
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

TMR based Error Correction Method Considering
Trade-off between Area and Soft-Error Tolerance

Harada, Shoji
Graduate School of Information Science and Electrical Engineering, Kyushu University

Yoshimura, Masayoshi
Faculty of Information Science and Electrical Engineering, Kyushu University

Matsunaga, Yusuke
Faculty of Information Science and Electrical Engineering, Kyushu University

https://hdl.handle.net/2324/18314

出版情報：Internathonal Workshop on Logic and Synthesis 2010. 1, pp.69-75, 2010-06.
Internathonal Workshop on Logic and Synthesis
バージョン：
権利関係：

TMR based Error Correction Method Considering Trade-off between
Area and Soft-Error Tolerance

Shoji Harada*, Masayoshi Yoshimura**, Yusuke Matsunaga**
*Graduate School of ISEE, Kyushu University

Email : s-harada@soc.ait.kyushu-u.ac.jp
**Faculty of ISEE, Kyushu University

Email : {yoshimura, matsunaga}@ait.kyushu-u.ac.jp

Abstract

Recently, the lowering of soft error tolerance of LSI
becomes the problem. Soft error is a phenomenon that
the output value of a logic gate flips transiently or the
preserved value of a storage element flips because of
neutron particle strike etc. This paper presents a TMR
based error correction method considering trade-off be-
tween soft error tolerance and area overhead. Our method
corrects an error which occurs in a logic circuit when
specific input vectors are given to the circuit. In our
method, the degree of loss of soft error tolerance that
can be allowed in target circuit is given as a design
constraint. The method aims at selecting input vec-
tors which contribute to area minimization of correc-
tion circuits under the constraint as unprotected vec-
tors. This paper shows vector selection method for
minimizing the area. For results, there are several cir-
cuits that it is cost-effective. It seems that there is va-
lidity in our approach.

1 Introduction

Recently, the lowering of soft error tolerance of LSI is
gradually becoming the problem. Soft error is a phe-
nomenon that the output value of a logic gate flips tran-
siently or the preserved value of a storage element flips
because of electric charge occurred by neutron particle
strike at transistor. A soft error may cause an incor-
rect operation of LSI. As semiconductor devices scale
down and supply voltages reduce, necessary electric
charge for flipping the value of a transistor declines.
The probability that a soft error occurs when neutron
particle strikes at transistor is increasing. A soft error
might become the problem which cannot be bypassed
in the future.

In memory circuits, techniques which can achieve
high reliability with comparatively low area overhead
are established. One of such techniques is error check-
ing and correcting (ECC). On the other hand, in logic
circuits, techniques which can achieve high reliability
with low area overhead are not established. Therefore,
it is thought that techniques for reducing soft error rate
in logic circuits becomes more important [1][2].

Two techniques that can be used to reduce soft er-
ror rate are error detection and error correction. Error

detection method involves using concurrent error de-
tection (CED) [3][4] circuitry that monitors the outputs
of a circuit for the occurrence of an error. If an error
is detected, the system recovers through rollback and
retry thereby preventing a failure. It may not be pos-
sible to do retry for realtime systems, thus error cor-
rection is the only option. This paper focuses on error
correction methods to reduce the soft error rate in logic
circuits.

There are error correction methods which apply mul-
tiplexing [5][6]. The method in [5] is called triple mod-
ular redundancy (TMR). TMR can achieve high relia-
bility. But TMR needs large area overhead. It applies
mission critical applications with very high reliability
where area overhead is a secondary concern. In other
applications, it is necessary to reduce soft error rate to
acceptable level with low overhead. The method in [6]
is a TMR based error correction method considering
trade-off between soft error tolerance and area over-
head. This method focuses on a difference of proba-
bilities that an error which occurs at each gate propa-
gates to one of the primary outputs or latches. It ap-
plies triplexing from the output side of the circuit to a
gate which has the high probability by priority. This
method has a problem that it is not too cost-effective.

