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Abstract. The mimimal entropy martingale measure for the stochastic process defined as the ex-
ponential of an additive process with the structure of semimartingale will be investigated. Special
attention will be paid to the case when the underlying additive process has fixed times of discon-
tinuity. The investigation of this paper will establish a unified way that is applicable both to the
case of Lévy processes and that of the sums of independent random variables.
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1. Introduction

Let (Xt = (X1
t , . . . , X

d
t ))t∈[0,T ], T > 0, be an Rd-valued

additive process with the structure of semimartingale, in
other words, a d-dimensional semimartingale with indepen-
dent increments. According to [7], we will also call such a
stochastic process as (Xt) a d-dimensional PII-semimartin-
gale. We always suppose that X0 = 0.

Let (St = (S1
t , . . . , S

d
t ))t∈[0,T ] be a stochastic process de-

fined as the exponential of (Xt):

Si
t := Si

0 e
Xi

t , i = 1, . . . , d

where we suppose that each Si
0 is a positive constant. We

call such a stochastic process as (St) a d-dimensional ex-
ponential additive process based on the additive process
(Xt) or, for simplicity, an exponential PII-semimartingale
(based on (Xt)).

The purpose of this paper is to propose a condition under
which the mimimal entropy martingale measure (MEMM)
for (St) exists and to represent the MEMM explicitly by
the characteristics of (Xt). In a series of previous papers,
we have discussed this problem in the case when

1. (Xt) is a Lévy process in [5] and [2];

2. (Xt) is a stochastically continuous PII-semimartin-
gale in [3],

respectively. In this paper, we are interested in the case
when (Xt) is a PII-semimartingale that is not necessarily
stochastically continuous, in other words, that may have
fixed times of discontinuity. Hence, we can say that the
aim of this paper is to give a final answer to the prob-
lem described above in the framework of exponential PII-
semimartingales.

In Section 2, we will review several properties of PII-
semimartingales. In particular, Theorem 1 plays funda-
mental role in showing Corollary 1 that ensures the exis-
tence of exponential moments of integrals of deterministic
processes based on (Xt) and that gives the representation
of them by the characteristics of (Xt).

In Section 3, we will precisely state our main result of
this paper, Theorem 2, where the existence and the rep-
resentation of the MEMM for (St) will be shown under a
mild condition (C). Owing to removing the restriction of
stochastic continuity of the underlying PII-semimartingale
(Xt), we can also treat the case when it is defined by a
sum of independent random variables in a unified frame-
work. See Corollary 2.

In Section 4, we will give a proof of Theorem 2. It follows
on the stream proposed in the proof of Theorem 3.1 in [5].
However, we will see that suitable modification of discus-
sions and deeper consideration will be needed to overcome
the difficulties arising from the existence of fixed times of
discontinuity.

2. Additive processes and exponential
additive processes

additive process with the structure of semi-
martingales

Let (Ω,F , P ) be a probability space equipped with a fil-
tration (Ft) that satisfies the usual conditions. See [7]
I.1.2 (p.2) for the definition of the usual conditions. Let
(Xt = (X1

t , . . . , X
d
t ))t∈[0,T ], T > 0, be an Rd-valued addi-

tive process with the structure of semimartingale defined
on the probability space (Ω,F , P ) with (Ft). To be precise,
(Xt) is an Rd-valued adapted càdlàg process with X0 = 0
that has the following properties:
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1. (Xt) is a process with independent increments: for
all s ≤ t, the increment Xt − Xs is independent of
Fs;

2. (Xt) is a semimartingale with respect to the filtra-
tion (Ft).

According to [7], we will also call such a stochastic process
as (Xt) a d-dimensional PII-semimartingale.
We would like to emphasize that throughout this paper

we do not necessarily assume that (Xt) is stochastically
continuous. Note that, in our scheme, the stochastic conti-
nuity is equivalent to the property of having no fixed time
of discontinuity and also to the quasi-left continuity. See
[6] Corollary 11.28 (p.308) and [7] Theorem II.4.18 (p.107).
Let (Ct, n(dtdx), Bt) be the characteristics of (Xt) asso-

ciated with the truncation function h(x) := xI{|x|≤1}(x) on

Rd.
In other words, let the canonical representation of (Xt)

(associated with h) be given as follows ([7] Theorem II.2.34
(p.84)):

Xt = Xc
t +Bt +

∫
(0,t]

∫
Rd

0

h(x) Ñ(dudx)(1)

+

∫
(0,t]

∫
Rd

0

ȟ(x)N(dudx),

where Rd
0 := Rd\{0}. Here,

• (Xc
t ) is a continuous (local) martingale with Xc

0 = 0
and Cij

t =
⟨
Xc,i, Xc,j

⟩
t
for i, j = 1, . . . , d.

• N(dudx) denotes the counting measure of the jumps
of (Xt):

N((0, t], A) := ♯{u ∈ (0, t]; ∆Xu := Xu −Xu− ∈ A}

for A ∈ B(Rd
0), where Xu− := limv↑u Xv and B(Rd

0)
is the Borel σ-field on Rd

0.

We denote by Ñ(dudx) := N(dudx) − n(dudx) the
compensated measure of N(dudx), where n(dudx) is
the compensator of N(dudx). Also, we set ȟ(x) :=
x− h(x).

• Each component (Bi
t) (i = 1, . . . , d) is a càdlàg func-

tion with finite variation on [0, T ]. ([7] Definition
II.2.6 (p.76))

As fundamental properties of characteristics, the folllow-
ing facts are known:

• (Ct, n(dtdx), Bt) are deterministic, since (Xt) has in-
dependent increments. ([7] Theorem II.4.15 (p.106))

•
∫
(0,T ]

∫
Rd

0
(|x|2 ∧ 1)n(dudx) < ∞, where α ∧ β :=

min{α, β} for α, β ∈ R, and n({u},Rd
0) ≤ 1. ([7]

II.2.13 (p.77))

• ∆Bu =
∫
Rd

0
h(x)n({u}, dx). ([7] II.2.14 (p.77))

Also, note that the law of (Xt) is characterized by the
Lévy-Khinchin formula ([7] Theorem II.4.15 (p.106)):

EP [e
√
−1 ξ·(Xt−Xs)]

= exp
[
− 1

2
ξ · (Ct − Cs)ξ +

√
−1 ξ · (Bt −Bs)

+

∫
(0,t]

∫
Rd

0

(
e
√
−1ξ·x − 1−

√
−1 ξ · h(x)

)
× IJc(u)n(dudx)

]
×

∏
u∈(s,t]

{
e−

√
−1 ξ·∆Bu

×
[
1 +

∫
Rd

0

(
e
√
−1ξ·x − 1

)
n({u}, dx)

]}
,

where a·b denotes the inner product of a, b ∈ Rd; J denotes
the set of all fixed times of discontinuity of (Xt), that is,
J := {t > 0; n({t},Rd

0) > 0}.

