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Abstract. We give an overview on the discretization of isothermic surfaces, with special emphasis
on the so-called s-isothermic surfaces, which are in some sense a nonlinear deformation of the classical
discrete isothermic surfaces. For s-isothermic surfaces we give a way to define surfaces of constant
mean curvature (cmc surfaces for short) without actually defining an a priori notion of curvature
itself. We will compute discrete versions of rotational symmetric cmc surfaces (Delaunay surfaces)
as an example. Finally, we give a discrete equivalent of the Sinh-Gordon equation, solutions of which
describe – in complete analogy to the smooth case – discrete s-isothermic cmc surfaces.
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1. Introduction

Isothermic surfaces are surfaces that allow conformal para-
metrization by curvature lines. This parametrization is
called isothermic as well.

The class of isothermic surfaces includes surfaces of revo-
lution and quadrics as well as minimal surfaces and surfaces
of constant mean curvature (cmc surfaces). It can be shown
that there is an integrable system underlying these surfaces.
In the case of cmc surfaces this is the Sinh-Gordon equa-
tion. The integrable nature allows to study these surfaces
using methods from soliton theory and the last part of this
paper will be concerned with finding a discrete analog of
this Sinh-Gordon equation by looking at certain discretiza-
tions of cmc surfaces.

Since conformal curvature line parametrization is pre-
served by Möbius transformations, any Möbius transform
of an isothermic surface is isothermic again.

The following definition of an isothermic surface in isother-
mic parametrization is the classical one:

Definition 1. f : R2 → Rn is called an isothermic net if
fxy ∈ span(fx, fy), fx ⊥ fy, and ‖fx‖ = s = ‖fy‖ with
s : R2 → R+.

Here the subindices x and y denote the partial derivatives
wrt. the two parameter directions.

Yet another way to characterize isothermic surfaces (in
isothermic parametrization) is the existence of a dual sur-
face (or Christoffel transform): If f is an isothermic net,
then

(1)
f∗x := fx

‖fx‖2

f∗y := − fy
‖fy‖2

can be integrated to give a new isothermic net f∗. f∗ is
only defined up to translation and scaling. One should keep

in mind here that the definition of a dual surface is a eu-
clidean construction (it involves the choice of ∞, since one
has to measure length). However the notion of isothermic-
ity is a conformal one.

There are many more characterizations of isothermic sur-
faces, but the one given in section 3 is of special interest
for us: There isothermic nets are characterized as solutions
to the Moutard equation

(2) fxy = λf

in the light cone of a Minkowski space. The corresponding
model of Möbius geometry is introduced in section 2.

Section 4 prepares the basis for the two major known
discretizations of isothermic surfaces which follow in sec-
tion 5. Section 6 will give some examples, including in
particular rotational symmetric ones. In section 7 we will
finally present a s-isothermic (discrete) version of cmc sur-
faces, give cmc surfaces of revolution as examples (some of
the calculations here are postponed to an appendix) and
derive a discrete version of the Sinh-Gordon equation.

2. The classical model

We will identify points in Rn (and Sn) with lines in the
light cone Ln+1 in Minkowski Rn+2

1 :

p ∈ Rn 7→ p̂ = (
1 + |p|2

2
, p,

1− |p|2

2
) ∈ Ln+1 ⊂ Rn+2

1

q ∈ Sn 7→ q̂ = (1, q) ∈ Ln+1 ⊂ Rn+2
1

Moreover one can identify (oriented) spheres in Rn and
Sn with points in the spacelike unit sphere Sn+1

1 in Minkowski
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Rn+2
1 : A sphere s with center c and radius r in Rn maps

to

ŝ =
1

r

(
1 + (|c|2 − |r|2)

2
, c,

1− (|c|2 − |r|2)

2

)
in this picture. Changing the orientation of the sphere s
corresponds to sending ŝ to its negative.

The geometry behind this identification can be thought
of as follows: After projecting Rn stereographically into
Sn ⊂ Rn+1 one can identify a sphere s in Sn with the tip
of the cone that touches Sn in s (the polar to the point with
respect to Sn). Now one embeds Rn+1 in Rn+2

1 via p 7→
(1, p) and projectivizes. Thus a point in Sn gets mapped to
a line in the light cone Ln+1 and a sphere is identified with
a spacelike line. There are two length one representatives in
such a spacelike line. They correspond to the two possible
orientations of the sphere.

There are several advantages to this representation. First
of all, the Möbius transformations are now linear maps
(they become orthogonal transformations of the Minkowski
space). Second, the intersection angle of two spheres s1 and
s2 is given by the arccos of the (Lorentz-) scalar product
〈ŝ1, ŝ2〉 of their (normalized) representations in Minkowski
space. This angle might become imaginary, if the spheres
do not intersect, but the following formula will hold in any
case:

(3) ‖c2 − c1‖2 = r2
1 + r2

2 − 2r1r2 〈ŝ1, ŝ2〉 .

In case of intersecting spheres this is the known cosine for-
mula. Another interpretation of that quantity is that it
is the cross-ratio1 of the four distinct points at which a
circle that intersects the two spheres orthogonally hits the
spheres.

However the scalar product between a point and a sphere
is only meaningful if it is 0. In this case the point lies on
the sphere. The Lorentz scalar product between two points
in the lift given above is −1/2 times the squared distance
of the points.

〈p̂1, p̂2〉 = −1

2
‖p2 − p1‖2.

A circle in Rn or Sn can be identified with a time-like
3-space in Rn+2

1 : Its intersection with the light cone gives
the points on the circle and the unit vectors in the (space-
like) (n − 1)-dimensional orthogonal complement give the
spheres that contain the circle (they are orthogonal to all
the points of the circle and thus contain them). Space-like
vectors in that 3-space represent spheres that intersect the
circle orthogonally. Thus three spheres have an orthogonal

1The cross-ratio of four complex numbers z1, z2, z3, and z4 is given
by

(4) cr(z1, z2, z3, z4) :=
z1 − z2

z2 − z3

z3 − z4

z4 − z1
.

