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Abstract. The d-inverse is a generalized notion of inverse of a stochastic process having a certain
tendency of increasing expectations. Scaling limit of the d-inverse of Brownian motion with func-
tional drift is studied. Except for degenerate case, the class of possible scaling limits is proved to
consist of the d-inverses of Brownian motion without drift, one with explosion in finite time, and

one with power drift.
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1. INTRODUCTION

For (general) stock price S = (S;);>0, the European call
option price with strike K and maturity ¢ is given as

(1.1)

Suppose that the stock price is given as the geometric
Brownian motion with volatility o > 0 and drift € R:

C(t) :== Emax {S; — K,0}].

(12) dS; = 0S;dB; + ,LLStdt, So =89 € (0, OO)7
where B = (By):>0 denotes a one-dimensional standard
Brownian motion. Letting i = u — 02/2, we have an ex-
plicit expression of S = S(@#) as follows:

(1.3) gL

= sgexp (o By + fit) .

If 7 = —0?/2, then we may express C(t) explicitly, in
terms of the cumulative distribution function of the stan-
dard Gaussian

(1.4) N(z) = / ’ e " 2 dx /v 2m,
1 K 1
. C(t) =soN (_M log% + 20\/%)

— KN (—1logK — 1U t) ,
t S

which is a special case of the well-known Black—Scholes
formula. We may verify, by a direct computation, that
C(t) is increasing in ¢ > 0; see Madan—Roynette—Yor [11].

Note that S(#) is a submartingale if and only if > 0.
In this case, we can verify, without computing it explic-
itly, that C(t) is increasing in ¢ > 0. (In this paper, we

mean non-decreasing by increasing.) More generally, for
any increasing convex function ¢, we may apply Jensen’s
inequality to see that, for any 0 < s < ¢,

(1.6)  Elp(Ss)] < Elp(E[Si|Fs))] < Elp(St)]-

In this sense, the submartingale property may be consid-
ered a tendency of increasing expectations.

To characterize another tendency of increasing

expectations, The following notion was introduced by
Madan—Roynette—Yor [10] and was developed by Profeta—
Roynette—Yor [12]:
Definition 1.1. Let R = (R;);>¢ denote a stochastic pro-
cess taking values on [0, 00) defined on a measurable space
equipped with a family of probability measures (Py)y>0.
Suppose that R is a.s. continuous and such that P,(Ry =
z) =1 for all z > 0.

(i) R is said to admit an increasing pseudo-inverse if
P.(R; > y) is increasing in t > 0 for all y > x and if
P, (R >y) > 1last— oo foraly>uz.

(ii) A family of random variables (Y )y>» defined on a
probability space (Q,F, P) is called pseudo-inverse
of R if for any y > z it holds that

(1.7) Po(Ry > y) = P(Yay <t).

We would like here to introduce the following alternative
notion, which is a slight modification of the pseudo-inverse:

Definition 1.2. Let 2o € R. Let X = (Xi)i>0 be a
stochastic process taking values in [—oo, 00].

(i) X is called d-increasing on [zg,00) if P(X; > x) is
increasing in t € (0, 00) for all z € [xg, 00).

(ii) A family of random variables (Y3)z>y, is called d-
inverse of X on [zg,00) if the following assertions
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hold:

(iia) for any x € [g,00), the Y, is a random variable
taking values in [0, co];

(iib) for any = € [xg,00) and for a.e. t € (0,00), it
holds that

(1.8) P(X, > z) = P(Y, <1).

We note that X is d-increasing on [zg,c0) if and only
if X admits some d-inverse (Yy)z>z,. We also note that
if P(X; > z) is right-continuous in ¢ € (0,00), then the
identity (1.8) holds for all ¢ € (0, 00).

If t = X; is a.s. increasing, then X is d-increasing and
its d-inverse is given by its inverse in the usual sense. The
d-inverse may be a generalized notion of inverse in the sense
of probability distribution.

