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Abstract. We address the problem of recovering a low-rank matrix that has a small fraction of its
entries arbitrarily corrupted. This problem is recently attracting attention as nontrivial extension of
the classical PCA (principal component analysis) problem with applications in image processing and
model/system identification. It was shown that the problem can be solved via a convex optimization
formulation when certain conditions hold. Several algorithms were proposed in the sequel, including
interior-point methods, iterative thresholding and accelerated proximal gradients. In this work we
address the problem from two completely different sides. First, we propose an algorithm based on
the Douglas-Rachford splitting technique which has inherent convergence guarantees. Second, we
propose, based on algorithms from rank minimization and sparse vector recovery, a computation-
ally efficient greedy algorithm that scales better to large problem sizes than existing algorithms.
We compare the performance of these proposed algorithms to the accelerated proximal gradients
algorithm.

Keywords. PCA, rank minimization, nuclear norm minimization, sparse error, Douglas-Rachford
splitting, greedy algorithms

1. Introduction

In recent years, the amount of data that needs to be an-
alyzed, stored or simply handled has been constantly in-
creasing. Fortunately, high-dimensional data can often be
modeled as lying in (or close to) a low-dimensional subspace
of the ambient dimension. Under this assumption, an ap-
proximate representation can be recovered via a principal
component analysis (PCA). This problem of finding a low-
rank approximation to the given data appears in a number
of applications [1], e.g., in image processing, bioinformatic
data, system identification.

The classical PCA problem [1] fits a low-rank matrix L to
a given data matrix M while trying to minimize the norm
of the error S =M − L:

minimize
(L,S)

||S||F , s.t. rank(L) ≤ r, M = L+ S,

where ||.||F denotes the Frobenius norm, and M,L and
S ∈ Rn×n. (The restriction on square matrices is only
chosen to simplify the notations.) By the Schmidt-Eckart-
Young Theorem [2], the minimizer of this problem is given
by truncating the singular value decomposition (SVD) of
M , retaining only the contribution of its r largest singular
values. If M = L0 + S0 originates from a low-rank matrix
L0 (rank(L0) ≤ r) and S0 contains Gaussian noise (en-
tries of S0 distributed as N (0, σ2) with σ2 small), then the

truncated SVD will recover a matrix L̂ ≈ L0. However, if

S0 contains very large entries (outliers) then the truncated
SVD will return a matrix that is largely deviating from L0,
even if S0 only affects a small fraction of the entries of L0.
In other words, if S0 models a sparse error, i.e., it repre-
sents a small number of largely corrupted entries of L0, the
truncated SVD will fail to recover L0 (in most cases).
Recently, [3] and [4, 5] showed independently from each

other that under certain assumptions (on L0 and S0) one
can exactly recover the low-rank matrix L0 fromM = L0+
S0, where S0 is a sparse matrix, by solving the following
convex optimization problem:

minimize
(L,S)

||L||∗ + λ||S||1, s.t. M = L+ S,(1)

where λ ∈ R is a trade-off parameter between the rank of
L and the sparsity of S. Recovery was shown for λ = 1√

n
.

Here, ||L||∗ =
∑n

i=1 σi(L) denotes the nuclear norm, i.e.
the sum of the singular values of L. ||S||1 is the ℓ1 norm of
the matrix S when transformed into a vector, i.e., ||S||1 =∑

(i,j) |Sij |.
We will refer to problem (1) as Principal Component Pur-
suit (PCP), following the naming in [5]. This problem is a
convex relaxation of the problem:

minimize
(L,S)

rank(L) + λ||S||0, s.t. M = L+ S.(2)

Here, ||S||0 denotes the so-called ℓ0-norm which counts the
number of non-zero entries of S.
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Note that in general, the minimization problem (2) will
not recover (L0, S0). Consider the matrix M = e1e

∗
1 that

contains zeros in all entries exceptM1,1 = 1. As this matrix
is both sparse and low-rank, there is no hope of recovering
the ”correct” pair (L0, S0). The existence of minimizers
of (1) is guaranteed by the coercivity [6] of the objective
function ||L||∗ + λ||S||1.
Recently, a number of different algorithms was proposed

to solve the convex minimization problem (1) or to give
near solutions to it. For example, problem (1) can eas-
ily be reformulated as a semidefinite problem and then
be solved with off-the-shelf solvers that use interior point
methods [3]. Interior point methods have superior con-
vergence guarantees, however, they scale badly for large
matrices, having a complexity of O(n6) to solve the asso-
ciated Newton system. Thus, this approach is limited to
matrices up to size of about 100× 100. In [4], an iterative
thresholding algorithm was introduced to solve a variant of
(1), adding a term containing the norm of L and S to the
cost function. This enabled them to solve the problem for
matrices of size 800×800 in several hours on a normal PC.
The most recent algorithms that were proposed for this set-
ting are proximal gradient algorithms [7], where the ideas
of FISTA (fast iterative soft thresholding algorithm) were
applied to the PCP problem, also slightly modifying the
cost function. In [7], proximal gradient algorithms were
shown to solve (1) for data sizes of 2000 × 2000 in some
hours.