This quantity is invariant with respect to Möbius transformations.
Since four points with real cross-ratio are known to lie on a com-

mon circle, one can extend the notion of real cross-ratios to points in
arbitrary dimension: A cross-ratio can be defined in a Clifford algebra
setup as well but for our needs real cross-ratios are sufficient.

circle iff their span is timelike. A very good treatment of
Möbius geometry can be found in [7].

From now on we will no longer distinguish between the
spheres and their representations as spacelike unit vectors
or points and lightlike lines.

2.1. The Moutard equation

Definition 2 (Moutard equation). A map f : R2 → Rn
is said to solve a Moutard equation if there is a function
λ : R2 → R such that

(5) fxy = λf

holds.

Definition 3 (Moutard transformation). Let f and g be
solutions to the Moutard equation with functions λf and
λg.

Then g is a Moutard transform of f ⇔ there exist ν and
µ such that

gx + fx = ν(g + f), gy − fy = µ(g − f)

with
νy = µx = −λfνµ, λg = −λ+ 2µν.

3. Isothermic nets

Isothermic surfaces in Rn or Sn are surfaces that allow con-
formal parametrization by curvature lines (this parametriza-
tion is also called isothermic parametrization). As noted
in the introduction, this class of surfaces include surfaces
of revolution and quadrics as well as minimal surfaces and
surfaces of constant mean curvature (cmc surfaces).

It can be shown that there is an integrable system un-
derlying these surfaces. This allows to study them using
methods from soliton theory.

The following definition is a slightly relaxed definition
of an isothermic parametrized isothermic surface (see also
Definition 1)

Definition 4. f : R2 → Rn is called an isothermic net if
fxy ∈ span(fx, fy), fx ⊥ fy, and ‖fx‖ = αs, ‖fy‖ = βs
with α, β, s : R2 → R+ αy = βx = 0.

The characterization by existence of a dual surface gen-
eralizes accordingly: If f is an isothermic net, then

(6)
f∗x := α2 fx

‖fx‖2

f∗y := −β2 fy
‖fy‖2

can be integrated to give a new isothermic net f∗. This is
only defined up to translation and scaling.

The crucial step for the discretization is the following
strong link between isothermic surfaces and particular so-
lutions to the Moutard equation.

Theorem 1. f : R2 → Rn be a surface and f̂ : R2 → Rn+2
1

its lift into Ln+1. Then f is an isothermic net iff f̂ can be
scaled so that F = 1

s f̂ solves a Moutard equation (5).
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Proof. Let f be an isothermic net. Define eu := s = ‖fx‖
α =

‖fy‖
β . Then f̂xy can be calculated to be

(7) f̂xy = uy f̂x + uxf̂y,

and with that one finds for F = 1
s f̂

(8) Fxy = (uxuy − uxy)F.

If, on the other hand, F solves a Moutard equation we
can define s = 1/|F1 + Fn+2| and set f = s(F2, . . . , Fn+1).
Now one can compute fxy to be

fxy =
sy
s
fx +

sx
s
fy

Moreover fx ⊥ fy is easy to check: Since 〈F, F 〉 = 0 and
the Moutard equation imply that 〈sFx, sFy〉 = 0. This to-
gether with the fact that (sF1)x(sFn+2)y = (sF1)y(sFn+2)x
implies fx ⊥ fy.

The fact that α and β depend on x and y respectively
follows.

3.1. Darboux transformations

Classically Darboux transformations have been defined as
follows: If f : R2 → Rn is isothermic then f and f̃ :
R2 → Rn form a Darboux pair if they both envelop a sphere
congruence that maps curvature lines onto curvature lines
and is conformal. f̃ is then said to be a Darboux transform
of f . One can phrase this in a Riccatti type differential
equation [8]:

f̃x = α2λ(f − f̃)
fx
‖fx‖2

(f − f̃),

f̃y = −β2λ(f − f̃)
fy
‖fy‖2

(f − f̃).

Here again x and y denote the isothermic parameters and
the multiplication has to be understood in a Clifford alge-
bra. However we will instead define a Darboux transform
as follows:

Definition 5 (Darboux transformation). Let f and g be
isothermic nets and F and G their corresponding solutions
to the Moutard equation as stated in Theorem 1. Then f
and g form a Darboux pair iff F and G are related by a
Moutard transformation.

We will omit a proof of the equivalence of the two defi-
nitions here and refer to [6].

3.2. Special cases

As mentioned before minimal, and cmc surfaces in R3 are
isothermic. One can find the following characterizations
for them using their isothermic properties:

Definition 6. The isothermic net f : R2 → R3 is a mini-
mal surface iff its dual is contained in a sphere.

The dual surface is in fact the Gauß map of f .

Definition 7. The isothermic net f : R2 → R3 is a cmc
surface iff its (properly scaled and placed) dual surface is
a Darboux transform of f as well.

4. The discrete Moutard equation

The following definition of the discrete Moutard equation
can be found in [12] and it turned out to be the key ingre-
dient for discretizing isothermicity.

Definition 8. A map F : Z2 → Rn is said to solve the
discrete Moutard equation if there is a field λ : Z2 → R
such that
(9)
f(m,n)+f(m+1, n+1) = λ(m,n)(f(m+1, n)+f(m,n+1)).

The field λ is defined on the faces of the quadrilateral
mesh.

There are some simple observations about this discrete
Moutard equation that we will need later:

Each four points that form an elementary quadrilateral
of a solution are linearly dependent.

One can restrict solutions to constant length

〈f(m,n), f(m,n)〉 = c

(including c = 0). In this case λ(m,n) is fixed: Assume the
four points of an elementary quadrilateral are p, p1, p12, and
p2. Then the Moutard equation reads

(10) p12 = λ(p1 + p2)− p

and one gets from the condition 〈p12, p12〉 = c

c = 〈p12, p12〉 = λ2 〈p1 + p2, p1 + p2〉 − 2λ 〈p1 + p2, p〉+ c.

If we assume that 〈p1 + p2, p1 + p2〉 6= 0, this determines λ
to be

λ = 2
〈p1 + p2, p〉

〈p1 + p2, p1 + p2〉
=
〈p1, p〉+ 〈p2, p〉
c+ 〈p1, p2〉

.

