Spin－spin correlation functions of the q－VBS state of an integer spin model

Arita，Chikashi
Faculty of Mathematics，Kyushu University
Motegi，Kohei
Okayama Institute for Quantum Physics
https：／／hdl．handle．net／2324／18312

出版情報：MI Preprint Series．2010－30，2010－09－21．九州大学大学院数理学研究院 バージョン：
権利関係：

MI Preprint Series

Kyushu University
The Global COE Program
Math-for-Industry Education \& Research Hub

Spin-spin correlation functions of the q-VBS state of an integer spin model

Chikashi Arita and Kohei Motegi

MI 2010-30
(Received September 21, 2010)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN

Spin-spin correlation functions of the q-VBS state of an integer spin model

Chikashi Arita* and Kohei Motegi ${ }^{\dagger}$

Abstract

We consider the valence-bond-solid ground state of the q-deformed higher-spin AKLT model (q-VBS state). We investigate the eigenvalues and eigenvectors of a matrix (G matrix), which is constructed from the matrix product representation of the q-VBS state. We compute the longitudinal and transverse spin-spin correlation functions, and determine the correlation amplitudes and correlation lengths for real q.

1 Introduction

In one-dimensional quantum systems, a completely different behavior for the integer spin chains from the half-integer spin chains was predicted by Haldane [1, 2]. The antiferromagnetic isotopric spin-1 model introduced by Affleck, Kennedy, Lieb and Tasaki (AKLT model) [3], whose ground state can be exactly calculated, has been a useful toy model to validate Haldane's prediction of the massive behavior for integer spin chains. Moreover, it lead to a deeper understanding for integer spin chains such as the discovery of the special type of long-range order [4, 5].

The AKLT model has been generalized to higher-spin models, anisotropic models, etc $[6,7,8,9,10,11,12,13,14,15,16,17]$. The Hamiltonians are essentially linear combinations of projection operators with nonnegative coefficients, and their ground states are called valence-bond-solid (VBS) state.

There are largely three types of representations for the ground state which are equivalent to each other: the Schwinger boson representation, the spin coherent representation and the matrix product representation. For isotropic higher-spin models, the spin-spin correlation functions [18] and the entanglement entropy [19, 20] have been calculated by utilizing the spin coherent representation and the properties of Legendre polynomials. For the q-deformed spin-1 model, spin-spin correlation functions were evaluated $[7,8,9]$ from the matrix product representation.

In this paper, we consider the ground state of a q-deformed higher-integer-spin model which was constructed recently in [22] (q-VBS state). From its matrix product representation, we analyze one and two point functions of the q-VBS ground state for real

[^0]q. We notice that a matrix, which is constructed from the matrix product representation, plays a fundamental role in computing correlation functions, especially spin-spin two point correlation functions. Investigating the structure of the matrix in detail, we obtain its eigenvalues and eigenvectors. Utilizing the results, we determine the correlation amplitudes and correlation lengths of the longitudinal and transverse spin-spin correlation functions.

This paper is organized as follows. In the next section, we briefly review the quantum group $U_{q}(s u(2))$, and investigate the finite dimensional highest weight representation in terms of Schwinger bosons. In Section 3, we precisely define the higher-spin generalization of the q-deformed AKLT model on an L-site chain, and rigorously derive its q-VBS ground state in a matrix product form. The squared norm of the state will be written in terms of the trace of the L-th power of a matrix G, which plays an important role in this paper. In section 4 , we obtain the eigenvalues and eigenvectors of G. Utilizing them, we compute one and two point functions in Section 5. Especially, we determine the correlation amplitudes and correlation lengths of the longitudinal and transverse spin-spin correlation functions. Section 6 is devoted to the conclusion of this paper.

2 The quantum group $U_{q}(s u(2))$

We introduce several notations. Let us define the q-integer, q-factorial and q-binomial coefficient for $N \in \mathbb{Z}_{\geq 0}$ as

$$
\begin{gather*}
{[N]=\frac{q^{N}-q^{-N}}{q-q^{-1}}, \quad[N]!= \begin{cases}\prod_{I=1}^{N}[I] & N \in \mathbb{N}, \\
1 & N=0,\end{cases} } \tag{2.1}\\
{\left[\begin{array}{l}
N \\
K
\end{array}\right]= \begin{cases}\frac{[N]!}{[K]![N-K]!} & K=0, \ldots, N, \\
0 & \text { otherwise },\end{cases} }
\end{gather*}
$$

respectively.
The quantum group $U_{q}(s u(2))$ [23,24] is defined by generators X^{+}, X^{-}and H with relations

$$
\begin{equation*}
\left[X^{+}, X^{-}\right]=\frac{q^{H}-q^{-H}}{q-q^{-1}}, \quad\left[H, X^{ \pm}\right]= \pm 2 X^{ \pm} \tag{2.2}
\end{equation*}
$$

The comultiplication is given by

$$
\begin{equation*}
\Delta\left(X^{ \pm}\right)=X^{ \pm} \otimes q^{H / 2}+q^{-H / 2} \otimes X^{ \pm}, \quad \Delta(H)=H \otimes \mathrm{Id}+\mathrm{Id} \otimes H \tag{2.3}
\end{equation*}
$$

