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Abstract. The d-inverse is a generalized notion of inverse of a stochastic process having a certain
tendency of increasing expectations. Scaling limit of the d-inverse of Brownian motion with func-
tional drift is studied. Except for degenerate case, the class of possible scaling limits is proved to
consist of the d-inverses of Brownian motion without drift, one with explosion in finite time, and
one with power drift.
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1. Introduction

For (general) stock price S = (St)t≥0, the European call
option price with strike K and maturity t is given as

C(t) := E [max {St −K, 0}] .(1.1)

Suppose that the stock price is given as the geometric
Brownian motion with volatility σ > 0 and drift µ ∈ R:

dSt = σStdBt + µStdt, S0 = s0 ∈ (0,∞),(1.2)

where B = (Bt)t≥0 denotes a one-dimensional standard
Brownian motion. Letting µ̃ = µ − σ2/2, we have an ex-
plicit expression of S = S(σ,µ) as follows:

S
(σ,µ)
t = s0 exp (σBt + µ̃t) .(1.3)

If µ̃ = −σ2/2, then we may express C(t) explicitly, in
terms of the cumulative distribution function of the stan-
dard Gaussian

N (x) =

∫ x

−∞
e−x2/2dx/

√
2π,(1.4)

as

C(t) =s0N
(
− 1

σ
√
t
log

K

s0
+

1

2
σ
√
t

)
−KN

(
− 1

σ
√
t
log

K

s0
− 1

2
σ
√
t

)
,

(1.5)

which is a special case of the well-known Black–Scholes
formula. We may verify, by a direct computation, that
C(t) is increasing in t > 0; see Madan–Roynette–Yor [11].
Note that S(σ,µ) is a submartingale if and only if µ ≥ 0.

In this case, we can verify, without computing it explic-
itly, that C(t) is increasing in t > 0. (In this paper, we

mean non-decreasing by increasing.) More generally, for
any increasing convex function φ, we may apply Jensen’s
inequality to see that, for any 0 < s < t,

E[φ(Ss)] ≤ E[φ(E[St|Fs])] ≤ E[φ(St)].(1.6)

In this sense, the submartingale property may be consid-
ered a tendency of increasing expectations.
To characterize another tendency of increasing

expectations, The following notion was introduced by
Madan–Roynette–Yor [10] and was developed by Profeta–
Roynette–Yor [12]:

Definition 1.1. Let R = (Rt)t≥0 denote a stochastic pro-
cess taking values on [0,∞) defined on a measurable space
equipped with a family of probability measures (Px)x≥0.
Suppose that R is a.s. continuous and such that Px(R0 =
x) = 1 for all x ≥ 0.

(i) R is said to admit an increasing pseudo-inverse if
Px(Rt ≥ y) is increasing in t ≥ 0 for all y > x and if
Px(Rt ≥ y) → 1 as t → ∞ for all y > x.

(ii) A family of random variables (Yx,y)y>x defined on a
probability space (Ω,F , P ) is called pseudo-inverse
of R if for any y > x it holds that

Px(Rt ≥ y) = P (Yx,y ≤ t).(1.7)

We would like here to introduce the following alternative
notion, which is a slight modification of the pseudo-inverse:

Definition 1.2. Let x0 ∈ R. Let X = (Xt)t≥0 be a
stochastic process taking values in [−∞,∞].

(i) X is called d-increasing on [x0,∞) if P (Xt ≥ x) is
increasing in t ∈ (0,∞) for all x ∈ [x0,∞).

(ii) A family of random variables (Yx)x≥x0 is called d-
inverse of X on [x0,∞) if the following assertions
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hold:
(iia) for any x ∈ [x0,∞), the Yx is a random variable
taking values in [0,∞];
(iib) for any x ∈ [x0,∞) and for a.e. t ∈ (0,∞), it
holds that

P (Xt ≥ x) = P (Yx ≤ t).(1.8)