This paper presents a TMR based error correction
method considering trade-off between soft error tol-
erance and area overhead with a different approach.
There is a property that the propagation of an error
is different according to input vector. The method fo-
cuses on the property. By adding two correction cir-
cuits to a target circuit, this method corrects an error
which occurs in one of circuits at specific input vector.
In [4], it also focuses on the property. However it can-
not control the trade-off well. Our method is possible
to control the trade-off. In the following, we call input
vectors at which our method corrects an error protected
vectors and input vectors at which our method does not
correct an error unprotected vectors.

The key idea in our proposed method is to aim at
reducing the area of two correction circuits by setting
unprotected vectors as don’t cares in one of correction
circuits. If more unprotected vectors are set as don’t
cares, the area may be reduce more. But, soft error rate
increases in the case. In the method, the degree of loss
of soft error tolerance that can be allowed in target cir-

cuit is given as a design constraint. The method aims
at selecting input vectors which contribute to area min-
imization of correction circuits under the constraint as
unprotected vectors. Thus, how to select unprotected
vectors is important.

Many methods for two-level logic circuits which
optimizing logic are proposed. The methods in [7][8]
is widely known. But these methods optimize logic
under the condition that don’t cares are given. In our
method, it is necessary to select don’t cares. this pa-
per shows an algorithm of selecting unprotected vec-
tors for two-level logic circuits. The purpose of the
algorithm is to select input vectors which contribute
to area minimization under a design constraint as un-
protected vectors. Experimental results show the ef-
fect of area reduction and the degree of achievement
of soft error tolerance. We compare our method and
the method in [6]. From results, the tendency that soft
error rate reduction is proportional to area overhead
doesn’t change according to circuits in [6]. The method
in [6] is not too cost-effective. In our method, there are
several circuits that it is cost-effective. It seems that
there is validity in our approach.

The rest of the paper is organized as follows. Sec-
tion 2 describes the previous works. Section 3 presents
our proposed method. Section 4 presents the experi-
mental result. Section 5 presents conclusions.

2 Previous works

In this section, we describe previous works for reduc-
ing soft error rate.

TMR[5] is a method which applies triplexing to the
target circuit and uses decision by majority, as shown
in Fig. 1. TMR can correct an error unless two or more
circuits output incorrect values at the same time. TMR
can achieve high reliability. The problem of TMR is
large area overhead and large increment in power con-
sumption because of two additional circuits which are
the same as the target circuit. Therefore, TMR is ap-
plied to equipments in the field where reliability is the
most important such as aviation, medical, bank etc.

Figure 1: TMR circuit

The method in [6] is a TMR based error correc-

tion method considering trade-off between soft error
tolerance and area overhead. This method focuses on
a difference of probabilities that an error which occurs
at each gate propagates to one of the primary outputs
or latches. It applies triplexing from the output side of
the circuit to the gate which has the high probability
by priority. This method can correct an error which
occurs at logic gates applied triplexing. It cannot cor-
rect an error which occurs at logic gates which is not
applied triplexing. The problem of this method is to
need large area overhead to achieve desired soft error
tolerance.

Figure 2: Partial TMR circuit

3 Proposed method

3.1 Overview

Our proposed method is based on TMR. By adding two
correction circuits to a target circuit, this method cor-
rects an error which occurs in one of circuits at specific
input vector. In the following, we call input vectors at
which our method corrects an error protected vectors
and input vectors at which our method does not correct
an error unprotected vectors.

Our method is composed of a target circuit and two
additional correction circuits and a majority circuit, as
shown Fig. 3. In Fig. 3,C1 is a target circuit andC2,
C3 are correction circuits.

Figure 3: proposed method circuitry

There are two requirements for two correction cir-
cuits. First, correction circuitC2 andC3 must output

the same value as the output value ofC1 when three
circuits are given a protected vector. Our method can
correct an error which occurs in one ofC1, C2 andC3

by using decision by majority. Second, one of correc-
tion circuit C2 andC3 must output the same values as
the output value ofC1 when three circuits are given an
unprotected vector. The purpose of this requirement is
to prevent final output values from being incorrect by
using decision by majority in spite of the fact that a soft
error does not occur. Another correction circuit which
does not output the same value as the output value of
C1 sets a unprotected vector as don’t care. Our method
aims at reducing the area of correction circuits by set-
ting don’t cares. When the output value ofC1 is 0 at an
unprotected vector, correction circuitC2 sets the vec-
tor as don’t care. When the output value ofC1 is 1
at an unprotected vector, correction circuitC3 sets the
vector as don’t care.