$U_{q}(s u(2))$ has the Schwinger boson representation, where the generators are realized as

$$
\begin{equation*}
X^{+}=a^{\dagger} b, \quad X^{-}=b^{\dagger} a, \quad H=N_{a}-N_{b} \tag{2.4}
\end{equation*}
$$

with q-bosons a and b satisfying

$$
\begin{align*}
& a a^{\dagger}-q a^{\dagger} a=q^{-N_{a}}, \quad b b^{\dagger}-q b^{\dagger} b=q^{-N_{b}} \tag{2.5}\\
& {\left[N_{a}, a\right]=-a, \quad\left[N_{a}, a^{\dagger}\right]=a^{\dagger}, \quad\left[N_{b}, b\right]=-b, \quad\left[N_{b}, b^{\dagger}\right]=b^{\dagger}} \tag{2.6}
\end{align*}
$$

We denote the space where $(2 j+1)$-dimensional highest weight representation of $U_{q}(s u(2))$ is realized by V_{j}. The basis of V_{j} is given by

$$
\begin{equation*}
|j ; m\rangle=\frac{\left(a^{\dagger}\right)^{j+m}\left(b^{\dagger}\right)^{j-m}}{\sqrt{[j+m]![j-m]!}}|\mathrm{vac}\rangle, \quad(m=-j, \ldots, j) . \tag{2.7}
\end{equation*}
$$

The Weyl representation which we describe below, is an equivalent representation to the Schwinger boson representation, and is efficient for practical calculation. Let us denote the q-bosons a and b acting on the α-th site as a_{α} and b_{α}. The Weyl representation is to represent $a_{\alpha}^{\dagger}, b_{\alpha}^{\dagger}, a_{\alpha}$ and b_{α} on the space of polynomials $\mathbb{C}\left[x_{\alpha}, y_{\alpha}\right]$ as

$$
\begin{equation*}
a_{\alpha}^{\dagger}=x_{\alpha}, \quad b_{\alpha}^{\dagger}=y_{\alpha}, \quad a_{\alpha}=\frac{1}{x_{\alpha}} \frac{D_{q}^{x_{\alpha}}-D_{q^{-1}}^{x_{\alpha}}}{q-q^{-1}}, \quad b_{\alpha}=\frac{1}{y_{\alpha}} \frac{D_{q}^{y_{\alpha}}-D_{q^{-1}}^{y_{\alpha}}}{q-q^{-1}}, \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{p}^{x_{\alpha}} f\left(x_{\alpha}, y_{\alpha}\right)=f\left(p x_{\alpha}, y_{\alpha}\right), \quad D_{p}^{y_{\alpha}} f\left(x_{\alpha}, y_{\alpha}\right)=f\left(x_{\alpha}, p y_{\alpha}\right) . \tag{2.9}
\end{equation*}
$$

The generators of $U_{q}(s u(2))$ are now represented as

$$
\begin{equation*}
X_{\alpha}^{+}=\frac{x_{\alpha}}{y_{\alpha}} \frac{D_{q}^{y_{\alpha}}-D_{q^{-1}}^{y_{\alpha}}}{q-q^{-1}}, X_{\alpha}^{-}=\frac{y_{\alpha}}{x_{\alpha}} \frac{D_{q}^{x_{\alpha}}-D_{q^{-1}}^{x_{\alpha}}}{q-q^{-1}}, q^{H_{\alpha}}=D_{q}^{x_{\alpha}} D_{q^{-1}}^{y_{\alpha}} . \tag{2.10}
\end{equation*}
$$

The tensor product of two irreducible representations has the Clebsch-Gordan decomposition

$$
\begin{align*}
V_{S} \otimes V_{S} & =\bigoplus_{J=0}^{2 S} V_{J} \tag{2.11}\\
\left|S ; m_{1}\right\rangle \otimes\left|S ; m_{2}\right\rangle & =\sum_{J=0}^{2 S}\left[\begin{array}{ccc}
S & S & J \\
m_{1} & m_{2} & m_{1}+m_{2}
\end{array}\right]\left|J ; m_{1}+m_{2}\right\rangle, \tag{2.12}
\end{align*}
$$

where

$$
\begin{align*}
& {\left[\begin{array}{ccc}
S_{1} & S_{2} & J \\
m_{1} & m_{2} & m
\end{array}\right]=\delta_{m_{1}+m_{2}, m}(-1)^{S_{1}-m_{1}} q^{m_{1}\left(m_{1}+m_{2}+1\right)+\left\{S_{2}\left(S_{2}+1\right)-S_{1}\left(S_{1}+1\right)-J(J+1)\right\} / 2}} \\
& \times \sqrt{\frac{[J+m]![J-m]!\left[S_{1}-m_{1}\right]!\left[S_{2}-m_{2}\right]!\left[S_{1}+S_{2}-J\right]![2 J+1]}{\left[S_{1}+m_{1}\right]!\left[S_{2}+m_{2}\right]!\left[S_{1}-S_{2}+J\right]!\left[S_{2}-S_{1}+J\right]!\left[S_{1}+S_{2}+J+1\right]!}} \tag{2.13}\\
& \times{\operatorname{Min}\left(J-m, S_{1}-m_{1}, S_{2}+J-m_{1}\right)}^{\left(-q^{m+J+1}\right)^{z}\left[S_{1}+m_{1}+z\right]!\left[S_{2}+J-m_{1}-z\right]!},
\end{align*}
$$

