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Abstract

We consider the problem of constructing nonlinear regression models in the case
that the structure of data has abrupt change points at unknown points. We propose
two stage procedure where the spikes are detected by fused lasso signal approxima-
tor at the first stage, and the smooth curve are effectively estimated along with
the technique of regularization method at the second. In order to select tuning
parameters in the regularization method, we derive a model selection criterion from
information-theoretic viewpoints. Simulation results and real data analysis demon-
strate that our methodology performs well in various situations.

Key Words and Phrases: Basis expansion, Information criterion, Lasso, Nonlinear
regression, Regularization, Spike detection.

1 Introduction

For analysis of data with complex structure, flexible model is absolutely imperative. As

a useful tool to analyse such diverse phenomena, nonlinear regression model based on

basis expansions is widely used. The essential idea behind basis expansions is to express

a regression function as a linear combination of known functions, called basis functions

(Bishop, 2006; Konishi and Kitagawa, 2008; Hastie et al., 2009). In constructing the

model, various functions are used to represent a regression function according to the

structure of data or analysis objective. For example, natural cubic splines (Green and

Silverman, 1994), B-splines (Eilers and Marx, 1996; de Boor, 2001; Imoto and Konishi,

2003) and radial basis functions (Kawano and Konishi, 2007; Ando et al., 2008; Hastie et

al., 2009) involving Gaussian basis functions, thin plate splines and so on. In particular,

Gaussian basis functions have been most commonly used to construct nonlinear regression
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models. Gaussian basis functions have center and width parameters that have to be

determined from observed data. The width parameters adjust the amount of overlapping

among basis functions and notably play the essential role to capture the structure in the

data over the region of the input space. Moody and Darken (1989) used the k-means

clustering algorithm to determine the width parameters. In applying nonlinear regression

models based on k-means-based Gaussian basis functions, it is assumed that the structure

of phenomena are smooth.

However, the underlying true structure which is generating data cannot be smooth in

practice at some points where jump discontinuity may occur. Thus, the application of a

usual nonlinear regression model described above will lead difficulty of obtaining effective

information from the data in which the mean structure is suddenly changed.

In order to overcome this problem, we propose the method of appropriately estimating

a nonlinear structure with the spiky change points by applying fused lasso signal approxi-

mator (FLSA; Friedman et al., 2007) which is a special version of fused lasso (Tibshirani et

al., 2005) to construction of Gaussian basis functions. We present a two-stage procedure

to fit spiky regression curve.

In the first stage, we apply FLSA estimation procedure to get the information of loca-

tions of spikes. FLSA estimation encourages flatness between the resembled data and the

abrupt change before and behind the jump. And then, we introduce the new Gaussian ba-

sis functions based on FLSA estimate. In the second stage, we fit the nonlinear regression

model with the FLSA-based Gaussian basis functions by the method of regularization.

The unknown parameters in regression model are estimated by maximizing the penalized

log-likelihood function.

It is a crucial issue to determine the tuning parameters, including a smoothing pa-

rameter and a hyperparameter associated with Gaussian basis functions. To choose these

parameters, we derive model selection criterion from information-theoretic viewpoint. The

proposed nonlinear modeling procedure is investigated through the numerical examples.

This paper is organized as follows. Section 2 describes the framework of basis ex-

pansions and Gaussian basis function models. In Section 3 we present a new Gaussian

basis functions based on FLSA. Section 4 provides nonlinear regression modeling strate-
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gies based on proposed asymmetric Gaussian basis functions using maximum penalized

likelihood estimation procedure. Section 5 gives a model selection criterion for evaluating

statistical models estimated by the regularization method. In Section 6 we investigate

the performance of our nonlinear regression modeling techniques through Monte Carlo

simulations and real data example. Some concluding remarks are presented in Section 7.

2 Nonlinear regression model with basis expansions

Suppose that we have n independent observations {(yα, xα);α = 1, 2, · · · , n} , where yα are

random response variables and xα are explanatory variables. We consider the regression

model

yα = g(xα) + ϵα, α = 1, 2, · · · , n, (1)

where g(·) is an unknown smooth function and ϵα are independently, normally distributed

with mean zero and variance σ2. It is assumed that the function g(·) can be expressed as

a linear combination of basis functions bj(x) (j = 1, 2, · · · ,m) in the form

g(x;w) = w0 +
m∑
j=1

wjbj(x) = wTb(x) , (2)

where b(x) = (1, b1(x), · · · , bm(x))T is a vector of basis functions and w = (w0, w1,· · · ,

wm)
T is an unknown coefficient parameter vector. A variety of basis functions are used

according to the structure of data.