This paper is organized as follows: In Section 2 we will
discuss applications and give more detail on the equiva-
lence conditions of problem (1) and (2). Then we are set
to propose and analyze new algorithms for (1) and (2)
which we will introduce in the sections 3 and 4. In Sec-
tion 3 we will focus on the usage of the Douglas-Rachford
splitting technique [8]. This will result in a new algorithm
which provenly converges to a minimizer of (1) and outper-
forms the well performing accelerated proximal gradient al-
gorithm proposed in [7]. Then, we will shift focus and con-
sider directly solving (2) via a greedy approach in Section 4.
Utilizing algorithms from low-rank matrix recovery/sparse
vector approximation, we will propose a new greedy algo-
rithm which is computationally very efficient and which will
allow us to solve the problem for a 2000× 2000 matrix in
less than 2 minutes on a desktop PC. The advantage of this
algorithm is the low computation cost together with good
scaling properties to large-scale problem instances. How-
ever, it relies on the knowledge of the approximate rank
and sparsity of the underlying decomposition (L0, S0). We
conclude by evaluating and illustrating the performance of
the proposed algorithms in Section 5.

2. Preliminaries

2.1. Principal Component Pursuit – Applications

The PCP setting appears in various applications, including:

Sensor failure: If the data in the matrix is collected via

sensors, the failure of a portion of the sensors will lead to
large errors in these entries. This can be modelled as a
sparse error matrix.
Face recognition[4]: It is known that images from a con-

vex Lambertian surface lie in a low-dimensional subspace
(approximately 9-dimensional, [9]). Faces can be modeled
as such a surface and therefore, sets of images of faces will
lie close to low-dimensional surface. Sparse errors then can
represent shadows, specularities or occlusions. In Section
5 we show an example, Figure 6, of such a decomposition.
Note that each of the three images in Figure (6b), (6c) and
(6d) corresponds to one of the columns of the matrices M ,
L and S respectively, as shown schematically in Figure 6a.
Video surveillance – Background modelling in video anal-

ysis [4]: The frames of a video can often be modelled as a
low-rank background (almost static scene with changing
illumination) and a part corresponding to movements in
the scene. The part of the image, where movement occurs
will be small, so we can model this as a sparse matrix. The
decomposition low-rank + sparse will then return the back-
ground as low-rank and the movement as sparse matrices.
Other applications are found in System identification[3],

i.e., the identification of a system which is the superpo-
sition of a low-order LTI system and a LTI system with
a sparse impulse response, Latent Semantic Indexing, e.g.
document-versus-termmatrices used in web search engines,
andRanking and Collaborative Filtering, e.g., recommender
systems, see [5].

2.2. Theoretical background – when does the

convex relaxation yield exact recovery

In the introduction, we mentioned that the equivalence of
problem (1) and (2) depends on some properties of the
solution pair (L0, S0). In this section, we will present the
recovery result of [5] which uses the following definition to
quantify the incoherence of L0.

Definition 1. (Incoherence condition with parame-
ter µ) Let L = UΣV T be a singular value decomposition
of the matrix L, with U, V ∈ Rn×r, Σ ∈ Rr×r and r stands
for the rank of L. We say that L fulfills the incoherence
condition with parameter µ iff

max
i∈{1,...,n}

||PUei||2 ≤ µr

n
, max

i∈{1,...,n}
||PV ei||2 ≤ µr

n
,

||UV T ||∞ ≤
√
µr

n2
,

where ||.|| denotes the Euclidean norm of Rn, ||.||∞ the ℓ∞-
norm of Rn×n, ei ∈ Rn are the standard basis vectors (i-th
entry of ei = 1, zero otherwise) and PU : Rn → R

n is the
metric projection onto the space spanned by the columns
of U .

The incoherence parameter µ has the following proper-
ties: Its value lies within the interval µ ∈ [1, n

r
]. It is also

connected to the entries of U (and V ). If all entries of U
(and V ) have an absolute value of 1√

n
then µ is minimal,
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i.e., µ = 1. If one of the column vectors of U (or V ) is a
basis element ei then µ is maximal, i.e., µ = n

r
. The in-

coherence parameter µ only depends on U and V and not
on the singular values of L, i.e., the singular values of the
low-rank matrix can take arbitrary values.

The properties of the sparse error matrix S0 can be de-
scribed as follows. We want the support of the non-zero en-
tries to be well-distributed over the whole matrix, in order
to avoid corruption of whole blocks or whole rows/columns
of L0. Thus we assume that S0 has s = ρsn

2 non-zero en-
tries (an equivalent description is that a fraction ρs of the
entries of L0 is corrupted), whose location is chosen uni-
formly at random from all possible support sets of size s.
We only impose a condition on the support of S0, whereas
the magnitude of the non-zero entries can be arbitrary.