is the q-analog of the Clebsch-Gordan coefficient [21]. ${ }^{1}$ This coefficient is compatible with the inverse of the decomposition (2.12)

$$
|J ; m\rangle=\sum_{m_{1}+m_{2}=m}\left[\begin{array}{ccc}
S & S & J \tag{2.14}\\
m_{1} & m_{2} & m_{1}+m_{2}
\end{array}\right]\left|S ; m_{1}\right\rangle \otimes\left|S ; m_{2}\right\rangle .
$$

[^1]For later purpose, we will also investigate the Clebsch-Gordan decomposition of $U_{q}(s u(2))$ in terms of the Schwinger boson or the Weyl representation. Utilizing

$$
\begin{equation*}
\Delta X_{\alpha \beta}^{ \pm}=X_{\alpha}^{ \pm} \otimes q^{H_{\beta} / 2}+q^{-H_{\alpha} / 2} \otimes X_{\beta}^{ \pm} \tag{2.15}
\end{equation*}
$$

one can show that the highest weight vector $v_{J} \in V_{J}\left(\Delta X^{+} v_{J}=0\right)$ acting on the α-th and β-th site is given by

$$
\begin{equation*}
v_{J}=\left(x_{\alpha} x_{\beta}\right)^{J} \prod_{\nu=1}^{2 S-J}\left(x_{\alpha} y_{\beta}-q^{2(\nu-S-1)} x_{\beta} y_{\alpha}\right) \tag{2.16}
\end{equation*}
$$

Moreover, we can show the following:

Proposition 2.1.

$$
\begin{align*}
\left(\Delta X_{\alpha \beta}^{-}\right)^{n} v_{J}= & \left(x_{\alpha} x_{\beta}\right)^{J-n} q^{n S}[n]!\sum_{\mu=0}^{n} q^{-2 \mu S}\left[\begin{array}{c}
J \\
\mu
\end{array}\right]\left[\begin{array}{c}
J \\
n-\mu
\end{array}\right]\left(x_{\alpha} y_{\beta}\right)^{\mu}\left(x_{\beta} y_{\alpha}\right)^{n-\mu} \\
& \times \prod_{\nu=1}^{2 S-J}\left(x_{\alpha} y_{\beta}-q^{2(\nu-S-1)} x_{\beta} y_{\alpha}\right) \tag{2.17}
\end{align*}
$$

A proof of this proposition is given in Appendix A.
Remark 2.2. Let $n \geq 2 J+1$. Noting

$$
\left[\begin{array}{c}
J \tag{2.18}\\
\mu
\end{array}\right]\left[\begin{array}{c}
J \\
n-\mu
\end{array}\right]=0
$$

for $0 \leq \mu \leq n$, one can see that

$$
\begin{equation*}
\left(\Delta X_{\alpha \beta}^{-}\right)^{n} v_{J}=0 \tag{2.19}
\end{equation*}
$$

$3 \quad q$-VBS state

The model we treat in this paper is an anisotropic integer spin- S Hamiltonian on an L-site chain with the periodic boundary condition

$$
\begin{equation*}
\mathcal{H}=\sum_{k \in \mathbb{Z}_{L}} \sum_{J=S+1}^{2 S} C_{J}(k, k+1)\left(\pi_{J}\right)_{k, k+1} \tag{3.1}
\end{equation*}
$$

where $C_{J}(k, k+1)>0$, and $\left(\pi_{J}\right)_{k, k+1}$, which acts on the k-th and $(k+1)$-th sites, is the $U_{q}(s u(2))$ projection operator from $V_{S} \otimes V_{S}$ to V_{J} as

$$
\begin{align*}
\pi_{J}= & \sum_{m_{1}, m_{2}, m_{1}^{\prime}, m_{2}^{\prime}=0}^{S}\left[\begin{array}{ccc}
S & S & J \\
m_{1} & m_{2} & m_{1}+m_{2}
\end{array}\right]\left[\begin{array}{ccc}
S & S & J \\
m_{1}^{\prime} & m_{2}^{\prime} & m_{1}^{\prime}+m_{2}^{\prime}
\end{array}\right] \tag{3.2}\\
& \times \delta_{m_{1}+m_{2}, m_{1}^{\prime}+m_{2}^{\prime}}\left|S ; m_{1}^{\prime}\right\rangle\left\langle S ; m_{1}\right| \otimes\left|S ; m_{2}^{\prime}\right\rangle\left\langle S ; m_{2}\right|
\end{align*}
$$