One of the many basis functions is Gaussian basis function given by

bj(x) = exp

{
−(x− cj)

2

2h2
j

}
, j = 1, 2, · · · ,m, (3)

where cj is the center of the basis function, h
2
j is a parameter that determines the disper-

sion. However, basis functions (3) often yield inadequate results because of the lack of

overlapping among basis functions. In order to overcome this problem, Ando et al. (2008)

proposed the use of Gaussian basis functions with a hyperparameter, i.e. functions of the

form

bj(x) = exp

{
−(x− cj)

2

2νh2
j

}
, j = 1, 2, · · · ,m, (4)
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where ν is a hyperparameter that adjusts the dispersion of basis functions. Ando et al.

(2008) showed that nonlinear models with these basis functions were effective in capturing

the information from the data.

Unknown parameters in the Gaussian basis functions (4) include the centers cj and

dispersion parameters h2
j . These parameters are generally determined by using unsuper-

vised learning. For example, Moody and Darken (1989) determined the centers cj and

dispersion h2
j using the k-means clustering algorithm to avoid local minimum and identi-

fication problems. The data set of observations of the explanatory variables {x1, · · · , xn}

is divided into m clusters {C1, · · · , Cm}; centers cj and dispersions h2
j are determined by

ĉj =
1

nj

∑
xα∈Cj

xα, ĥ2
j =

1

nj

∑
xα∈Cj

(xα − ĉj)
2, (5)

where nj is the number of observations included in the the jth cluster Cj. Replacing cj

and h2
j in equation (3) by ĉj and ĥ2

j respectively, we obtain a set of m basis functions

bj(x; ĉj, ĥ
2
j) = exp

{
−(x− ĉj)

2

2νĥ2
j

}
, j = 1, 2, · · · ,m. (6)

However, the models with these k-means-based Gaussian basis functions will lead to

smooth curve estimates, even though spikes are present. Therefore, they will underes-

timate spikes and sudden change points will not be visible in resulting curve. In order

to overcome this problem, we construct new Gaussian basis functions using fused lasso

signal approximator (FLSA; Friedman et al., 2007).

3 Gaussian basis functions based on FLSA

For n independent observations {(yα, xα);α = 1, · · · , n}, FLSA procedure minimizes

1

2

n∑
α=1

(yα − βα)
2 + λ1

n∑
α=1

|βα|+ λ2

n−1∑
α=1

|βα − βα+1|, α = 1, · · · , n, (7)

where βα is an estimate of response variable yα taken at position α, and (λ1, λ2) are

positive smoothing parameters to be chosen appropriately. The first penalty encourages

sparsity in βs and second penalty encourages sparsity in their neighboring differences. As

the value of λ2 increases, the number of fused parameters increases. Applying FLSA, the

data set of n observations of the explanatory variables {x1, · · · , xn} is divided into nF
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sets {U1, · · · , UnF
} where Uj = {xα|α ∈ Fj} = {xFj

1 , · · · , xFj
nj}, Fj is the jth subset of

{1, · · · , n} that are considered to be fused at the λ2, that is, β̂α1 = β̂α2 (∀α1, α2 ∈ Fj)

and nF is the number of such sets.

We take the sets Uj (j = 1, · · · , nF ) the clusters and then we construct the asymmetric

Gaussian basis functions based on FLSA as follows:

bj(x) =


exp

{
−(x− cj)

2

2νh2
1j

}
, (x < cj)

1, (x = cj) j = 1, 2, · · · ,m.

exp

{
−(x− cj)

2

2νh2
2j

}
, (x > cj)

(8)