1-dimensional PII-semimartingale and the
exponential moment

Let (Yt)t∈[0,T ], T > 0, be a 1-dimensional PII-semimartin-
gale and (CY

t , nY (dtdy), BY
t ) the characteristics of (Yt) as-

sociated with the truncation function h1(y) := yI{|y|≤1}(y)
on R.
In [4], we have shown the following result with an explicit

proof. See Theorem 1 therein.

Theorem 1. Suppose that

(2)

∫
(0,T ]

∫
{y>1}

ey nY (dudy) < ∞.

Then, (eYt−KY (1)t)t∈(0,T ] is a uniformly integrable martin-
gale with mean 1, where (KY (1)t) is the modified Laplace
cumulant of (Yt) at 1:

KY (1)t(3)

=
1

2
CY

t +BY
t

+

∫
(0,t]

∫
R0

(
ey − 1− h1(y)

)
nY (dudy)

+
∑

u∈(0,t]

{
log

(
1 +

∫
R0

(ey − 1)nY ({u}, dy)
)

−
∫
R0

(ey − 1)nY ({u}, dy)
}
.

In particular,

E[eYt ] = eK
Y (1)t .(4)

integral based on the d-dimensional PII-semi-
martingale (Xt):

Let (θu = (θ1u, . . . , θ
d
u)) be an Rd-valued Borel measurable

function. Note that it is deterministic. We say that (θu) is
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integrable with respect to (Xt) if the following conditions
(i)∼(iii) are satisfied:

(i)

∫
(0,T ]

θu dCuθu :=
d∑

i,j=1

∫
(0,T ]

θiu dC
ij
u θju < ∞,

(ii)

d∑
i=1

∫
(0,T ]

|θiu| d(Var(Bi))u < ∞, where Var(A)t de-

notes the total variation of the function (Au) on the
interval [0, t],

(iii)

∫
(0,T ]

∫
Rd

0

|θu · h(x)|2 n(dudx) < ∞.

We denote by L(X) the set of all integrable functions with
respect to (Xt). Note that an arbitrary bounded measur-
able function belongs to L(X).

Let (θu) ∈ L(X). Then, we can define an integral
(
∫
(0,t]

θu · dXu) of (θu) based on (Xt) by∫
(0,t]

θu · dXu :=

∫
(0,t]

θu · dXc
u +

∫
(0,t]

θu · dBu(5)

+

∫
(0,t]

∫
Rd

0

θu · h(x) Ñ(dudx)

+

∫
(0,t]

∫
Rd

0

θu · ȟ(x)N(dudx).

The following result is shown as Proposition 1 in [4]:

Proposition 1. Let (θu) ∈ L(X). Then (Yt :=
∫
(0,t]

θu ·
dXu) is a 1-dimensional PII-semimartingale; the charac-
teristics (CY , nY , BY ) (associated with h1 on R)) are given
by

CY
t =

∫
(0,t]

θudCuθu;

nY ((0, t], A) =

∫
(0,t]

∫
R0

IA(θu · x)n(dudx), A ∈ B(R0);

BY
t =

∫
(0,t]

θu · dBu

+

∫
(0,t]

∫
Rd

0

(
h1(θu · x)− θu · h(x)

)
n(dudx)

exponential moment of (
∫
(0,t]

θu · dXu):

The following result is shown as Corollary 1 in [4]:

Corollary 1. Let (θu) ∈ L(X) and suppose that

(6)

∫
(0,T ]

∫
{θu·x>1}

eθu·x n(dudx) < ∞.

Then, (e
∫
(0,t]

θu·dXu−KX(θ)t)t∈(0,T ] is a uniformly integrable
martingale with mean 1, where (KX(θ)t) is the modified

Laplace cumulant of (Xt) at (θu):

KX(θ)t =
1

2

∫
(0,t]

θu dCu θu +

∫
(0,t]

θu · dBu

(7)

+

∫
(0,t]

∫
Rd

0

{
eθu·x − 1− θu · h(x)

}
n(dudx)

+
∑

u∈(0,t]

{
log

(
1 +

∫
Rd

0

(
eθu·x − 1

)
n({u}, dx)

)
−
∫
Rd

0

(
eθu·x − 1

)
n({u}, dx)

}
.

In particular,

(8) E[e
∫
(0,t]

θu·dXu ] = eK
X(θ)t .

Remark 1. If (θu) is bounded, the condition (6) can be
replaced by the one∫

(0,T ]

∫
{|x|>1}

eθu·x n(dudx) < ∞.

Remark 2. The sum of the first three terms in the right
hand side of (7) is called the Laplace cumulant of (Xt) at

(θu) and denoted by K̃X(θ)t:

K̃X(θ)t =
1

2

∫
(0,t]

θu dCu θu +

∫
(0,t]

θu · dBu

(9)

+

∫
(0,t]

∫
Rd

0

{
eθu·x − 1− θu · h(x)

}
n(dudx).

The modified Laplace cumulant and the Laplace cumulant
are related to each other through the following relation:

eK
X(θ)t = E(K̃X(θ))t.

See [8] and [7] for fundamental properties of the (modi-
fied) Laplace cumulant in the framework of the theory of
semimartingales.

exponential additive process

Let St = (S1
t , . . . , S

d
t ) be an Rd-vauled stochastic process

defined by

(10) Si
t := Si

0e
Xi

t , i = 1, . . . , d,

where we will asuume that all of Si
0 are positive constants.