In our method, the degree of loss of soft error tol-
erance which can be allowed inC1 is given as a design
constraint. The method aims at selecting input vec-
tors which contribute to area minimization of correc-
tion circuits under the constraint as unprotected vec-
tors. Thus, how to select unprotected vectors is impor-
tant. Many methods for two-level logic circuits which
optimizing logic are proposed. The methods in the lit-
erature [7][8] is widely known. These methods opti-
mize logic under a condition that the don’t cares are
given. Our method needs to select don’t cares.

First process of our proposed method is to equalize
two correction circuitsC2 andC3 with a target circuit
C1. Second process is to select input vectors which
can reduce the area of correction circuits as unpro-
tected vectors. Third process is to reduce the area by
setting selected unprotected vectors as don’t cares ac-
cording to the output values of correction circuits. Our
method repeats second and third process until a cer-
tain condition is satisfied. Trade-off between soft error
tolerance and area overhead is considered by changing
the condition. It shows the pseudo code of our algo-
rithm in Fig. 4. In Fig. 4,corr0 circuit is C2 which
sets input vectors at which the function values are 0 as
don’t cares.corr1 circuit is C3 which sets input vec-
tors at which the function values are 1 as don’t cares.
uncoveragek is the degree of loss of soft error tol-
erance ofC1. acceptable uncoveragek is acceptable
the degree of loss of soft error tolerance ofC1.

uncoveragek is the degree of loss of soft error
tolerance ofC1. Our method considers trade-off be-
tween soft error tolerance and area overhead by chang-
ing uncoveragek.
uncoveragek is shown as equation (1).

uncoveragek = 100×
(∑

ku∈Ku
Ps input(ku)∑

k∈K Ps input(k)

)
[%]

(1)

Figure 4: The proposed algorithm

In equation (1),K is a set of all input vectors.Ku

is a set of selected unprotected vectors.Ps input(k)
is a probability that an error which occurs in circuits
propagates to one of primary outputs or latches when
circuits are given at input vectork. For example, if
uncoveragek is 10, our method can correct more than
90 percent of an error occurs in a target circuit.Ps input(k)
is shown as equation (2).

Ps input(k) =
1
|G|

∑
g∈G

Pprop(g, k) (2)

In equation (2),G is a set of all gates in a circuit.
Pprop(g, k) is a probability that an error occurs at gate
g propagates to one of primary outputs or latches when
circuits are given at input vectork. Ps input(k) is a
quantitative metrics which shows the easiness of prop-
agation of an error which occurs at a input vector. Our
method can consider trade-off between soft error toler-
ance and area overhead by usingPs input(k).

3.2 Vector selection algorithm

Our method aims to select don’t cares for reducing the
area minimization. For two-level logic circuits, the re-
duction of the number of cubes and literals in the logi-
cal expression of a circuit leads to area reduction. Pre-
vious works optimize logic under a condition that don’t
cares are given[7][8]. In our method, it is necessary to
select don’t cares which contribute to the reduction of
the number of cubes and literals.

In the following, an algorithm of selecting unpro-
tected vectors for two-level logic circuits is described.
First process is to make a minimal cube which covers
two cubes in the logical expression of correction circuit
C2. There are several cubes which cover two cubes. A
minimal cube is unique in their cubes. Second process
is to get the number of necessary don’t cares to make
a minimal cube by setting input vectors which corre-
spond to 0 minterms ofC2 as don’t care and to get the
number of literals which can be reduced when the min-

imal cube is made. This method executes first and sec-
ond process for all pairs of cubes inC2.Third process
is to get the number of necessary don’t cares to reduce
a cube inC3 by setting input vectors which correspond
to 1 minterms ofC3 as don’t care, and the number of
literals which can be reduced when the cube is reduced.
This method executes third process for all cubes inC3.
Forth process is to get a cube which is made or reduced
by using the minimal number of necessary don’t cares.
When the number of necessary don’t cares is the same
as that of the others, this method defines a cube that the
number of literals which can be reduced is the largest
as a target. Final process is to select necessary don’t
cares for reducing or making the target cube as unpro-
tected vectors.