If (L0, S0) has these properties, then it was shown in [5]
that with very high probability the convex minimization
problem (1) has (L0, S0) as unique minimizer (λ = 1√

n
):

Theorem 1 ([5], Theorem 1.1). Suppose L0 is n× n and
obeys the incoherence property with parameter µ, and that
the support set of S0 is uniformly distributed among all
sets of cardinality s. Then there is a numerical constant
c such that with probability at least 1 − cn−10 (over the
choice of support of S0), Principal Component Pursuit with

λ = 1/
√
n is exact, i.e., the solution (L̂, Ŝ) of (1) satisfies

L̂ = L0 and Ŝ = S0, provided that

rank(L0) ≤ crnµ
−1 (logn)−2 and s ≤ csn

2.

Above, cr and cs are positive numerical constants. These
constants do not depend on n, so for n→ ∞, the probability
of success approaches perfect recovery, i.e., 1− cn−10 → 1.

The equivalence of (1) and (2) was also shown for two
different settings. In [10], the authors discuss changing
λ for guaranteeing recovery when the fraction of known
entries ρs gets large (ρs → 1). In [11], recovery guarantees
are derived for the case of added Gaussian noise (M ′ =
M +N , where the entries of N are drawn from a Gaussian
distribution).

3. Algorithm based on the

Douglas-Rachford splitting

technique

In this section we will derive a new algorithm for solving
the Principal Component Pursuit (1) based on the Douglas-
Rachford splitting technique.

We first need to fix some notation. Let Γ0(H) denote the
class of all lower semicontinuous convex functions from a
real Hilbert space H to (−∞,∞] which are not identically
equal to +∞. We denote the norm on H with ||.||H.

The Douglas-Rachford splitting technique has a long his-
tory [8, 12]; it addresses the minimization of the sum of two
functions (f + g)(x), where f and g are assumed to be el-
ements of Γ0. It was recently extended in [13] for the min-
imization of a sum over multiple functions in Γ0, based on

a product space formulation. The Douglas-Rachford split-
ting was also identified as an instance of a Mann iteration
[14].
The Douglas-Rachford splitting algorithm approximates

a minimizer of (f + g)(x) with the help of the following
sequence (xn)n≥0:

xn+1 := xn + tn
{
proxγf

[
2 proxγg(xn)− xn

]
(3)

− proxγg(xn)
}
,

where (tn)n≥0 ⊂ [0, 2] satisfies
∑

n≥0 tn(2− tn) = ∞.
In [13], more involved versions of this process are studied in
view of unavoidable numerical errors during the calculation
of the iterates.
Under certain conditions (see Theorem 2 for details), the
iteration process (3) converges (weakly) to a point x̃, which
has the property that proxγg(x̃) is a minimizer of (f+g)(x).
The proximal map, proxγf , is defined as

proxγf x = argmin
y∈H

{
f(y) +

1

2γ
||x− y||2H

}
.(4)

Let H0 denote the Hilbert space given by the 2-fold Carte-
sian product of Rn×n, i.e., H0 := Rn×n × Rn×n.
As inner product on H0, we use for X := (X1, X2), Y :=
(Y1, Y2) ∈ H0:

〈X,Y 〉H0
:=

1

2
〈X1, Y1〉+

1

2
〈X2, Y2〉(5)

=
1

2
trace(XT

1 Y1) +
1

2
trace(XT

2 Y2).

The norm on H0 is induced by 〈., .〉H0
, i.e.,

||X ||2H0
:= 〈X,X〉H0

=
1

2
||X1||2F +

1

2
||X2||2F .

We can recast problem (1) into the unconstrained mini-
mization of (f + g)(x) as follows:

minimize
Z∈H0

f(Z) + g(Z),

where Z = (Z1, Z2), D =
{
Z ∈ H0

∣∣ M = Z1 + Z2

}
,

f(Z) :=

2∑

i=1

fi(Zi) = ||Z1||∗ + λ||Z2||1(6)

and

g(Z) := iD(Z) =

{
0, if Z ∈ D
+∞, otherwise .

(7)

This problem formulation is equivalent to (1), so we only
need to identify the proximal maps of f and g in order to
use algorithm (3).
The proximal map of f is given by

proxγfX = argmin
Y ∈H0

{
2∑

i=1

fi(Yi) +
1

2γ
||Y −X ||2H0

}

= argmin
Y ∈H0

{
2∑

i=1

fi(Yi) +
1

2

2∑

i=1

(
1

2γ
||Yi −Xi||2F

)}

=
(
prox2γf1 X1, prox2γf2 X2

)
,
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where we used (4) and (5).
The proximal map of the nuclear norm function, i.e., f1,

is the shrinkage operator; this operator performs a soft-
thresholding operation on the singular values of the matrix
it is applied to.

proxτf1 T = argmin
Y ∈Rn×n

{
||Y ||∗ +

1

2τ
||Y − T ||2F

}

= shrink (T, τ) .

