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Abstract. In this paper, we extend the standard renewal risk model to the case where the premium
income process is a counting process and the claim sizes and the inter-arrival times are two sequences
of negatively associated random variables. For this risk model, the paper investigates the large
deviations for the claim surplus process and gives the Lundberg type limiting results on the finite
time ruin probabilities.
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1. Introduction and main results

In risk theory, the standard renewal risk model has the
following structure:
(i) The claim sizes, Xn, n ≥ 1, form a sequence of in-

dependent, identically distributed(i.i.d.) and nonnegative
random variables(r.v.s) with a finite mean;
(ii) The inter-arrival times, Tn, n ≥ 1, form another se-

quence of i.i.d. and nonnegative r.v.s, which are indepen-
dent of the r.v.s, Xn, n ≥ 1, and have a finite mean;
(iii) The number of claims in the interval [0, t] is denoted

by

N(t) = sup{n ≥ 1 :
n∑

k=1

Tk ≤ t}, t ≥ 0,

where, by convention, sup ∅ = 0. Then the risk reserve
process {R(t); t ≥ 0} is

R(t) = u+ ct−
N(t)∑
n=1

Xn, t ≥ 0,

where c > 0 is the constant premium income rate, and
u > 0 is the initial surplus of the insurance company. The
net profit condition is cET1 > EX1.
As pointed out by Hu [4], from a realistic point of view,

the premium income process should depend on the number
of customers who buy the insurance portfolios. Clearly, this
number is a r.v. in a given time interval [0, t], t ≥ 0. In this
paper, we will model this process by a counting process, not
necessarily be a linear function. In the standard renewal
risk model, the claim sizes, Xn, n ≥ 1 and the inter-arrival
times, Tn, n ≥ 1 are two sequences of independent r.v.s. In
this paper, we will consider the negatively dependent claim
sizes and the negatively dependent inter-arrival times. We
will assume that {Xn, n ≥ 1} and {Tn, n ≥ 1} are two
negatively associated sequences. By definition, a sequence
{Zn, n ≥ 1} is said to be negatively associated(NA) if, for

any m ≥ 2 and any disjoint nonempty subsets A and B of
{1, 2, · · · ,m}

cov(f(Zi : i ∈ A), g(Zj : j ∈ B)) ≤ 0,

where f and g are any coordinatewise nondecreasing func-
tions such that the moment involved exists. For details,
one can refer to Joad-Dev and Proschan [5].

In this paper, we will consider the following risk model:

(i) The claim sizes, Xn, n ≥ 1 are NA and nonnegative
r.v.s with a common distribution F and a finite mean;

(ii) The inter-arrival times, Tn, n ≥ 1, form another se-
quence of NA identically distributed and nonnegative r.v.s,
which are independent of the r.v.s, Xn, n ≥ 1 and have a
finite mean;

(iii) The number of claims in the interval [0, t] is denoted
by

N(t) = sup{n ≥ 1 :

n∑
k=1

Tk ≤ t}, t ≥ 0.

Let λ(t) = E(N(t)), t ≥ 0;

(iv) The number of customers who buy the insurance
portfolios in the time interval [0, t] is denoted by M(t), t ≥
0, which is independent of {Xn, n ≥ 1} and {Tn, n ≥ 1},
and has a finite mean δ(t) = E(M(t)), t ≥ 0.

We will call such a risk model as above a generalize de-
pendent renewal risk model(GDRRM). When Xn, n ≥ 1
and Tn, n ≥ 1 are independent r.v.s, and {N(t); t ≥ 0}
and {M(t); t ≥ 0} are two Poisson processes, this is the
generalized compound Poisson risk model, which was in-
troduced by Hu [4]. For the GDRRM, the risk reserve
process {R(t); t ≥ 0} is given by

R(t) = u+ c1M(t)−
N(t)∑
n=1

Xn, t ≥ 0,
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while the claim surplus process {S(t); t ≥ 0} is

S(t) =

N(t)∑
n=1

Xn − c1M(t) := Y (t)− c1M(t), t ≥ 0,

where c1 > 0 is the premium of a single insurance portfo-
lio(i.e. the price of the insurance portfolio), and u > 0 is
the initial surplus of the insurance company. The net profit
condition is c1δ(t) > λ(t)E(X1), t ≥ 0. The time of ruin is

τ(u) = inf{t ≥ 0 : R(t) < 0} = inf{t ≥ 0 : S(t) > u}.