From stated above, the pseudo code of unprotected
vector selection algorithm is shown in Fig. 5. In Fig. 5,

Figure 5: Algorithm of selecting unprotected vectors

make cube is a function which makes a minimal cube
which covers two given cubes.search need dc0 is
a function which gets the number of necessary don’t
cares to make a given cube by setting input vectors
which correspond to 0 minterms as don’t care, and
the number of literals which can be reduced when the
cube is made.search need dc1 is a function which
gets the number of necessary don’t cares to reduce a
given cube by setting input vectors which correspond
to 1 minterms as don’t care, and the number of literals
which can be reduced when the cube is reduced.

The reduction of the number of cubes and literals
by using don’t cares is concretely shown. It assume
that the logic function of a target circuitC1 which has
4-inputsa, b, c, d is shownf1, as shown equation (3).

f1 = āc̄d + ābd + abc̄ (3)

The number of literals off1 is 9. The karnaugh map of
f1 is shown in Fig. 6.

First, there is how to select input vectors which cor-
respond to 0 minterms as don’t cares. The reduction
of the number of cubes is executed by making a cube
which covers cubes in the logical expression. The logic

00 01 11 10
00 0 1 0 0
01 0 1 1 0
11 1 1 0 0
10 0 0 0 0

ab
cd

Figure 6: The karnaugh map off1

function sets necessary input vectors which correspond
to 0 minterms for making the cube as don’t cares. In
f1, A cubeād can be made with the minimum number
of don’t cares. A cubēad can be made by setting 0
minterm āb̄cd which f1 does not cover as don’t care.
If we newly makēad, f1 can cover two cubes̄ac̄d and
ābd. If f1 setsāb̄cd as don’t care,f1 changes intof2,
as shown equation (4). The number of literals off2 is
5. The karnaugh map off2 is shown in Fig. 7.

f2 = ād + abc̄ (4)

00 01 11 10
00 0 1 * 0
01 0 1 1 0
11 1 1 0 0
10 0 0 0 0

ab
cd

Figure 7: The karnaugh map off2

Next, there is how to select input vectors which
correspond to 1 minterms as don’t cares. It is neces-
sary to reduce a cube itself in a logic expression. That
is, the reduction of the number of cubes is executed
by setting minterms which are covered only by a cube
for reducing as don’t cares. A minterm which is cov-
ered only bȳac̄d is āb̄c̄d. A cubeāc̄d can be reduced
with the minimum number of don’t cares inf1. The
number of cubes is reduced by setting the input vector
corresponding tōab̄c̄d as don’t care. In this case,f1

changes intof3, as shown equation (5). The number of
literals off3 is 6. The karnaugh map off3 is shown in
Fig. 8.

f3 = ābd + abc̄ (5)

As stated above, our method aims at selecting don’t
care the number of cubes of correction circuits by set-
ting input vectors as don’t cares.

00 01 11 10
00 0 * 0 0
01 0 1 1 0
11 1 1 0 0
10 0 0 0 0

ab
cd

Figure 8: The karnaugh map off3

4 Experimental results

The purpose of this experiment is to evaluate the effect
of area reduction by unprotected vectors and the degree
of gain of soft error tolerance. We compare our method
and the method in [6].

First, the method in [6] is described. This method
considers trade-off between soft error tolerance and
area overhead by usinguncoverageg.
uncoverageg is the degree of loss of soft error toler-
ance.uncoverageg is shown as equation (6).

uncoverageg = 100 ×

(∑
gu∈Gu

Ps gate(gu)∑
g∈G Ps gate(g)

)
[%]

(6)
In equation (6),G is a set of all gates.Gu is a set
of gates which are applied triplexing.Ps gate(g) is a
probability that an error occurs at gateg propagates
to one of primary outputs or latches. For example, if
uncoverageg is 10, this method can correct about 90
percent of an error occurs in a circuit.Ps gate(g) is
shown as equation (7).