Let T = UTΣTV
T
T be a singular value decomposition of

the matrix T ∈ Rn×n. Then, ΣT = diag(σ1(T ), . . . , σr(T ))
is a diagonal matrix containing the singular values σk(T )

on the diagonal. Define Σ̃T as the diagonal matrix that
contains the singular values shrunk by τ on the diagonal,
i.e.,

Σ̃T := diag(max{σ1(T )− τ, 0}, . . . ,max{σr(T )− τ, 0}).

Then, the singular value shrinkage operator is given by

shrink(T, τ) := UT Σ̃TV
∗
T .

So the first component of the proximal map of f is:

prox2γf1 X1 = shrink (X1, 2γ) ,

The second component’s proximal map reduces to a soft-
thresholding of the entries of the matrix.

prox2γf2 X2 = argmin
Y2∈Rn×n

{
λ||X2||1 +

1

2 · (2γ) ||Y2 −X2||2F
}

= soft threshold (X2, 2γλ)

The soft-thresholding operator is defined entry-wise

soft threshold(Xij , τ) = sign(Xij) ·max (0, |Xij| − τ) .

Finally, the proximal map of the indicator function iD is
the metric projection PD onto the set D is given by:

PD(Z1, Z2) := argmin
(X1,X2)∈D

||(X1, X2)− (Z1, Z2)||H0

= (M + Z1 − Z2,M − Z1 + Z2)/2.

Having identified all ingredients, we can now special-
ize the Douglas-Rachford splitting algorithm of (3) to this
choice of f and g ((6) and (7)):

(DR-PCP): Douglas-Rachford splitting algorithm

input: M , tk, λ

initialization: L(0) = S(0) = 0

repeat until convergence:

(L̂, Ŝ) = PD(L(k), S(k))

L(k+1) = L(k) + tk

(
shrink(2L̂− L(k), 2γ)− L̂

)

S(k+1) = S(k) + tk

(
soft threshold(2Ŝ − S(k), 2λγ)− Ŝ

)

k = k+1

output: (L, S) = PD(L(k), S(k))

Only a slight change in the definition of the set D is
necessary in order to cover the noisy case, where instead of
equality M = L+ S, we will consider ||M − L− S||F ≤ δ.
Let

Dnoise :=
{
(Z1, Z2)

∣∣ ||M − Z1 − Z2||F ≤ δ
}

and V := (Z1, Z2) − PD(Z1, Z2). Then the metric projec-
tion onto Dnoise, i.e.,

PDnoise
(Z1, Z2) =

{
(Z1, Z2), if ||V ||H0

≤ δ,

PD(Z1, Z2)+δ
V

||V ||H0

, otherwise,

is the proximity operator of

g′(Z) := iDnoise
(Z) =

{
0 if Z ∈ Dnoise

∞ otherwise .
(8)

Another way to cover the noisy case is to minimize f+g′′

with g′′ defined as

g′′(Z1, Z2) :=
µ

2
||M − Z1 − Z2||2F .(9)

The corresponding proximity operator proxγg′′(X) is

proxγg′′(X1, X2)

=
1

(µ+ ν)2 − µ2

(
νµM + ν(ν + µ)X1 − νµX2

νµM − νµX1 + ν(ν + µ)X1

)T

where ν := 1
2γ .

An algorithm for the noisy problem setting is then im-
mediately obtained by replacing the proximal map of g in
(DR-PCP) with the proximal map of g′ or g′′.

3.1. Convergence of the Douglas-Rachford split-

ting

In order to state a convergence theorem of the Douglas-
Rachford splitting algorithm, we need the notion of do-
main (dom(f)) of a function f : Define dom(f) := {x ∈
H | f(x) <∞} and

dom(f)− dom(g)

:=
{
x1 − x2 ∈ H

∣∣ x1 ∈ dom(f) ∧ x2 ∈ dom(g)
}
.

The following theorem states the convergence properties
of the Douglas-Rachford splitting algorithm (3):

Theorem 2 ([14]). Let f, g ∈ Γ0(H) satisfy
S := argmin

x∈H
{f(x) + g(x)} 6= ∅. Suppose that

cone( dom(f)− dom(g))(10)

:=
⋃

λ>0

{
λx

∣∣ x ∈ dom(f)− dom(g)
}

is a closed subspace of H. Then the sequence (xn)
∞
n=0 gen-

erated by (3) converges weakly to a point in (proxγg)
−1(S).

This holds for any initial value x0 ∈ H, any γ ∈ (0,∞) and
any (tn)n≥0 ⊂ [0, 2] that satisfies

∑
n≥0 tn(2− tn) = ∞.
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We will show that condition (10) holds for the DR-PCP
algorithms.

Lemma 1. The qualifying condition (10) holds for the
functions f and g as defined in (6) and (7). The same
is true for (f, g′) and (f, g′′) as defined in (8) and (9).