We take the number of clusters nF as that of basis functions (i.e. m = nF ) and set basis

functions on each center of clusters. And then we determine dispersion parameters using

gradients of FLSA estimates; for fixed Nij, centers cj and dispersions h2
j are determined

by

ĉj =
1

nj

∑
xα∈Uj

xα, ĥ2
ij =

Nij

|Gij|
exp

(
−1

2
N2

ij

)
, i = 1, 2, j = 1, · · · ,m, (9)

where nj is the number of observations included in the the jth clusters Fj, and we defined

gradients Gij as follows:

G1j =
β̂Fj

− β̂Fj−1

x
Fj
nj − x

Fj−1
nj−1

, G2j =
β̂Fj+1

− β̂Fj

x
Fj+1

1 − x
Fj

1

. (10)

These dispersion parameters ĥij are the solutions that the gradients of Gaussian basis

function (3) at cj −Nijhij and cj +N2jhij equal G1j and G2j respectively. Nij are param-

eters which adjust the widths of basis functions (8). As value of N increases, the width

of Gaussian basis function decreases. In this study, we fixed N as follows:

Nij =

{
3, (exp (−1/2)/|Gij| < δ)
1, (otherwise)

(11)

where δ is enough small.

Replacing cj and h2
j in equation (8) by ĉj and ĥ2

j respectively, we obtain a set of m

basis functions

bj(x) =


exp

{
−(x− ĉj)

2

2νĥ2
1j

}
, (x < ĉj)

1, (x = ĉj) j = 1, 2, · · · ,m.

exp

{
−(x− ĉj)

2

2νĥ2
2j

}
, (x > ĉj)

(12)
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Fig. 1: Simple example of constructing our proposed Gaussian basis functions for ν = 1
(solid line) based on FLSA estimates (dashed line).

The width of Gaussian basis function b(x) will be very small if the absolute gradients of

FLSA |G1j| and |G2j| are very large. Figure 1 shows FLSA estimates and our proposed

Gaussian basis functions. Actually, in Figure 1, the central basis function become very

narrow compared with the others.

4 Maximum penalized likelihood estimation

For n independent observations {(yα, xα);α = 1, · · · , n}, the nonlinear regression model

based on Gaussian basis functions bj(x) (j = 1, · · · , n) given in Section 3 is expressed as

yα = wTb(xα) + ϵα, α = 1, · · · , n, (13)

where b(xα) = (1, b1(xα), · · · , bm(xα))
T , w = (w0, w1, · · · , wm)

T and ϵα are error terms.

If the error terms ϵα are independently and normally distributed with mean 0 and variance
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σ2, the nonlinear regression model (13) has a probability density function

f(yα|w, σ2) =
1√
2πσ2

exp

[
−{yα −wTb(xα)}2

2σ2

]
, α = 1, · · · , n. (14)

And then, the coefficient parameters wj (j = 0, 1, · · · ,m) are estimated by the maxi-

mum penalized likelihood method.

The maximum likelihood estimates of the coefficient vectors w and σ2 are respectively

given by

ŵ = (BTB)−1BTy, σ̂2 =
1

n
(y −Bŵ)T (y −Bŵ),

where B= (b(x1)
T , · · · , b(xn)

T )T and y = (y1, · · · , yn)T . However, when fitting a nonlin-

ear model to data with a complex structure the maximum likelihood method often yields

unstable estimates and leads to overfitting. We therefore estimatew and σ2 by the method

of regularization. Instead of using the log-likelihood function, we consider maximizing the

penalized log-likelihood function imposing ridge penalty (Hoerl and Kennard,1970)

lγ(θ) =
n∑

α=1

log f(yα|w, σ2)− nγ

2
wTKw, (15)

where θ = (wT , σ2)T , γ (> 0) is a smoothing parameter that controls the smoothness

of the fitted model and K is a known (m + 1)th square matrix (Konishi and Kitagawa,

2008). The typical form of K is given by K = Im+1 for the identity matrix or K = DT
2 D2

for a second-order difference matrix. Then, the maximum penalized likelihood estimates

of w and σ2 are respectively given by

ŵ = (BTB + nγσ̂2K)−1BTy, σ̂2 =
1

n
(y −Bŵ)T (y −Bŵ). (16)

Note that these estimators depend on each other. Therefore, we provide an initial value

for the variance σ2
x(0) first, then ŵ and σ̂2

x are updated until convergence. The ridge

estimators continuously shrink the coefficients as γ increases.