We call (St) the exponential additive process based on the
additive process (Xt). For simplicity, we will also call it
the exponential PII-semimartingale (based on (Xt)).
Then, it follows from Itô’s formula that

Si
t = Si

0 +

∫
(0,t]

Si
u−dX̂

i
u,

where

(11) X̂i
t := Xi

t +
1

2
⟨Xi,c⟩t +

∑
u∈(0,t]

{
e∆Xi

u − 1−∆Xi
u

}
.
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Combining this definition with (1), we see that the canon-

ical representation of (X̂t) (associated with h) is given as
follows:

Proposition 2.

X̂t = Xc
t +

{
Bt +

1

2
Ct

(12)

+

∫
(0,t]

∫
Rd

0

{
h(E(x)− I)− h(x)

}
n(dudx)

}
+

∫
(0,t]

∫
Rd

0

h(E(x)− I) Ñ(dudx)

+

∫
(0,t]

∫
Rd

0

ȟ(E(x)− I)N(dudx),

where we set E(x) := (ex
1

, . . . , ex
d

) for x = (x1, . . . , xd),
I := (1, . . . , 1︸ ︷︷ ︸

d

) ∈ Rd and

(13) C
i

t := Cii
t .

It is also immediate from Proposition 2 that the following
proposition holds:

Proposition 3. The characteristics (Ĉ, n̂, B̂) of (X̂t)
(associated with h) are given by

Ĉt = Ct;(14)

n̂((0, t], G) =

∫
(0,t]

∫
Rd

0

IG(E(x)− I)n(dudx),(15)

G ∈ B(Rd
0);

B̂t = Bt +
1

2
Ct(16)

+

∫
(0,t]

∫
Rd

0

{
h(E(x)− I)− h(x)

}
n(dudx).

3. The minimal entropy martingale
measures for exponential additive

processes

We will use the same notation as in Section 2. In particular,
recall that (Xt)t∈[0,T ] is a d-dimensional PII-semimartin-
gale, defined on a filtered probability space (Ω,F , (Ft), P )
satisfying the usual conditions, with characteristics
(Ct, n(dtdx), Bt) (associated with the truncation function
h(x)). Moreover, (St) denotes the exponential PII-semi-
martingale defined by (10).

In this section, we will precisely state our main result
(Theorem 2 below). To this end, we prepare some notion.

minimal entropy martingale measure

For a probability measure Q on the measurable space
(Ω,G), where G is a sub-σ-field of F , the relative entropy

of Q on G with respect to P is defined as follows:

HG(Q|P ) :=


EQ

[
log

(dQ
dP

∣∣∣
G

)]
, if Q is absolutely con-

tinuous with respect
to P on G

+∞, otherwise,

where dQ
dP

∣∣
G is the Radon-Nikodym derivative of Q with

respect to P on G.
Next, we denote by ALMM(P ) the set of all absolutely

continuous probability measures on (Ω,FT ) with respect to
P such that (St) is an (Ft)-local martingale under Q. An
element of ALMM(P ) is called an absolutely continuous
local martingale measure for (St).
For a class D of probability measures on (Ω,FT ), we

call an equivalent martingale measure the (equivalent)
minimal entropy martingale measure (MEMM) for
(St) in D if it minimizes the values of the function: Q ∈
D 7−→ HFT

(Q|P ).

main result

We are now in a position to state our main result. Our
main objective is to show the existence and the represen-
tation of the MEMM for (St) in ALMM(P ). To establish
this, we propose the following condition (C) for (St), which
is described by the characteristics (Ct, n(dtdx), Bt) of the
underlying PII-semimartingale (Xt).

Condition (C):
There exists an Rd-valued bounded Borel measurable func-
tion (θ∗u), u ∈ [0, T ], that satisfies the following (i) and (ii):

(i) for each i = 1, . . . , d,

(17)

∫
(0,T ]

∫
{|x|>1}

ex
i

eθ
∗
u·(E(x)−I) n(dudx) < ∞;

(ii) for all t ∈ [0, T ],

Bc
t +

1

2
Ct +

∫
(0,t]

dCu θ
∗
u(18)

+

∫
(0,t]

∫
Rd

0

{(
E(x)− I

)
eθ

∗
u·(E(x)−I)

− h(x)
}
IJc(u)n(dudx) = 0;∫

Rd
0

(
E(x)− I

)
eθ

∗
t ·(E(x)−I) n({t}, dx) = 0.(19)

Here, (Bc
t ) denotes the continuous part of the func-

tion with finite variation (Bt):
Bc

t := Bt −
∑

u∈(0,t] ∆Bu.

Theorem 2. Suppose that the condition (C) holds. Then
we have the following (I)∼(III).

(I) (
exp

[∫
(0,t]

θ∗u · dX̂u −KX̂(θ∗)t

])
t∈[0,T ]



Tsukasa Fujiwara 119

is a true maringale under the probability P , where

(X̂t) is the stochastic process of (11) and (KX̂(θ∗)t)

is the modified Laplace cumulant of (X̂t) at θ
∗ :

KX̂(θ∗)t

(20)

=
1

2

∫
(0,t]

θ∗u dCu θ
∗
u+

1

2

∫
(0,t]

θ∗u · dCu+

∫
(0,t]

θ∗u · dBu

+

∫
(0,t]

∫
Rd

0

{
eθ

∗
u·(E(x)−I) − 1− θ∗u · h(x)

}
n(dudx)

+
∑

u∈(0,t]

{
log

(
1+

∫
Rd

0

{eθ
∗
u·(E(x)−I) − 1}n({u}, dx)

)
−
∫
Rd

0

{eθ
∗
u·(E(x)−I) − 1}n({u}, dx)

}
.

In particular,

(21) EP [e
∫
(0,t]

θ∗
u·dX̂u ] = eK

X̂(θ∗)t .

Therefore, a probability measure P ∗ on FT is consis-
tently determined by

(22)
dP ∗

dP

∣∣∣
Ft

:=
e
∫
(0,t]

θ∗
u·dX̂u

EP [e
∫
(0,t]

θ∗
u·dX̂u ]

.