Inserting this in equation (10) and multiplying with p1 or
p2 gives that pairs of points along opposite edges have equal
scalar products. Thus for the whole lattice
(11)
〈f(m,n), f(m+ 1, n)〉 = 〈f(m,n+ 1), f(m+ 1, n+ 1)〉
〈f(m,n), f(m,n+ 1)〉 = 〈f(m+ 1, n), f(m+ 1, n+ 1)〉

holds.
Conversely, 〈f(m,n), f(m,n)〉 = c together with equa-

tion (11) and the condition that the four points of an ele-
mentary quadrilateral are linearly dependent will yield two
choices: the Moutard equation or
(12)
f(m,n)−f(m+1, n+1) = λ(m,n)(f(m+1, n)−f(m,n+1)).

This equation is often called a Moutard equation as well.
In complete analogy of the smooth Moutard transformation
we can formulate a discrete one:
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Definition 9. Two solutions to the discrete Moutard equa-
tion f and f̃ are said to be Moutard transforms of each
other iff there exist ν, µ : Z2 → R with

f̃1 + f = ν(f1 + f̃),

f̃2 − f = µ(f2 − f̃).

The existence of Moutard transforms is a consequence of
the 3D consistency of the discrete Moutard equation [12, 6].
The fields ν and µ are not free but have to satisfy a linear
difference equation.

5. Discrete isothermic nets

In this section we will define discrete isothermic nets and s-
isothermic nets using a discretization of the Moutard equa-
tion (5) and then see that they coincide with the known
definitions.

Discrete isothermic surfaces have played an important
role in the development of the discrete integrable geometry.
They form the common framework for discrete minimal and
discrete cmc surfaces [3] and the study of their transfor-
mations gave deeper insight into the structure of discrete
integrable systems [6]. Let us briefly give the basic facts
and definitions for discrete isothermic surfaces that we will
need later. A more complete treatment (with proofs) can
be found in [1, 3]

Definition 10. A discrete isothermic net is a map F :
Z2 → R3 such that all elementary quadrilaterals have cross-
ratio c(m,n) = −α(m)2/β(n)2.

The indices m and n denote the two lattice indices of Z2.
Thus α and β both depend on one direction only.

Given Theorem 1 that characterizes smooth isothermic
nets via solutions to the (smooth) Moutard equation in the
light cone Ln+1, the following definition is quite natural:

Definition 11. Let f : Z2 → R2 be a map and f̂ : Z2 →
Ln+1 its lift into the light cone. f is called a discrete
isothermic net if there is a field s : Z2 → R such that
1
s f̂ solves the discrete Moutard equation.

The next lemma shows that this definition is equivalent
to the one given by Bobenko and Pinkall [1, 3]:

Lemma 1. f : Z2 → Rn is a discrete isothermic net iff
for all (m,n) ∈ Z2

(13)
cr(f(m,n), f(m+ 1, n), f(m+ 1, n+ 1), f(m,n+ 1))

= −α
2(m)
β2(n)

holds with α, β : Z→ R.

Proof. Let us start with four points of an elementary quadri-
lateral. The lifts of the four points are linearly dependent
since they solve the Moutard equation. Therefore they are
all contained in a light-like 3-space. This in turn says that
the points are concircular and thus their cross-ratio must
be real.

As we have noted before, 〈p̂1, p̂2〉 = − 1
2‖p2 − p1‖2 holds

for the lifts p̂1 and p̂2 of two points p1 and p2. Hence

〈p̂1, p̂2〉
〈p̂2, p̂3〉

〈p̂3, p̂4〉
〈p̂4, p̂1〉

=
α4(m)

β4(n)
= q2

gives the squared absolute value of the cross-ratio q of the
four points p1, p2, p3, and p4 for any lift, since numerator
and denominator are linear in all four points.

So it only remains to show that the cross-ratio is nega-
tive. For this we compute

〈p̂1, p̂3〉
〈p̂3, p̂2〉

〈p̂2, p̂4〉
〈p̂4, p̂1〉

= (1− q)2

and find that (1 − q)2 = (1 + |q|)2 which implies that q is
in fact negative.

If, on the other hand, f is a map in Rn with cross-ratio
−αkβl we can scale its lift f̂ ∈ Rn+2 point-wise in such a way

that
〈
f̂(k, l), f̂(k + 1, l)

〉
= αk and

〈
f̂(k, l), f̂(k, l + 1)

〉
=

βl. Now given f̂ , f̂1, f̂12, and f̂2 with
〈
f̂ , f̂1

〉
=
〈
f̂2, f̂12

〉
=

α and
〈
f̂ , f̂2

〉
=
〈
f̂1, f̂12

〉
= β we know that they are lin-

early dependent (since the corresponding f ’s are concircu-
lar) and

µf̂12 = f̂ + νf̂1 + ηf̂2

must hold for some µ, ν, and η.

0 = µ2
〈
f̂12, f̂12

〉
= 2(να+ ηβ + νη

〈
f̂1, f̂2

〉
)

⇒ −νη
〈
f̂1, f̂2

〉
= να+ ηβ

α =
〈
f̂12, f̂2

〉
= 1

µ (β + ν
〈
f̂1, f̂2

〉
)

⇒ ηα
µ = −να

β =
〈
f̂12, f̂1

〉
= 1

µ (α+ η
〈
f̂1, f̂2

〉
)

⇒ νβ
µ = −ηβ

So together one concludes

η = −µν and ν = −µη ⇒ µ = ±1 and ν = ∓η

and f̂12 − f̂ = λ(f̂1 − f̂2) or f̂12 + f̂ = λ(f̂1 + f̂2). But
the second solution corresponds to a negative cross-ratio
of f as we have already seen. Thus the first would give
a positive cross-ratio. Therefore we can conclude that the
scaled f̂ solves the Moutard equation.

We identified solutions to the discrete Moutard equa-
tion in the light cone with the well known discretization
of isothermic nets, but, as we have seen, we are allowed to
restrict the Moutard equation to constant length solutions
〈f, f〉 = c not necessarily zero and in fact solutions in the
spacelike unit sphere can be interpreted as discretizations
of isothermic nets as well (more on the intimate connec-
tion between isothermicity and the Moutard equation can
be found in [5]): The corresponding discrete geometry is
known as s-isothermic.
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Classically, s-isothermic surfaces have been defined as
discrete surfaces build from touching spheres with the addi-
tional condition that the four spheres that form an elemen-
tary quadrilateral should have a common orthogonal circle
(it is easy to show that there is always a circle through the
four touching points, so the condition is in fact that the
circle intersects the spheres perpendicularly). They first
appeared in the literature in [3].