The nonnegativity

$$
\begin{equation*}
\left.\langle\psi|\left(\pi_{J}\right)_{k, k+1}|\psi\rangle \geq 0 \quad \text { (for any vector }|\psi\rangle\right) \tag{3.3}
\end{equation*}
$$

implies that all the eigenvalues of \mathcal{H} are nonnegative. (Of course, $\langle\psi|$ is the Hermitian conjugate of $|\psi\rangle$.) Moreover, we will see that the energy of the ground state $|\Psi\rangle$ is zero:

$$
\begin{equation*}
\mathcal{H}|\Psi\rangle=0 \tag{3.4}
\end{equation*}
$$

Since we set $C_{J}(k, k+1)>0$, we find that (3.4) is equivalent to

$$
\begin{equation*}
\left(\pi_{J}\right)_{k, k+1}|\Psi\rangle=0 \quad\left(\forall k \in \mathbb{Z}_{L}, \forall J \in\{S+1, \ldots, 2 S\}\right), \tag{3.5}
\end{equation*}
$$

noting the nonnegativity (3.3). From Proposition 2.1, one observes that any vector in $\oplus_{0 \leq J \leq S} V_{J} \subset V_{S} \otimes V_{S}$ of the k-th and $(k+1)$-th sites has the form

$$
\begin{equation*}
\sum_{0 \leq A, B \leq S} C_{A B} x_{k}^{A} y_{k}^{S-A} x_{k+1}^{B} y_{k+1}^{S-B} \prod_{m=1}^{S}\left(q^{m} x_{k} y_{k+1}-q^{-m} y_{k} x_{k+1}\right), \tag{3.6}
\end{equation*}
$$

where $C_{A B}$ does not depend on x_{k}, y_{k}, x_{k+1} or y_{k+1}. Thus, the condition (3.5) imposes the restriction that $|\Psi\rangle$ has the form

$$
\begin{equation*}
|\Psi\rangle=P\left(\left\{x_{k}\right\}_{k \in \mathbb{Z}_{L}},\left\{y_{k}\right\}_{k \in \mathbb{Z}_{L}}\right) \prod_{k \in \mathbb{Z}_{L}} \prod_{m=1}^{S}\left(q^{m} x_{k} y_{k+1}-q^{-m} y_{k} x_{k+1}\right) \tag{3.7}
\end{equation*}
$$

with some polynomials P such that this form is consistent with (3.6) for $\forall k \in \mathbb{Z}_{L}$. The unique choice of P with such consistency is a constant (which can be set to be 1), and we achieve the unique ground state

$$
\begin{equation*}
|\Psi\rangle=\prod_{k \in \mathbb{Z}_{L}} \prod_{m=1}^{S}\left(q^{m} x_{k} y_{k+1}-q^{-m} y_{k} x_{k+1}\right) . \tag{3.8}
\end{equation*}
$$

In the Schwinger boson representation, we have

$$
\begin{equation*}
|\Psi\rangle=\prod_{k \in \mathbb{Z}_{L}} \prod_{m=1}^{S}\left(q^{m} a_{k}^{\dagger} b_{k+1}^{\dagger}-q^{-m} b_{k}^{\dagger} a_{k+1}^{\dagger}\right)|\mathrm{vac}\rangle, \tag{3.9}
\end{equation*}
$$

which is a generalization of the $q=1$ case [6]. Note that each site have the correct spin value: $N_{k}|\Psi\rangle=S|\Psi\rangle\left(k \in \mathbb{Z}_{L}\right)$ where $N_{k}:=\left(N_{a_{k}}+N_{b_{k}}\right) / 2$. Our ground state is a q deformation of the valence-bond-solid (VBS) state, which we call q-VBS state, see figure 1.

The Schwinger boson representation of the ground state (3.9) can be transformed into the following equivalent form called the matrix product representation [22], which generalizes the $q=1[25]$ or $S=1[7]$ case. Noting (2.7), we have

$$
\begin{equation*}
|\Psi\rangle=\operatorname{Tr}\left[g_{1} \star g_{2} \star \cdots \star g_{L-1} \star g_{L}\right], \tag{3.10}
\end{equation*}
$$

Figure 1: Conceptual figure of the q-VBS state. Each line is a q-deformed valence bond, and the circle \bigcirc represents the q-symmetrization of spin- $1 / 2$ particles \bullet at each site.
where g_{k} is an $(S+1) \times(S+1)$ vector-valued matrix acting on the k-th site whose element is given by

$$
\begin{align*}
g_{k}\left(i, i^{\prime}\right) & =(-1)^{S-i} q^{\left(i+i^{\prime}-S\right)(S+1) / 2} \sqrt{\left[\begin{array}{c}
S \\
i
\end{array}\right]\left[\begin{array}{c}
S \\
i^{\prime}
\end{array}\right]\left[S-i+i^{\prime}\right]!\left[S+i-i^{\prime}\right]!}\left|S ; i^{\prime}-i\right\rangle_{k} \\
& =: h_{i i^{\prime}}\left|S ; i^{\prime}-i\right\rangle_{k}, \quad\left(0 \leq i, i^{\prime} \leq S\right) . \tag{3.11}
\end{align*}
$$