Let S be a stochastic process such that P(S; > z) is
right-continuous in t € (0,00). We note that S is
d-increasing on [z, 00) if and only if E[p(S;)] is increasing
in t > 0 for all increasing (possibly non-convex) function ¢
whose support is contained in [z, 00) such that E[p(S)] <
oo for all ¢ > 0. In fact, for the sufficiency, it holds that,
for any t > 0,

o0

(L9) E[p(Se)] = @(x0)P(S: > o) + / P(S, > 2)dp(z),

Zo

which shows that E[p(S:)] is increasing in ¢ > 0; the ne-
cessity is obvious since

(1.10) Ell.o0)(S0)] = P(S, > a).

In particular, if S is a non-negative process such that
P(S; > x) is right-continuous in ¢ € (0,00), then the con-
dition that S is d-increasing on [0, 00) is stronger than the
one that S has the same one-dimensional marginals with a
submartingale; see Remark 1.5.

In this paper, we confine ourselves to the class of pro-
cesses of the form

(1.11) B = B, + p(t)

for some increasing function p(t). We may call B(*) Brow-
nian motion with functional drift. This process appears in
geometric Brownian motion with functional coefficients as
follows. Let o(t) and p(t) be positive functions on [0, c0)
and define

(112) dSt = U(t)StdBt + ,u(t)Stdt, SO = S0 > 0.

The resulting process S = S(@#) is given in the explicit
form as

t t
(1.13) Séa’#) = 80 exp </ o(s)dB; +/ ﬁ(s)ds) ,
0 0

where i(t) = p(t) — o?(t)/2. If we set a(t) = fot o(u)?du,
b(t) = fot fi(u)du and set p(t) = b(a~1(t)), then we obtain

(1.14) Ny

-1t = Sp €Xp (ﬁt + P(t)) s
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where 8 = (8¢)i>0 denotes a new Brownian motion.

The aim of this paper is to study scaling limit of the
d-inverse on [0,00) of B(®) for positive drift p. By scal-
ing limit of d-inverse Y (¥) = (Yr(p))wzo of B( we mean a
process Z = (Zy)z>o such that
ly(d’l@\)ﬁ) i> Zz

+

(1.15) SR

for all x € [0, 00)

for some scaling functions ¢; and ¢o. We assume that the
ratio ¢a(\)/v/A converges to a constant as A — 04. We
shall prove that the class of possible scaling limits consists,
except for degenerate case, of the d-inverses of the following
processes:

(i) Brownian motion without drift By;

(ii) Brownian motion with explosion in finite time: By +
OO]‘{tZtO}7 with to c (0, 00)7

(iii) Brownian motion with power drift: By + ct®, with

c € (0,00) and a > 1/2.

Cases (i) and (ii) can be obtained from (iii) by taking limits;
in fact, Case (i) can be obtained from (ii) as fy — oo and
Case (i) can be obtained from (iii) by setting ¢ = t5* and
letting o — oc.

Here we make several remarks.

Remark 1.3. Monotonicity of more general option prices
for more general stock processes have been studied by Hob-
son ([6], [7]), Henderson-Hobson ([3], [4]), and Kijima [9].

Remark 1.4. Let X and X® be two random variables
taking values in [—oo, 00| and let zo € R. We write

(1.16) X0 <, x®@
if

on [xg, 00)

(117) P(XW >2) < P(X® > 2) for all 2 € [xg,00).

The relation <y on [z, 00) is a partial order on the class of
random variables. It may be called usual stochastic order
on [xg, 00) (see also Shaked—Shanthikumar [15]). We point
out that a process (X¢):>¢ is d-increasing on [zg, 00) if and
only if ¢t — X; is increasing in d-order on [xg, 00).
Remark 1.5. Let X" and X® be two random variables
taking values in R. We write

(1.18) XMW < x®
if
(1.19) E[p(XW)] <E[p(X®)]

for all increasing convex function .

The relation <j.x is a partial order on the class of ran-
dom variables, so that it is called increasing convex order
(see Shaked—Shanthikumar [15]). It is known (Kellerer [8])
that a process (S¢)i>0 is increasing in increasing convex
order if and only if (S¢):>0 has the same one-dimensional
marginals with a submartingale. Interested readers are re-
ferred to Rothschild-Stiglitz ([13],[14]), Baker—Yor [1], and
also Hirsch—Yor [5].
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Remark 1.6. Profeta-Roynette-Yor [12] proved that a
Bessel process admits pseudo-inverse if and only if the di-
mension is greater than one, and investigated several re-
markable properties of its pseudo-inverse. See also Yen—Yor
[16] for another related study of Bessel process.