We note that X is d-increasing on [x0,∞) if and only
if X admits some d-inverse (Yx)x≥x0 . We also note that
if P (Xt ≥ x) is right-continuous in t ∈ (0,∞), then the
identity (1.8) holds for all t ∈ (0,∞).
If t 7→ Xt is a.s. increasing, then X is d-increasing and

its d-inverse is given by its inverse in the usual sense. The
d-inverse may be a generalized notion of inverse in the sense
of probability distribution.
Let S be a stochastic process such that P (St ≥ x) is

right-continuous in t ∈ (0,∞). We note that S is
d-increasing on [x0,∞) if and only if E[φ(St)] is increasing
in t > 0 for all increasing (possibly non-convex) function φ
whose support is contained in [x0,∞) such that E[φ(St)] <
∞ for all t > 0. In fact, for the sufficiency, it holds that,
for any t > 0,

E[φ(St)] = φ(x0)P (St ≥ x0) +

∫ ∞

x0

P (St ≥ x)dφ(x),(1.9)

which shows that E[φ(St)] is increasing in t > 0; the ne-
cessity is obvious since

E[1[x,∞)(St)] = P (St ≥ x).(1.10)

In particular, if S is a non-negative process such that
P (St ≥ x) is right-continuous in t ∈ (0,∞), then the con-
dition that S is d-increasing on [0,∞) is stronger than the
one that S has the same one-dimensional marginals with a
submartingale; see Remark 1.5.
In this paper, we confine ourselves to the class of pro-

cesses of the form

B
(ρ)
t = Bt + ρ(t)(1.11)

for some increasing function ρ(t). We may call B(ρ) Brow-
nian motion with functional drift. This process appears in
geometric Brownian motion with functional coefficients as
follows. Let σ(t) and µ(t) be positive functions on [0,∞)
and define

dSt = σ(t)StdBt + µ(t)Stdt, S0 = s0 > 0.(1.12)

The resulting process S = S(σ,µ) is given in the explicit
form as

S
(σ,µ)
t = s0 exp

(∫ t

0

σ(s)dBs +

∫ t

0

µ̃(s)ds

)
,(1.13)

where µ̃(t) = µ(t) − σ2(t)/2. If we set a(t) =
∫ t

0
σ(u)2du,

b(t) =
∫ t

0
µ̃(u)du and set ρ(t) = b(a−1(t)), then we obtain

S
(σ,µ)
a−1(t) = s0 exp (βt + ρ(t)) ,(1.14)

where β = (βt)t≥0 denotes a new Brownian motion.
The aim of this paper is to study scaling limit of the

d-inverse on [0,∞) of B(ρ) for positive drift ρ. By scal-

ing limit of d-inverse Y (ρ) = (Y
(ρ)
x )x≥0 of B(ρ) we mean a

process Z = (Zx)x≥0 such that

1

λ
Y

(ϕ1(λ)ρ)
ϕ2(λ)x

d−→
λ→0+

Zx for all x ∈ [0,∞)(1.15)

for some scaling functions ϕ1 and ϕ2. We assume that the
ratio ϕ2(λ)/

√
λ converges to a constant as λ → 0+. We

shall prove that the class of possible scaling limits consists,
except for degenerate case, of the d-inverses of the following
processes:

(i) Brownian motion without drift Bt;

(ii) Brownian motion with explosion in finite time: Bt +
∞1{t≥t0}, with t0 ∈ (0,∞);

(iii) Brownian motion with power drift: Bt + ctα, with
c ∈ (0,∞) and α ≥ 1/2.

Cases (i) and (ii) can be obtained from (iii) by taking limits;
in fact, Case (i) can be obtained from (ii) as t0 → ∞ and
Case (ii) can be obtained from (iii) by setting c = t−α

0 and
letting α → ∞.
Here we make several remarks.

Remark 1.3. Monotonicity of more general option prices
for more general stock processes have been studied by Hob-
son ([6], [7]), Henderson–Hobson ([3], [4]), and Kijima [9].

Remark 1.4. Let X(1) and X(2) be two random variables
taking values in [−∞,∞] and let x0 ∈ R. We write

X(1) ≤st X
(2) on [x0,∞)(1.16)

if

P (X(1) ≥ x) ≤ P (X(2) ≥ x) for all x ∈ [x0,∞).(1.17)

The relation ≤st on [x0,∞) is a partial order on the class of
random variables. It may be called usual stochastic order
on [x0,∞) (see also Shaked–Shanthikumar [15]). We point
out that a process (Xt)t≥0 is d-increasing on [x0,∞) if and
only if t 7→ Xt is increasing in d-order on [x0,∞).