The symbol \star for two $(S+1) \times(S+1)$ vector-valued matrices

$$
x=\left(\begin{array}{ccc}
\left|x_{00}\right\rangle & \cdots & \left|x_{0 S}\right\rangle \tag{3.12}\\
\vdots & \ddots & \vdots \\
\left|x_{S 0}\right\rangle & \cdots & \left|x_{S S}\right\rangle
\end{array}\right), \quad y=\left(\begin{array}{ccc}
\left|y_{00}\right\rangle & \cdots & \left|y_{0 S}\right\rangle \\
\vdots & \ddots & \vdots \\
\left|y_{S 0}\right\rangle & \cdots & \left|y_{S S}\right\rangle
\end{array}\right),
$$

is defined by

$$
x \star y=\left(\begin{array}{ccc}
\sum_{u=0}^{S}\left|x_{0 u}\right\rangle \otimes\left|y_{u 0}\right\rangle & \cdots & \sum_{u=0}^{S}\left|x_{0 u}\right\rangle \otimes\left|y_{u S}\right\rangle \tag{3.13}\\
\vdots & \ddots & \vdots \\
\sum_{u=0}^{S}\left|x_{S u}\right\rangle \otimes\left|y_{u 0}\right\rangle & \cdots & \sum_{u=0}^{S}\left|x_{S u}\right\rangle \otimes\left|y_{u S}\right\rangle
\end{array}\right),
$$

which is apparently an additive operation.
For example, for $S=2$,

$$
g_{k}=\left(\begin{array}{ccc}
h_{00}|2 ; 0\rangle_{k} & h_{01}|2 ; 1\rangle_{k} & h_{02}|2 ; 2\rangle_{k} \tag{3.14}\\
h_{10}|2 ;-1\rangle_{k} & h_{11}|2 ; 0\rangle_{k} & h_{12}|2 ; 1\rangle_{k} \\
h_{20}|2 ;-2\rangle_{k} & h_{21}|2 ;-1\rangle_{k} & h_{22}|2 ; 0\rangle_{k}
\end{array}\right),
$$

and the product in the form (3.10) is calculated as

$$
\begin{align*}
& g_{1} \star \cdots \star g_{L} \\
= & \left(\begin{array}{ccc}
\left(g_{1} \star \cdots \star g_{L}\right)(0,0) & \left(g_{1} \star \cdots \star g_{L}\right)(0,1) & \left(g_{1} \star \cdots \star g_{L}\right)(0,2) \\
\left(g_{1} \star \cdots \star g_{L}\right)(1,0) & \left(g_{1} \star \cdots \star g_{L}\right)(1,1) & \left(g_{1} \star \cdots \star g_{L}\right)(1,2) \\
\left(g_{1} \star \cdots \star g_{L}\right)(2,0) & \left(g_{1} \star \cdots \star g_{L}\right)(2,1) & \left(g_{1} \star \cdots \star g_{L}\right)(2,2)
\end{array}\right), \tag{3.15}
\end{align*}
$$

with

$$
\begin{align*}
& \quad\left(g_{1} \star \cdots \star g_{L}\right)\left(i, i^{\prime}\right) \\
& =\sum_{i_{k}=0,1,2} h_{i i_{2}} h_{i_{2} i_{3}} \cdots h_{i_{L-1} i_{L}} h_{i_{L} i^{\prime}} \tag{3.16}\\
& \quad \times\left|2 ; i_{2}-i\right\rangle_{1} \otimes\left|2 ; i_{3}-i_{2}\right\rangle_{2} \otimes \cdots \otimes\left|2 ; i_{L}-i_{L-1}\right\rangle_{L-1} \otimes\left|2 ; i^{\prime}-i_{L}\right\rangle_{L} .
\end{align*}
$$

Then the matrix product ground state (3.10) is

$$
\begin{align*}
& \left(g_{1} \star \cdots \star g_{L}\right)(0,0)+\left(g_{1} \star \cdots \star g_{L}\right)(1,1)+\left(g_{1} \star \cdots \star g_{L}\right)(2,2) \\
= & \sum_{i_{k}=0,1,2} h_{i_{1} i_{2}} h_{i_{2} i_{3}} \cdots h_{i_{L-1} i_{L}} h_{i_{L} i_{1}} \tag{3.17}\\
& \times\left|2 ; i_{2}-i_{1}\right\rangle_{1} \otimes\left|2 ; i_{3}-i_{2}\right\rangle_{2} \otimes \cdots \otimes\left|2 ; i_{L}-i_{L-1}\right\rangle_{L-1} \otimes\left|2 ; i_{1}-i_{L}\right\rangle_{L}
\end{align*}
$$

We define g_{k}^{\dagger} by replacing each ket vector in the matrix g_{k} by its corresponding vectors:

$$
\begin{equation*}
g_{k}^{\dagger}\left(i, i^{\prime}\right)=h_{i i^{\prime} k}\left\langle S ; i^{\prime}-i\right| \tag{3.18}
\end{equation*}
$$