Hereafter, all limit relationships are for t → ∞ unless
otherwise stated, and, for two positive functions a(t) and
b(t), we write a(t) ∼ b(t) if lim a(t)/b(t) = 1; write a(t) =
O(1)b(t) if lim sup a(t)/b(t) < ∞ and write a(t) = o(1)b(t)
if lim a(t)/b(t) = 0. For a proper distribution V on
(−∞,∞), let V (x) = 1− V (x), x ∈ (−∞,∞) be its tail.
We shall restrict ourselves to the case of heavy-tailed

claim distributions. So we first introduce some heavy-tailed
distribution classes. We say that a distribution V on [0,∞)
belongs to the extended regular variation class, if there are
some 0 < α ≤ β < ∞ such that

s−β ≤ lim inf
V (st)

V (t)
≤ lim sup

V (st)

V (t)
≤ s−α for all s ≥ 1,

denoted by V ∈ ERV (−α,−β). If α = β, we say that V
belongs to the regular variation class and write V ∈ R−α.
A larger class is the so-called dominated variation class.

By definition, a distribution V on [0,∞) belongs to domi-
nated variation class, denoted by V ∈ D, if

lim inf
V (ty)

V (t)
> 0, for all y > 1.

A subclass of D is the consistent variation class. By defi-
nition, a distribution V on [0,∞) belongs to the consistent
variation class, denoted by V ∈ C, if

lim
y↓1

lim inf
t→∞

V (ty)

V (t)
= 1.

It is well known that the following inclusions are proper

R−α ⊂ ERV (−α,−β) ⊂ C ⊂ D.

One can refer to Embrechts et al. [3] and Cline and
Samorodnitsky [2], etc.
For the generalized compound Poisson risk model, un-

der the condition F ∈ ERV (−α,−β), 1 < α ≤ β < ∞,
Hu [4] has investigated the probabilities of large deviations
of S(t) and the Lundberg type limiting results of the fi-
nite time ruin probabilities. In this paper, these problems
will be discussed for the GDRRM with a claim distribu-
tion F ∈ D. Throughout this paper, we assume that the
counting processes {N(t); t ≥ 0} and {M(t); t ≥ 0} satisfy
the following condition:

Condition 1.1
M(t)

δ(t)

P−→ 1 and

p = sup
t≥t0

δ(t)

λ(t)
∈ (0,∞) for some t0 > 0.

Note that, when {N(t); t ≥ 0} and {M(t); t ≥ 0} are two
renewal counting processes generated by the i.i.d. r.v.s,
using the strong laws of large numbers for renewal counting
processes and the elementary renewal theorem, we know
that Condition 1.1 is satisfied. Recently, Yang and Wang
[9] have obtained the elementary renewal theorem for the
NA r.v.s (see Lemma 2.1 below), so Condition 1.1 is also
satisfied for the renewal counting processes generated by
the NA r.v.s.

Before giving the main results, we introduce some nota-
tion. Let V be a distribution concentrated on [0,∞). For
any y > 1, we set

V ∗(y) = lim inf
V (ty)

V (t)
,

and then define

LV = lim
y↓1

V ∗(y), J+
V = inf{− log V ∗(y)

log y
: y > 1}.

It is well known that V ∈ D ⇐⇒ LV > 0 ⇐⇒ J+
V < ∞(see

the proof of Lemma 3.5 of Tang and Tsitsiashvili [7] and
Bingham et al. [1]). For the claim sizes, Xn, n ≥ 1, let
A ⊂ {1, 2, · · · }, σ(Xi : i ∈ A) is a σ-field generated by
Xi, i ∈ A and define

φ(1) = sup
n≥2

sup
k≥1

sup
C∈σ(Xi:1≤i≤n,i̸=k)D∈σ(Xk),P (D)>0

|P (C|D)− P (C)| .

Obviously, 0 ≤ φ(1) ≤ 1 and when Xn : n ≥ 1 are inde-
pendent, φ(1) = 0. This notation was introduced by Wang
et al. [8].

Now we present the main results.