Remark 1.5. Let X(1) and X(2) be two random variables
taking values in R. We write

X(1) ≤icx X(2)(1.18)

if

E[φ(X(1))] ≤E[φ(X(2))]

for all increasing convex function φ.
(1.19)

The relation ≤icx is a partial order on the class of ran-
dom variables, so that it is called increasing convex order
(see Shaked–Shanthikumar [15]). It is known (Kellerer [8])
that a process (St)t≥0 is increasing in increasing convex
order if and only if (St)t≥0 has the same one-dimensional
marginals with a submartingale. Interested readers are re-
ferred to Rothschild–Stiglitz ([13],[14]), Baker–Yor [1], and
also Hirsch–Yor [5].
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Remark 1.6. Profeta–Roynette–Yor [12] proved that a
Bessel process admits pseudo-inverse if and only if the di-
mension is greater than one, and investigated several re-
markable properties of its pseudo-inverse. See also Yen–Yor
[16] for another related study of Bessel process.

This paper is organized as follows. In Section 2, we dis-
cuss d-inverses of several classes of processes and study
scaling limit theorems of d-inverses. In Section 3, we study
the inverse problem of scaling limits of d-inverses.

2. Discussions on d-increasing processes

For two random variables X and Y , we write X
d
= Y if

P (X ≤ x) = P (Y ≤ x) for all x ∈ R. For a family of
random variables (X(a))a∈I indexed by an interval I of R,
we write X(a) d−→ X as a → b ∈ I for a random variable
X if P (X(a) ≤ x) → P (X ≤ x) as a → b for all x ∈ R such
that P (X = x) = 0.

2.1. Transformations by increasing functions

For an increasing function f : I → [−∞,∞] defined on an
subinterval I on R, we denote its left-continuous inverse by
f−1 : R → [−∞,∞], i.e.:

f−1(y) = inf{x ∈ I : f(x) ≥ y}(2.1)

= sup{x ∈ I : f(x) < y},(2.2)

where we adopt the usual convention that inf ∅ = sup I and
sup ∅ = inf I. By definition, we see that

f(x) ≥ y implies x ≥ f−1(y),(2.3)

f(x) < y implies x ≤ f−1(y).(2.4)

As a general remark, we give the following theorem.

Theorem 2.1. Let X = (Xt)t≥0 be a stochastic process
such that Xt ∈ [x0,∞) almost surely for all t ≥ 0. Let
f : [x0,∞) → R and g : [0,∞) → [0,∞) be continuous
increasing functions. Suppose that X admits a d-inverse
(Yx)x≥x0 . Then X̂ = (X̂t)t≥0 defined by

X̂t = f
(
Xg(t)

)
, t ≥ 0(2.5)

admits a d-inverse
(
g−1

(
Yf−1(y)

))
y≥f(x0)

.

Proof. Since f is continuous and increasing, we see that
f(f−1(y)) = y, and hence that f(x) ≥ y if and only if
x ≥ f−1(y). This proves that

P (f(Xg(t)) ≥ y) =P (Xg(t) ≥ f−1(y))(2.6)

=P (Yf−1(y) ≤ g(t))(2.7)

=P
(
g−1(Yf−1(y)) ≤ t

)
.(2.8)

The proof is complete.

2.2. Brownian motion with functional drift

Theorem 2.2. Let ρ : [0,∞) → R be a right-continuous

function. Then the process B
(ρ)
t = Bt+ρ(t) is d-increasing

on [0,∞) if and only if the following condition is satisfied:

(A)
ρ(t)√

t
is increasing in t > 0.(2.9)

In this case, the d-inverse (Y
(ρ)
x )x≥0 is given by

Y (ρ)
x

d
= η−1

x (B1) for all x ≥ 0,(2.10)

where η : (0,∞) → R is the increasing function defined by

ηx(t) =
ρ(t)− x√

t
, t > 0.(2.11)

Proof. Since Bt
d
= −

√
tB1, we have

P
(
B

(ρ)
t ≥ x

)
= P (B1 ≤ ηx(t)) ,(2.12)

where ηx is defined as (2.11). Now B(ρ) is d-increasing if
and only if ηx(t) is increasing in t > 0 for all x ≥ 0, which
is equivalent to the condition (A).