(II) Under the probability measure P ∗ of (22), the stocha-
stic process (Xt) of (2.1) is an additive process; the
characteristics (C∗

t , n
∗(dtdx), B∗

t ) (associated with
the truncation function h(x) := xI{|x|≤1}(x)) are
given by

C∗
t = Ct;(23)

n∗(dtdx) =
eθ

∗
t (E(x)−I)

1 + ∆K̃X̂(θ∗)t
n(dtdx);(24)

B∗
t = Bt +

∫
(0,t]

dCuθ
∗
u(25)

+

∫
(0,t]

∫
Rd

0

h(x)
( eθ

∗
u(E(x)−I)

1 + ∆K̃X̂(θ∗)u
− 1

)
n(dudx),

where (K̃X̂(θ∗)t) is the Laplace cumulant of (X̂t) at
θ∗:

K̃X̂(θ∗)t

(26)

=
1

2

∫
(0,t]

θ∗u dCu θ
∗
u+

∫
(0,t]

θ∗u · dBu+
1

2

∫
(0,t]

θ∗u · dCu

+

∫
(0,t]

∫
Rd

0

{
eθ

∗
u·(E(x)−I) − 1− θ∗u · h(x)

}
n(dudx)

and

(27) ∆K̃X̂(θ∗)t =

∫
Rd

0

{
eθ

∗
t ·(E(x)−I) − 1

}
n({t}, dx).

Furthermore, P ∗ is an equivalent martingale measure
for (St) of (10).

(III) The probability measure P ∗ of (22) attains the mini-
mal entropy in the class ALMM(P ):
(28)

min
Q∈ALMM(P )

HFT
(Q|P ) = HFT

(P ∗|P ) = −KX̂(θ∗)T .

discrete case

Let {ξ1, ξ2, . . . } be a sequence of Rd-valued random vari-
ables defined on a probability space (Ω,F , P ) with a filtra-
tion (Gk) of sub-σ-fields of F ; suppose that ξk is adapted to
Gk for each k ∈ N and that, for all j < k, ξk is independent
of Gj .
Let

(29) Xt :=

[t]∑
k=1

ξk,

where [t] denotes the greatest integer that does not exceed
the real number t. Then (Xt) of (29) can be regarded as
a PII-semimartingale with respect to the filtration (Ft :=
G[t]).
The canonical representation of (Xt) associated with h

is given as follows:

Xt = Bt +

∫
(0,t]

∫
Rd

0

h(x) Ñ(dudx)

+

∫
(0,t]

∫
Rd

0

ȟ(x)N(dudx),

where Bt =
∑[t]

k=1 E[h(ξk)]; N((0, t], A) := ♯{k ∈ N ∩
(0, t]; ξk ∈ A} for A ∈ B(Rd

0); the compensator of N(dudx)
is given by n({k}, A) = P [ξk ∈ A].
Note that J = N and that IJc(u)n(dudx) = 0.
In the setting above, the condition (C) is reduced to the

following one:

Condition (C)d:
There exisits an Rd-valued function (θ∗k), k = 1, . . . , [T ],
that satisfies the following: for each k = 1, . . . , [T ] and
i = 1, . . . , d,

(i) ∫
{|x|>1}

ex
i

eθ
∗
k·(E(x)−I) n({k}, dx)

= E[eξ
i
k eθ

∗
k·(E(ξk)−I); |ξk| > 1] < ∞;

(ii) ∫
Rd

0

(ex
i

− 1)eθ
∗
k·(E(x)−I) n({k}, dx)

= E[(eξ
i
k − 1) eθ

∗
k·(E(ξk)−I)] = 0.

Then it is easy to obtain the following result from The-
orem 2.
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Corollary 2. Suppose that the condition (C)d holds.
Then the probability measure P ∗ defined by

dP ∗

dP

∣∣∣
Ft

:=
e
∑[t]

k=1 θ∗
u·(E(ξk)−I)∏[t]

k=1 E[eθ
∗
k·(E(ξk)−I)]

, t ∈ [0, T ].

is the mimimal entropy martingale measure for

(St := S0 e
∑[t]

k=1 ξk) in the class ALMM(P );

min
Q∈ALMM(P )

HFT
(Q|P ) = HFT

(P ∗|P )

= −
[t]∑

k=1

log
(
E[eθ

∗
k·(E(ξk)−I)]

)
.

4. Proof of Theorem 2

In this section, we will give a proof of Theorem 2. Roughly
speaking, it follows on the stream proposed in the proof
of Theorem 3.1 in [5]; however, we need to consider more
finely to overcome the difficulties arising from the existence
of fixed times of discontinuity.

Proof of (I)

We will apply Corollary 1 to the stochastic integral
(
∫
(0,t]

θ∗u · dX̂u). Recall that, as we have shown in Propo-

sition 3, the characteristics (Ĉ, n̂, B̂) of (X̂t) (associated
with h) are given by (14), (15) and (16).

Then, it follows from the condition (C)-(i) that

∫
(0,T ]

∫
{|x|>1}

eθ
∗
u·x n̂(dudx)

=

∫
(0,T ]

∫
{|E(x)−I|>1}

eθ
∗
u·(E(x)−I) n(dudx)

≤
∫
(0,T ]

∫
{|x|>1/α}

eθ
∗
u·(E(x)−I) n(dudx)

< ∞,

because {|E(x)− I| > 1} ⊂ {|x| > 1/α} for some α > 0.

Therefore, we see from Corollary 1 and Remark 1 that

(e
∫
(0,t]

θ∗
u·dX̂u−KX̂(θ∗)t)t∈(0,T ]

is a uniformly integrable martingale with mean 1 and hence

E[e
∫
(0,t]

θ∗
u·dX̂u ] = eK

X̂(θ∗)t ,

where (KX̂(θ∗)t) is the modified Laplace cumulant of (X̂t)

at (θ∗u):

KX̂(θ∗)t

=
1

2

∫
(0,t]

θ∗u dĈu θ
∗
u +

∫
(0,t]

θ∗u · dB̂u

+

∫
(0,t]

∫
Rd

0

{
eθ

∗
u·x − 1− θ∗u · h(x)

}
n̂(dudx)

+
∑

u∈(0,t]

{
log

(
1 +

∫
Rd

0

{
eθ

∗
u·x − 1

}
n̂({u}, dx)

)
−
∫
Rd

0

{
eθ

∗
u·x − 1

}
n̂({u}, dx)

}
.