From what we have discussed so far it is clear, that
this implies that the lifts of the spheres that form an s-
isothermic surface solve the discrete Moutard equation.
Therefore it is natural to relax the notion of s-isothermic
to general solutions of the discrete Moutard equation in
the spacelike unit sphere in Minkowski Rn: The spheres
no longer need to touch, but neighboring spheres in one
direction should have scalar products that are constant in
the other direction.

Definition 12. A map f : Z2 → Sn+1
1 is called an s-

isothermic net iff f solves the discrete Moutard equation.

The original (narrow) definition corresponds to the spe-
cial case

〈f(m,n), f(m+ 1, n)〉 = 〈f(m,n), f(m,n+ 1)〉 = 1.

Note that the four spheres of an elementary quadrilateral
do not necessarily have a common orthogonal circle any-
more, since the 3-space they span need not be timelike. In
case it is spacelike the orthogonal complement is a timelike
(n− 1)-space and the spheres contain a common orthogo-
nal (n − 2) sphere (in case of spheres in R3 this would be
a 1-sphere: a point pair).

Definition 13. Let f be an s-isothermic net. Let r(m,n)
and c(m,n) denote the radii and centers of the correspond-
ing spheres. Then the dual net f∗ is defined up to trans-
lation by the following conditions for the centers and radii
of its spheres:
(14)

r∗(m,n) =
1

r(m,n)

c∗(m+ 1, n)− c∗(m,n) =
c(m+ 1, n)− c(m,n)

r(m+ 1, n)r(m,n)

c∗(m,n+ 1)− c∗(m,n) = −c(m,n+ 1)− c(m,n)

r(m,n+ 1)r(m,n)
.

Proof. We have to show that f∗ is well defined and s-
isothermic.

If f is s-isothermic then – denoting the radii of the spheres
for one elementary quadrilateral by r := r(n,m), r1 :=
r(n + 1,m), r12 := r(n + 1,m + 1), and r2 := r(n,m + 1)
(and analogously for the centers c) – we have

1

r
+

1

r12
= λ

(
1

r1
+

1

r2

)
,

c

r
+
c12

r12
= λ

(
c1
r1

+
c2
r2

)
and |c|2+r2+|c12|2+r2

12 = λ
(
|c1|2 + r2

1 + |c2|2 + r2
2

)
which

Figure 1: A Darboux transform of an s-isothermic cylinder.
The circles and the touching spheres are shown separately.

fixes λ. Now

0 = (c∗1 − c∗) + (c∗12 − c∗1)− (c∗12 − c∗2)− (c∗2 − c∗)

⇔ 0 = c1−c
r1r
− c12−c1

r12r1
+ c12−c2

r12r2
− c2−c

r2r

⇔
(

1
r + 1

r12

)
c1
r1
− 1

r1

(
c
r + c12

r12

)
= −

(
1
r12

+ 1
r

)
c2
r2

+ 1
r2

(
c12

r2
+ c

r

)
⇔

((
1
r + 1

r12

)
− λ

(
1
r1

+ 1
r2

))
c1
r1

= −
((

1
r12

+ 1
r

)
− λ

(
1
r1

+ 1
r2

))
c2
r2

⇔ (0) c1r1 = − (0) c2r2 .

So f∗ is well defined. Since f and f∗ are dual to each other,
the condition that the edges of f sum to 0 is equivalent to
f∗ being a solution to the Moutard equation.

Another way of proving the dualizability of s-isothermic
nets is by showing that they are in fact Koenigs nets (see
again [6]).

5.1. Discrete Darboux transformations

For Darboux transformations we now can simply adapt our
definition from before:

Definition 14. Let f and g be s-isothermic nets. Then f
and g are said to form a Darboux pair if they are related
by a Moutard transformation.

Figure 1 shows a Darboux transform of an s-isothermic
cylinder. Note, however, that they do not necessarily need
to be cylinders again.

By construction, corresponding elementary quadrilater-
als of f and g always lie in a 4-space. If that 4-space is time-
like, the orthogonal complement is 1-dimensional spacelike,
which gives that the eight spheres from the two quadrilater-
als have a common orthogonal sphere. These spheres play
the role of the Darboux sphere congruence.
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A Darboux transformation for discrete (non s-) isother-
mic surfaces is discussed in [8]. This notion coincides with
the Moutard transformation for the lifted nets as well.

6. Examples

6.1. Simple examples

Examples of discrete s-isothermic nets are easily derived
from Schramm’s circle patterns with combinatorics of the
square grid [13] in R2 or S2, once one has replaced one half
of the circles by spheres intersecting R2 (or S2) orthogo-
nally in these circles2. In case of Schramm patterns in R2,
the dual is again a Schramm pattern (in R2). However, in
case of Schramm patterns in S2, this is not true anymore.
Instead the resulting surface will be a discrete s-minimal
surface (a surface with vanishing mean curvature). The
motivation for this definition is the following: In the con-
tinuous case minimal surfaces can be characterized by the
fact that they are isothermic surfaces for which the dual
surface is contained in a sphere. Discrete s-minimal sur-
faces are studied in great detail in [2].

s-minimal surfaces have only been defined for the case of
s-isothermic nets with touching spheres. However, we will
generalize the notion in the obvious way.

Figure 2 shows an s-minimal catenoid. It can be con-
structed from the discrete version of the exponential map.

6.2. Surfaces of revolution

Other examples that can be easily constructed are s-iso-
thermic surfaces of revolution in R3 (The above mentioned
catenoid is of course an example for those as well).

Figure 2: An s-minimal catenoid. The circles are shown as
disks.

It is a well known fact that every rotational symmetric
surface in R3 can be parametrized by isothermic coordi-
nates and thus constitutes an isothermic surface.

A discrete s-isothermic surface of revolution in R3 is an
s-isothermic net that has a discrete rotational symmetry:
The radii r of the spheres depend on one variable only

2Since one may choose which half of the circles one replaces, a
Schramm pattern gives rise to two different s-isothermic surfaces.