In the remainder of this section, we discuss several par-
ticular classes of Browinan motion with functional drifts.

2.3. Brownian motion with explosion

Using Bt
d
=

√
tB1, we obtain the following: The Brownian

motion without drift, B = B(0), admits a d-inverse Y (0) =

(Y
(0)
x )x≥0. In fact, we have

Y (0)
x

d
=

(
x

B1

)2

1{B1>0} +∞1{B1≤0}, x ≥ 0.(2.13)

For a constant t0 ∈ (0,∞), the process X = (Xt)t≥0

taking values in (−∞,∞] defined by

Xt = Bt +∞1{t≥t0}, t ≥ 0(2.14)

is called Brownian motion with explosion in finite time. It
admits a d-inverse Y = (Yx)x≥0 given by

Yx
d
= min

{
Y (0)
x , t0

}
, x ≥ 0.(2.15)

Theorem 2.3. Let ρ : [0,∞) → (0,∞) be a
right-continuous function satisfying the condition (A). Let
ϕ1, ϕ2 : [0,∞) → [0,∞) be two functions. Suppose that
there exist constants t0 ∈ (0,∞] and p ∈ [0,∞) such that

(B)


ϕ1(λ)ρ(λt)√

λt
−→
λ→0+

{
0 if 0 < t < t0,

∞ if t > t0,

ϕ2(λ)√
λ

−→
λ→0+

p.

(2.16)
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Then, for any x ≥ 0, it holds that

1

λ
Y

(ϕ1(λ)ρ)
ϕ2(λ)x

d−→ min
{
Y (0)
px , t0

}
as λ → 0+.(2.17)

In particular, for any λ > 0, it holds that

1

λ
min

{
Y

(0)√
λx
, t0

}
d
= min

{
Y (0)
x , t0

}
.(2.18)

Proof. Since Bλt
d
=

√
λBt, we have

P

(
1

λ
Y

(ϕ1(λ)ρ)
ϕ2(λ)x

≤ t

)
(2.19)

=P (Bλt + ϕ1(λ)ρ(λt) ≥ ϕ2(λ)x)(2.20)

=P

(
Bt +

ϕ1(λ)ρ(λt)√
λ

≥ ϕ2(λ)√
λ

x

)
.(2.21)

The last quantity converges as λ → 0+ to P (Bt ≥ px) if
t < t0 and to 1 if t > t0. Since we have

P
(
min

{
Y (0)
px , t0

}
≤ t
)
=

{
P (Bt ≥ px) if t < t0,

1 if t ≥ t0,

(2.22)

we obtain (2.17). The scale invariance property (2.18) is
obvious. The proof is now complete.

2.4. Brownian motion with constant drift

By Theorem 2.2, we see that the Brownian motion with
constant drift B(c·) = (Bt + ct)t≥0 admits a d-inverse

Y (c·) = (Y
(c·)
x )x≥0 if and only if c ∈ [0,∞). If c ∈ (0,∞),

i.e., except for the Brownian case, we obtain, for x ≥ 0,

Y (c·)
x

d
=

(
B1 +

√
B2

1 + 4cx

2c

)2

.(2.23)

We remark that, for any x ≥ 0,

Y (c·)
x

d−→ Y (0)
x as c → 0+.(2.24)

We also remark the following: Using Bt
d
= −tB1/t, we can

easily see that

Y (c·)
x

d
=

1

Y
(x·)
c

for all c ≥ 0 and x ≥ 0.(2.25)

Scaling property of Brownian motion with constant drifts
will be discussed in the next section in a more general set-
ting.
The geometric Brownian motion S = S(σ,µ) with con-

stant volatility σ > 0 and drift µ ∈ R given as (1.3)

may be represented as S
(σ,µ)
t = f(B

((µ̃/σ)t)
t ) where f(x) =

s0 exp(σx). Hence we may apply Theorem 2.1 and obtain

the following: S(σ,µ) admits a d-inverse (T
(σ,µ)
s )s≥s0 if and

only if µ̃ = µ− σ2/2 ≥ 0. In this case, we have

T (σ,µ)
s

d
= Y

((µ̃/σ)·)
f−1(s) for all s ≥ s0.(2.26)

2.5. Brownian motion with power drift

For α ∈ [0,∞) and c ∈ [0,∞), we define

R
(c,α)
t = Bt + ctα, t ≥ 0(2.27)

and we call R(c,α) = (R
(c,α)
t )t≥0 a Brownian motion with

power drift. By Theorem 2.2, we see that R(c,α) admits a

d-inverse (Z
(c,α)
x )x≥0 if and only if α ≥ 1/2.

