction

The minimum spanning tree problem (MSTP) is one of the
most famous combinatorial problems in algorithmic graph
theory. Since MSTP has numerous applications in network
design, it has been extensively studied. Polynomial-time al-
gorithms to solve MSTP are well-known such as Kruskal’s
algorithm [7] and Prim’s algorithm [10]. For some specific
applications, variations of MSTP have also been studied.
Myung, Lee and Tcha [9] introduced the generalized mini-
mum spanning tree problem (GMSTP), where the vertices
of a graph are partitioned into clusters and exactly one
vertex from each cluster must be connected. Chang and
Leu [5] introduced the minimum labeling spanning tree
problem (MLSTP), where the edges of a graph are col-
ored and the number of colors of a spanning tree should
be minimized. Makino, Uno and Ibaraki [8] introduced the
minimum edge-ranking spanning tree problem (MERSTP),
that is, the problem of finding a spanning tree of a graph
whose edge-ranking is minimum. For the application to
mathematical OCR [4], we introduce another variation of
MSTP in this paper.

Eto and Suzuki [6] proposed a recognition method for
mathematical formulae using “virtual link networks.” As
shown in Figure 1, a mathematical OCR system con-
structs a directed acyclic graph (DAG) that expresses pos-
sible adjacency connections between bounding boxes from
a scanned image and then outputs a recognition result,
which forms a tree structure. The idea is that, if we put
proper weights on the links representing adjacency con-
nections between bounding boxes, the correct recognition
result should corresponds to the minimum spanning tree.
The problem of finding the minimum spanning tree of a
virtual link network is not as simple as the minimum span-

∫
D

ω =

(0)

D (t)

∫ ω +

'

'

O (t

2
)

D (t)

D (0)

(a)

(b)

(c)

Figure 1: (a) A scanned image, (b) the graph expressing
possible adjacency links of bounding boxes, (c) a recogni-
tion result.

ning tree problem of ordinary graphs. An example of a
virtual link network is illustrated in Figure 2. There exist
several candidates of character recognition for each bound-
ing box: The left-most bounding box has candidates “italic
x” and “Greek lowercase Chi”; the second has candidates
“number zero” and “Roman o”; the third has a candidate

183

184 Journal of Mathematics for Industry, Vol.2(2010B-8)

horizontal

χ

x

 ≤

0

o

γ

y

horizontal
or

subscript?

horizontal
or

superscript?

horizontal

yx ≤
0

(a)

(b)

Figure 2: (a) A scanned image and (b) the corresponding
virtual link network.

“less than or equal to sign”; and the fourth has “italic y”
and “Greek lowercase Gamma.” The links are labeled with
possible types of adjacency connections: “horizontal”, “su-
perscript”, “subscript”, “upper”, “under”, and so on. We
need to find the minimum spanning tree of a virtual link
network not only by selecting character recognition candi-
dates for bounding boxes but also by determining types of
adjacency connections between bounding boxes. We call
this variation of MSTP “the minimum spanning tree prob-
lem with candidate and link-label selections.”

In pattern recognition, it is important to study this type
of combinatorial problems because the combination of plu-
ral types of classifiers is an important issue in this field.
For mathematical OCR, we need to combine a classifier for
character recognition with a classifier for structure recog-
nition. It is difficult to obtain good recognition results
if classifiers are sequentially combined, i.e, executing one
classifier first and then putting the result to another clas-
sifier. In order to obtain better recognition results, classi-
fiers should be simultaneously combined. We think that,
in many situations, simultaneous combinations of classifiers
can be formulated as a similar combinatorial problem and
solved in a similar way.

Unfortunately, in this paper, it will be shown that the
problem is NP-hard. The NP-hardness is proved by reduc-
ing the Boolean satisfiability problem (SAT) to the prob-
lem. Therefore, it is impossible to solve the problem in
polynomial time for the general case unless P=NP.

However, there is a clue to solve the problem. In graph
theory, it is known that many NP-hard combinatorial prob-
lems on graphs can be solvable in polynomial time if the
treewidth of an input graph is bounded by a small num-
ber [1, 2, 3]. By surveying adjacency connections of bound-
ing boxes in mathematical formulae, we find that it is suf-
ficient to deal with only graphs with small treewidth. We
introduce a class of DAGs that is recursively defined with
some graph-rewriting rules so that it contains only graphs

with a bounded treewidth and covers most graphs corre-
sponding to mathematical formulae. For the class of DAGs,
we see that the problem can be solved in linear-time in the
number of vertices of a graph.
This paper is organized as follows: In Section 2, we in-

troduce a class of DAGs that is recursively defined with
some graph-rewriting rules; in Section 3, a variation of
the minimum spanning tree problem that is applicable to
mathematical OCR is introduced and it is shown that the
problem is NP-hard; in Section 4, we see how to solve the
problem by graph reductions; in Section 5, the coverage of
mathematical formulae with the class of DAGs and solu-
tions for graphs not in the class is discussed; and in Section
6, the conclusion is drawn.

2. Recursively Defined DAGs

In this section, we introduce a class of DAGs that is recur-
sively defined with some graph-rewriting rules.
First, we give some preliminary definitions. A directed

graph is an ordered pair G = (V,E), where V is a finite
set, called vertices, and E is a finite set of ordered pairs of
distinct vertices, called edges. An edge e = (u, v) is called
an outgoing edge of u and also called an incoming edge of v.
A directed graph is a directed acyclic graph (DAG) if it has
no directed cycles. For a DAG, a source is a vertex with no
incoming edges, while a sink is a vertex with no outgoing
edges. A DAG is single-source if it has exactly one source.
Likewise, a DAG is single-sink if it has exactly one sink.
A single-source DAG is a rooted tree if every vertex except
the source has exactly one incoming edge. The source of
a tree is also called the root, while sinks of a tree are also
called leaves. A spanning tree of a DAG G = (V,E) is a
rooted tree T = (V ′, E′) such that V ′ = V and E′ ⊆ E.

Definition 1. The class RD is the smallest set of DAGs
satisfying the following construction rules (See also Fig-
ure 3):

1. A DAG consisiting of a single vertex and no edges is
in RD.

2. If G = (V,E) ∈ RD, v ∈ V and v′ ̸∈ V , then the
DAG G′ = (V ∪ {v′}, E ∪ {(v, v′)}) is in RD.

3. If G = (V,E) ∈ RD, (u, v) ∈ E and v′ ̸∈ V , then the
DAG G′ = (V ∪{v′}, (E−{(u, v)})∪{(u, v′), (v′, v)})
is in RD.

4. If G = (V,E) ∈ RD, (u, v) ∈ E and v′ ̸∈ V , then the
DAG G′ = (V ∪ {v′}, E ∪ {(u, v′), (v′, v)}) is in RD.

5. If G = (V,E) ∈ RD, (u, v) ∈ E and v1, v2 ̸∈ V ,
then the DAG G′ = (V ∪ {v1, v2}, (E − {(u, v)}) ∪
{(u, v1), (u, v2), (v1, v2), (v1, v), (v2, v)}) is in RD.

6. If G = (V,E) ∈ RD, (u, v) ∈ E and v1, v2 ̸∈ V ,
then the DAG G′ = (V ∪{v1, v2}, E∪{(u, v1), (u, v2),
(v1, v2), (v1, v), (v2, v)}) is in RD.

The class RD contains DAGs of treewidth at most 3. If
the list of construction rules consists of only 1 and 2, then

Akio Fujiyoshi and Masakazu Suzuki 185

⇒

⇒

⇒

⇒

⇒

RD∈1.

2.

3.

4.

5.

6.

G G′

G G′

G G′

G
G′

G
G′

v v′

v′

v′

v

u

v

u

u

u

v

v

v

u

u

u

u

v

v

v

v

1
v

1
v

2
v

2
v

Figure 3: Construction rules for the class RD.

the class RD coincides with the set of all rooted trees. The
construction rules from 1 to 4 yield only DAGs of treewidth
at most 2.