Furthermore, it is easy to see from Proposition 3 that (20)
holds.

Proof of (II)

We will first show that (26) and (27) hold.
By the definition of the Laplace cumulant,

K̃X̂(θ∗)t =
1

2

∫
(0,t]

θ∗u dĈu θ
∗
u +

∫
(0,t]

θ∗u · dB̂u

+

∫
(0,t]

∫
Rd

0

(
eθ

∗·x − 1− θ∗u · h(x)
)
n̂(dudx).

Hence, as in the proof of (20), it follows from Proposition
3 that (26) holds.
Moreover, since (Ct) is continuous and

∆Bt =
∫
Rd

0
h(x)n({t}, dx), we see that

∆K̃X̂(θ∗)t

= θ∗t ·∆Bt +

∫
Rd

0

{
eθ

∗
t ·(E(x)−I) − 1− θ∗t · h(x)

}
n({t}, dx)

=

∫
Rd

0

{
eθ

∗
t ·(E(x)−I) − 1

}
n({t}, dx).

Next, we will show the following proposition:

Proposition 4. Let (D∗
t ) be the density process of P ∗

against P , that is, D∗
t =

dP ∗

dP

∣∣∣
Ft

= eM̌
∗
t , where we set

(30) M̌∗
t :=

∫
(0,t]

θ∗u · dX̂u −KX̂(θ∗)t.

Then,

(31) D∗
t = eM̌

∗
t = E(M∗)t,

where
(32)

M∗
t :=

∫
(0,t]

θ∗u · dXc
u +

∫
(0,t]

∫
Rd

0

eθ
∗
u·(E(x)−I) − 1

1 + ∆K̃X̂(θ∗)u
Ñ(dudx).

Before giving a proof of this proposition, we note the
following result, which ensures that the second term in the
right hand side of (32) makes sense as a martingale.
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Lemma 1. Let

Vt := 1 + ∆K̃X̂(θ∗)t.

Then (1/Vt)t∈(0,T ] is uniformly bounded.

Proof. For each n ∈ N, let

un+1 :=


inf{u ∈ (0, T ];u > un, Vu ≤ 1/2}

if {u ∈ (0, T ];u > un, Vu ≤ 1/2} ̸= ∅;
T if {u ∈ (0, T ];u > un, Vu ≤ 1/2} = ∅.

We will show that there exists n0 ∈ N such that un0 = T .

To see this, suppose that for all n ∈ N, un < T . Then,

Vun ≤ 1/2, and hence 1 + ∆K̃X̂(θ∗)un ≤ 1/2. Therefore,

for all n, −1 < ∆K̃X̂(θ∗)un ≤ −1 + 1/2 = −1/2, which

implies that |∆K̃X̂(θ∗)un | ≥ 1/2. Hence we have

∑
u∈(0,T ]

|∆K̃X̂(θ∗)u| ≥
∞∑

n=1

|∆K̃X̂(θ∗)un | ≥
∞∑

n=1

1

2
= +∞.

However, this result contradicts to the fact that (K̃X̂(θ∗)t)
is a function with finite variation on [0, T ]. Hence the hy-
pothesis that un < T for all n ∈ N is rejected. Thus,
it holds that there exists n0 ∈ N such that un0 = T .
This means that the number of times t ∈ (0, T ] such that
Vt ≤ 1/2 is finite. Also, since Vt > 0 for each t, we see that
supt∈(0,T ](1/Vt) < ∞.

Proof of Proposition 4. By Proposition 2 and the repre-
sentation (20), we see that

M̌∗
t =

∫
(0,t]

θ∗u · dX̂u −KX̂(θ∗)t

(33)

=

∫
(0,t]

θ∗u · dXc
u +

∫
(0,t]

∫
Rd

0

θ∗u · (E(x)− I) Ñ(dudx)

− 1

2

∫
(0,t]

θ∗u dCu θ
∗
u

−
∫
(0,t]

∫
Rd

0

{
eθ

∗
u·(E(x)−I) − 1

− θ∗u · (E(x)− I)
}
n(dudx)

−
∑

u∈(0,t]

{
log

(
1 + ∆K̃X̂(θ∗)u

)
−∆K̃X̂(θ∗)u

}
,

where we have used (27) to represent the last term in the
right hand side. Also, note that

∆M̌∗
u = θ∗u · (E(∆Xu)− I)− log

(
1 + ∆K̃X̂(θ∗)u

)
.(34)

Hence, it follows from Itô’s formula ([7](p.57)) that

eM̌
∗
t − 1 =

∫
(0,t]

eM̌
∗
u−θ∗u · dXc

u

(35)

+

∫
(0,t]

∫
Rd

0

eM̌
∗
u−θ∗u · (E(x)− I) Ñ(dudx)

− 1

2

∫
(0,t]

eM̌
∗
u−θ∗u dCu θ

∗
u

−
∫
(0,t]

∫
Rd

0

eM̌
∗
u−

{
eθ

∗
u·(E(x)−I) − 1

− θ∗u · (E(x)− I)
}
n(dudx)

−
∑

u∈(0,t]

eM̌
∗
u−

{
log

(
1 + ∆K̃X̂(θ∗)u

)
−∆K̃X̂(θ∗)u

}
+

1

2

∫
(0,t]

eM̌
∗
u−θ∗u dCu θ

∗
u

+
∑

u∈(0,t]

eM̌
∗
u−

{
∆M̌∗

u − 1−∆M̌∗
u

}
=

∫
(0,t]

eM̌
∗
u−θ∗u · dXc

u

+

∫
(0,t]

∫
Rd

0

eM̌
∗
u−θ∗u · (E(x)− I) Ñ(dudx)

−
∫
(0,t]

∫
Rd

0

eM̌
∗
u−

{
eθ

∗
u·(E(x)−I) − 1

− θ∗u · (E(x)− I)
}
n(dudx)

+

∫
(0,t]

∫
Rd

0

eM̌
∗
u−

{
eθ

∗
u·(E(x)−I) × 1

1 + ∆K̃X̂(θ∗)u

− 1− θ∗u · (E(x)− I)
}
N(dudx)