(r(k, l) = r(k)), and if the axis of rotation is the x-axis,
then the centers c have the form

c(k, l) = (c1(k), cos(lφ)c2(k), sin(lφ)c2(k)).

Lemma 2. Let (sk) be a sequence of spheres with centers
ck = (xk, yk, 0) and radii rk. Then the condition for (sk)
to serve as “meridian curve” for a discrete rotational s-
isothermic net (with the x-axis being the axis of rotation)
is

y2
k

r2
k

= const.

If the angle for the discrete rotation is φ, then

α = 2 sin
φ

2

y2
k

r2
k

− 1 and βk =
r2
k + r2

k+1 − ‖ck+1 − ck‖2

2rkrk+1
.

In the special case of α = β ≡ −1 (touching spheres), this
reduces to

‖ck+1 − ck‖2 = sin
φ

2
(yk + yk+1)2.

Proof. Let φ be the angle of rotation for the discrete net
of revolution. Let dk denote the distance between the two
sphere centers c(k, l) and c(k, l + 1). Then one can read
from the isosceles triangle formed by the centers and their
projection on the x-axis (xk, 0, 0) that

dk = 2yk sin
φ

2

must hold. On the other hand, we know that the angle
between the spheres is given by

αk =
r2(k, l) + r2(k, l + 1− d2

k

2r(k, l)r(k, l + 1)
= 1− d2

k

2r2(k)

= 1− sin
φ

2

y2(k)

r2(k)
.

Since α must not depend on k, the first claim and the
formula for α are shown. The formula for β(k) is just the
formula for the angle of spheres (3) rephrased. Inserting the
formula for α in the case α = −1 gives the last claim.

Note that in the special case α = β ≡ −1 scaling the
height with cos φ2 gives a polygon

ĉk = (xk, ŷk) = (xk, cos
φ

2
yk)

that can be interpreted as the polygon of the touching
points. For this polygon the relation reads

‖ĉk+1 − ĉk‖2 = tan
φ

2
ŷkŷk+1.

A similar relation holds for discrete rotational symmetric
(non s-) isothermic surfaces3 [9].

Figure 3 shows a rotational symmetric s-isothermic sur-
face. It is in fact even a discrete s-cmc net (a surface of
constant mean curvature). We will study its construction
in greater detail in section 7.

3In fact, the same polygon can serve in both cases, up to different
angles of rotation.
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Figure 3: An s-isothermic Delaunay surface. Only the or-
thogonal circles are shown here.

7. S-cmc nets

An important class of isothermic nets are surfaces of con-
stant mean curvature (or short cmc surfaces) in R3. Cmc
surfaces come in pairs: The centers of the mean curva-
ture spheres of a cmc surface f form another cmc sur-
face f∗. This correspondence is a duality, meaning that
f∗∗ = f . It turns out that f∗ is the (properly scaled
and placed) dual surface in the isothermic sense and–in
addition–is a Darboux transform of f . One may even define
cmc surfaces (without umbillics) to be isothermic surfaces
for which there is a dual surface that is a Darboux trans-
form as well. This provides the necessary tools to define
discrete s-cmc surfaces:

Definition 15. A discrete s-isothermic surface is called a
discrete surface of constant mean curvature or, for short, s-
cmc surface if its (properly scaled and placed) dual surface
is a Darboux transform too.

For simplicity we will restrict ourselves from now on
to the narrow definition of discrete s-isothermic (i. e. the
spheres of the surfaces touch).

Before we can give the first examples we have to dis-
cuss the geometry of a s-cmc net and its dual/Darboux
transform. Since the spheres s, s1, s12, and s2 form an el-
ementary quadrilateral and their dual ones s∗, s∗1, s

∗
12, and

s∗2 (note that this dual is actually scaled by some factor λ
we will calculate in a moment) have a common orthogonal
sphere (since the two are Darboux transforms of each other)
and since corresponding edges of the quadrilaterals formed
by the centers (c, c1, . . . , c

∗, c∗1, . . .) have parallel edges that
touch this sphere (in points p1, p

∗
1, p2, p

∗
2, . . . – see Fig 4),

the edge p∗i pi is perpendicular to both the edge cic and
the line c∗i c

∗, i ∈ {1, 2}. We will set τ1 := ‖p∗1 − p1‖ and
τ2 := ‖p∗2− p2‖. In particular, the distance d := ‖c∗− c‖ is
not constant: Looking once more at Fig. 4 one finds

d2 = (r − r∗)2 + τ2
1 = r2 − 2rr∗ + r∗2 + τ2

1

d2 = (r + r∗)2 + τ2
2 = r2 + 2rr∗ + r∗2 + τ2

2 .

With r∗ = λ/r this results in

4λ = 4rr∗ = τ2
2 − τ2

1 .

Now it is obvious that the two lengths τ1 and τ2 (as well
as the scaling factor λ) are constant for the whole net. Thus
there is not one constant distance between the net and its
dual (as in the smooth case and in the discrete isothermic
case) but two.

Figure 4: The two distances between an s-cmc net and its
dual.

The simplest example of a cmc surface one can think of
is the cylinder and one easily convinces oneself that its
natural s-isothermic discretization is in fact s-cmc: Let
φ = 2π/N for some N ∈ N. The radii of all spheres
are the same r = sin(φ/2) and the centers are given by
(2mr, cos(nφ), sin(nφ), r), n,m ∈ Z. It is easy to see that
if N is even, the dual surface of the cylinder is the cylinder
itself (in the case that N is odd, one has to rotate it by
φ/2 around its axis).

We will now construct non-trivial examples by exploiting
what we already found for surfaces of revolution.

7.1. Delaunay surfaces

Delaunay surfaces are cmc surfaces of revolution. There is
a classical construction for them: Take an ellipse (or hy-
perbola) and roll it without friction or sliding on a straight
line. Then a focal point of the ellipse will generate a curve
under this movement. It can be shown that theis curve
constitutes the meridian curve for a cmc surface and its
dual surface. The round cylinder is the limiting case when
the ellipse becomes a circle. The other limit case is the
ellipse degenerating to the line connecting the foci which
leads to a chain of spheres.