Example 1. A DAG in the class RD and how it is con-
structed from a single-vertex graph are illustrated in Fig-
ure 4.

⇒ ⇒

⇒ ⇒

⇒

Rule 2 Rule 5

Rule 3 Rule 4

Rule 2

Figure 4: A DAG in the class RD and a derivation of it.

⇒1.
2
v

1
v

1
v

2. ⇒
1
v

2
v

1
v

3
v

3
v

4.
1
v

2
v

⇒
1
v

2
v

3. ⇒
1
v

4
v

4
v

1
v

2
v

3
v

Figure 5: Reduction rules for the class RD.

By reversing the construction rules, we can obtain the
following reduction rules. The reduction rules are useful
for parsing graphs.

Proposition 1. Any DAG in the class RD can be reduced
to a single-vertex graph with the following reduction rules
(See also Figure 5):

1. If the graph has an vertex v2 with exactly one incom-
ing edge (v1, v2) and no outgoing edges, then remove
the vertex v2 and the edge (v1, v2).

2. If the graph has an vertex v2 with exactly one incom-
ing edge (v1, v2) and one outgoing edge (v2, v3), then
remove the vertex v2 and the edges (v1, v2), (v2, v3),
and add an edge (v1, v3).

3. If the graph has two vertices v2, v3 such that v2
has exactly one incoming edge (v1, v2) and two
outgoing edges (v2, v3), (v2, v4), and v3 has exactly
one incoming edge (v1, v3) and one outgoing edge
(v3, v4), then remove the vertices v2, v3 and the edges
(v1, v2), (v1, v3), (v2, v3), (v2, v4), (v3, v4), and add an
edge (v1, v4).

4. If the graph has multiple edges (caused by the appli-
cations of the above rule 2 or 3), then replace them
with a single edge.

Example 2. How a DAG in the class RD can be reduced
to a single-vertex graph is illustrated in Figure 6.

3. The Minimum Spanning Tree Problem

In this section, we introduce a variation of the minimum
spanning tree problem that is applicable to mathematical
OCR. Since the variation is rather complicated, we obtain
the variation by extending the original problem step by
step.

186 Journal of Mathematics for Industry, Vol.2(2010B-8)

⇒⇒ ⇒

⇒

⇒

Rule 1 Rule 2 Rule 3

Rule 2

Rule 1

⇒
Rule 4

Figure 6: A reduction of a DAG in the class RD.

3.1. Variations of the Minimum Spanning Tree
Problem

First, we introduce the original minimum spanning tree
problem (MSTP). Let R be non-negative real numbers.
MSTP is formulated as follows:

MSTP

Input: a connected, undirected graph G = (V,E) and an
assignment of weights to the edges w : E → R.

Output: a spanning tree T = (V,E′) of G such that∑
e∈E′ w(e) is minimum.

Polynomial-time algorithms to solve MSTP are well-known
such as Kruskal’s algorithm [7] and Prim’s algorithm [10].
These algorithms are commonly introduced in textbooks
on algorithms.

Example 3. A connected, undirected graph with weighted
edges and its minimum spanning tree are illustrated in Fig-
ure 7.

10 60

40
30 30

40

20

50 10

Figure 7: A problem instance of MSTP.

Though the original problem is defined on undirected
graphs, we want to concentrate on problems defined on
directed acyclic graphs (DAGs) in this paper. Since a DAG
must be single-source to have a spanning tree, we will deal
with only single-source DAGs.

MSTP for DAGs

Input: a single-source DAG G = (V,E) and an assign-
ment of weights to the edges w : E → R.

Output: a spanning tree T = (V,E′) of G such that∑
e∈E′ w(e) is minimum.

MSTP for DAGs is much easier than the original prob-
lem because a minimum spanning tree can be obtained by
choosing an incoming edge with the minimum weight for
each vertex except the source.

Example 4. A single-source DAG with weighted edges
and its minimum spanning tree are illustrated in Figure 8.

10 60

40
30 30

40

20

50 10

Figure 8: A problem instance of MSTP for DAGs.

In order to obtain a variation of MSTP for the applica-
tion to mathematical OCR, we need to import the notion
of “candidate selection” into MSTP. For the sake of sim-
plicity, we first introduce a decision problem to determine
whether or not there exists a proper selection of candidates
on a spanning tree of a given graph. We call this problem
“the spanning tree problem with candidate selection.”

STP with Candidate Selection

Input: a single-source DAG G = (V,E) such that each
vertex v ∈ V has a non-empty set of candidates Cv

and each edge (v1, v2) ∈ E has a non-empty set of links
L(v1,v2) ⊆ Cv1 × Cv2 .

Output: “yes” if there exist a selection of candidate sv ∈
Cv for each v ∈ V and a spanning tree T = (V,E′)
of G such that the link (sv1 , sv2) is in L(v1,v2) for each
(v1, v2) ∈ E′, or “no” otherwise.

Unfortunately, it will be shown that this problem is NP-
complete.

Example 5. A single-source DAG with candidates and
one of its spanning trees are illustrated in Figure 9. Ver-
tices are indicated by dotted rectangles, candidates are rep-
resented by circled symbols, and links are drawn between
candidates. Edges are not illustrated because we know that
there is an edge where a link exists. The shape of the DAG
is same as the DAG in Example 4. There exist many other
proper selections of candidates and spanning trees.

Putting weights on the links, we introduce a minimiza-
tion version of the decision problem.

MSTP with Candidate Selection

Input: a single-source DAG G = (V,E) such that each
vertex v ∈ V has a non-empty set of candidates Cv

and each edge (v1, v2) ∈ E has a non-empty set of links
L(v1,v2) ⊆ Cv1 × Cv2 , and an assignment of weights to

Akio Fujiyoshi and Masakazu Suzuki 187

a

b

a

b

a

b

a

b

a

b

a

b

a

Figure 9: A problem instance of STP with candidate selec-
tion.

the links such that if e ∈ E and (c1, c2) ∈ Le, then
w(e, c1, c2) ∈ R, otherwise w(e, c1, c2) is undefined.

Output: a selection of candidate sv ∈ Cv for each v ∈ V
and a spanning tree T = (V,E′) of G such that the
link (sv1 , sv2) is in L(v1,v2) for each (v1, v2) ∈ E′ and∑

(v1,v2)∈E′ w((v1, v2), sv1 , sv2) is minimum.

Since STP with candidates selection is NP-complete, this
problem is NP-hard.

Example 6. A single-source DAG with candidates and
weighted links and its minimum spanning tree are illus-
trated in Figure 10.

a

b

a

b

a

b

a

b

a

b

a

b

a

10

20

10

1
0

2
0

10

20

20

30

50

4
0

1
0

20

20

80

5
0

10

30

20

60

Figure 10: A problem instance of MSTP with candidate
selection.

At last, we are ready to introduce the variation of MSTP
that is applicable to mathematical OCR. In this variation,
all the links are labeled, and we have to select both can-
didates and link-labels so that there exists a spanning tree
such that all outgoing links have distinct labels for each
candidate.

MSTP with Candidate and Link-Label Selections

Input: a set of link-labels L, a single-source DAG G =
(V,E) such that each vertex v ∈ V has a non-empty
set of candidates Cv and each edge (v1, v2) ∈ E has a
non-empty set of links L(v1,v2) ⊆ Cv1 ×Cv2 ×L, and an
assignment of weights to the links such that if e ∈ E
and (c1, c2, l) ∈ Le, then w(e, c1, c2, l) ∈ R, otherwise
w(e, c1, c2, l) is undefined.

Output: a selection of candidate sv ∈ Cv for each v ∈ V ,
a spanning tree T = (V,E′) of G, and a selection
of link-label le ∈ L for each e ∈ E′ such that the
link (sv1 , sv2 , l(v1,v2)) is in L(v1,v2) for each (v1, v2) ∈
E′,

∑
(v1,v2)∈E′ w((v1, v2), sv1 , sv2 , l(v1,v2)) is minimum,

and, for each v1 ∈ V , if (v1, v2), (v1, v3) ∈ E′ and
v2 ̸= v3, then l(v1,v2) ̸= l(v1,v3).