+
∑

u∈(0,t]

eM̌
∗
u−∆K̃X̂(θ∗)u

=
{∫

(0,t]

eM̌
∗
u−θ∗u · dXc

u

+

∫
(0,t]

∫
Rd

0

eM̌
∗
u−

(eθ∗
u·(E(x)−I) − 1

1 + ∆K̃X̂(θ∗)u

)
Ñ(dudx)

}
−
∫
(0,t]

∫
Rd

0

eM̌
∗
u−

(
eθ

∗
u·(E(x)−I) − 1

)
×
( ∆K̃X̂(θ∗)u

1 + ∆K̃X̂(θ∗)u

)
n(dudx)

−
∫
(0,t]

∫
Rd

0

eM̌
∗
u−

( ∆K̃X̂(θ∗)u

1 + ∆K̃X̂(θ∗)u

)
N(dudx)

+
∑

u∈(0,t]

eM̌
∗
u−∆K̃X̂(θ∗)u.

Note that

(36) ∆K̃X̂(θ∗)u = 0 for u ∈ Jc.

Therefore, we see that the sum of the last three terms in
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the right hand side is equal to

−
∫
(0,t]

∫
Rd

0

eM̌
∗
u−

(
eθ

∗
u·(E(x)−I) − 1

)(37)

×
( ∆K̃X̂(θ∗)u

1 + ∆K̃X̂(θ∗)u

)
IJ (u)n(dudx)

−
∫
(0,t]

∫
Rd

0

eM̌
∗
u−

( ∆K̃X̂(θ∗)u

1 + ∆K̃X̂(θ∗)u

)
IJ(u)N(dudx)

+
∑

u∈(0,t]

eM̌
∗
u−∆K̃X̂(θ∗)u

= −
∑

u∈(0,t]

∫
Rd

0

eM̌
∗
u−

(
eθ

∗
u·(E(x)−I) − 1

)

×
( ∆K̃X̂(θ∗)u

1 + ∆K̃X̂(θ∗)u

)
n({u}, dx)

−
∑

u∈(0,t]

eM̌
∗
u−

( ∆K̃X̂(θ∗)u

1 + ∆K̃X̂(θ∗)u

)
+

∑
u∈(0,t]

eM̌
∗
u−∆K̃X̂(θ∗)u

=
∑

u∈(0,t]

eM̌
∗
u−

{
−

( ∆K̃X̂(θ∗)u

1 + ∆K̃X̂(θ∗)u

)
×∆K̃X̂(θ∗)u

− ∆K̃X̂(θ∗)u

1 + ∆K̃X̂(θ∗)u
+∆K̃X̂(θ∗)u

}
= 0.

Combining (35) and (37), we obtain

eM̌
∗
t = 1 +

∫
(0,t]

eM̌
∗
u−θ∗u · dXc

u

+

∫
(0,t]

∫
Rd

0

eM̌
∗
u−

(eθ∗
u·(E(x)−I) − 1

1 + ∆K̃X̂(θ∗)u

)
Ñ(dudx).

Therefore, if we take M∗
t of (32), we have

eM̌
∗
t = 1 +

∫
(0,t]

eM̌
∗
u−dM∗

u ,

that is to say, we obtain (31). Thus, we have completed
the proof of Proposition 4.

Proposition 5. Under the probability P ∗, the canoni-
cal representation of (Xt) (associated with h) is given as
follows:

Xt = X∗,c
t +B∗

t +

∫
(0,t]

∫
Rd

0

h(x) Ñ∗(dudx)(38)

+

∫
(0,t]

∫
Rd

0

ȟ(x)N(dudx),

where

X∗,c
t := Xc

t −
∫
(0,t]

dCuθ
∗
u,(39)

Ñ∗(dudx) := N(dudx)− n∗(dudx),(40)

and (B∗
t ) is the deterministic process defined by (25).

Proof. Recall that, under P , (Xc
t ) is a continuous (local)

martingale with
⟨
Xc,i, Xc,j

⟩
t
= Cij

t . Hence, it follows from
the representation (31) of the density process (D∗

t ) that

∫
(0,t]

1

D∗
u−

d ⟨Xc, D∗⟩u

=

∫
(0,t]

1

D∗
u−

d

⟨
Xc,

∫
(0,·]

D∗
u−θ

∗
u · dXc

u

⟩
u

=

∫
(0,t]

dCuθ
∗
u.

Therefore, by Theorem 49 in [1], we see that (X∗,c
t ) of (39)

is a continuous (local) martingale under P ∗. It is also clear
that

⟨
X∗,c,i, X∗,c,j⟩

t
= Cij

t .

Next, we will show that the compensator N̂∗(dudx) of
N(dudx) under P ∗ is equal to n∗(dudx) of (24).

Let A be any set in B(Rd\{0}) satisfying n∗((0, T ], A) <
∞ and set Aε := A ∩ {ε < |x| < (1/ε)} for an arbitrary
ε ∈ (0, 1). Also, let

Nt :=

∫
(0,t]

∫
Rd

0

IAε(x) Ñ(dudx).

Then, it follows from the representation (31) of the density
process (D∗

t ) that

⟨N,D∗⟩t

=

∫
(0,t]

∫
Rd

0

IAε(x)×D∗
u−

eθ
∗
u·(E(x)−I) − 1

1 + ∆K̃X̂(θ∗)u
n(dudx)

−
∑

u∈(0,t]

∫
Rd

0

IAε(x)n({u}, dx)

×
∫
Rd

0

D∗
u−

eθ
∗
u·(E(x)−I) − 1

1 + ∆K̃X̂(θ∗)u
n({u}, dx),

and hence

∫
(0,t]

1

D∗
u−

d ⟨N,D∗⟩u

=

∫
(0,t]

∫
Rd

0

IAε(x)
eθ

∗
u·(E(x)−I) − 1

1 + ∆K̃X̂(θ∗)u
n(dudx)

−
∑

u∈(0,t]

∫
Rd

0

IAε(x)n({u}, dx)×
∆K̃X̂(θ∗)u

1 + ∆K̃X̂(θ∗)u
.