Theorem 1. For the GDRRM, suppose that Condition 1.1
is satisfied and F ∈ D. Then, for any fixed γ > 0,

1 ≤ lim inf
t→∞

inf
x≥γλ(t)

P(Y (t) > x)

λ(t)F (x)
(1)

≤ lim sup
t→∞

sup
x≥γλ(t)

P(Y (t) > x)

λ(t)F (x)
≤ L−1

F ;

max{(1− φ(1))LF , F ∗(1 + E(X1)γ
−1)}(2)

≤ lim inf
t→∞

inf
x≥γλ(t)

P(Y (t)− E(Y (t)) > x)

λ(t)F (x)

≤ lim sup
t→∞

sup
x≥γλ(t)

P(Y (t)− E(Y (t)) > x)

λ(t)F (x)
≤ L−1

F ;

F ∗(1 + c1pγ
−1)(3)

≤ lim inf
t→∞

inf
x≥γλ(t)

P(S(t) > x)

λ(t)F (x)

≤ lim sup
t→∞

sup
x≥γλ(t)

P(S(t) > x)

λ(t)F (x)
≤ L−1

F
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and for any fixed γ > c1p,

max{(1− φ(1))LF , F ∗(1 + E(X1)γ
−1)}LF(4)

≤ lim inf
t→∞

inf
x≥γλ(t)

P(S(t)− E(S(t)) > x)

λ(t)F (x)

≤ lim sup
t→∞

sup
x≥γλ(t)

P(S(t)− E(S(t)) > x)

λ(t)F (x)
≤ L−2

F .

In particular, if F ∈ C and Xn, n ≥ 1 are independent,
then for any fixed γ > c1p,

(5) lim
t→∞

sup
x≥γλ(t)

∣∣∣∣P(S(t)− E(S(t)) > x)

λ(t)F (x)
− 1

∣∣∣∣ = 0.

Remark 1. If {N(t); t ≥ 0} and {M(t); t ≥ 0} are two
Poisson processes then Condition 1.1 is satisfied. So from
(5), Theorem 2.1 of Hu [4] can be obtained.

Before giving the Lundberg type limiting results on the
time of ruin τ(u), we introduce two parameters, namely,

α = lim inf
− logF (t)

log t
and α = lim sup

− logF (t)

log t
.

Clearly, α ≤ α. A further useful fact is that

α = sup{α ≥ 0 : E(Xα
1 ) < ∞},

(see Rolski et al. [6]). Since EX1 < ∞, then α ≥ 1. If
F ∈ D then there exists an M > 0 such that tMF (t) → ∞.
Hence by the contradiction, it is easy to show that α < ∞.
In particular, if F ∈ ERV (−α,−β), then α = α and α = β.
If F ∈ R−α then α = α = α.

Theorem 2. For the GDRRM, suppose that Condition 1.1
is satisfied and F ∈ D. Then, for any fixed 0 < x ≤ 1 and
y > 0,

(6) lim inf
u→∞

logP(τ(u) ≤ yux)

log u
≥ x− α

and

(7) lim sup
u→∞

logP(τ(u) ≤ yux)

log u
≤ x− α.

In particular, if F ∈ R−α for some α > 1 then for any
fixed 0 < x ≤ 1 and y > 0,

(8) lim
u→∞

logP(τ(u) ≤ yux)

log u
= x− α.

In the next section, the main results will be proved.

2. Proofs of main results

We first give a lemma.

Lemma 1. Suppose that {Zn, n ≥ 1} is a sequence of NA
identically distributed and nonnegative r.v.s with a finite

mean. N1(t) = sup{n ≥ 1 :
n∑

k=1

Zk ≤ t}, t ≥ 0. Then

(9)
N1(t)

t
→ 1

E(Z1)
a.s.;

E(N1(t))

t
→ 1

E(Z1)

and for any θ > 0 and some ε > 0,

(10)
∑

k>(1+θ)E(N1(t))

(1 + ε)kP(N1(t) ≥ k) = o(1).

Proof. The relation (9) is Theorem 6.1 of Yang and Wang
[9]. We now prove (10). For any h > 0, let f(h) =
− logE(e−hZ1), then f(h) > 0 and

lim
h→0

f(h)

h
= lim

h→0

E(e−hZ1Z1)

E(e−hZ1)
= E(Z1).

Thus, for any fixed θ > 0, there exists an h0 = h0(θ) such
that

(11) (1 +
θ

2
)
f(h0)

E(Z1)
> (1 +

θ

4
)h0.

Take s = log(1+ε), then letting ε be sufficiently small such
that

(12) 0 < s < θ(θ + 4)−1f(h0).