Similarly, this problem is also NP-hard.

Example 7. A single-source DAG with candidates and
labeled, weighted links (corresponding to the virtual link
network in Figure 2) and its minimum spanning tree are
illustrated in Figure 11. There exist multiple links between
candidates if each of them has a different link-label.

30, horizontal

χ

x ≤

0

o

γ

y

10, horizontal

80, h
orizo

ntal

40, horizontal

10, horizontal

20, subscript

40, horizontal

50, sup
erscrip

t

10
0,
ho
riz
on
ta
l

60,
 su
per
scr
ipt

Figure 11: A problem instance of MSTP with candidate
and link-label selections.

3.2. NP-Completeness of the Spanning Tree
Problem with Candidate Selection

We will prove that the spanning tree problem with can-
didate selection is NP-complete by reducing the Boolean
satisfiability problem (SAT) to this problem. SAT is the
problem of determining if there exists an assignment of
Boolean values to the variables of a given Boolean formula
in conjunctive normal form so that it makes the formula
true. SAT is one of the most famous NP-complete prob-
lems.

Theorem 1. The spanning tree problem with candidate se-
lection is NP-complete.

Proof. We will show the NP-hardness by reducing the
Boolean satisfiability problem (SAT) to this problem.
Let F be a given Boolean formula in conjunctive normal

form, where C = {c1, . . . , cm} is the set of clauses compos-
ing F , and X = {x1, . . . , xn} is the set of Boolean variables
appearing in F .
From F , we construct a DAG with candidates and links

G = (V,E) as follows: V = {x1, . . . , xn}∪{c1, . . . , cm}. For
v ∈ {x1, . . . , xn}, Cv = {T, F}, and, for v ∈ {c1, . . . , cm},
Cv = {T}. E = E1 ∪ E2, where E1 = {(xi, xi+1) |
1 ≤ i ≤ n − 1} and E2 = {(xi, cj) | xi or x̄i appears
in cj for 1 ≤ i ≤ n and 1 ≤ j ≤ m}. For e ∈ E1,
Le = {(T, T), (T, F), (F, T), (F, F)}, and, for (xi, cj) ∈ E2,
L(xi,cj) = {(T, T)} if xi appears in cj , or L(xi,cj) = {(F, T)}
if x̄i appears in cj .

188 Journal of Mathematics for Industry, Vol.2(2010B-8)

T

F

F

T

T

F

F

T F

T

T

T T

521
xxx ∨∨

432
xxx ∨∨

543
xxx ∨∨

1
x

2
x

3
x

5
x4

x

Figure 12: The graph corresponding to the formula, and a
proper selection of candidates and one of spanning trees of
it.

The construction of the DAG G can be done in polyno-
mial time.

For example, the DAG corresponding to the formula
(x1 ∨ x̄2 ∨ x5) ∧ (x2 ∨ x3 ∨ x̄4) ∧ (x3 ∨ x̄4 ∨ x̄5) is illus-
trated in Figure 12. A proper selection of candidates and
one of spanning trees of the DAG is also illustrated.

We will prove the following statement: F has a truth
assignment if and only if there exists a proper selection of
candidates and a spanning tree of G.

The ‘only if’ part is proved as follows. Suppose that
(x1, . . . , xn) = (a1, . . . , an) is a truth assignment of F ,
where a1, . . . , an ∈ {T, F}. Then, for each cj , there is
at least one variable in cj which makes the clause true.
Let xc1 , . . . , xcm be such variables. If we set (sx1

, . . . , sxn
,

sc1 , . . . , scm) = (a1, . . . , an, T, . . . , T) and E′ = E1 ∪
{{xcj , cj} | 1 ≤ j ≤ m}, then (sx1 , . . . , sxn , sc1 , . . . , scm)
is a proper selection of candidates and T = (V,E′) is a
spanning tree of G.

The ‘if’ part is proved as follows. Suppose that
(sx1 , . . . , sxn , sc1 , . . . , scm) is a proper selection of candi-
dates and T = (V,E′) is a spanning tree of G. Then,
(x1, . . . , xn) = (sx1 , . . . , sxn) is a truth assignment of F .

Since we can reduce SAT to this problem, the NP-
hardness of the problem is proved.

On the other hand, given a DAG with candidates and
links G, we can nondeterministically obtain a selection of
candidates and a spanning tree T and check if T is proper
in polynomial time. This means that the problem is in the
class NP.

Therefore, the problem is NP-complete.

Since MSTP with candidate selection and MSTP with
candidate and link-label selections are extensions of the
spanning tree problem with candidate selection, the fol-
lowing corollaries are obtained.

Corollary 1. The minimum spanning tree problem with
candidate selection is NP-hard.

Corollary 2. The minimum spanning tree problem with
candidate and link-label selections is NP-hard.

4. Solving the Minimum Spanning Tree
Problem by Graph Reductions

In this section, we see that, for DAGs in the class RD, all
the variations of MSTP introduced in the previous section
can be solved in linear-time in the number of vertices of a
graph. We take advantage of graph reductions using the
reduction rules of the class RD.

4.1. Solution to MSTP for DAGs

We first explain how to solve MSTP for DAGs. The solu-
tion is based on graph reductions using the reduction rules
of the class RD. In order to describe the solution, we need
to allow vertices and edges to hold additional information
because remaining vertices and edges have to maintain es-
sential information concerning removed vertices and edges
during graph reductions. Thus, we will consider the fol-
lowing generalization of MSTP, where each vertex has a
weight and each edge has two kinds of weights.

MSTP for Weighted Vertices and Bi-Weighted Edges

Input: a single-source DAG G = (V,E), an assignment of
weights to the vertices w′ : V → R, and two assign-
ments of weights to the edges w : E → R, w : E → R.

Output: a spanning tree T = (V,E′) of G such that∑
v∈V w′(v)+

∑
e∈E′ w(e)+

∑
e∈E−E′ w(e) is minimum.

For e ∈ E, we call w(e) the hidden weight of e. Obviously,
if we set w′(v) = 0 for all v ∈ V and w(e) = 0 for all e ∈ E,
then the problem is same as the original problem.
As we know, any graph in the class RD can be reduced to

a single-vertex graph. When a graph is finally reduced to
a single-vertex graph, the problem is solved if the weight
of the sole vertex is the same as the minimum spanning
trees of the original graph. We will see how to change the
weights of vertices and edges so that the weight of minimum
spanning trees is unchanged with graph reductions.
Every time when a graph is reduced, we change the

weights of vertices and edges as follows:

1. If the graph has an vertex v2 with exactly one in-
coming edge (v1, v2) and no outgoing edges, then re-
move the vertex v2 and the edge (v1, v2), and add
w′(v2) + w((v1, v2)) to w′(v1).

2. If the graph has an vertex v2 with exactly one incom-
ing edge (v1, v2) and one outgoing edge (v2, v3), then
remove the vertex v2 and the edges (v1, v2), (v2, v3),
add a new edge e from v1 to v3, and set w(e) =
w′(v2)+w((v1, v2))+w((v2, v3)) and w(e) = w′(v2)+
w((v1, v2)) + w((v2, v3)).