Ps gate(g) =
1
|K|

∑
k∈K

Pprop(g, k) (7)

In equation (7),Pprop(g, k) is a probability that an er-
ror occurs at gateg propagates to one of primary out-
puts or latches when input vectork is given to circuits.
Ps gate(g) is a quantitative metrics which shows the in-
fluence of an error occurs at a gate. This method can
consider trade-off between soft error tolerance and area
overhead by usingPs gate(g).

The metrics of soft error tolerance is a probability
that an error occurs in a circuit and it propagates to one
of primary outputs or latches. The metrics of area is the
number of literals of all circuits expect for a majority
circuit. In this experiment, we evaluate on the assump-
tion that an error does not occur in a majority circuit.
We also assume that a probability that an error occurs
at each gate is equal, and errors occur at gates at the
same time. Furthermore, an error is a permanent flip
of output value of a gate. The metrics of soft error tol-
erance is defined asSER and it is shown as equation

(8).

SER =
1
|K|

∑
k∈K

∑
g∈G

Poccur(g, k)Pprop(g, k) (8)

In equation (8),Poccur(g, k) is a probability that an er-
ror occurs at gateg when circuits are given input vec-
tor k. From the above assumptions,Poccur(g, k) can
be regarded as a constant.Pprop(g, k) is a probability
that an error which occurs at gateg when circuits are
given input vectork.

We explain about processes of this experiment. In
our method, first process is to input a target two-level
logic circuit,Ps input of each input vector in the target
circuit and several kinds ofacceptable uncoverages.
Second process is to execute our method for each
acceptable uncoverage and get a two-level logic cir-
cuit which is executed our method. Third process is
to execute multi-level optimization to the circuit, and
evaluateSER of the circuit and the number of liter-
als. Ps input of each input vector is computed in ad-
vance by fault simulation for a target circuit which is
executed two-level and multi-level optimization. In
the method in [6], first process is to input a target cir-
cuit, Ps gate of each gate in the target circuit and sev-
eral kinds ofacceptable uncoverages. The target cir-
cuit is executed two-level and multi-level optimization.
Second process is to execute the method for each
acceptable uncoverage and get a circuit which is ex-
ecuted the method. Third process is to evaluateSER
of the circuit and the number of literals.Ps gate of each
gate is computed in advance by fault simulation for a
target circuit which is executed two-level and multi-
level optimization. In this experiment, we use the com-
mand of espresso, script.rugged in SIS[9] to execute
two-level and multi-level optimization. We give five
acceptable uncoverage 10, 20, 30, 40, 50. Bench-
mark circuits are a part of twolexamples of MCNC
benchmark set[10].

The experimental result for our method is shown
in Table 1. The experimental result for the method
in [6] is shown in Table 2. In Table 1 and 2, Bench-
mark is shown the benchmark name, and #Input, #Out-
put is shown the number of primary inputs and pri-
mary outputs. propose/original is shown a value that
SER of the circuit which is executed our method is
divided bySER of original circuit and a value that the
number of literals of the circuit which is executed our
method is divided by the number of literals of original
circuit. 10, 20, 30, 40, 50 in Table 1 and 2 is a value of
acceptable uncoverage.

From Table 1, whenacceptable uncoverage is 10,
the area of most benchmarks is 2.7 times as large as
that of original circuit. Thus, it seems that the effect of
reduction of area of correction circuits by unprotected
vectors is small in most benchmarks. But,SER is re-
duced from about 80 to 90 percent. The area of mi-

sex3c and sao2 is about 2 and 1.4 times as large as that
of original circuit. Even whenacceptable uncoverage
is 10, it seems that the effect of reduction of area of cor-
rection circuits by unprotected vectors is large in their
benchmarks. Moreover,SER is reduced about 90 per-
cent. Therefore, it is thought that our method is effec-
tive for misex3c and sao2. Asacceptable uncoverage
becomes 20 or 30, the area of all benchmarks is reduc-
ing. SER of all benchmarks is increasing. There is
a benchmark thatSER increases by about 20% when
uncoverage increases by 10. It is thought that this is
becauseSER of the correction circuit in addition to
SER of the original circuit increases by unprotected
vectors. Whenacceptable uncoverage becomes 40,
the area of most benchmarks is about 2 and 1.4 times
as large as that of original circuit. But, the effect of
SER reduction was various according to the bench-
mark. Whenacceptable uncoverage becomes 50, the
area of most benchmarks is 2 times or less as large as
that of original circuit.