This paper is organized as follows. In Section 2, we dis-
cuss d-inverses of several classes of processes and study
scaling limit theorems of d-inverses. In Section 3, we study
the inverse problem of scaling limits of d-inverses.

2. DISCUSSIONS ON D-INCREASING PROCESSES

For two random variables X and Y, we write X 4y
P(X < z) = P(Y < z) for all z € R. For a family of
random variables (X(*)),c; indexed by an interval I of R,
we write X(@ -4 X as a — b € I for a random variable
X if P(X(® < z) = P(X <z)asa—bforall z € R such
that P(X =z) =0.

2.1. TRANSFORMATIONS BY INCREASING FUNCTIONS

For an increasing function f : I — [—00, 00| defined on an
subinterval I on R, we denote its left-continuous inverse by
1R = [—o0,00], ie.:

(2.1) [ Hy) =inf{z € I: f(z) >y}
(2.2) =sup{z € I : f(z) < y},

where we adopt the usual convention that inf () = sup I and

sup @ = inf I. By definition, we see that
(2.3) f(x) >y implies z > f~!(y),
2.4 f(z) <y implies = < f~(y).

As a general remark, we give the following theorem.

Theorem 2.1. Let X = (X;)i>0 be a stochastic process
such that Xy € [xg,00) almost surely for all t > 0. Let
f i |zo,00) = R and g : [0,00) — [0,00) be continuous
increasing functions. Suppose that X admits a d-inverse
(Ya)z>ao- Then X = (Xy)i>0 defined by

(2.5) Xi=f(Xyw), t>0

admits a d-inverse (g_1 (Yffl(y)))y>f(w0).

Proof. Since f is continuous and increasing, we see that
f(f~Y(y)) = y, and hence that f(x) > y if and only if
x > f~1(y). This proves that

(2.6) ()
P(Yf 1y < 9(t)

)
=P (97 (Y1) < 1)

The proof is complete. U
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2.2. BROWNIAN MOTION WITH FUNCTIONAL DRIFT

Theorem 2.2. Let p :

function. Then the process Bt(p) = By +p(t) is d-increasing
on [0,00) if and only if the following condition is satisfied:

p(t)

Vit

In this case, the d-inverse (Y,T,(p))g;ZO s given by

[0,00) = R be a right-continuous

(2.9) (A) is increasing in t > 0.

y() 4

€T

(2.10) ny Y(By) for all x > 0,

where 1 : (0,00) = R is the increasing function defined by

pt) —x

(2.11) 1 (t) = i

t>0.

Proof. Since By 4 —+/tB1, we have

(2.12) P (Bt“)) > x) = P (B <n.(t),

where 7, is defined as (2.11). Now B is d-increasing if
and only if 7, (¢) is increasing in ¢ > 0 for all x > 0, which
is equivalent to the condition (A). O

In the remainder of this section, we discuss several par-
ticular classes of Browinan motion with functional drifts.

2.3. BROWNIAN MOTION WITH EXPLOSION

Using B, 4 VtBy, we obtain the following: The Brownian
motion without drift, B = B, admits a d-inverse Y(©) =
(Yx(o)hzo. In fact, we have

2
X
(213) Y02 <B1> LB >0y +0lip<0y, 20,

For a constant ¢y € (0,00), the process X =
taking values in (—o0, co] defined by

(Xt)1>0

(214) Xt = Bt + OOl{tZtO}, t 2 0
is called Brownian motion with explosion in finite time. It

admits a d-inverse Y = (Y, )z>0 given by

(2.15)

T

y, 4 min{Y(O),to}, 2> 0.

Theorem 2.3. Let  p:[0,00) = (0,00) be a
right-continuous function satisfying the condition (A). Let

1,02 : [0,00) = [0,00) be two functions. Suppose that
there exist constants to € (0,00] and p € [0,00) such that
d1(N)p(At) 0 f0<t<ty,
UM o0t oo ift >t
(2.16) (B) X o
¢\ )
VA A0+
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Then, for any x > 0, it holds that

1
LY Lmin {010} as A 0+,

(217) Y,

In particular, for any X\ > 0, it holds that
1
X min {Y\(f(i\)ﬁ to} < min {YI(O), to} .