3. If the graph has two vertices v2, v3 such that v2
has exactly one incoming edge (v1, v2) and two
outgoing edges (v2, v3), (v2, v4), and v3 has exactly
one incoming edge (v1, v3) and one outgoing edge
(v3, v4), then remove the vertices v2, v3 and the edges

Akio Fujiyoshi and Masakazu Suzuki 189

(v1, v2), (v1, v3), (v2, v3), (v2, v4), (v3, v4), add a new
edge e from v1 to v4, and set

w(e) = min(w((v1, v2)) + w((v1, v3)) + w((v2, v3)) +

w((v2, v4)) + w((v3, v4)) + w′(v2) + w′(v3),

w((v1, v2)) + w((v1, v3)) + w((v2, v3)) +

w((v2, v4)) + w((v3, v4)) + w′(v2) + w′(v3),

w((v1, v2)) + w((v1, v3)) + w((v2, v3)) +

w((v2, v4)) + w((v3, v4)) + w′(v2) + w′(v3),

w((v1, v2)) + w((v1, v3)) + w((v2, v3)) +

w((v2, v4)) + w((v3, v4)) + w′(v2) + w′(v3))

and

w(e) = min(w((v1, v2)) + w((v1, v3)) + w((v2, v3)) +

w((v2, v4)) + w((v3, v4)) + w′(v2) + w′(v3),

w((v1, v2)) + w((v1, v3)) + w((v2, v3)) +

w((v2, v4)) + w((v3, v4)) + w′(v2) + w′(v3)).

4. If the graph has multiple edges e, e′ from v1 to v2
(caused by the applications of the reduction rule 2 or
3), then replace them with a new edge e′′, and set
w(e′′) = min(w(e)+w(e′), w(e)+w(e′)) and w(e′′) =
w(e) + w(e′).

In the cases 3 and 4, plural edges are reduced to an edge. At
this time, some weights of edges are selected, and the other
weights of edges are abandoned. If we remember which
weights of edges are surviving, we can obtain a minimum
spanning tree of the original graph.

Example 8. How the weights of the vertices and edges of
a DAG are changed with graph reductions is illustrated in
Figure 13. The problem instance used here is the same as
in Example 4.

For the first configuration (1), we set all the weights of
vertices to be 0 and set all the hidden weights of edges to
be 0. The weights of vertices and the hidden weights of
edges are described with round brackets and square brack-
ets, respectively.

(1) ⇒ (2) : The upper-rightmost vertex and its incoming
edge are removed. The sum of the weights of them, 0+40 =
40, is added to the weight of the parent vertex.

(2) ⇒ (3) : The upper-rightmost vertex and its incoming
and outgoing edges are replaced with a new edge. The
sum of the weights of them, 40 + 60 + 20 = 120, becomes
the weight of the new edge. The sum of the weights of
the vertex and the incoming edge and the hidden weight of
the outgoing edge, 40 + 60 + 0 = 100, becomes the hidden
weight of the new edge.

(3) ⇒ (4) : The multiple edges are replaced with a new
edge. The smaller sum of the weights of an edge and the
hidden weight of another edge, min(120+0, 40+100)=120,
becomes the weight of the new edge. The sum of the hidden
weights of the edges, 100 + 0 = 100, becomes the hidden
weight of the new edge.

(1)

10(0) 60(0)

40(0) 30(0) 30(0)

40(0)

20(0)

50(0) 10(0)

[0] [0] [0] [0]

[0] [0] [0]

⇓

(2)

10(0) 60(0)

40(0) 30(0) 30(0)
20(0)

50(0) 10(0)

[0] [0] [40]

[0] [0] [0]

⇓

(3)

10(0)

40(0) 30(0) 30(0)

50(0) 10(0)

[0] [0]

[0] [0] [0]

120(100)

⇓

(4)

10(0)

30(0) 30(0)

50(0) 10(0)

[0] [0]

[0] [0] [0]

120(100)

⇓

(5)

10(0)

30(0)

80(30)

10(0)

[0] [0]

[0] [0]

120(100)

⇓

(6)

[0]

[0]

180(170)

⇓
(7)

[180]

Figure 13: How the weights of the vertices and edges of a
DAG are changed with graph reductions.

190 Journal of Mathematics for Industry, Vol.2(2010B-8)

10

(0)

80

(0)

120

[0]

[0]

10 + 80 + 0 + 120 + 0 + 0 + 0
= 210

10

(0)

80

10

(100)

[0]

[0]

10 + 80 + 0 + 100 + 10 + 0 + 0
= 200

10

30

(30)

(0)

120

[0]

[0]

10 + 30 + 30 + 120 + 0 + 0 + 0
= 190

10

30

(30)

10

(100)

[0]

[0]

10 + 30 + 30 + 100 + 10 + 0 + 0
= 180

Figure 14: The trees spanning the four vertices.

(4) ⇒ (5) : The lower-leftmost vertex and its incoming
and outgoing edges are replaced with a new edge. The sum
of the weights of them, 0+30+50 = 80, becomes the weight
of the new edge. The sum of the weights of the vertex and
the incoming edge and the hidden weight of the outgoing
edge, 0 + 30 + 0 = 30, becomes the hidden weight of the
new edge.

(5) ⇒ (6) : The two vertices at the middle and all
the edges connected with them are replaced with a new
edge. As illustrated in Figure 14, the weights of trees span-
ning the four vertices are examined. The minimum weight
among the four trees is min(210, 200, 190, 180) = 180. The
sum of the weights of the two vertices at the middle and
the minimum weight of trees spanning the four vertices,
180, becomes the weight of the new edge. On the other
hand, as illustrated in Figure 15, the weights of trees span-
ning the three vertices are examined. The minimum weight
among the two trees is min(190, 170) = 170. The sum
of the weights of the two vertices at the middle and the
minimum weight of trees spanning the three vertices, 170,
becomes the hidden weight of the new edge.

(6) ⇒ (7) : The upper-right vertex and its incoming edge
are removed. The sum of the weights of them, 0 + 180 =
180, is added to the weight of the parent vertex.

Concerning (7), the remaining vertex has the same
weight as the weight of minimum spanning trees of the
original graph.

4.2. Solution to MSTP with candidate selection

We solve MSTP with candidate selection in a similar way;
we assume that each candidate has a weight and each link

10

(0)

80

(0)

(100)

[0]

[0]

10 + 80 + 0 + 100 + 0 + 0 + 0
= 190

10

30

(30)

(0)

(100)

[0]

[0]

10 + 30 + 30 + 100 + 0 + 0 + 0
= 170

Figure 15: The trees spanning the three vertices.

has two kinds of weights, and every time when a graph is
reduced, we change the weights of candidates and links so
that the reduced graph has minimum spanning trees of the
same weight.
In order to describe the solution, we will consider the

following generalization of MSTP with candidate selection.

MSTP with Candidate Selection for Weighted Vertices and
Bi-Weighted Edges

Input: a single-source DAG G = (V,E) such that each
vertex v ∈ V has a non-empty set of candidates Cv

and each edge (v1, v2) ∈ E has the full set of links
between candidates L(v1,v2) = Cv1×Cv2 , an assignment
of weights to the candidates such that, for each v ∈
V and c ∈ Cv, w

′(v, c) ∈ R, and two assignments of
weights to the links such that, for each e ∈ E and
(c1, c2) ∈ Le, w(e, c1, c2) ∈ R and w(e, c1, c2) ∈ R.

Output: a selection of candidate sv ∈ Cv for each
v ∈ V and a spanning tree T = (V,E′) of G such
that

∑
v∈V w′(v, sv)+

∑
(v1,v2)∈E′ w((v1, v2), sv1 , sv2)+∑

(v1,v2)∈E−E′ w((v1, v2), sv1 , sv2) is minimum.

For e ∈ E and (c1, c2) ∈ Le, we call w(e, c1, c2) the hid-
den weight of the link (c1, c2) of e. Note that w(e, c1, c2)
and w(e, c1, c2) can be infinity ∞ for some e ∈ E and
(c1, c2) ∈ Le. Given a problem instance of the original
problem, if we set w′(v, c) = 0 for all v ∈ V and c ∈ Cv,
w(e, c1, c2) = 0 for all e ∈ E and (c1, c2) ∈ Le, and
w(e, c1, c2) = ∞ for all e ∈ E and (c1, c2) ̸∈ Le of the orig-
inal problem instance, then the problem is almost same as
the original problem except that each edge has the full set
of links between candidates. In the generalized problem,
a minimum spanning tree always exists. If no minimum
spanning tree exists in the original problem instance, then
the weight of minimum spanning trees becomes infinity.
Every time when a graph is reduced, we change the

weights of vertices and edges as follows:

1. In case the graph has an vertex v2 with exactly one in-
coming edge (v1, v2) and no outgoing edges: Remove
the vertex v2 and the edge (v1, v2); and, for each c1 ∈
Cv1 , add minc2∈Cv2

(w′(v2, c2) +w((v1, v2), c1, c2)) to
w′(v1, c1).