The following theorem tells us that the class of the d-
inverses of Brownian motion with power drifts appear as
scaling limits, and consequently, satisfy scale invariance
property.

Theorem 2.4. Let ρ : [0,∞) → (0,∞) be a
right-continuous function satisfying the condition (A). Let
ϕ1, ϕ2 : [0,∞) → [0,∞) be two functions. Suppose there
exist α ≥ 1/2, c ∈ (0,∞) and p ∈ [0,∞) such that

(RV)



ρ(λt)

ρ(λ)
−→
λ→0+

tα,

ρ(λ)√
λ
ϕ1(λ) −→

λ→0+
c,

1√
λ
ϕ2(λ) −→

λ→0+
p.

(2.28)

Then, for any x ≥ 0, it holds that

1

λ
Y

(ϕ1(λ)ρ)
ϕ2(λ)x

d−→ Z(c,α)
px as λ → 0+.(2.29)

In particular, for any λ > 0, it holds that

1

λ
Z
(cλ(1/2)−α,α)
√
λx

d
= Z(c,α)

x .(2.30)

Remark 2.5. The condition (RV) asserts that the func-
tions ρ, ϕ1 and ϕ2 (if p ∈ (0,∞)) are regularly varying at
0+ of index α, (1/2)− α, and 1/2, respectively.

Proof of Theorem 2.4. Since Bλt
d
=

√
λBt, we have

P

(
1

λ
Y

(ϕ1(λ)ρ)
ϕ2(λ)x

≤ t

)
(2.31)

=P

(
Bt +

ρ(λ)√
λ
ϕ1(λ) ·

ρ(λt)

ρ(λ)
≥ ϕ2(λ)√

λ
x

)
(2.32)

−→
λ→0+

P (Bt + ctα ≥ px)(2.33)

=P (Z(c,α)
px ≤ t).(2.34)

Now we have obtained (2.29). The scale invariance prop-
erty (2.30) is obvious. The proof is complete.

3. Scaling limits for the class of
d-inverses

In what follows, by measurable we mean Lebesgue measur-
able.
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Theorem 3.1. Let ρ : [0,∞) → [0,∞) be a
right-continuous function satisfying the condition (A).
Suppose that, for some measurable functions
ϕ1, ϕ2 : (0,∞) → (0,∞) and for some family Z = (Zx)x≥0

of [0,∞]-valued random variables, it holds that

1

λ
Y

(ϕ1(λ)ρ)
ϕ2(λ)x

d−→
λ→0+

Zx for all x ≥ 0.(3.1)

Suppose, moreover, that there exists a constant p ∈ [0,∞)
such that

ϕ2(λ)√
λ

−→
λ→0+

p.(3.2)

Then either one of the following four assertions holds:

(i) ϕ1(λ)ρ(λt)/
√
λ −→

λ→0+
0 for all t > 0. In this case,

Zx
d
= Y (0)

px for all x ≥ 0.(3.3)

(ii) The condition (B) holds for some t0 ∈ (0,∞). In
this case,

Zx
d
= min

{
Y (0)
px , t0

}
for all x ≥ 0.(3.4)

(iii) The condition (RV) holds for some α ≥ 1/2 and
c ∈ (0,∞). In this case,

Zx
d
= Z(c,α)

px for all x ≥ 0.(3.5)

(iv) (Degenerate case.) P (Zx = 0) = 1 for all x ∈ (0,∞).