There is an analogous construction in the discrete case.
For discrete isothermic surfaces this was given in [9]. A
general treatment for a discrete curvature theory derived
from parallel surfaces can be found in [4]. Here we give
the corresponding treatment tailored to our definition of
s-isothermic cmc.

We will start by explaining a suitable notion of “rolling”
a polygon on a line and identify the correct discretization
of an ellipse. Let q : Z → R2 be a polygon, c ∈ R2

a fixed point. Think of this as being a set of triangles
4(qn, qn+1, c). Now take these triangles and place them
with the edges [qn, qn+1] on a straight line, e.g. the x-axis.
The result is a sequence of points pn. This new polygon
p is the discrete trace of c when unrolling the polygon q
along the x-axis (Fig. 5).

The condition (2) for p to give rise to an s-isothermic net
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Figure 5: Unrolling a polygon

reads in terms of q as follows:

(15)
1

τ
+ 1 =

1 + cos(αn − βn)

1 + cos(αn + βn)
,

where αn = ∠(qn−1, qn, p) , βn = ∠(p, qn, qn+1) and τ =
|cr| sin2 φ

2 . Or equivalently:

(16) tan
αn
2

tan
βn
2

= const.

Let E be a given ellipse. Choose a starting point q0 on E
and a starting direction in q0 pointing to the inner region
of E. Shooting a ball in that direction will give a new
point q1 where it hits the ellipse again. The new direction
in q1 is given by the usual reflection law: incoming angle
= outgoing angle. This leads to a sequence q0, q1, q2, . . .
(see Fig. 7 upper left). If one thinks of these points as
the vertices of a polygon, it is again a well known fact that
the edges are tangential to either a confocal hyperbola or
a confocal ellipse, depending on whether the first shot goes
between the two foci or not [10]. A proof of that can be
found in the appendix. In a hyperbola the situation is
similar with the one difference that one has to change the
branch if the shooting line doesn’t hit the first branch twice
(Fig. 6).

-4 -2 2 4

-3

-2

-1

1

2

3

Figure 6: Billiard in a hyperbola

Lemma 3. The polygon obtained by playing the standard
billiard in an ellipse together with one focus satisfies con-
dition (15).

Proof. A proof is given in the appendix, in Lemma 4.

Theorem 2. The discrete rotational surface obtained by
rotating the unrolled trace of a ball in an elliptic (or hyper-
bolic) billiard is a discrete rotational cmc surface.

Proof. To proof this, one has to find a dual surface with
edges in two constant distances (one for each lattice direc-
tion). If we trace both foci when evolving the ellipse, we get

Figure 7: Billiard in an ellipse and the meridian curve gen-
erated from it

a second polygon p̂. Now mirror it at the axis. Corollary 2
shows that the distance |pn− p̂n| = τ̃ is constant. From the
reflection law one gets that |pn − p̂n+1| = |pn+1 − p̂n| = τ
and therefore is constant. So [pn, pn+1] and [p̂n, p̂n+1] are
parallel and

|pn − pn+1|2 =
2(c2 − c̃2)

|p̂n − p̂n+1|2
.

This in turn leads to

|pn − pn+1| =
λ

|p̂n − p̂n+1|

with λ = τ2−τ̃2

4 .

7.2. A discrete Sinh-Gordon Equation

We will now derive a difference equation for the radii of the
spheres and orthogonal circles in an s-cmc net. The reason
to call this a discrete Sinh-Gordon equation is the following:
If f is a smooth cmc surface (with mean curvature H and
without umbillics) in isothermic parametrization, there is
a scalar field u given by eu := ‖fx‖ = ‖fy‖ and it can be
shown that u then solves the Sinh-Gordon equation

uxx − uyy +H sinhu = 0.

Now for s-isothermic nets the radii of the spheres play the
role of the metric factor u in the smooth case, since they
give the local contribution of a vertex to the edge length of
the net, which can be viewed as the length of the partial
derivatives.

We start by looking at a circle together with its four
neighboring spheres. Let R denote the radius of the circle
and r1, r2, r3, and r4 the radii of the spheres. For the angles
φk made by the center of the circle and the two points where
the k-th sphere intersects the circle, we find tan φk

2 = rk
R ,

and since eiφk =
1+i tan

φk
2

1−i tan
φk
2

, we get

4∏
k=1

1 + i tan φk
2

1− i tan φk
2

=

4∏
k=1

R+ irk
R− irk

= 1.



Tim Hoffmann 165

r

r∗

d
τ2

τ1

Figure 8: A sphere and its dual.

This can be solved for, say, r4 giving

(17) r4 =
r1r2r3 −R2(r1 + r2 + r3)

R2 − r1r2 − r1r3 − r2r3
,

or for the central R:

(18) R2 =
r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4

r1 + r2 + r3 + r4
.

This is of course the same equation as one gets for the radii
of a Schramm type circle pattern (see [13]).

The situation for a central sphere with radius r and four
neighboring circles with radii R1, R2, R3 and R4 is more
difficult. Since the configuration is not planar anymore, the
angles made by the intersection points p and p′ of a circle
with the sphere do not sum to 2π anymore. Still we define

φ̃k via tan φ̃k
2 = Rk

r . Now look at the spherical triangle
made by the two intersection points p and p′ and the point
q where the line connecting the centers of the sphere and
its dual hits the sphere. After scaling the sphere to be the
unit sphere, one has

(19)

sin a = τ1
d cos a = r−r∗

d

sin b = τ2
d cos b = r+r∗

d

c = φ̃k

for the sides a, b, and c of that triangle. Using A = τ1−τ2
2

and B = τ1+τ2
2 and some spherical trigonometry one can

find for the angle γk at q:

tan
γk
2

=

√
A2 −R2

k

B2 −R2
k

B2 + r2

A2 + r2
.

Now we can write again

eiγk =
1 + i tan γk

2

1− i tan γk
2

=

√
(B2 −R2

k)(A2 + r2) + i
√

(A2 −R2
k)(B2 + r2)√

(B2 −R2
k)(A2 + r2)− i

√
(A2 −R2

k)(B2 + r2)

and use
∏4
k=1 e

iγk = 1 to get
(20)

4∏
k=1

√
(B2 −R2

k)(A2 + r2) + i
√

(A2 −R2
k)(B2 + r2)√

(B2 −R2
k)(A2 + r2)− i

√
(A2 −R2

k)(B2 + r2)
= 1.