Akio Fujiyoshi and Masakazu Suzuki 191

2. In case the graph has an vertex v2 with exactly one
incoming edge (v1, v2) and one outgoing edge (v2, v3):
Remove the vertex v2 and the edges (v1, v2), (v2, v3);
add a new edge e from v1 to v3; and, for each c1 ∈ Cv1

and c3 ∈ Cv3 , set

w(e, c1, c3) = min
c2∈Cv2

(w′(v2, c2) + w((v1, v2), c1, c2) +

w((v2, v3), c2, c3))

and

w(e, c1, c3) = min
c2∈Cv2

(w′(v2, c2) + w((v1, v2), c1, c2) +

w((v2, v3), c2, c3)).

3. In case the graph has two vertices v2, v3 such that
v2 has exactly one incoming edge (v1, v2) and two
outgoing edges (v2, v3), (v2, v4), and v3 has exactly
one incoming edge (v1, v3) and one outgoing edge
(v3, v4): Remove the vertices v2, v3 and the edges
(v1, v2), (v1, v3), (v2, v3), (v2, v4), (v3, v4); add a new
edge e from v1 to v4; and, for each c1 ∈ Cv1

and c4 ∈ Cv4 , set w(e, c1, c4) = min(w1(c1, c4),
w2(c1, c4), w3(c1, c4), w4(c1, c4)) and w(e, c1, c2) =
min(w1(c1, c4), w2(c1, c4)) where:

w1(c1, c4) = min
c2∈Cv2 ,c3∈Cv3

(w′(v2, c2) + w′(v3, c3) +

w((v1, v2), c1, c2) + w((v1, v3), c1, c3) +

w((v2, v3), c2, c3) + w((v2, v4), c2, c4) +

w((v3, v4), c3, c4)),

w2(c1, c4) = min
c2∈Cv2 ,c3∈Cv3

(w′(v2, c2) + w′(v3, c3) +

w((v1, v2), c1, c2) + w((v1, v3), c1, c3) +

w((v2, v3), c2, c3) + w((v2, v4), c2, c4) +

w((v3, v4), c3, c4)),

w3(c1, c4) = min
c2∈Cv2 ,c3∈Cv3

(w′(v2, c2) + w′(v3, c3) +

w((v1, v2), c1, c2) + w((v1, v3), c1, c3) +

w((v2, v3), c2, c3) + w((v2, v4), c2, c4) +

w((v3, v4), c3, c4)),

w4(c1, c4) = min
c2∈Cv2 ,c3∈Cv3

(w′(v2, c2) + w′(v3, c3) +

w((v1, v2), c1, c2) + w((v1, v3), c1, c3) +

w((v2, v3), c2, c3) + w((v2, v4), c2, c4) +

w((v3, v4), c3, c4))

and

w1(c1, c4) = min
c2∈Cv2 ,c3∈Cv3

(w′(v2, c2) + w′(v3, c3) +

w((v1, v2), c1, c2) + w((v1, v3), c1, c3) +

w((v2, v3), c2, c3) + w((v2, v4), c2, c4) +

w((v3, v4), c3, c4)),

w2(c1, c4) = min
c2∈Cv2 ,c3∈Cv3

(w′(v2, c2) + w′(v3, c3) +

w((v1, v2), c1, c2) + w((v1, v3), c1, c3) +

w((v2, v3), c2, c3) + w((v2, v4), c2, c4) +

w((v3, v4), c3, c4)).

4. In case the graph has multiple edges e, e′ from v1 to
v2 (caused by the applications of the reduction rule
2 or 3): Replace them with a new edge e′′; and, for
each c1 ∈ Cv1 and c2 ∈ Cv2 , set

w(e′′, c1, c2) = min(w(e, c1, c2) + w(e′, c1, c2),

w(e, c1, c2) + w(e′, c1, c2))

and

w(e′′, c1, c2) = w(e, c1, c2) + w(e′, c1, c2).

In all the cases, some weights of links and candidates are
selected, and the other weights are abandoned. If we re-
member which weights of links and candidates are surviv-
ing, we can obtain a minimum spanning tree of the original
graph with a proper selection of candidates.

Example 9. How the weights of the links and candidates
of a DAG are changed with graph reductions is illustrated
in Figure 16 and 17. The problem instance used here is the
same as in Example 6.
For the first configuration (1), we set all the weights of

candidates to be 0 and set all the hidden weights of links to
be 0. The weights of candidates and the hidden weights of
links are described with round brackets and square brack-
ets, respectively. If a link does not exist between a pair of
candidates, we suppose that there is a link with a weight
of infinity and a hidden weight of 0.
(1) ⇒ (2) : The upper-rightmost vertex and its incoming

edge are removed. How the weights of candidates a, b of
the parent vertex v are obtained is illustrated in Figure 18.
The weights of candidates of the parent vertex v are the
smallest sum of the weights of a link of the incoming edge
and a candidate of the upper-rightmost vertex.
(2) ⇒ (3) : The upper-rightmost vertex and its incoming

and outgoing edges are replaced with a new edge e. How
the weights and hidden weights of the links are obtained
is illustrated in Figure 19. The weights of links of the new
edge are the smallest sum of the weights of links of the
replaced edges and a candidate of the replaced vertex.
(3) ⇒ (4) : The multiple edges are replaced with a new

edge e. The smaller sum of the weights of a link of an edge
and the hidden weight of a link of another edge becomes
the weight of links the new edge. The sum of the hidden
weights of links of the edges becomes the hidden weight of
links of the new edge.
(4) ⇒ (5) : The lower-leftmost vertex and its incoming

and outgoing edges are replaced with a new edge. The
weights of links of the new edge are the smallest sum of
the weights of links of the replaced edges and a candidate
of the replaced vertex.

192 Journal of Mathematics for Industry, Vol.2(2010B-8)

(1)

20(
0)

60(0)

80(0)

50(0)

a

b

a

b

a

b

a

b

a

b

a

b

a

10(0)

20(0)

10(0)

1
0
(0
)20(0)

10(0)
20(0)

20(0)

30(0)

50(0)

4
0
(0
)

20(0)

10(
0)

30(0)

20(0)

10(0)

[0] [0][0] [0]

[0] [0] [0] [0]

[0]

[0]

[0] [0]

[0] [0]

⇓

(2)

20(
0)

60(0)

80(0)

50(0)

a

b

a

b

a

b

a

b

a

b

a

10(0)

20(0)

10(0)

1
0
(0
)20(0)

10(0)
20(0)

20(0)

30(0)

50(0)

4
0
(0
)

20(0)

10(0)

[0] [30][0]

[0] [0] [10]

[0]

[0]

[0] [0]

[0] [0]

⇓

(3)

20(
0)

80(0)
90(30)

a

b

a

b

a

b b

a

10(0)

20(0)

10(0)

1
0
(0
)20(0) 30(0)

50(0)

4
0
(0
)

20(0)

10(0)

[0] [0]

[0] [0]

[0]

[0]

[0] [0]

[0] [0]

a

∞
(30)

60(0)

∞(30) ∞
(30)

⇓
Figure 16: How the weights of the links and candidates of
a DAG are changed with graph reductions (Part. 1/2).