In Table 2, it can be confirmed that the result for the
method in [6] does not depend on benchmarks. When
acceptable uncoverage is 10, the method achieves about
90 percent ofSER reduction with the area which is 2.8
times that of original circuit. When
acceptable uncoverage is 20, the method achieves about
80 percent ofSER reduction with the area which is 2.6
times that of original circuit. Asacceptable uncoverage
becomes 30, 40, this tendency does not change.

In Table 1 and 2, it is difficult to say our method
is more effective than the method in [6]. In sao2, to
reduce about 90 percent ofSER, our method needs
the area which is about 1.4 times the area of original
circuit. But, the method in [6] needs the area which is
about 2.8 times the area of original circuit. In sao2, it
is thought that our method is more effective than the
method in [6] It seems that it is similar in misex3c.
Thus, it can be confirmed that it is different whether
our method is effective according to the circuit. It is
thought that two benchmark misex3c and sao2 has some
feature. Thus, if some features can be gripped, in other
circuits, it may be possible to make our method to a
good method by improving.

5 Conclution

In this paper, we proposed a TMR based error correc-
tion method considering trade-off between soft error
tolerance and area overhead. the method focused on
a property. A property is that the easiness of propa-
gation of an error is different according input vectors.
We proposed vector selection algorithm which is the
key of our method.

In this experiment, we evaluated the effect of area
reduction and the degree of gain of soft error tolerance.

We compare our method and the method in [6]. From
this experimental result, the tendency that soft error
rate reduction is proportional to area overhead doesn’t
change according to circuits in the method in [6]. If
a design constraint is defined, the area overhead and
the effect of soft error rate reduction. In our method,
it seemed that the effect of area reduction of correction
circuits was small in most benchmarks. The effect of
SER reduction in our method was various according to
the benchmarks. In our method, there are circuits that
our method is effective.

Our future work is to analyze the circuitry and the
function of benchmarks that it is thought that our method
is effective. Thus, if some features can be gripped, in
other circuits, it may be possible to make our method to
a good method by improving. Moreover, our proposed
unprotected vector selection algorithm is not practical
because of large processing time. There is a circuit that
it takes time for several days. Therefore, it is necessary
to improve unprotected vector selection algorithm. It is
necessary to apply our method to multi-level logic cir-
cuits.

References

[1] R. C. Baumann. ”Soft Errors in Advanced Com-
puter Systems,” In IEEE Design and Test of Com-
puters, Vol. 22, Issue 3, 2005.

[2] P. Shivakumar, M. Kistler, S. W. Keckler, D.
Burger, L. Alvisi. ”Modeling the Effect of Tech-
nology Trends on the Soft Error Rate of Combi-
national Logic,” In Proc. of DSN, 2002.

[3] K. Mohanram and N. A. Touba, ”Cost-effective
approach for reducing soft error failure rate in
logic circuits,” Proc. Intl. Test Conference, pp.
893-901, 2003.

[4] M. Choudhury and K. Mohanram, ”Approximate
logic circuits for low overhead, non-intrusive
concurrent error detection,” in Proc. Des. Autom.
Test Eur., 2008, pp. 903.908.

[5] J. Von. Neumann, ”Probabilistic logic and the
synthesis of reliable organisms from unreliable
components,” Automata Studies, Ann. of Math.
Studies, pp. 43-98, 1956.

[6] K. Mohanram and N. Touba, ”Partial Error Mask-
ing to Reduce Soft Error Failure Rate in Logic
Circuits,” IEEE International Symposium on De-
fect and Fault Tolerance, 2003

[7] E. J. McCluskey, ”Minimization of Boolean func-
tions,” Bell System Tech. J. , vol. 35, pp. 1417-
1444, Apr. 1956.