Thus, by Property P2 of Joad-Dev and Proschan [5], (11),
(9) and (12), we have that when t is sufficiently large∑

k>(1+θ)E(N1(t))

(1 + ε)kP(N1(t) ≥ k)

=
∑

k>(1+θ)E(N1(t))

(1 + ε)kP(
k∑

i=1

Zi ≤ t)

≤
∑

k>(1+θ)E(N1(t))

esk+h0t(E(e−h0Z1))k

≤ eh0t

∞∫
(1+θ)E(N1(t))

esy(E(e−h0Z1))ydy

= eh0t(f(h0))
−1

∞∫
(1+θ)E(N1(t))f(h0)

exp

{(
s

f(h0)
− 1

)
y

}
dy

= (f(h0)− s)−1eh0t

exp

{(
s

f(h0)
− 1

)
(1 + θ)E(N1(t))f(h0)

}
≤ (f(h0)− s)−1eh0t

exp

{(
s

f(h0)
− 1

)(
1 +

θ

2

)
t

E(Z1)
f(h0)

}
≤ (f(h0)− s)−1 exp

{(
s

f(h0)

(
1 +

θ

4

)
− θ

4

)
h0t

}
= o(1).

�
Proof of Theorem 1. For the proofs of (1) and (2), using
Theorem 2.2 of Wang et al. [8], we only need to show that
{N(t); t ≥ 0} satisfies the following condition: for some
α > J+

F and any θ > 0,

(13) E ((N(t))α1(N(t) > (1 + θ)λ(t))) = O(1)λ(t),
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where 1(A) denotes the indicator function of an event A.
By Lemma 1, we know that for any θ > 0 and some

ε > 0, ∑
k>(1+θ)λ(t)

(1 + ε)kP(N(t) ≥ k) = o(1).

It follows from (9) that N(t) → ∞, a.s. and λ(t) → ∞.
Thus, for any fixed α > 0 and θ > 0, when t is sufficiently
large,

E ((N(t))α1(N(t) > (1 + θ)λ(t)))

≤ E
(
(1 + ε)N(t)1(N(t) > (1 + θ)λ(t))

)
≤

∑
k>(1+θ)λ(t)

(1 + ε)kP(N(t) ≥ k) = o(1).

So (13) is satisfied.
For the proof of (3), on the one hand, by (1), for any

fixed γ > 0,

lim sup
t→∞

sup
x≥γλ(t)

P(S(t) > x)

λ(t)F (x)
(14)

= lim sup
t→∞

sup
x≥γλ(t)

P(Y (t) > x+ c1M(t))

λ(t)F (x)

≤ lim sup
t→∞

sup
x≥γλ(t)

P(Y (t) > x)

λ(t)F (x)
≤ L−1

F .

On the other hand, for any 0 < θ < 1,

P(S(t) > x)(15)

= P(Y (t) > x+ c1M(t))

=

∞∑
n=0

P(Y (t) > x+ c1n)P(M(t) = n)

≥
∑

n≤(1+θ)δ(t)

P(Y (t) > x+ c1n)P(M(t) = n).

Using (1) and Condition 1.1, for any fixed γ > 0,

lim inf
t→∞

inf
x≥γλ(t)

∑
n≤(1+θ)δ(t)

P(Y (t) > x+ c1n)

λ(t)F (x)
×

P(M(t) = n)

≥ lim inf
t→∞

inf
x≥γλ(t)

P(Y (t) > x+ c1(1 + θ)δ(t))

λ(t)F (x)
×

P(M(t) ≤ (1 + θ)δ(t))

≥ lim inf
t→∞

inf
x≥γλ(t)

P(Y (t) > x+ c1(1 + θ)δ(t))

λ(t)F (x+ c1(1 + θ)δ(t))
×

F (x(1 + (1 + θ)c1pγ
−1))

F (x)

≥ lim inf
x→∞

F (x(1 + (1 + θ)c1pγ
−1))

F (x)

= F ∗(1 + (1 + θ)c1pγ
−1).

Then letting θ ↓ 0, by (15) we have that for any fixed γ > 0,

lim inf
t→∞

inf
x≥γλ(t)

P(S(t) > x)

λ(t)F (x)
≥ F ∗(1 + c1pγ

−1),

which combined with (14) yields that (3) holds.