(5) ⇒ (6) : The two vertices at the middle and all the
edges connected with them are replaced with a new edge e.
As illustrated in Figure 20, the weights of trees spanning
the four vertices are examined. For each pair of candidates,
the minimum weight among the four trees is calculated.
They become the weights of links of the new edge. For
the hidden weight of links, as illustrated in Figure 21, the
weights of trees spanning the three vertices are examined.
For each pair of candidates, the smaller weight among the
two trees becomes the hidden weight of a link of the new
edge.
(6) ⇒ (7) : The upper-right vertex and its incoming edge

are removed. The smallest sum of the weights of a link of
the incoming edge and a candidate of the upper-rightmost
vertex, min(90+0, 110+0) and min(110+0, 100+0), become
the weights of candidates of the parent vertex.
At last, the remaining vertex has candidates one of which

has the same weight as the weight of minimum spanning
trees of the original graph. The value 90 is the minimum
weight of spanning trees if the candidate a is chosen for
the root. Likewise, the value 100 is the minimum weight
of spanning trees if the candidate b is chosen for the root.

(4)

20(
0)

90(30)

a

b

a

b

a

b b

10(0)

20(0)

10(0)

4
0
(0
)

20(0)

10(0)

[0] [0]

[0] [0]

[0] [0]

[0] [0]

a

90(30)

a

30(0)

50(0)

[0]

[0]

1
0
(0
)20(0)

110(30)∞
(30)

⇓

(5)

20(
0)

90(30)

a

b

a

b

a

b b

10(0)

20(0)

10(0)

40(10)

4
0
(0
)

20(0)

10(0)

[0] [0]

[0] [0]

[0] [0]

[0] [0]

a

90(30)

50(20)
60(10)

70(20)

110(30)∞
(30)

⇓

(6)

a

b

b

[0]

[0]

[0]

[0]

a

90(60)

100(70)

110(70)
110(60)

⇓

(7)

a

b

[90]

[100]

Figure 17: How the weights of the links and candidates of
a DAG are changed with graph reductions (Part. 2/2).

a

b

a

b

30

[0] [0]

[0] [0]

∞
a

b

a

b

10

20

[0] [0]

[0] [0]

w′(v, a) = min(0+∞, 0+30) = 30
w′(v, b) = min(0 + 10, 0 + 20) = 20

Figure 18: The weights of candidates of the parent vertex.

4.3. Solution to MSTP with candidate and link-
label selections

Now, we are ready to solve MSTP with candidate and link-
label selections. Similarly, we assume that each candidate
has a weight and each link has two kinds of weights. In
addition to that, each link has a set of link-labels. Every
time when a graph is reduced, we change the weights of

Akio Fujiyoshi and Masakazu Suzuki 193

a

b

a

b

a

b

10(0)
20(0)

[30][0] [0]

[0] [10] [0]

50(0)∞(0)
w(e, a, a) = min(30+10+50, 10+20+∞) = 90
w(e, a, a) = min(30 + 10 + 0, 10 + 20 + 0) = 30

a

b

a

b

a

b

10(0)
20(0)

[30][0] [0]

[0] [10] [0]

∞(0)∞(0)
w(e, a, b) = min(30+10+∞, 10+20+∞) = ∞
w(e, a, b) = min(30 + 10 + 0, 10 + 20 + 0) = 30

a

b

a

b

a

b
20(0)

[30][0] [0]

[0] [10] [0]

∞(0) 50(0)∞(0)
w(e, b, a) = min(30+∞+50, 10+20+∞) = ∞
w(e, b, a) = min(30 +∞+ 0, 10 + 20 + 0) = 30

a

b

a

b

a

b
20(0)

[30][0] [0]

[0] [10] [0]

∞(0) ∞(0)∞(0)
w(e, b, b) = min(30+∞+∞, 10+20+∞) = ∞
w(e, b, b) = min(30 +∞+ 0, 10 + 20 + 0) = 30

Figure 19: The trees spanning the three vertices.

candidates and links and the sets of link-labels so that the
reduced graph has minimum spanning trees of the same
weight.

In order to describe the solution, we will consider the
following generalization of MSTP with candidate and link-
label selections.

MSTP with Candidate and Link-Label Selections for
Weighted Vertices and Bi-Weighted Edges

Input: a set of link-labels L, a single-source DAG G =
(V,E) such that each vertex v ∈ V has a non-empty
set of candidates Cv and each edge (v1, v2) ∈ E has
a non-empty set of links L(v1,v2) ⊆ Cv1 × Cv2 × 2L

(2L is the power set of L) such that (c1, c2, ∅) ∈
L(v1,v2) for each (c1, c2) ∈ Cv1 × Cv2 , an assignment
of weights to the candidates with a link-label set such
that w′(v, c,L) ∈ R for each v ∈ V , c ∈ Cv and L ⊆ L,
and two assignments of weights to the links such that
if e ∈ E and (c1, c2,L) ∈ Le, then w(e, c1, c2,L) ∈ R
and w(e, c1, c2,L) ∈ R, otherwise w(e, c1, c2,L) and
w(e, c1, c2,L) are undefined.

Output: a selection of candidate sv ∈ Cv for each v ∈ V ,
a spanning tree T = (V,E′) of G, a selection of link-
label set Lx ⊆ L for each x ∈ V ∪ E′ such that, for
each v1 ∈ V , if (v1, v2), (v1, v3) ∈ E′ and v2 ̸= v3, then

(0)

90

a

b

a

b

a

b b

10

20

10

40

(0
)

(0)

(0)

[0]

[0]

[0]

[0]

a

90

5060

70

110∞
w1(a, a) = 140
w1(a, b) = 140
w1(b, a) = 160
w1(b, b) = 160

a

b

a

b

a

b b

10

20

10

40

(0
)

(0)

[0]

[0]

[0]

[0]

a5060

70

20

(30)

20

(30)
(30)

(30)

w2(a, a) = 120
w2(a, b) = 100
w2(b, a) = 110
w2(b, b) = 130

(0)

90

a

b

a

b

a

b b

10

20

10

(0)

[0]

[0]

[0]

[0]

a

90

110∞
(10)

4
0

10

(20)(10)

(20)

w3(a, a) = 120
w3(a, b) = 120
w3(b, a) = 130
w3(b, b) = 130

a

b

a

b

a

b b

10

20

10

[0]

[0]

[0]

[0]

a

(10)

4
0

10

(20)(10)

(20)

20

20

(30)(30)
(30)

(30)

w4(a, a) = 110
w4(a, b) = 80
w4(b, a) = 130
w4(b, b) = 100

w(e, a, a) = min(140, 120, 120, 110) = 110
w(e, a, b) = min(140, 100, 120, 80) = 80
w(e, b, a) = min(160, 110, 130, 130) = 110
w(e, b, b) = min(160, 130, 130, 100) = 100

Figure 20: The trees spanning the four vertices.

L(v1,v2)∩L(v1,v3)∩L′
v1 = ∅, and

∑
v∈V w′(v, sv,L′

v)+∑
(v1,v2)∈E′ w((v1, v2), sv1 , sv2 ,L(v1,v2))+∑
(v1,v2)∈E−E′ w((v1, v2), sv1 , sv2 , ∅) is minimum.