Proof. The domain of f , dom(f), is the whole space H0,
as f(X1, X2) = ||X1||∗ + λ||X2||1 < ∞, ∀(X1, X2) ∈ H0.
From (7) it follows immediately that

dom(g) = {(X1, X2) | M = X1 +X2} .

Thus, dom(f) − dom(g) = H0, therefore cone(H0) = H0

and (10) holds. As both dom(g′) = Dnoise and dom(g′′) =
H0 are non-empty, and dom(f) = H0, we have dom(f) −
dom(g′) = dom(f)− dom(g′′) = H0. Thus, (10) also holds
for g′ and g′′.

Applying Lemma 1 to Theorem 2, we can now state the
convergence of algorithm (DR-PCP):

Theorem 3. Let all parameters of the algorithm (DR-
PCP) be chosen as in Theorem 2. Then PD(L(k), S(k))
converges to a minimizer of (1).

4. Greedy algorithms

We were inspired by recent work on greedy algorithms for
compressed sensing and low-rank matrix recovery to devise
a greedy algorithm for problem (1), as it contains both
an ℓ1-minimization part and a nuclear norm minimization
part.1 We build upon two algorithms, namely CoSaMP
[16] and Admira [17].
CoSaMP is a greedy algorithm which solves the s-sparse

vector approximation problem

minimize
x∈Rn

||Ax − b||2, s.t. ||x||0 ≤ s.(11)

Linear convergence of the algorithm to the sparsest vector
lying close to the affine subspace defined by Ax = b can
be guaranteed if the linear map A : Rn → Rm fulfills the
restricted isometry property with a small constant δ [16].
The CoSaMP algorithm uses the following iterative process
to obtain a solution:

CoSaMP

input: A, b, s

initialization: x̂ = 0, Ω̂ = 0

repeat until convergence:

Ω′ = argmax
Ω⊂{1,...,n}

{
||PΩ (A∗(b−Ax̂)) ||2 : |Ω| ≤ 2s

}

Ω̃ = Ω̂ ∪ Ω′

x̃ = argmin
x∈Rn

{
||b−Ax||2 : supp(x) ∈ Ω̃

}

Ω̂ = argmax
Ω⊂{1,...,n}

{PΩ(x̃) : |Ω| ≤ s}

x̂ = PΩ̂(x̃)

output: x̂

1A short version of the content of this section was presented by
the authors at the conference ICASSP 2010, [15].

The first line of the inner loop finds the best possible
support set of size at most 2s (|Ω| returns the number
of elements of Ω) for the approximation of the residual
(b − Ax̃) from the last iteration. Here, A∗ : Rm → Rn

denotes the adjoint of A and PΩ : Rn → Rn stands for
the projection onto the entries indexed by the set Ω, as
given by the entry-wise definition: (PΩ(ξ)) (i) = ξi if i ∈ Ω
and (PΩ(ξ)) (i) = 0 if i 6∈ Ω. Then the best solution us-
ing the union of this support set and the support set from
the previous iteration is calculated (x̃, having at most 3s
non-zeros). Finally, x̃ is then truncated to contain only s
non-zeros.
The second algorithm, Admira (Atomic Decomposition

for Minimum Rank Approximation, [17]), solves the rank-r
approximation problem:

minimize
X∈Rn×n

||A(X)− b||2, s.t. rank(X) ≤ r.(12)

The convergence properties are similar to CoSaMP. Linear
convergence of Admira to the best rank-r approximation
of the minimal rank solution of A(X) = b is guaranteed
[17], if the linear map A : Rn×n → Rm fulfills the rank-
restricted isometry property [18] with a low constant δr.
This condition holds with high probability if, for exam-
ple, the matrix representation of the linear map A contains
Gaussian distributed entries and the number of measure-
ments m is large enough [18]. However, the special case
when A ”samples” a subset of the entries of the matrix,
as appearing in the matrix completion problem [19], is not
covered in the analysis of the convergence rate [17]. The
update step of Admira parallels the CoSaMP algorithm.
We use the same notation as in [17]. Ψ stands for a set of
rank-one matrices, the so-called atoms. O denotes the set
of atoms of Rn×n, A∗ : Rm → R

n×n denotes the adjoint of
A and PΨ(Z) : R

n×n → Rn×n denotes the metric projec-
tion of a matrix Z onto the space spanned by the elements
of the set Ψ.

Admira

input: A, b, r
initialization: X̂ = 0, Ψ̂ = 0

repeat until convergence:

Ψ′ = argmax
Ψ⊂O

{
||PΨ

(
A∗(b−A(X̂))

)
||F : |Ψ| ≤ 2r

}

Ψ̃ = Ψ′ ∪ Ψ̂

X̃ = argmin
X∈Rn×n

{
||b−A(X)||2 : X ∈ span(Ψ̃)

}

Ψ̂ = argmax
Ψ⊂O

{
||PΨ(X̃)||F : |Ψ| ≤ r

}

X̂ = PΨ̂(X̃)

output: X̂

The first line of the inner loop finds the best possible set
of atoms of size at most 2r for the approximation of the
residual from the last iteration. Next, the best solution
using the union of these atoms and the atoms from the
previous iteration is calculated (X̃, containing at most 3r

atoms). Finally, X̃ is truncated to use at most r atoms.