For example, for $S=2$,

Now we introduce " G matrix", which will play an important role in our study. Let us set an $(S+1)^{2}$ dimensional vector space W and its dual orthogonal space W^{*} as

$$
\begin{equation*}
\left.W=\bigoplus_{0 \leq a, b \leq S} \mathbb{C}|a, b\rangle\right\rangle, \quad W^{*}=\bigoplus_{0 \leq a, b \leq S} \mathbb{C}\langle\langle a, b| \tag{3.20}
\end{equation*}
$$

Here, $\{|a, b\rangle\rangle \mid a, b=0, \ldots, S\}(\{\langle\langle a, b|| a, b=0, \ldots, S\})$ is an orthonormal (dual orthonormal) basis. We define an $(S+1)^{2} \times(S+1)^{2}$ matrix G acting on the space W as

$$
\begin{equation*}
\left.G_{(a, b ; c, d)}=\langle\langle a, b| G \mid c, d\rangle\right\rangle=g^{\dagger}(a, c) g(b, d) \tag{3.21}
\end{equation*}
$$

or equivalently as

$$
\begin{equation*}
G=g^{\dagger} \otimes g \tag{3.22}
\end{equation*}
$$

We also introduce G_{A} for an operator A acting on the one-site vector space V_{S} as

$$
\begin{equation*}
\left.\left(G_{A}\right)_{(a, b ; c, d)}=\left\langle\langle a, b| G_{A} \mid c, d\right\rangle\right\rangle=g^{\dagger}(a, c) A g(b, d) \tag{3.23}
\end{equation*}
$$

Each element of the matrix G can be expressed explicitly as

$$
\begin{equation*}
G_{(a, b ; c, d)}=\delta_{c-a, d-b} T_{a b c d}, \tag{3.24}
\end{equation*}
$$

where

$$
\begin{align*}
& T_{a b c d}=h_{a c} h_{b d}=(-1)^{a+b} q^{(a+b+c+d-2 S)(S+1) / 2} \\
& \quad \times \sqrt{\left[\begin{array}{l}
S \\
a
\end{array}\right]\left[\begin{array}{l}
S \\
b
\end{array}\right]\left[\begin{array}{l}
S \\
c
\end{array}\right]\left[\begin{array}{l}
S \\
d
\end{array}\right][S-a+c]![S+a-c]![S-b+d]![S+b-d]!} . \tag{3.25}
\end{align*}
$$

Each element of G_{A} for $A=S^{z}, S^{+}$and S^{-}, which act on $|S ; m\rangle$ as

$$
\begin{align*}
S^{z}|S ; m\rangle & =m|S ; m\rangle \tag{3.26}\\
S^{+}|S ; m\rangle & =\sqrt{(S-m)(S+m+1)}|S ; m+1\rangle \tag{3.27}\\
S^{-}|S ; m\rangle & =\sqrt{(S+m)(S-m+1)}|S ; m-1\rangle \tag{3.28}
\end{align*}
$$

can be also expressed as

$$
\begin{align*}
& \left(G_{S^{z}}\right)_{(a, b ; c, d)}=\delta_{c-a, d-b}(d-b) T_{a b c d} \tag{3.29}\\
& \left(G_{S^{+}}\right)_{(a, b ; c, d)}=\delta_{c-a, d-b+1} \sqrt{(S-d+b)(S+d-b+1)} T_{a b c d} \tag{3.30}\\
& \left(G_{S^{-}}\right)_{(a, b ; c, d)}=\delta_{c-a, d-b-1} \sqrt{(S+d-b)(S-d+b+1)} T_{a b c d} \tag{3.31}
\end{align*}
$$

The squared norm of the ground state is calculated as

$$
\begin{align*}
\langle\Psi \mid \Psi\rangle & =\operatorname{Tr}\left[g_{1}^{\dagger} \star \cdots \star g_{L}^{\dagger}\right] \operatorname{Tr}\left[g_{1} \star \cdots \star g_{L}\right] \\
& =\operatorname{Tr}\left[\left(g_{1}^{\dagger} \star \cdots \star g_{L}^{\dagger}\right) \otimes\left(g_{1} \star \cdots \star g_{L}\right)\right] \tag{3.32}\\
& =\operatorname{Tr}\left[\left(g_{1}^{\dagger} \otimes g_{1}\right) \star \cdots \star\left(g_{L}^{\dagger} \otimes g_{L}\right)\right] \\
& =\operatorname{Tr} G^{L} .
\end{align*}
$$

Note that the elements of $g_{k}^{\dagger} \otimes g_{k}=G$ are no longer vectors, and thus we can replace the symbol \star by the usual product in the third line of (3.32). The one point function $\langle A\rangle$ of an operator A can be written in terms of G and G_{A} as

$$
\begin{equation*}
\langle A\rangle=\frac{\langle\Psi| A_{1}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\frac{\operatorname{Tr}\left[g_{1}^{\dagger} \star \cdots \star g_{L}^{\dagger}\right] \operatorname{Tr}\left[A_{1} g_{1} \star g_{2} \star \cdots \star g_{L}\right]}{\langle\Psi \mid \Psi\rangle}=\frac{\operatorname{Tr} G_{A} G^{L-1}}{\operatorname{Tr} G^{L}} \tag{3.33}
\end{equation*}
$$

where $A_{k} g_{k}$ is defined by $\left(A_{k} g_{k}\right)\left(i, i^{\prime}\right)=A_{k}\left(g_{k}\left(i, i^{\prime}\right)\right)$. In the same way, the two point function of A and B can also be written in terms of G, G_{A} and G_{B} as

$$
\begin{equation*}
\left\langle A_{1} B_{r}\right\rangle=\left(\operatorname{Tr} G^{L}\right)^{-1} \operatorname{Tr} G_{A} G^{r-2} G_{B} G^{L-r} \tag{3.34}
\end{equation*}
$$

Investigating the eigenvalues and eigenvectors of the matrix G will be crucial for the analysis of correlation functions. In the next section, we study the G matrix in detail.