For e ∈ E and (c1, c2,L) ∈ Le, we call w(e, c1, c2,L) the
hidden weight of the link (c1, c2,L) of e. Given a prob-
lem instance of the original problem, if we replace each
link (c1, c2, l) with (c1, c2, {l}), add a new link (c1, c2, ∅)
to L(v1,v2) for each (v1, v2) ∈ E′ and (c1, c2) ∈ Cv1 × Cv2

,
and set w′(v, c,L) = 0 for all v ∈ V , c ∈ Cv and L ⊆ L,
w(e, c1, c2, {l}) = w(e, c1, c2, l) and w(e, c1, c2, {l}) = ∞ for
all e ∈ E and (c1, c2, {l}) ∈ Le, and w(e, c1, c2, ∅) = ∞ and
w(e, c1, c2, ∅) = 0 for all e ∈ E and (c1, c2) ∈ Cv1 × Cv2 ,

194 Journal of Mathematics for Industry, Vol.2(2010B-8)

a

b

a

b

a

b b

10

20

10

40

(0
)

(0)

[0]

[0]

[0]

[0]

a5060

70

(30)(30)
(30)

(30)

(0)

(0)

w1(a, a) = 80
w1(a, a) = 80
w1(a, a) = 90
w1(a, a) = 90

a

b

a

b

a

b b

10

20

10

[0]

[0]

[0]

[0]

a

(10)

4
0

10

(20)(10)

(20)

(30)(30)
(30)

(30)

(0)

(0)

w2(a, a) = 60
w2(a, a) = 60
w2(a, a) = 70
w2(a, a) = 70

w(a, a) = min(80, 60) = 60
w(a, b) = min(80, 60) = 60
w(b, a) = min(90, 70) = 70
w(b, b) = min(90, 70) = 70

Figure 21: The trees spanning the three vertices.

then the problem is almost same as the original problem
except that there exists at least one link between each pair
of candidates (the link of empty link-label set). In the gen-
eralized problem, a minimum spanning tree always exists.
If no minimum spanning tree exists in the original prob-
lem instance, then the weight of minimum spanning trees
becomes infinity.
Every time when a graph is reduced, we change the

weights of vertices and edges as follows:

1. In case the graph has an vertex v2 with exactly one in-
coming edge (v1, v2) and no outgoing edges: Remove
the vertex v2 and the edge (v1, v2); for each c1 ∈ Cv1

and L1 ⊆ L, copy w′′(v1, c1,L1) = w′(v1, c1,L1);
and, for each c1 ∈ Cv1 and L1 ⊆ L, set

w′(v1, c1,L1) = min
c2∈Cv2 ,L

′
1⊆L1,L2⊆L

(w′(v2, c2,L2) +

w′′(v1, c1,L′
1) + w((v1, v2), c1, c2,L1 − L′

1)).

2. In case the graph has an vertex v2 with exactly one
incoming edge (v1, v2) and one outgoing edge (v2, v3):
Remove the vertex v2 and the edges (v1, v2), (v2, v3);
add a new edge e from v1 to v3; and, for each c1 ∈
Cv1 , c3 ∈ Cv3 and L1 ⊆ L, set

w(e, c1, c3,L1) = min
c2∈Cv2 ,L2⊆L,L′

2⊆L2

(w′(v2, c2,L′
2) +

w((v1, v2), c1, c2,L1) + w((v2, v3), c2, c3,L2 − L′
2))

and

w(e, c1, c3,L1) = min
c2∈Cv2

,L2⊆L,L′
2⊆L2

(w′(v2, c2,L′
2) +

w((v1, v2), c1, c2,L1) + w((v2, v3), c2, c3,L2 − L′
2)).

3. In case the graph has two vertices v2, v3 such that
v2 has exactly one incoming edge (v1, v2) and two
outgoing edges (v2, v3), (v2, v4), and v3 has exactly
one incoming edge (v1, v3) and one outgoing edge
(v3, v4): Remove the vertices v2, v3 and the edges
(v1, v2), (v1, v3), (v2, v3), (v2, v4), (v3, v4); add a new
edge e from v1 to v4; and, for each c1 ∈ Cv1 , c4 ∈ Cv4

and L1 ⊆ L, set

w(e, c1, c4,L1) = min(w1(c1, c4,L1), w2(c1, c4,L1),

w3(c1, c4,L1), w4(c1, c4,L1))

and

w(e, c1, c2,L1) = min(w1(c1, c4,L1), w2(c1, c4,L1))

where:

w1(c1, c4,L1) =
min

c2∈Cv2 ,c3∈Cv3 ,L
′
1⊆L1,L2⊆L,L′

2⊆L2,L′′
2 ⊆L′

2,L3⊆L,L′
3⊆L3

(

w′(v2, c2,L′′
2) + w′(v3, c3,L′

3) +

w((v1, v2), c1, c2,L′
1) +

w((v1, v3), c1, c3,L1 − L′
1) +

w((v2, v3), c2, c3,L′
2 − L′′

2) +

w((v2, v4), c2, c4,L2 − L′
2) +

w((v3, v4), c3, c4,L3 − L′
3)),

w2(c1, c4,L1) =
min

c2∈Cv2 ,c3∈Cv3 ,L
′
1⊆L1,L2⊆L,L′

2⊆L2,L′′
2 ⊆L′

2,L3⊆L,L′
3⊆L3

(

w′(v2, c2,L′′
2) + w′(v3, c3,L′

3) +

w((v1, v2), c1, c2,L′
1) +

w((v1, v3), c1, c3,L1 − L′
1) +

w((v2, v3), c2, c3,L′
2 − L′′

2) +

w((v2, v4), c2, c4,L2 − L′
2) +

w((v3, v4), c3, c4,L3 − L′
3)),

w3(c1, c4,L1) =
min

c2∈Cv2 ,c3∈Cv3 ,L
′
1⊆L1,L2⊆L,L′

2⊆L2,L′′
2 ⊆L′

2,L3⊆L,L′
3⊆L3

(

w′(v2, c2,L′′
2) + w′(v3, c3,L′

3) +

w((v1, v2), c1, c2,L′
1) +

w((v1, v3), c1, c3,L1 − L′
1) +

w((v2, v3), c2, c3,L′
2 − L′′

2) +

w((v2, v4), c2, c4,L2 − L′
2) +

w((v3, v4), c3, c4,L3 − L′
3)),

w4(c1, c4,L1) =
min

c2∈Cv2 ,c3∈Cv3 ,L
′
1⊆L1,L2⊆L,L′

2⊆L2,L′′
2 ⊆L′

2,L3⊆L,L′
3⊆L3

(

w′(v2, c2,L′′
2) + w′(v3, c3,L′

3) +

w((v1, v2), c1, c2,L′
1) +

w((v1, v3), c1, c3,L1 − L′
1) +

w((v2, v3), c2, c3,L′
2 − L′′

2) +

w((v2, v4), c2, c4,L2 − L′
2) +

w((v3, v4), c3, c4,L3 − L′
3))

Akio Fujiyoshi and Masakazu Suzuki 195

and

w1(c1, c4,L1) =
min

c2∈Cv2 ,c3∈Cv3 ,L
′
1⊆L1,L2⊆L,L′

2⊆L2,L′′
2 ⊆L′

2,L3⊆L,L′
3⊆L3

(

w′(v2, c2,L′′
2) + w′(v3, c3,L′

3) +

w((v1, v2), c1, c2,L′
1) +

w((v1, v3), c1, c3,L1 − L′
1) +

w((v2, v3), c2, c3,L′
2 − L′′

2) +

w((v2, v4), c2, c4,L2 − L′
2) +

w((v3, v4), c3, c4,L3 − L′
3)),

w2(c1, c4,L1) =
min

c2∈Cv2 ,c3∈Cv3 ,L
′
1⊆L1,L2⊆L,L′

2⊆L2,L′′
2 ⊆L′

2,L3⊆L,L′
3⊆L3

(

w′(v2, c2,L′′
2) + w′(v3, c3,L′

3) +

w((v1, v2), c1, c2,L′
1) +

w((v1, v3), c1, c3,L1 − L′
1) +

w((v2, v3), c2, c3,L′
2 − L′′

2) +

w((v2, v4), c2, c4,L2 − L′
2) +

w((v3, v4), c3, c4,L3 − L′
3)),

4. In case the graph has multiple edges e, e′ from v1 to
v2 (caused by the applications of the reduction rule
2 or 3): Replace them with a new edge e′′; and, for
each c1 ∈ Cv1 , c2 ∈ Cv2 and L1 ⊆ L, set

w(e′′, c1, c2,L1) = min(

min
L′

1⊆L1

(w(e, c1, c2,L′
1) + w(e′, c1, c2,L1 − L′

1)),

min
L′

1⊆L1

(w(e, c1, c2,L′
1) + w(e′, c1, c2,L1 − L′

1)))

and

w(e′′, c1, c2,L1) =

min
L′

1⊆L1

(w(e, c1, c2,L′
1) + w(e′, c1, c2,L1 − L′

1)).