Here again, we have used the relation (27) to get the last
term. Therefore, we see that
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Nt −
∫
(0,t]

1

D∗
u−

d ⟨N,D∗⟩u

=
{
N((0, t], Aε)

−
∫
(0,t]

∫
Rd

0

IAε(x)
eθ

∗
u·(E(x)−I)

1 + ∆K̃X̂(θ∗)u
n(dudx)

}
−
∫
(0,t]

∫
Rd

0

IAε(x)
∆K̃X̂(θ∗)u

1 + ∆K̃X̂(θ∗)u
n(dudx)

+
∑

u∈(0,t]

∫
Rd

0

IAε(x)n({u}, dx)×
∆K̃X̂(θ∗)u

1 + ∆K̃X̂(θ∗)u
.

Since the sum of the last two terms in the right hand side
is equal to 0, we obtain

Nt −
∫
(0,t]

1

D∗
u−

d ⟨N,D∗⟩u

= N((0, t], Aε)−
∫
(0,t]

∫
Rd

0

IAε(x)
eθ

∗
u·(E(x)−I)

1 + ∆K̃X̂(θ∗)u
n(dudx)

= N((0, t], Aε)−
∫
(0,t]

∫
Rd

0

IAε(x)n
∗(dudx).

On the other hand, it follows from Theorem 49 in [1] that
(Nt −

∫
(0,t]

1
D∗

u−
d ⟨N,D∗⟩u) is a local martingale under P ∗.

Therefore, we see that
(N((0, t], Aε)−

∫
(0,t]

∫
Rd

0
IAε(x)n

∗(dudx)) is a local martin-

gale under P ∗ for any ε ∈ (0, 1). Letting ε ↓ 0, we can
conclude that (N((0, t], A)−

∫
(0,t]

∫
Rd

0
IA(x)n

∗(dudx)) is a

local martingale under P ∗ (see p.82 in [3] for a precise ar-

gument), which implies that the compensator N̂∗(dudx) of
N(dudx) under P ∗ is equal to n∗(dudx) of (24). By the

discussion above, the compensated measure Ñ∗(dudx) of
N(dudx) under P ∗ is given by (40).
Hence, the canonical representation of (Xt) (associated

with h) under P ∗ is given as follows:

Xt = Xc
t +Bt +

∫
(0,t]

∫
Rd

0

h(x) Ñ(dudx)

+

∫
(0,t]

∫
Rd

0

ȟ(x)N(dudx)

= X∗,c
t +

{
Bt +

∫
(0,t]

dCuθ
∗
u

+

∫
(0,t]

∫
Rd

0

h(x)
( eθ

∗
u·(E(x)−I)

1 + ∆K̃X̂(θ∗)u
− 1

)
n(dudx)

}
+

∫
(0,t]

∫
Rd

0

h(x) Ñ∗(dudx) +

∫
(0,t]

∫
Rd

0

ȟ(x)N(dudx).

Therefore, the third component (B∗
t ) of the characteristics

of (Xt) under P
∗ is given by (25).

Thus, we have completed the proof of Proposition 5.

By Proposition 5, it is clear that the characteristics
(C∗

t , n
∗(dtdx), B∗

t ) (associated with h) of (Xt) under P ∗

are given by (23), (24) and (25). Also, since they are de-
terministic and (B∗

t ) is a process with finite variation on
[0, T ], (Xt) is a PII-semimartingale under P ∗.
In the remainder of this part (Proof of (II)), we will show

that P ∗ is an equivalent martingale measure for (St) of
(10).

For each i(= 1, . . . , d), let θ
(i)
u := (0, . . . , 0, 1, 0, . . . , 0)(∈

Rd), where 1 is on the i-th component, and

Y
(i)
t := e

∫
(0,t]

θ(i)
u ·dXu−(K∗)X(θ(i))t .

Note that we have regarded (Xt) as a semimartingale with
respect to P ∗ and have denoted by ((K∗)X(θ)t) the modi-
fied Laplace cumulant of (Xt) at (θu). Hence,

(K∗)X(θ(i))t

(41)

=
1

2

∫
(0,t]

θ(i)u dC∗
u θ

(i)
u +

∫
(0,t]

θ(i)u · dB∗
u

+

∫
(0,t]

∫
Rd

0

{
eθ

(i)
u ·x − 1− θ(i)u · h(x)

}
n∗(dudx)

+
∑

u∈(0,t]

{
log

(
1 +

∫
Rd

0

(
eθ

(i)
u ·x − 1

)
n∗({u}, dx)

)
−
∫
Rd

0

(
eθ

(i)
u ·x − 1

)
n∗({u}, dx)

}
.

By Lemma 1 and the condition (C)-(i), we can check
that ∫

(0,T ]

∫
{|x|>1}

eθ
(i)
u ·x n∗(dudx) < ∞.

Therefore, it follows from Corollary 1 that (Y
(i)
t )t∈(0,T ] is

a uniformly integrable martingale under P ∗.
Next, we will show that

(42) (K∗)X(θ(i))t ≡ 0.

Since the characteristics (C∗
t , n

∗(dtdx), B∗
t ) (associated

with h) of (Xt) under P
∗ are given by (23), (24) and (25),

it follows from (41) that

(K∗)X(θ(i))t

(43)

= Bi
t +

1

2
C

i

t +
(∫

(0,t]

dCu θ
∗
u

)i

+

∫
(0,t]

∫
Rd

0

{
(ex

i

− 1)
eθ

∗
u·(E(x)−I)

1 + ∆K̃X̂(θ∗)u
− hi(x)

}
n(dudx)

+
∑

u∈(0,t]

{
log

(
1 +

∫
Rd

0

(
ex

i

− 1
)
n∗({u}, dx)

)
−
∫
Rd

0

(
ex

i

− 1
)
n∗({u}, dx)

}
.

Here, note that it follows from (19) that

(44)

∫
Rd

0

(
E(x)− I

) eθ
∗
u·(E(x)−I)

1 + ∆K̃X̂(θ∗)u
n({u}, dx) = 0,
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which implies that the last term in the right hand side of
(43) is equal to 0.
Furthermore, we can see that the condition (C)-(ii) im-

plies that the sum of the first four terms in the right hand
side of (43) is also equal to 0 as follows:

Lemma 2. The condition (C)-(ii) implies that

(45) Bt +
1

2
Ct +

∫
(0,t]

dCu θ
∗
u

+

∫
(0,t]

∫
Rd

0

{(
E(x)− I

) eθ
∗
u·(E(x)−I)

1 + ∆K̃X̂(θ∗)u

− h(x)
}
n(dudx) = 0.