$4 \quad$ Spectral structure of the G matrix

In [22], we conjectured that the spectrum of G is given by

$$
\lambda_{\ell}=(-1)^{\ell}([S]!)^{2}\left[\begin{array}{c}
2 S+1 \tag{4.1}\\
S-\ell
\end{array}\right], \quad(\ell=0,1, \ldots, S)
$$

where the degree of the degeneracy of each λ_{ℓ} is $2 \ell+1$. One can easily find that

$$
\begin{equation*}
\left|\lambda_{0}\right|>\left|\lambda_{1}\right|>\cdots>\left|\lambda_{S}\right| \tag{4.2}
\end{equation*}
$$

In this section, we prove the conjecture by giving an exact form for the eigenvector corresponding to each eigenvalue.
First one observes that the G matrix has the following block diagonal structure:

$$
\begin{align*}
& G=\bigoplus_{-S \leq j \leq S} G^{(j)}, \quad G^{(j)} \in \operatorname{End} W_{j}, \tag{4.3}\\
& W=\bigoplus_{-S \leq j \leq S} W_{j}, \quad W_{j}= \begin{cases}\left.\bigoplus_{0 \leq i \leq S-j} \mathbb{C}|i, i+j\rangle\right\rangle & j \geq 0 \\
\left.\bigoplus_{0 \leq i \leq S+j} \mathbb{C}|i-j, i\rangle\right\rangle & j<0 .\end{cases} \tag{4.4}
\end{align*}
$$

The size of each block $G^{(j)}$ is $(S-|j|+1) \times(S-|j|+1)$. Each element of $G^{(j)}$ is

$$
\begin{align*}
\left.\left\langle\langle a, a+j| G^{(j)} \mid c, c+j\right\rangle\right\rangle= & (-1)^{j} q^{(a+c+j-S)(S+1)}[S-a+c]![S+a-c]! \\
& \times \sqrt{\left[\begin{array}{c}
S \\
a
\end{array}\right]\left[\begin{array}{c}
S \\
a+j
\end{array}\right]\left[\begin{array}{c}
S \\
c
\end{array}\right]\left[\begin{array}{c}
S \\
c+j
\end{array}\right]} \tag{4.5}
\end{align*}
$$

We construct intertwiners among the $2 S+1$ block diagonal matrices $G^{(j)}(j=-S, \ldots, S)$. This helps us to construct eigenvectors of each block diagonal matrix from another block with a smaller size. (The same idea was used in [26] to study the spectrum of a multispecies exclusion process). Let us define a family of linear operators $\left\{I_{j}\right\}_{-S \leq j \leq-1,1 \leq j \leq S}$ as

$$
\begin{align*}
& I_{j} \in \operatorname{Hom}\left(W_{j}, W_{j-1}\right) \tag{4.6}\\
&\left.\left\langle\langle a, a+j-1| I_{j} \mid c, c+j\right\rangle\right\rangle= \begin{cases}q^{-a} \sqrt{\frac{[a+j][S-a-j+1]}{[j][S-j+1]}} & c=a \\
-q^{1-a-j} \sqrt{\frac{[a][S-a+1]}{[j][S-j+1]}} & c=a-1 \\
0 & \text { otherwise }\end{cases} \tag{4.7}
\end{align*}
$$

for $1 \leq j \leq S$, and

$$
\begin{align*}
I_{j} & \in \operatorname{Hom}\left(W_{j}, W_{j+1}\right) \tag{4.8}\\
\left.\left\langle\langle a-j-1, a| I_{j} \mid c-j, c\right\rangle\right\rangle & = \begin{cases}q^{-a} \sqrt{\frac{[a-j][S-a+j+1]}{[-j][S+j+1]}} & c=a \\
-q^{1-a+j} \sqrt{\frac{[a][S-a+1]}{[-j][S+j+1]}} & c=a-1 \\
0 & \text { otherwise. }\end{cases}
\end{align*}
$$

for $-S \leq j \leq-1$. By direct calculation, one finds

Proposition 4.1. The matrix I_{j} enjoys the intertwining relation

$$
\begin{align*}
I_{j} G^{(j)}=G^{(j-1)} I_{j} & \text { for } 1 \leq j \leq S \\
I_{j} G^{(j)}=G^{(j+1)} I_{j} & \text { for }-S \leq j \leq-1 \tag{4.10}
\end{align*}
$$