In all the cases, some weights of links and candidates with a
link-label set are selected, and the other weights are aban-
doned. If we remember which weights of links and candi-
dates with a link-label set are surviving, we can obtain a
minimum spanning tree of the original graph with a proper
selection of candidates.

4.4. Time Complexity of the Solutions

We will summarize the time complexity of the solutions
introduced in this section.
For the solution to MSTP for DAGs, the time complexity

is O(n), where n is the number of vertices of a graph. The
number of reduction step of a graph is at most 2 ·n. Every
time when a graph is reduced, the weight of the reduced
graph can be calculated in a constant time.
For the solution to MSTP with candidate selection, the

time complexity is O(n · m4), where n is the number of

vertices of a graph, and m is the maximum number of
candidates of a vertices. Since the weight of a new edge
needs to be calculated for each combination of candidates,
the time complexity is m4 times greater. However, m can
be considered as a constant number for the application to
mathematical OCR. The number of character recognition
candidates is at most 10 in most cases. Therefore, the time
complexity can be seen as O(n).

For the solution to MSTP with candidate and link-label
selections, the time complexity is O(n·m4 ·(2l)7), where n is
the number of vertices of a graph, m is the maximum num-
ber of candidates of a vertices, and l is the number of link-
labels. Fortunately, l = 7 for the application to mathemati-
cal OCR, namely, “horizontal”, “superscript”, “subscript”,
“upper”, “under”, “left superscript” and “left subscript.”
Moreover, (2l)7 can be reduced to (2l)5 because some values
can be calculated independently. 235 = 34, 359, 738, 368 is
not too big for personal computers of today. In addition,
this number is the worst case. We can get the answer with
a much less number of calculations in real cases. Therefore,
the time complexity can be seen as O(n).

5. Discussion

In the previous section, we have seen that, for DAGs in the
class RD, MSTP with candidate and link-label selections
can be solved in linear-time in the number of vertices of
a graph. In this section, we discuss the usefulness of the
solution for the application to mathematical OCR.

5.1. Coverage of Mathematical Formulae with
the Class RD

To claim the usefulness of the solution, we need to investi-
gate the coverage of mathematical formulae with the class
RD. 21, 742 mathematical formulae are collected from 31
pure mathematical articles, and virtual link networks are
generated by InftyReader [11], a mathematical OCR sys-
tem. Since 222 virtual link networks are not single-source
DAGs, we use 21, 520 virtual link networks for this inves-
tigation.

On Table 1, the coverage of mathematical formulae with
the class RD and the graph classes of a bounded treewidth
are shown. We find that most virtual link networks have
treewidth at most 3.

Table 1: Coverage of Mathematical Formulae with Graph
Classes.

Graph Class Number Coverage Rate

Class RD 18,980 88.2 %
Treewidth= 1 8,755 40.7 %
Treewidth≤ 2 17,598 81.8 %
Treewidth≤ 3 20,795 96.6 %

Total 21,520 100 %

196 Journal of Mathematics for Industry, Vol.2(2010B-8)

In Figrue 22, the Venn diagrams which explain the rela-
tion between the class RD and treewidth is shown. Though
the class RD covers all single-source DAGs of treewidth 1,
345 virtual link networks of treewidth 2 and 1, 470 virtual
link networks of treewidth 3 are not covered. The class
RD does not cover some simple graphs. Examples of sim-
ple graphs not in the class RD are shown in Figrue 23.

single-source DAG

1Treewidth =

2Treewidth ≤

3Treewidth ≤

RD

Figure 22: Relation between the Class RD and Treewidth.

Figure 23: Graphs not in the class RD.

5.2. Solutions for Graphs not in the Class RD

Though the coverage rate of the class RD 88.2% is satisfac-
tory, we need to have solutions for graphs not in the class
RD. We think the following two solutions are effective:

• Elimination of edges until a graph becomes a member
of the class RD, and

• Enumeration of all spanning trees of a reduced graph.

Obviously, elimination of edges makes any graph be a
member of the class RD. If we heuristically eliminate use-
less edges and transform it to a graph in the class RD, then
we could obtain a spanning tree whose weight is close to
the minimum.
By using the reduction rules of the class RD, though

some graphs are not reduced to a single-vertex graph, most
of them can be reduced to a simple graph. The second so-
lution takes advantage of this feature. If the number of
spanning trees of a reduced graph is less than a fixed con-
stant, then we enumerate all spanning trees and calculate
weights of them. The minimum weight of them is exactly
the weight of the minimum spanning trees of the original
graph.

By combining the above solutions for graphs not in the
class RD, we have a solution to MSTP with candidate and
link-label selections for the general case.

6. Conclusion

We introduced a variation of the minimum spanning tree
problem for the application to mathematical OCR. Unfor-
tunately, the problem was shown to be NP-hard. However,
we introduced a class of DAGs that is recursively defined
with some graph-rewriting rules so that it contains only
graphs with a bounded treewidth. For graphs in the class
RD, it was shown that the problem can be solved in linear-
time in the number of vertices of a graph.
By an investigation on 21, 520 mathematical formulae

from 31 pure mathematical articles, we found that the class
RD covers 88.2% of mathematical formulae. For graphs not
in the class RD, we suggested solutions for them.

References

[1] Stefan Arnborg and Andrzej Proskurowski, Linear
time algorithms for NP-hard problems restricted to
partial k-trees, Discrete Appl. Math. 23 (1989), no. 1,
11–24.

[2] Hans L. Bodlaender, A linear time algorithm for find-
ing tree-decompositions of small treewidth, STOC ’93:
Proceedings of the twenty-fifth annual ACM sympo-
sium on Theory of computing (New York, NY, USA),
ACM, 1993, pp. 226–234.

[3] Hans L. Bodlaender, A partial k-arboretum of graphs
with bounded treewidth, Theor. Comput. Sci. 209
(1998), no. 1-2, 1–45.

[4] Kam-Fai Chan and Dit-Yan Yeung, Mathematical ex-
pression recognition: a survey, Int. J. Document Anal-
ysis and Recoginition 3 (2000), no. 1, 3–15.

[5] Ruay-Shiung Chang and Shing-Jiuan Leu, The min-
imum labeling spanning trees, Inf. Process. Lett. 63
(1997), no. 5, 277–282.

[6] Yuko Eto and Masakazu Suzuki, Mathematical for-
mula recognition using virtual link network, Proceed-
ings of the 6th International Conference on Docu-
ment Analysis and Recognition (ICDAR 2001), 2001,
pp. 430–437.

[7] Joseph B. Kruskal, On the shortest spanning subtree of
a graph and the traveling salesman problem, Proceed-
ings of the American Mathematical Society 7 (1956),
no. 1, 48–50.

[8] Kazuhisa Makino, Yushi Uno, and Toshihide Ibaraki,
On minimum edge ranking spanning trees, J. Algo-
rithms 38 (2001), no. 2, 411–437.

Akio Fujiyoshi and Masakazu Suzuki 197

[9] Young-Soo Myung, Chang-Ho Lee, and Dong-Wan
Tcha, On the generalized minimum spanning tree prob-
lem, Networks 26 (1995), no. 4, 231–241.

[10] R. C. Prim, Shortest connection networks and some
generalizations, Bell System Technology Journal 36
(1957), 1389–1401.

[11] Masakazu Suzuki, Fumikazu Tamari, Ryoji Fukuda,
Seiichi Uchida, and Toshihiro Kanahori, Infty - an
integrated OCR system for mathematical documents,
Proceedings of ACM Symposium on Document Engi-
neering 2003, 2003, pp. 95–104.

Akio Fujiyoshi
Department of Computer and Information Sciences,
Ibaraki University, Hitachi 316-8511, Japan.
E-mail: fujiyosi(at)mx.ibaraki.ac.jp

Masakazu Suzuki
Graduate School of Mathematics, Kyushu University,
Fukuoka 812-8581, Japan.
E-mail: suzuki(at)math.kyushu-u.ac.jp