Proof. By the fact that ∆Bu =
∫
Rd

0
h(x)n({u}, dx) and

(44), we have

∆Bu +

∫
Rd

0

{(
E(x)− I

) eθ
∗
u·(E(x)−I)

1 + ∆K̃X̂(θ∗)u

− h(x)
}
n({u}, dx) = 0.

Hence, we obtain

∑
u∈(0,t]

∆Bu +

∫
(0,t]

∫
Rd

0

{(
E(x)− I

) eθ
∗
u·(E(x)−I)

1 + ∆K̃X̂(θ∗)u

(46)

− h(x)
}
IJ(u)n(dudx) = 0.

On the other hand, due to the property (36), we see from
(18) that

Bc
t +

1

2
Ct +

∫
(0,t]

dCu θ
∗
u(47)

+

∫
(0,t]

∫
Rd

0

{(
E(x)− I

) eθ
∗
u·(E(x)−I)

1 + ∆K̃X̂(θ∗)u

− h(x)
}
IJc(u)n(dudx) = 0.

Thus, combining (46) and (47), we see that (45) holds.

Thus, we have shown that (42) holds and hence we see

that (eX
i
t )t∈(0,T ] is a true martingale under P ∗, in other

words, P ∗ is an equivalent martingale measure for (St).

Proof of (III)

Let Q be an arbitrary absolutely continuous martingale

measure for (St) satisfying HFT (Q|P ) < ∞. Then,
(
X̂i

t =∫
(0,t]

1

Si
u−

dSi
u

)
is a local martingale with respect to Q. See

Theorem III.29 in [9] (p.128). Hence, (
∫
(0,t]

θ∗u · dX̂u) is a

local martingale with respect to Q. See Theorem IV.29 in
[9] (p.171). Therefore, there exists an increasing sequence

{τn}n of stopping times such that τn ↗ ∞ as n → ∞ and

that (
∫
(0,t∧τn]

θ∗u · dX̂u) is a martingale with respect to Q

for each n ∈ N. In particular,
∫
(0,T∧τn]

θ∗u ·dX̂u is integrable

with respect to Q;

log
(dP ∗

dP

∣∣∣
FT∧τn

)
=

∫
(0,T∧τn]

θ∗u · dX̂u −KX̂(θ∗)T∧τn .

Note that KX̂(θ∗)T∧τn is uniformly bounded with respect

to n and ω, since (KX̂(θ∗)t) is actually a function with

finite variation on [0, T ]. Hence, log
(dP ∗

dP

∣∣∣
FT∧τn

)
is inte-

grable with respect to Q. Therefore, we see from Lemma
2.1 in [5] that

HFT
(Q|P ) ≥ HFT∧τn

(Q|P )

≥ EQ[log
(dP ∗

dP

∣∣∣
FT∧τn

)
]

= EQ[

∫
(0,T∧τn]

θ∗u · dX̂u]− EQ[KX̂(θ∗)T∧τn ]

= 0− EQ[KX̂(θ∗)T∧τn ].

On the other hand, since τn ↗ ∞ as n → ∞, it follows
from the bounded convergence theorem that

lim
n→∞

EQ[KX̂(θ∗)T∧τn ] = EQ[KX̂(θ∗)T ] = KX̂(θ∗)T .

Thus, we have shown that

HFT (Q|P ) ≥ −KX̂(θ∗)T .

Next, we will show that

HFT (P
∗|P ) = −KX̂(θ∗)T .

To this end, we note the following fact:

Proposition 6.

(48) X̂t = X∗,c
t +

∫
(0,t]

∫
Rd

0

(E(x)− I) Ñ∗(dudx).

Proof. As we have shown in the step (2) that , under P ∗,
(Xt) is a PII-semimartingale with characteristics
(C∗

t , n
∗(dtdx), B∗

t ), we see from Proposition 2 that the cor-
responding canonical representation is given by

X̂t = X∗,c
t +

{
B∗

t +
1

2
Ct

+

∫
(0,t]

∫
Rd

0

{
h(E(x)− I)− h(x)

}
n∗(dudx)

}
+

∫
(0,t]

∫
Rd

0

h(E(x)− I) Ñ∗(dudx)

+

∫
(0,t]

∫
Rd

0

ȟ(E(x)− I)N(dudx).
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Hence, we have

X̂t = X∗,c
t +

{
B∗

t +
1

2
Ct

+

∫
(0,t]

∫
Rd

0

{
h(E(x)− I)− h(x)

}
n∗(dudx)

+

∫
(0,t]

∫
Rd

0

ȟ(E(x)− I)n∗(dudx)
}

+

∫
(0,t]

∫
Rd

0

(E(x)− I) Ñ∗(dudx).

Note that the sum of the second term through the fifth
term in the right hand side is equal to

B∗
t +

1

2
Ct +

∫
(0,t]

∫
Rd

0

{
E(x)− I − h(x)

}
n∗(dudx)

= Bt +
1

2
Ct +

∫
(0,t]

dCuθ
∗
u

+

∫
(0,t]

∫
Rd

0

{
(E(x)− I)

eθ
∗
u·(E(x)−I)

1 + ∆K̃X̂(θ∗)u
− h(x)

}
n(dudx)

= 0,

where we have used Lemma 2 to get the last equality.
Thus, we have obtained (48).

By Proposition 6, we see that

EP∗
[

∫
(0,T ]

θ∗u · dX̂u] = 0,

and hence

HFT (P
∗|P ) = EP∗

[

∫
(0,T ]

θ∗u · dX̂u −KX̂(θ∗)T ]

= −KX̂(θ∗)T .

Thus, we have the conclusion of the step (3): for any
absolutely continuous martingale measure Q for (St) satis-
fying HFT

(Q|P ) < ∞,

HFT (Q|P ) ≥ −KX̂(θ∗)T = HFT (P
∗|P ).

We have at last completed our proof of Theorem 2.
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