Proof. Let x ≥ 0. Denote Fx(t) = P (Zx ≤ t) for t ≥ 0 and
denote by C(Fx) the set of continuity point of Fx. We note
that

P

(
1

λ
Y

(ϕ1(λ)ρ)
ϕ2(λ)x

≤ t

)
(3.6)

=P (Bλt + ϕ1(λ)ρ(λt) ≥ ϕ2(λ)x)(3.7)

=P

(
B1 + ϕ1(λ)

ρ(λt)√
λt

≥ ϕ2(λ)√
λt

x

)
.(3.8)

By the assumption (3.1), we see that

P

(
B1 + ϕ1(λ)

ρ(λt)√
λt

− ϕ2(λ)√
λt

x ∈ [0,∞)

)
−→
λ→0+

P (Zx ≤ t)

for all t ∈ C(Fx) ∩ (0,∞).

(3.9)

Hence there exists a function gx : C(Fx)∩(0,∞)→ [−∞,∞]
such that

ϕ1(λ)
ρ(λt)√

λt
− ϕ2(λ)√

λt
x −→

λ→0+
gx(t)

for all t ∈ C(Fx) ∩ (0,∞).

(3.10)

Since ρ satisfies the condition (A) and since C(Fx) is dense
in R, we see that gx is increasing, and hence we may extend

gx on [0,∞) so that it is right-continuous. Now we obtain,
for any x ≥ 0,

Zx
d
= g−1

x (B1).(3.11)

Let us write g simply for g0. Noting that g is an in-
creasing function taking values in [0,∞]. we divide into
the following four distinct cases.
(i) The case where g(t) = 0 for all t > 0.
Let x ≥ 0 be fixed. By the assumption (3.2) and by

(3.10), we obtain

gx(t) = −px/
√
t, t > 0.(3.12)

From this and (3.11), we obtain

P (Zx ≤ t) = P (Y (0)
px ≤ t), t > 0.(3.13)

This proves (3.3). The proof of Claim (i) is now complete.
(ii) The case where there exist a point t0 ∈ (0,∞) such

that

g(t)

{
= 0 if 0 < t < t0,

= ∞ if t > t0.
(3.14)

Let x ≥ 0. By the assumption (3.2) and by (3.10), we
obtain

gx(t) =

{
−px/

√
t if 0 < t < t0,

∞ if t > t0.
(3.15)

From this and (3.11), we obtain

P (Zx ≤ t) =

{
P (Y

(0)
px ≤ t) if 0 ≤ t < t0,

1 if t ≥ t0.
(3.16)

This proves (3.4). The proof of Claim (ii) is now complete.
(iii) The case where there are two points t0, t1 ∈ C(F0)∩

(0,∞) with t0 < t1 such that 0 < g(t0) ≤ g(t1) < ∞.
Since g is increasing, we see that

0 < g(t) < ∞ for all t ∈ C(F0) ∩ [t0, t1].(3.17)

By (3.10), we have, for any t ∈ C(F0) ∩ [t0, t1],

ρ(λt)

ρ(λt0)
=

ϕ1(λ)
ρ(λt)√

λt

ϕ1(λ)
ρ(λt0)√

λt0

·
√
t√
t0

−→
λ→0+

g(t)

g(t0)
·
√
t√
t0

∈ (0,∞).

(3.18)

Since C(F0) ∩ [t0, t1] has positive Lebesgue measure, we
may apply Characterisation Theorem ([2, Theorem 1.4.1])
to see that the convergence (3.18) and consequently (3.10)
are still valid for all t ∈ (0,∞), and that

g(t)

g(t0)
·
√
t√
t0

= tα, t ∈ (0,∞)(3.19)

for some α ∈ R. Since g is increasing, we have α ≥ 1/2.
We obtain

g(t) = ctα−1/2, t ∈ (0,∞)(3.20)
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for some c ∈ (0,∞). Hence, by (3.18) and (3.10), we obtain

ρ(λt)

ρ(λ)
−→
λ→0+

tα and
ρ(λ)√

λ
ϕ1(λ) −→

λ→0+
c.(3.21)

Now we have seen that the condition (RV) is satisfied. The
proof of Claim (iii) is now completed by Theorem 2.4.
(iv) The case where g(t) = ∞ for all t > 0.
In this case, by the assumption (3.2) and by (3.10), we

obtain gx(t) = ∞ for all t > 0 and x ≥ 0. By (3.11), we
obtain P (Zx = 0) = 1 for all x ≥ 0. The proof of Claim
(iv) is now complete.
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