Equations (20) and (18) furnish an evolution of the radii
R and r. Note that both are invariant under the change
r → α/r and R → α/R. One can eliminate the circle
radii from the system by substituting equation (17) into
equation (20). This gives an equation for the radii of 9
neighboring spheres.

Setting

H(r1, r2, r3, r4) =
r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4

r1 + r2 + r3 + r4

and

G(r,H) =

√
(B2 −H)(A2 + r2) + i

√
(A2 −H)(B2 + r2)√

(B2 −H)(A2 + r2)− i
√

(A2 −H)(B2 + r2)
,

we get the equation

(21)
1 = G(r,H(r, r1, r2, r3))G(r, r5, r, r3, r4))

×G(r,H(r6, r7, r, r5))G(r,H(r7, r8, r1, r))

for the radii of the spheres numbered as follows:

r6

r7 r5

r8 r r4

r1 r3

r2

Theorem 3. Given a positive solution to equations (20)
and (18) (after choosing the constants A and B or equiva-
lently τ1 and τ2), there is an s-isothermic cmc surface hav-
ing sphere and circle radii as given by the solution. This
surface is unique up to Euclidean motions.

Proof. We start with a solution R and r to equations (20)
and (18). The τi can be calculated from A and B as
τ1 = B+A and τ2 = B−A. Combinatorically we do have a
Z2 lattice and we want to find circles of radii r(n,m) associ-
ated to its faces and spheres of radii R(n,m) at its vertices
such that neighboring spheres do touch and the spheres at
the corners of a quadrilateral intersect the corresponding
circle orthogonally. Now start with the circle corresponding
to a given face (n,m). Equation (20) ensures that one can
place spheres of radii R(n,m), R(n+1,m), R(n+1,m+1),
and R(n,m+ 1) around it, satisfying the touching and in-
tersecting property. Knowing τ1 and τ2, we can place the
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dual circle of radius R∗(n,m) := (τ2
2 − τ2

1 )/(4R(0, 0) and
the corresponding intersecting spheres above it at height
h = (τ2

1 − (R(n,m)−R∗(n,m))2)
1
2 , making them a quadri-

lateral of a s-cmc net and its dual. The only remaining ob-
struction is that one needs to be able to place four of these
combinatorial cubes consistently around a vertex (sphere)
and its dual, but the condition that this is possible is ex-
actly the equation (18). Thus we can build a s-cmc net
and its dual with the given radii, and this net is unique up
to the choice of how to place the first circle – which is the
claimed freedom of a Euclidean motion.

Since equation (18) lets us compute the circle radii from
the neighboring sphere radii, we have the following

Corollary 1. Given a positive solution to equation (21)
(after choosing the constants A and B or equivalently c1
and c2), there is an s-isothermic cmc surface having sphere
and circle radii as given by the solution. This surface is
unique up to Euclidean motions.

8. Conclusion

We have shown how solutions to the discrete Moutard equa-
tion give discrete s-isothermic surfaces and how to define
s-isothermic cmc nets using the Darboux/Moutard trans-
formation for them. From the geometry of these surfaces
we were able to derive a discrete version of the Sinh-Gordon
equation.

Interesting open problems include the notion of s-iso-
thermic cmc-1 surfaces in hyperbolic space, which can be
defined by Darboux transforms of s-isothermic surfaces in
S2 and the question of how to define a mean curvature
sphere for s-isothermic surfaces that is compatible with our
definition (meaning that its radius is constant for cmc sur-
faces).

A. Billiards in an ellipse

The motion of a free particle in a bounded region that
is reflected elastically at the boundary is called a billiard.
Billiards in two-dimensional convex regions in the plane are
called Birkhoff billiards. A Birkhoff billiard is called smooth
if the boundary is described by an infinitely differentiable
function. Here we will derive the evolution equation for
the billiard in an ellipse, since the trajectory of the billiard
map serves as a discretization of the ellipse itself.

We first recall some basic facts about ellipses:

Definition 16. Let m1 and m2 be two points in C and
L ≥ |m1 −m2|. The set E of all points p for which |m1 −
p|+ |m2−p| = L is called an ellipse. m1 and m2 are called
foci of E.

It is easy to see that E is the trace of a smooth regular
curve.

Proposition 1. Let E be an ellipse with foci m1 and m2,
and let p ∈ E. The bisector of the complementary angle

made by the line segments (m1, p) and (m2, p) is tangential
to E at p.

T

m′2

m2m1

p
x

Figure 9: The tangent of an ellipse

Proof. Denote by m′2 the point obtained by reflecting m2

at T . Then |m1−m′2| = |m1− p|+ |m2− p| holds. Choose
any point x ∈ T , x 6= p. Using the triangle inequality for
the triangle (m1, x,m

′
2) one gets

(22)
|m1 − x|+ |m2 − x| = |m1 − x|+ |m′2 − x|

> |m1 −m′2| = |m1 − p|+ |m2 − p|+ L.

Accordingly, x 6∈ E and hence the bisector T touches the
ellipse E at p.

Without loss of generality, we may now assume that the
foci of an ellipse are located at m1 = −c and m2 = c with
c ∈ R+.

The ellipse E : x = x(φ) may therefore be parametrized
by x = a cosφ + ib sinφ, where a and b are real numbers.
Defining A = (a + b)/2 and B = (a − b)/2, this can be
rewritten as

x = Aeiφ +Be−iφ.

Differentiation with respect to φ then gives the direction of
the tangent of E at a point x:

(23) x′ = i(Aeiφ −Be−iφ).

The Birkhoff billiard in an ellipse is completely determined
by the sequence of points where the particle hits the bound-
ing ellipse.

To determine this sequence, one prescribes an initial
point x(0) on the ellipse together with an initial direction
eiα(0) pointing inwards and computes the line through x(0)
with direction eiα(0). Its second point of intersection with
the ellipse defines x(1) and the direction eiα(1) is given by
the condition that eiα(1) − eiα(0) is perpendicular to the
tangent at x(1). Iteration of this process then generates
the entire Birkhoff billiard.