Proof. Since By 4 VAB;, we have

(2.18)

(2.19) P (iY(;f(ljfgjp) < t)
(2.20) =P (B + 01(A)p(At) = ¢2(A)x)

_ P1(M)p(At) _ $2(N)
(2.21) =P <Bt S z> :

The last quantity converges as A — 0+ to P(B; > px) if
t < to and to 1 if t > tg. Since we have

(2.22)
P (min{%(g),to} < t) - {f(Bt > px) ift <to,

if t > to,

we obtain (2.17). The scale invariance property (2.18) is
obvious. The proof is now complete. O

2.4. BROWNIAN MOTION WITH CONSTANT DRIFT

By Theorem 2.2, we see that the Brownian motion with
constant drift B() = (B, +ct);>o admits a d-inverse

V() = (V)50 if and only if ¢ € [0,00). If ¢ € (0, 00),
i.e., except for the Brownian case, we obtain, for > 0,

2
yie) 4 (Bl—l-\/B%—&—élcw)
v 2¢ '

(2.23)

We remark that, for any = > 0,

(2.24) v, () N Y9 asc— 0+.
We also remark the following: Using B, 2 —tBy ¢, we can
easily see that

4

(2.25) ye) for all ¢ > 0 and = > 0.

1

Scaling property of Brownian motion with constant drifts
will be discussed in the next section in a more general set-
ting.

The geometric Brownian motion S = S(°#) with con-
stant volatility ¢ > 0 and drift u € R given as (1.3)
may be represented as St(g’“) = f(B,g(”/U)t)) where f(z) =
soexp(ox). Hence we may apply Theorem 2.1 and obtain
the following: S(**) admits a d-inverse (TS(U’“))sZSO if and
only if i = 1 — 02/2 > 0. In this case, we have

(o) 4y (/)
(2.26) T{7m LY

“i(s) for all s > s¢.
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2.5. BROWNIAN MOTION WITH POWER DRIFT

For a € [0,00) and ¢ € [0, 00), we define

(2.27) R =B, +ct®, t>0

and we call R(®®) = (Rﬁc’a))@o a Brownian motion with
power drift. By Theorem 2.2, we see that R(®) admits a
d-inverse (Z°*),>¢ if and only if o > 1/2.

The following theorem tells us that the class of the d-

inverses of Brownian motion with power drifts appear as
scaling limits, and consequently, satisfy scale invariance
property.
Theorem 2.4. Let  p:[0,00) — (0,00) be a
right-continuous function satisfying the condition (A). Let
@1,09 : [0,00) — [0,00) be two functions. Suppose there
exist > 1/2, ¢ € (0,00) and p € [0,00) such that

00
p(A) rm0+

(228)  (RV) ’)f}; ) e
\%@()\) roor P

Then, for any x > 0, it holds that

(2.29) %Yqﬁj&)ﬁg” L Z{e® as X 0+

In particular, for any X\ > 0, it holds that

1 (c)\(1/2)7a7a) iZ(C’O‘),

(2.30) 205 (

Remark 2.5. The condition (RV) asserts that the func-
tions p, ¢1 and ¢ (if p € (0,00)) are regularly varying at
0+ of index «, (1/2) — «, and 1/2, respectively.

Proof of Theorem 2.4. Since B); 4 VAB;, we have

(2.31) P (iydfj’(lffa}”) < t)

_ PR o gy P o 62N
e =p (B Doy 200 > 20,)
(2.33) ,\ELP(Bt + ct® > pr)
(2.34) =P(Z{g™ <t).

Now we have obtained (2.29). The scale invariance prop-
erty (2.30) is obvious. The proof is complete. O

3. SCALING LIMITS FOR THE CLASS OF
D-INVERSES

In what follows, by measurable we mean Lebesgue measur-
able.
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Theorem 3.1. Let  p:[0,00) — [0,00) be a
right-continuous function satisfying the condition (A).
Suppose  that,  for some  measurable  functions
o1, P2 1 (0,00) = (0,00) and for some family Z = (Zy)s>0
of [0, oo]-valued random variables, it holds that

L @ip _d
(3.1) XY@()‘)'” v d Zy  for all x > 0.