152 Journal of Mathematics for Industry, Vol.2(2010B-5)

Summarizing the above, the algorithm CoSaMP finds
the sparsest solution by solving the problem of finding the
best s-sparse approximation w.r.t. the error on the the lin-
ear constraints. Along the same lines, Admira finds the
minimal rank solution by solving the problem of finding
the best rank-r approximation. Of course, the solution of
CoSaMP can only be exact, if the sparsest solution has a
sparsity less or equal to s. The same holds for Admira,
which returns the minimal rank solution if the rank of the
minimal rank solution is less than or equal to r.
We will use the same approach for problem (2). Given a

data matrixM , we fix a target rank r and a target sparsity
s and solve:

argmin
(L,S)

||M − S − L||F s.t. rank(L) ≤ r, ||S||0 ≤ s(13)

The idea is to alternatingly use CoSaMP and Admira

to update L and S respectively. The problem setting (13)
tries to split a sum M into its parts (L0, S0). In con-
trast to (11) and (12), there are no linear measurements
(A /A) involved. Therefore, direct application of Admira

and CoSaMP simplifies to the following algorithm, which
we name Atomic Decomposition Alternating Least Squares
(AD ALS):

Algorithm (AD ALS):

input: M, s, r

initialization: L(0) = S(0) = 0, Ψ(0) = ∅, k = 0

repeat until convergence:

1. Update S:

S(k+1)= argmin
S∈Rn×n

{
||M−L(k)−S||F : |supp(S)| ≤ s

}

2. Update L:

Ψ′= argmax
Ψ⊂O

{
||PΨ

(
M−S(k+1)−L(k)

)
||F : |Ψ| ≤ 2r

}

Ψ̃ = Ψ′ ∪Ψ(k)

L̃ = argmin
L∈Rn×n

{
||M − S(k+1) − L||F : L ∈ span(Ψ̃)

}

Ψ(k+1) = argmax
Ψ⊂O

{
||PΨ(L̃)||F : |Ψ| ≤ r

}

L(k+1) = PΨ(L̃)

k = k + 1

output: (L, S) = (L(k), S(k))

The update of S simply computes the best s-sparse ap-
proximation to the residual M − L(k). (This is all that
remains from the CoSaMP algorithm). The step to com-
pute L(k+1) is a little bit more involved. The first step in
the update of L is the calculation of a set of 2r (rank-one)
matrices that represent the singular spaces of the best rank-
2r-approximation of the new residual M − L(k) − S(k+1).
Then, the best approximation to M − S(k+1) within the
space spanned by the elements in Ψ′ is calculated. Thus,
L̃ is a linear combination of the 2r atoms computed before
and the r rank-one matrices which are derived from the
singular vectors of L(k). ([17]: Ψ(k+1) contains the r ma-

trices ψ
(k+1)
i which are the products of the right and left

singular vectors ui and vi belonging to r largest singular

values of L̃: ψ
(k)
i = uiv

T
i , Ψ

(k) = {ψ(k)
i }).

Algorithm (ALS):
We also introduce a further simplified version of AD ALS,
the alternating least squares (ALS) algorithm.
ALS updates S and L via alternately minimizing the resid-
ual. Therefore, step 1 (update of S) stays as stated above.
Step 2 is changed to:

2’. Update L:
L(k+1) = argmin

L

{
||M − S(k+1) − L||F : rank(L) ≤ r

}
,

whose minimizer can be computed via a truncated SVD of
the matrix M −S(k+1). The algorithms ALS and AD ALS
depend strongly on a good choice of the target rank r
and the target sparsity s. If no target rank r and target
sparsity s is given, then it is reasonable to run the algo-
rithm for increasing pairs (r, s) and to choose the minimal
pair (L̄(r, s), S̄(r, s)) that achieves a small enough residual
||M − L̄− S̄||F .
It is not an easy task to give any theoretical convergence

guarantees. The algorithms CoSaMP and Admira deduce
their convergence rates from properties of the linear map
A (resp. A) when applied to sparse vectors/low-rank ma-
trices. In the current setting, no such tool is available.

The error is guaranteed to decrease in each step, but the
algorithm can become stationary if a new iterate of the
sequence L(k) decreases the residual such that S(k+1) =
S(k). Then, the algorithm stays stationary with this pair
(L(k), S(k)).

5. Numerical Experiments

We randomly generated an input pair (L0, S0) as follows:
L0 := XLX

T
R , where XL, XR ∈ Rn×r with the entries of

XL, XR being i.i.d. Gaussian variables with mean 0 and
variance 1. We chose the support set of S0 uniformly at
random from all support sets of size ρsn

2. The non-zero en-
tries are independently drawn from a uniform distribution
on [−500, 500]. We fixed λ = 1√

n
in the experiments.