5 Model selection criterion

The statistical model estimated by the regularization method depends upon the value of

the smoothing parameter γ and the value of the hyperparameter ν in the Gaussian basis

functions. It is a crucial issue to determine these values appropriately.
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Konishi and Kitagawa (1996, 2008) introduced evaluation criteria of statistical models

that can be applied to the evaluation of statistical models estimated by various types of

estimation procedures such as the robust and penalized likelihood procedures. By using

the result, the model selection criterion for evaluating the statistical model constructed

by Gaussian basis functions is given by

GIC = n{log (2π) + 1}+ n log σ̂2 + 2tr{R−1Q}, (17)

where R and Q are (m+ 2)th square matrices and are, respectively, given by

R =
1

nσ̂2

 BTB + nγσ̂2K
1

σ̂2
BTΛ1n

1

σ̂2
1T
nΛB

n

2σ̂2

 , (18)

Q =
1

nσ̂2

 1

σ̂2
BTΛ2B − γKŵ1T

nΛB
1

2σ̂4
BTΛ31n −

1

2σ̂2
BTΛ1n

1

2σ̂4
1T
nΛ

3B − 1

2σ̂2
1T
nΛB

1

4σ̂6
1T
nΛ

41n −
n

4σ̂2

 (19)

with 1n = (1, · · · , 1)T and Λ = diag(y1 − ŵTb(x1), · · · , yn − ŵTb(xn)). We obtain the

optimal tuning parameters that minimize GIC.

6 Numerical examples

In this section, we investigate the performance of our nonlinear regression modeling tech-

niques through Monte Carlo simulations and real data example. In FLSA procedure, we

fixed λ1 = 0 and select the value of λ2 by using cross validation (CV) and we use an iden-

tity matrix as K in (15). In nonlinear regression modeling procedure with our proposed

Gaussian basis functions based on FLSA (FLSA-G) and k-means-clustering (KM-G), the

model selection criterion GIC was used for choosing optimal values of (γ, ν) and (γ, ν,m)

respectively.

6.1 Monte Carlo simulations

We conducted Monte Carlo simulations to investigate the effectiveness of our proposed

nonlinear regression modeling. For the first simulation study, repeated random samples

{(xα, yα);α = 1, · · · , n} with n = 100 were generated from a true regression model yα =

u(xα) + vS(xα) + ϵα, where u(x) is smooth function and vS(x) is spike function that has
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peak region S ⊂ {x1, · · · , xn}. The xα = α/n are n equally spaced design points in

the interval [0, 1] and the errors ϵα are independently, normally distributed with mean 0

and standard deviation τ = 0.2Ru with Ru being the range of u(x) over x ∈ [0, 1]. We

considered the following four cases for the true regression model:

(a)


u(x) = 0.6 exp {−(x− 0.3)2/0.01}+ 1.4 exp {−(x− 0.7)2/0.02},
vS(x) = −1.0 · I(x ∈ [0.44, 0.47])− 0.2 · I(x ∈ [0.45, 0.46]),
S = {0.44, 0.45, 0.46, 0.47},

(b)


u(x) = sin (4πx),
vS(x) = −1.5 · I(x ∈ [0.36, 0.39] ∪ [0.86, 0.89])− 0.5 · I(x ∈ [0.37, 0.38] ∪ [0.87, 0.88]),
S = {0.36, 0.37, 0.38, 0.39, 0.86, 0.87, 0.88, 0.89},

(c)


u(x) = sin (4πx) + 2 cos (5πx),
vS(x) = −1.5 · I(x ∈ [0.12, 0.15])− 0.3 · I(x ∈ [0.13, 0.14])

+1.5 · I(x ∈ [0.55, 0.58] ∪ [0.85, 0.88]) + 0.3 · I(x ∈ [0.56, 0.57] ∪ [0.86, 0.87]),
S = {0.12, 0.13, 0.14, 0.15, 0.55, 0.56, 0.57, 0.58, 0.85, 0.86, 0.87, 0.88},

(d)


u(x) = exp (−x) sin (5π exp (−x)),
vS(x) = 0,
S = ∅.

where I(·) is an indicator function of the event A, that is, I(A) = 1 if A is true and

0 otherwise. We compared the performance of FLSA-G with that of KM-G and FLSA

estimation procedure (FLSA).