Table 1: Result for our method

Area SER reduction[%]
Benchmark #Input #Output propose/original propose/original

10 20 30 40 50 10 20 30 40 50

5xp1 7 10 2.74 2.29 2.18 2.08 1.86 92.10 80.97 78.42 76.23 68.17
9sym 9 1 2.73 2.47 2.27 1.93 1.74 78.72 58.99 39.69 38.35 26.21
bw 5 28 2.92 2.83 2.61 2.37 1.94 77.89 68.43 60.22 50.57 45.80
clip 8 5 2.69 2.25 2.00 1.87 1.66 91.99 82.75 79.30 72.58 64.39
con1 7 2 2.76 2.47 2.35 2.12 1.74 81.14 66.75 55.33 51.49 39.33

misex1 8 7 2.78 2.47 2.18 2.04 1.92 90.82 81.24 65.09 51.81 43.57
misex3c 14 14 1.99 1.90 1.82 1.74 1.69 90.82 81.24 65.09 51.81 43.57

rd53 5 3 2.62 2.64 2.36 2.11 2.01 89.07 74.62 58.46 50.67 49.24
rd73 7 3 2.62 2.55 2.37 2.21 2.01 89.55 73.27 58.91 44.96 33.93
rd84 8 4 2.71 2.57 2.34 2.10 1.97 80.22 65.07 50.97 50.84 50.67
sao2 10 4 1.38 1.56 1.36 1.24 1.11 92.27 93.34 92.14 88.07 83.07
xor5 5 1 2.77 2.32 2.06 2.00 1.80 77.00 57.00 38.00 34.00 29.00

Table 2: Result for the method in [6]

Area SER reduction[%]
Benchmark #Input #Output propose/original propose/original

10 20 30 40 50 10 20 30 40 50

5xp1 7 10 2.84 2.68 2.48 2.24 2.01 90.98 80.16 70.33 60.59 50.31
9sym 9 1 2.81 2.59 2.37 2.20 1.94 90.14 80.11 70.33 60.34 50.16
bw 5 28 2.78 2.60 2.41 2.26 2.08 90.12 80.28 70.40 60.14 50.07
clip 8 5 2.82 2.58 2.43 2.27 2.02 90.22 80.60 70.44 60.24 50.21
con1 7 2 2.88 2.82 2.65 2.59 2.06 95.04 87.10 69.98 64.02 52.61

misex1 8 7 2.71 2.56 2.19 1.92 1.73 91.44 81.36 70.33 61.02 50.85
misex3c 14 14 2.81 2.59 2.35 2.02 1.66 90.06 80.30 70.03 60.22 50.02

rd53 5 3 2.89 2.74 2.61 2.44 2.24 90.21 80.13 71.10 61.31 50.67
rd73 7 3 2.84 2.65 2.30 2.19 2.05 90.09 80.34 70.11 60.16 50.44
rd84 8 4 2.90 2.57 2.26 2.08 1.84 90.16 80.02 70.10 60.21 50.16
sao2 10 4 2.69 2.44 2.23 2.02 1.87 90.02 80.80 70.55 60.26 50.53
xor5 5 1 2.87 2.75 2.70 2.57 2.32 90.00 80.00 72.00 62.00 51.50

[8] R. K. Brayton, C. McMullen, G. D. Hachtel, and
A. Sangiovanni-Vincentelli. ”Logic Minimiza-
tion Algorithms for VLSI Synthesis,” Kluwer
Academic Publishers, 1984.

[9] E. M. Sentovich, K. J. Singh, L. Lavagno, C.
Moon, R. Murgai, A. Saldanha, H. Sa voj, P. R.
Stephan, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. ”SIS: A System for Sequential Cir-
cuit Synthesis,” Technical Report UCB/ERL
M92/41, Electronics Research Lab, Univ. of Cal-
ifornia, Berkeley, CA 94720, May 1992.

[10] S. Yang. ”Logic Synthesis and Optimization
Benchmarks User Guide: Version 3.0,” 1991.