We used the same simulation setting as in [7], in order
to be able to roughly compare the results. The numerical
experiments in [7] showed that the proximal gradient al-
gorithms outperform iterative thresholding. Therefore we
will limit our comparison to the proximal gradient algo-
rithm APG, [7].

Implementation: We used Lanczos iterations to calcu-
late the truncated SVDs, i.e., we only calculate the largest
singular values and their singular vectors, in order to avoid
the computational burden of a complete singular value de-
composition.
The tests were run on an Intel (R) Core(TM) 2 Quad

CPU (four cores) with 3.0 GHz. In [7] a Mac Pro com-
puter having eight cores and 2.8 GHz was used. Thus,
the machine specifications are rather close, so we expect
comparable computation times.
The algorithms are empirically stable w.r.t. additional

small Gaussian noise affecting M , as the problem formula-
tion (13) is robust to additional noise contained within M .
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We ran experiments using a perturbed data matrix M ,

M = L0 + S0 +N,(14)

where N contains Gaussian noise, i.e., the entries of N
are distributed as N (0, σ2), with sufficiently small σ2. The
algorithms recovered (L0, S0) up to noise level (as given by
||N || which depends on σ) as long as the pair (L0, S0) was
low-rank and sparse enough. In [11], recovery guarantees
for the data model (14) which contains the added noise N
are available.
We compared ALS and AD ALS on several runs, with

typical outputs shown in Figure 1. The number of neces-
sary iterations was slightly higher for ALS than for AD ALS,
but the overall behavior of the Admira-inspired algorithm
and ALS is similar, as expected. ALS is computationally
less expensive, as it avoids computing the projection of
D − E(k) onto the 3r-dimensional subspace, which is an
additional least squares problem.
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Figure 1: Two typical runs of the algorithms AD ALS and
ALS: On the left, no Gaussian error (N , see (14) was added
and the relative error on L0 approaches zero. On the right,
the relative error reaches the noise level after few iterations.

Figure 2 shows the recovery performance of AD ALS.
For small values of r = rank(L0) and a very sparse matrix
S0, the figure shows perfect recovery in all tries. This result
shows the same type of transition from recovery in all tries
to non-recovery as is to be expected for the direct mini-
mization of the convex problem formulation (1). In [4], a
similar figure was given for a proximal gradient algorithm.
Figure 3 was obtained from the same setting as Figure 2.

We additionally introduced a mismatch between the cor-
rect rank/sparsity of (L0, S0) and the target rank/target
sparsity of the algorithm. The greedy algorithms depend
strongly on the parameters. It is obvious that the perfor-
mance degraded from Figure 2 to Figure 3. However, for
small values of the rank and the sparsity, perfect recovery
occurs despite the presence of the mismatch.
Next, we compared the computation time of our algo-

rithms (AD ALS / ALS), DR-PCP and APG (accelerated
proximal gradient, [7]) in Table 1. The setting is r = 0.05n
and ρs = 0.1. AD ALS is outperforming APG and DR-
PCP already in the case of small problem sizes, i.e., where
n ∈ {100, . . . , 800}. The times for ALS are not shown,
but ALS converges even faster. We set the stopping crite-
rion such that the algorithms stopped with a relative error
of about 10−5. The algorithm DR-PCP converges slightly

faster than the APG algorithm. The algorithms APG and
DR-PCP have the same amount of prior information, as
neither of them assumes knowledge of a target rank and
target sparsity. So the speed-up of the algorithm AD ALS
is based on this additional information.
Table 2 shows the comparison of the computation time

for a large-scale problem (n = 2000). These experiments
demonstrate the effectiveness of the proposed ALS method.
We used a heuristic for the Douglas-Rachford splitting al-
gorithm to obtain the values in this table. As the perfor-
mance depends largely on the singular value decomposition
we approximated the output of the shrinkage operator as
follows. We introduced a bound of 0.2n as maximal num-
ber of singular values of 2L̂ − L(k) that were computed
and shrunk. Once the iterations get close to the solution,
this bound has no effect, however in the first iterations this
heuristic speeds up the calculation of the shrinkage oper-
ator. With this heuristic, our algorithm was faster than
APG.
Due to a non-optimized ad-hoc implementation that we

used to test AD ALS, we ran into memory problems for
problem sizes of n = 2000. Therefore, we only compare
APG and ALS. ALS is by far faster than APG, recovering
the input pair (L0, S0) in less than 2 minutes (compared to
some hours for APG).

AD_ALS experimental recovery rate: n =100, 30 tries

ρ
s
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r

2.5 7.5 12.5 17.5 22.5 27.5 32.5

35
32
30
27
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22
19
17
15
12
10
7
5
2

Figure 2: Recovery of (L0, S0) depending on the rank r of
L0 and the sparsity ρs of S0. White denotes recovery in
all experiments, whereas black denotes no recovery. The
matrix size was fixed to n = 100 and 30 trials run for each
pair (r, ρs). The algorithm was stopped after 50 iterations.