Now we prove (4). For any 0 < θ < 1,

P(S(t)− E(S(t)) > x)(16)

=

∞∑
n=0

P(Y (t)− E(Y (t)) > x− c1δ(t) + c1n)×

P(M(t) = n)

=

 ∑
n<(1−θ)δ(t)

+
∑

(1−θ)δ(t)≤n≤(1+θ)δ(t)

+
∑

n>(1+θ)δ(t)


P(Y (t)− E(Y (t)) > x− c1δ(t) + c1n)P(M(t) = n)

≡ J1 + J2 + J3.

For J1, by (2), Condition 1.1 and F ∈ D, for any fixed
γ > c1p,

lim sup
t→∞

sup
x≥γλ(t)

J1

λ(t)F (x)
(17)

≤ lim sup
t→∞

sup
x≥γλ(t)

P(Y (t)− E(Y (t)) > x− c1δ(t))

λ(t)F (x− c1δ(t))
×

F (x(1− c1pγ
−1))

F (x)
P(M(t) < (1− θ)δ(t))

≤ L−1
F lim sup

t→∞

F (x(1− c1pγ
−1))

F (x)
×

lim
t→∞

P(M(t) < (1− θ)δ(t))

= 0.

For J3, by (2) and Condition 1.1, for any fixed γ > 0,

lim sup
t→∞

sup
x≥γλ(t)

J3

λ(t)F (x)
(18)

≤ lim sup
t→∞

sup
x≥γλ(t)

P(Y (t)− E(Y (t)) > x)

λ(t)F (x)
×

P(M(t) > (1 + θ)δ(t))

≤ L−1
F lim

t→∞
P(M(t) > (1 + θ)δ(t)) = 0.

For J2, since 0 < θ < 1 < (c1p)
−1γ for any fixed γ > c1p,

by using (2) and Condition 1.1, we have

lim sup
t→∞

sup
x≥γλ(t)

J2

λ(t)F (x)
(19)

≤ lim sup
t→∞

sup
x≥γλ(t)

P(Y (t)− E(Y (t)) > x− c1θδ(t))

λ(t)F (x− c1θδ(t))
×

lim sup
x→∞

F (x(1− c1θpγ
−1)

F (x)

≤ L−1
F

1

F ∗ ((1− c1θpγ−1)−1)
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and

lim inf
t→∞

inf
x≥γλ(t)

J2

λ(t)F (x)
(20)

≥ lim inf
t→∞

inf
x≥γλ(t)

P(Y (t)− E(Y (t)) > x+ c1θδ(t))

λ(t)F (x+ c1θδ(t))
×

lim inf
x→∞

F (x(1 + c1θpγ
−1)

F (x)

≥ max{(1− φ(1))LF , F ∗(1 + E(X1)γ
−1)} ×

F ∗
(
1 + c1θpγ

−1
)
.

Thus, by (16) - (20), letting θ ↓ 0, we have that (4) holds.
For the proof of (5), recall that if F ∈ C then LF = 1,

and if Xn, n ≥ 1 are independent then φ(1) = 0. Hence (5)
can be immediately obtained from (4). �

Proof of Theorem 2 For any fixed 0 < x ≤ 1 and y > 0,
take 0 < a < y−1E(T1). Then for any fixed a < γ <
y−1E(T1), by (3) and (9)

lim inf
u→∞

P(S(yux) > u))

λ(yux)F (u)
≥ lim inf

t→∞
inf

x≥γλ(t)

P(S(t) > x))

λ(t)F (x)

≥ F ∗(1 + c1pa
−1).

Hence, by (9), for any 0 < ε < 1, when u is large enough,

P(τ(u) ≤ yux)

≥ P(S(yux) > u))

≥ (1− ε)F ∗(1 + c1pa
−1)λ(yux)F (u)

≥ (1− 2ε)F ∗(1 + c1pa
−1)(ET1)

−1yuxF (u).

Thus

lim inf
u→∞

logP(τ(u) ≤ yux)

log u
≥ x+ lim inf

u→∞

logF (u)

log u
= x− α.

Similarly, for any fixed 0 < x ≤ 1 and y > 0, by (1) and
(9), for any 0 < ε < 1, when u is large enough

P(τ(u) ≤ yux) ≤ P(Y (yux) > u))

≤ (1 + ε)L−1
F λ(yux)F (u)

≤ (1 + 2ε)L−1
F (ET1)

−1yuxF (u).

Thus

lim sup
u→∞

logP(τ(u) ≤ yux)

log u
≤ x+ lim sup

u→∞

logF (u)

log u
= x− α.

�
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