The following can be found in [11]
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Theorem 4. The equations of motion for the billiard in
an ellipse are given by

(24)

ei(φ1+φ) =

A

B
e2iα − 1

e2iα − A

B

ei(α+α1̄) =

A

B
e2iφ − 1

e2iφ − A

B

.

Figure 10: The free motion of a particle bounded by an
ellipse

Proof. We begin with a technical remark which will be ex-
ploited frequently:

(25) eiγ − eiβ = 2 sin(
γ − β

2
)ei

γ+β+π
2 .

Using this we can compute that

(26)
e2iα = (x1−x)2

|x1−x|2 = A(eiφ1−eiφ)+B(e−iφ1−e−iφ)
A(e−iφ1−e−iφ)+B(eiφ1−eiφ)

= Aei(φ1+φ)−B
Bei(φ1+φ)−A ,

which is equivalent to (24)1. Furthermore it is noted that
eiα1 − eiα is perpendicular to x′ and hence

(27) (eiα1 − eiα)2 = (ix′)2.

Expansion by means of (25) and (23) then yields (24)2.

The similarity of the evolution equations for eiφ and eiα

suggests combining φ and α into one variable: We define
a new field ω by ω(2k) = 2φ(k) and ω(2k + 1) = 2α(k).
Then, ω obeys the following equation:

(28) ei(ω1−2ω+ω1̄) =

(
Aeiω −B
Ae−iω −B

)2

.

The latter constitutes a well-known discrete version of the
mathematical pendulum equation

ω′′ = ρ sinω.

It is known that the edges of the billiard in an ellipse are
tangent to a confocal quadric. The nature of the quadric
Q depends on the initial conditions x(0) and eiα(0). If
the latter are such that the first edge ∆x(0) = (x(1) −

x(0)) and the line segment (m1,m2) connecting the foci
do not intersect, then Q constitutes an ellipse. If ∆x(0)
passes through one of the foci, then Q degenerates to two
points, while if ∆x(0) and (m1,m2) intersect, then Q is a
hyperbola. Here, we focus on the first case. The third case
may be proven in an analogous manner.

Lemma 4. Let x(k) be the vertices of a billiard in an
ellipse E with foci m1 and m2 and set α(k) = ∠(m2 −
x(k), x(k−1)−x(k)) and β(k) = ∠(x(k+1)−x,m2−x(k)).
Then

(29) tan
α(k)

2
tan

β(k)

2
= const.

Proof. Since the tangent and normal to the ellipse bisect
the angles made by m1 − x and m2 − x, the angle ∠(x1 −
x,m1−x) equals α and ∠(m1−x, x1̄−x) must be β. Let r1

be the radius of the circumferencing circle of the triangle

m1 m2

d

x1

x
a

b

a1

β

α1

b1

Figure 11: The edges and some of the angles as used in the
adjacent proof.

(x, x1,m1) and let r2 be the one for (x, x1,m2). Moreover,
set d = |x−x1|, a = |m1−x1|, b = |m2−x1|, a1 = |m2−x|
and b1 = |m1 − x|. Then, elementary trigonometry gives
for the angles in the two triangles:
(30)

tan
α

2
=

2r1

d+ b1 − a
tan

β

2
=

2r2

d+ a1 − b
tan

α1

2
=

2r2

d+ b− a1
tan

β1

2
=

2r1

d+ a− b1
.

Since, by definition of the ellipse, a+b = a1 +b1, we deduce
that

(31) tan
α

2
tan

β

2
= tan

α1

2
tan

β1

2
.

Note that the sign of the constant determines whether
or not ∆x(0) and (m1,m2) intersect. Thus relation (29)
ensures that either all or none of the edges of the billiard
pass inbetween the foci.

In order to show that the billiard is indeed tangent to
a confocal ellipse, it is convenient to bring the conserved
quantity (29) into the form

(32)
1 + cos(α(k)− β(k))

1 + cos(α(k) + β(k))
= const.
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Theorem 5. If the first edge of a billiard in an ellipse
E does not intersect the line segment between the two foci
m1 and m2, then the edges of the billiard are tangent to a
confocal ellipse.

Figure 12: The billiard is tangent to a confocal quadric

Proof. As mentioned before, relation (29) ensures that none
of the edges intersect (m1,m2). Thus the following ge-
ometric construction is valid for all edges. If x(k) is a
vertex of the billiard, then the angle made by m1 − x(k)
and m2 − x(k) is α(k) − β(k) (with α and β defined as
above). If we set 2c = |m1 −m2| and l(k) = |m1 − x(k)|
and l̃(k) = |m2 − x(k)|, then we obtain

4c2 = l2 + l̃2−2ll̃ cos(α−β) = (l+ l̃)2−2ll̃(1+cos(α−β)).

Since l(k) + l̃(k) is constant, we conclude that

(33) 2ll̃(1 + cos(α− β)) = 2l1 l̃1(1 + cos(α1 − β1)).

Let m′1 be m1 reflected in the straight line through x1̄ and
x. Then |m′1 − x| = l and the angle between m2 − x and
m′1−x is α+β. Let p be the intersection point of (m′1,m2)
and (x1̄, x). Then d = |m′1 −m2| = |m1 − p|+ |m2 − p|.

Since (x1̄, x) bisects the angle in p it is tangent to an
ellipse through p with foci m1 and m2. What is left to
show is that d is constant, since in this case all the ellipses
(for all the edges of the billiard) coincide. For the triangle
m2, m′1, x, one has

d2 = l2 + l̃2− 2ll̃ cos(α+β) = (l+ l̃)2− 2ll̃(1 + cos(α+β)),

and therefore we get for two time steps and with use of
equations (33) and (32)

(34)
(l + l̃)2 − d2

(l + l̃)2 − d2
1

=
ll̃(1 + cos(α+ β))

l1 l̃1(1 + cos(α1 + β1))
= 1.

This shows the constancy of d.

Corollary 2. Let E be an ellipse with foci m1 and m2 and
l a line not intersecting the line segment between the two
foci. Moreover, let x and x1 be the points where l hits E.
If m′1 and m′2 are the foci mirrored at l, then

‖m1 −m′2‖ = ‖m2 −m′1‖

holds.
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