Figure 2 compares true curves with fitted ones. The estimated curves from the 1st row

to 4th row correspond to the true curves from (a) to (d). We observe that our modeling

strategy is effective in capturing the true data structures well.

We also performed 1000 repetitions, then calculated averages of mean squared er-

rors on peak region (AMSE.p), that on smooth region (AMSE.s) and that on global

region (AMSE.g) defined by MSE.p =
∑

xα∈S{(u(xα) + v(xα)) − ŷα}2/nS, MSE.s =∑
xα∈U\S{(u(xα) + v(xα))− ŷα}2/(n− nS) and MSE.g =

∑n
α=1{(u(xα) + v(xα))− ŷα}2/n

respectively to assess the goodness of fit.

Table 1 shows summaries of the simulation results from (a) to (d). In all situations,

our proposed modeling procedure minimized all of the AMSE.p, AMSE.s and AMSE.g,

thus improving the accuracy of prediction. In the case of (d), the performance of our

proposed method (FLSA-G) was superior to that of Km-G even though true model has

no spiky change point.
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Fig. 2: These panels show true curves (dashed line) and estimated curves (solid line)
obtained by FLSA-G (left), KM-G (center) and FLSA (right) for each true function.
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Table 1: Comparison of results for curve fitting.

function meanm mean γ mean ν AMSE.p AMSE.s AMSE.g
(a) FLSA-G 17.50 3.96× 10−5 58.26 1.57× 10−1 1.45× 10−2 2.02× 10−2

KM-G 9.22 2.98× 10−2 4.26 3.96× 10−1 2.12× 10−2 3.62× 10−2

FLSA −− −− −− 2.42× 10−1 1.77× 10−2 2.67× 10−2

(b) FLSA-G 22.88 4.16× 10−5 190.03 1.95× 10−1 2.98× 10−2 4.30× 10−2

KM-G 7.00 4.07× 10−3 3.60 1.39 1.08× 10−1 2.10× 10−1

FLSA −− −− −− 3.12× 10−1 4.65× 10−2 6.78× 10−2

(c) FLSA-G 21.67 1.59× 10−5 189.50 1.80× 10−1 4.91× 10−2 6.48× 10−2

KM-G 10.52 3.05× 10−3 5.62 9.35× 10−1 1.07× 10−1 2.07× 10−1

FLSA −− −− −− 3.49× 10−1 5.47× 10−2 9.00× 10−2

(d) FLSA-G 16.86 1.04× 10−4 65.69 −− −− 9.92× 10−3

KM-G 7.23 9.21× 10−3 15.74 −− −− 1.20× 10−2

FLSA −− −− −− −− −− 1.99× 10−2

6.2 Real data example

We investigate the performance using the nursing time of beluga whale data set (Simonoff

,1996; Russell et al., 1997). The data consists of 228 measurements of nursing time in

seconds of a newborn male beluga whale calf named Hudson born in captivity at the

New York Aquarium. This data was observed every six hours for 57 days after his birth.

Russell et al. (1997) noted that the nursing time typically peaked at around 7-10 days

postpartum from the biological view. We apply our proposed method, nonlinear regression

modeling procedure with k-means-based Gaussian basis functions and FLSA estimation

procedure to the Beluga data.

Figure 2 shows the result curves obtained by the three methods. Using our method,

spiky change appears in around the 9th day of his life as Cheng and Raimondo (2008).

We observe that our modeling procedure captures the abrupt change more remarkably

than the others and lead smooth curve .

7 Concluding remarks

We have proposed a nonlinear regression modeling procedure along with the technique

of the method of regularization. We have introduced new asymmetric Gaussian basis
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Fig. 3: Beluga data and estimated curves obtained by FLSA-G (Upper left), KM-G
(Upper right) and FLSA (Lower).

functions based on FLSA estimates taking the information of spikes into account. The

nonlinear regression model with these basis functions is able to capture the sudden changes

in nonlinear structure of data. In order to choose tuning parameters, we presented the

model selection criterion from information-theoretic approach. The simulation results

reported here demonstrate the effectiveness of the proposed modeling strategy in terms

of prediction accuracy and prominent visualization of spikes.
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