We experimented with image data and the ALS algo-
rithm next. Figures 4 and 5 show two examples of im-
ages that are a superposition of a background image and
a sparse addition. The background in these examples is
low-rank, thus making the separation of the two layers by
Principal Component Pursuit possible. In the part (a) of
the figures, we show the input to the ALS algorithm. The
algorithm is able to identify the position of the errors and
to split the input into the background image (b) and the
text image (c). We inverted the colors black and white in
the representation of (c) purely for esthetical reasons.
The following example is an application of the Douglas-
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AD_ALS experimental recovery rate: n =100, 40 tries
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Figure 3: The parameter setting is equal to the one in
Figure 2, but with a non-optimal setting of the target rank
and the target sparsity. The mismatch was set to 5 percent,
i.e., rtarget = 1.05 ·r = 1.05 · rank(L0) and ρ

target
s = 1.05 ·ρs

Table 1: Comparison of the computation time for different
matrix sizes n. APG (Accelerated Projected Gradient) is
significantly slower than AD ALS (r = 0.05n, ρs = 0.1.
The algorithm DR-PCP is slightly faster than the APG
algorithm.

APG [7] AD ALS

n ||L̄−L0||F
||L0||F time (s) ||L̄−L0||F

||L0||F time (s)

100 3.4× 10−5 3.1 9.9× 10−6 0.35

200 2.2× 10−5 16 4.9× 10−6 1.1

400 1.6× 10−5 111 7.1× 10−6 8.2

800 1.1× 10−5 766 4.5× 10−6 68.9

DR-PCP

n ||L̄−L0||F
||L0||F time (s)

100 1.15× 10−5 2.2

200 6.5× 10−6 10.3

400 1.15× 10−5 39

800 1.28× 10−5 220

Rachford splitting algorithm DR-PCP (using the noisy for-
mulation with Dnoise) to images from the Yale B database
[20]. This database contains images of faces taken under
different illumination conditions. The images are already
aligned, so the position of the face in the different im-
ages does not change. We used 58 images and converted
each image into a vector. These vectors were used as the
columns of the matrix M , as shown in Figure 6a. After
decomposing M into the matrices L and S, we reinter-
preted the columns of these matrices as images. Figures
(6b) - (6d) show the results of such a decomposition. The
”sparse” image (column vector of the matrix S) contains
the specularities and shadows that were contained in the
images, whereas the low-rank part is a regularized version
of the original image.

Table 2: Large-size example: Alternating least squares re-
covers (L0, S0) of sizes 2000 × 2000 matrix in less than 2
minutes, even if the rank is 0.1n = 200 and 400000 en-
tries are corrupted. The accelerated proximal gradient al-
gorithm needs some hours in the same setting.

n = 2000, rel. error ||L̄−L0||F
||L0||F

rank(L0)/n ||S0||0/n2 APG [7] ALS DR-PCP

0.05 0.05 14 300 s 29.9 s 2037 s

0.05 0.1 14 700 s 67.8 s 2875 s

0.1 0.1 14 300 s 95.5 s 3652 s

6. Discussion

In this paper, we proposed new algorithms for the Princi-
pal Component Pursuit based on two different principles.
The algorithm DR-PCP is based on the Douglas-Rachford
splitting technique. It shows similar to better results com-
pared to the well-performing accelerated proximal gradient
algorithm [7]. We proved the convergence of this algorithm
and its variants to a minimizer of the Principal Component
Pursuit problem. The algorithm DR-PCP does not rely on
any information on the rank/sparsity level of the underly-
ing decomposition. We showed results of the algorithm’s
performance on a face recognition task, where specularities
and shadows were identified correctly by the algorithm.

Then we presented two computationally efficient greedy
algorithms (AD ALS and ALS) for the robust principal
component analysis problem. The main point of interest
of these greedy algorithms is that they are the analog of
CoSaMP and Admira for the PCP problem. AD ALS al-
ternates the update of S and L by using CoSaMP to com-
pute S(k+1) and ADMIRA to compute L(k+1). As there
is no linear map A (resp. A) that acts on L or S involved
in the linear constraint, the proposed algorithm essentially
boils down to the alternating least squares algorithm, given
by ALS. ALS also alternates the updates of S and L, but
ALS is even simpler than AD ALS because L(k+1) in ALS
is obtained via one truncated SVD. Although these are very
straightforward algorithms, they still show very good per-
formance and can easily handle large data matrices. How-
ever, in order to be of practical importance it is necessary to
have a good estimate of the expected rank r of the low-rank
matrix L0 and the sparsity level of S0 as they are crucial
parameters of the algorithm. For the optimal parameter
choice of r and s we outperform the state-of-the-art algo-
rithm APG, the accelerated proximal gradient algorithm.
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(a) input to the algo-
rithm

(b) low-rank output (c) sparse (b/w inverted)

Figure 4: Splitting of an input image into a low-rank scene
(image of the facade of a building) and a sparse image,
representing the text part of the image
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