Suppose, moreover, that there exists a constant p € [0, 0)
such that

P2(N)
vV Aj—&- p

Then either one of the following four assertions holds:

(i) dr(N)p(At)/VX v 0 for all t > 0. In this case,
—

(3.2)

4y
(3.3) Ly = Yp(m) for all z > 0.
(i) The condition (B) holds for some ty € (0,00). In
this case,
(3.4) Z, < min {Y;g),to} for all z > 0.

(iii) The condition (RV) holds for some o > 1/2 and
c € (0,00). In this case,

(3.5) Zy 4 ZZE;W for all x > 0.

(iv) (Degenerate case.) P(Z, =0) =1 for all x € (0,00).

Proof. Let « > 0. Denote F,(t) = P(Z, <t) for t > 0 and
denote by C(F},) the set of continuity point of F,. We note
that

(3.6) P (iyg;;;;m < t)

(3.7) =P (Bxi + ¢1(MN)p(Mt) > ¢2(N)x)
_ P00 | 6N

(38) =P (Bl+¢1<x> D> 20 )

By the assumption (3.1), we see that

(3.9)
P (31 + %(A)’i%? - ¢\2/%):r € [o,oo)> o Pz <)

for all t € C(Fz) N (0, 00).

Hence there exists a function g, : C'(F;)N(0, 00) = [—00, 0]

such that
p(At) — $2(A)
A)——= — T — gzt
¢1( ) m m )\4}0+g ( )
for all t € C'(F;) N (0, 00).

(3.10)

Since p satisfies the condition (A) and since C(F,) is dense
in R, we see that g, is increasing, and hence we may extend
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gz on [0,00) so that it is right-continuous. Now we obtain,
for any = > 0,

(3.11) Z, 4 g7\ (By).

Let us write g simply for gg. Noting that g is an in-
creasing function taking values in [0,00]. we divide into
the following four distinct cases.

(i) The case where g(t) =0 for all t > 0.

Let © > 0 be fixed. By the assumption (3.2) and by
(3.10), we obtain

9:(t) = —px/Vt,

From this and (3.11), we obtain

(3.12) t>0.

_ 0
(3.13) P(Z, <t)=PYD <t), t>0.

This proves (3.3). The proof of Claim (i) is now complete.
(ii) The case where there exist a point to € (0,00) such
that

if 0 <t <ty,

(3:.14) if t > to.

Let © > 0. By the assumption (3.2) and by (3.10), we
obtain

(3.15) gult) = {—px/\/f if0<t<ty,

o0 if t > tg.
From this and (3.11), we obtain

P, <t) if0<t <t
1 if ¢ > to.

(3.16)  P(Zy,<t)= {

This proves (3.4). The proof of Claim (ii) is now complete.
(iii) The case where there are two points to,t; € C(Fy)N

(0,00) with tog < t1 such that 0 < g(ty) < g(t1) < 0.
Since g is increasing, we see that

(3.17) 0<g(t) <oo forallte C(Fy)N|to,t1].

By (3.10), we have, for any ¢t € C(Fp) N [to, t1],

(3.18)
R RN IR
POND) gy ()2 Vg A=t glto) Vo (0,00).

Since C(Fp) N [to,t1] has positive Lebesgue measure, we
may apply Characterisation Theorem (]2, Theorem 1.4.1])
to see that the convergence (3.18) and consequently (3.10)
are still valid for all ¢ € (0, 00), and that

g(t)

g(to)

for some o € R. Since g is increasing, we have o > 1/2.
We obtain

(3.19) t € (0,00)

(3.20) g(t) = ct*"V2 e (0,00)
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for some ¢ € (0, 00). Hence, by (3.18) and (3.10), we obtain
(A1) o p(N)
(3.21) ey Aj+ t* and 5y o1 (N) )\;Zr c.

Now we have seen that the condition (RV) is satisfied. The
proof of Claim (iii) is now completed by Theorem 2.4.

(iv) The case where g(t) = oo for all t > 0.

In this case, by the assumption (3.2) and by (3.10), we
obtain ¢,(t) = oo for all ¢ > 0 and = > 0. By (3.11), we
obtain P(Z, = 0) =1 for all x > 0. The proof of Claim
(iv) is now complete. O
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