With the use of Proposition 4.1, one can show the following:
Theorem 4.2. Each block matrix $G^{(j)}$ has a simple (nondegenerated) spectrum

$$
\begin{equation*}
\text { Spec } G^{(j)}=\left\{\lambda_{\ell}\right\}_{|j| \leq \ell \leq S} \tag{4.11}
\end{equation*}
$$

and the corresponding eigenvectors are given by

$$
\left.\left|\lambda_{|j|}\right\rangle\right\rangle_{j}= \begin{cases}\left.\sum_{0 \leq i \leq S-\ell} q^{(\ell+1) i} \sqrt{\frac{[S-\ell]![i+\ell]![S-i]!}{[S]![\ell]![S-i-\ell]![i]!}}|i, i+\ell\rangle\right\rangle & j \geq 0 \tag{4.12}\\ \left.\sum_{0 \leq i \leq S-\ell} q^{(\ell+1) i} \sqrt{\frac{[S-\ell]![i+\ell]![S-i]!}{[S]![\ell]![S-i-\ell]![i]!}}|i+\ell, i\rangle\right\rangle & j<0\end{cases}
$$

for $\ell=|j|$, and

$$
\left.\left|\lambda_{\ell}\right\rangle\right\rangle_{j}= \begin{cases}\left.\left.I_{j+1}\left|\lambda_{\ell}\right\rangle\right\rangle_{j+1}=I_{j+1} I_{j+2} \cdots I_{\ell}\left|\lambda_{\ell}\right\rangle\right\rangle_{\ell} & j \geq 0 \tag{4.13}\\ \left.\left.I_{j-1}\left|\lambda_{\ell}\right\rangle\right\rangle_{j-1}=I_{j-1} I_{j-2} \cdots I_{-\ell}\left|\lambda_{\ell}\right\rangle\right\rangle_{-\ell} & j<0\end{cases}
$$

for $|j|+1 \leq \ell \leq S$.
Figure 2 is helpful to understand how the eigenvectors are constructed. We prove this theorem below for only $j \geq 0$ since one can show it for $j<0$ in the same way.

Proof of Theorem 4.2. First, by direct calculation given below, we find that $G^{(j)}$ has an eigenvalue λ_{j} and its eigenvector is $\left.\left|\lambda_{j}\right\rangle\right\rangle_{j}$ defined by (4.12). Each element of $\left.G^{(j)}\left|\lambda_{j}\right\rangle\right\rangle_{j}$ is calculated as

$$
\begin{align*}
& \left.\left\langle\langle a, a+j| G^{(j)} \mid \lambda_{j}\right\rangle\right\rangle_{j} \\
& =\sum_{0 \leq c \leq S-j}(-1)^{j} q^{(a+c+j-S)(S+1)}[S-a+c]![S+a-c]! \\
& \quad \times \sqrt{\left[\begin{array}{c}
S \\
a
\end{array}\right]\left[\begin{array}{c}
S \\
a+j
\end{array}\right]\left[\begin{array}{c}
S \\
c
\end{array}\right]\left[\begin{array}{c}
S \\
c+j
\end{array}\right]} q^{(j+1) c} \sqrt{\frac{[S-j]![c+j]![S-c]!}{[S]![j]![S-c-j]![c]!}} \tag{4.14}\\
& =(-1)^{j} q^{(a+j-S-1)(S+1)-(j+1)} \sqrt{\left[\begin{array}{c}
S \\
a
\end{array}\right]\left[\begin{array}{c}
S \\
a+j
\end{array}\right] \frac{[S-j]!}{[S]![j]!}} \\
& \quad \times[S]!\sum_{0 \leq c \leq S-j} q^{(c+1)(S+j+2)} \frac{[S-a+c]![S+a-c]!}{[S-c-j]![c]!} .
\end{align*}
$$

Using the formula

$$
\sum_{0 \leq k \leq n}\left[\begin{array}{c}
\alpha+n-k \tag{4.15}\\
n-k
\end{array}\right]\left[\begin{array}{c}
\beta+k \\
k
\end{array}\right] q^{k(\alpha+\beta+2)}=\left[\begin{array}{c}
\alpha+\beta+n+1 \\
n
\end{array}\right] q^{n(1+\beta)}
$$

W_{S}	$\left\|\lambda_{S}\right\rangle_{S}$						
$\downarrow I_{S}$	I						
W_{S-1}	$\left\|\lambda_{S}\right\rangle_{S-1}$	$\left.\left\|\lambda_{S-1}\right\rangle\right\rangle_{S-1}$					
\downarrow_{S-1}	I	I					
W_{S-2}	$\left\|\lambda_{S}\right\rangle_{S-2}$	$\left.\left\|\lambda_{S-1}\right\rangle\right\rangle_{S-2}$	$\left.\left\|\lambda_{S-2}\right\rangle\right\rangle_{S-2}$				
\vdots	:	\vdots	:				
W_{2}	$\left\|\lambda_{S}\right\rangle_{2}$	$\left.\left\|\lambda_{S-1}\right\rangle\right\rangle_{2}$	$\left.\left\|\lambda_{S-2}\right\rangle\right\rangle_{2}$		$\left.\left\|\lambda_{2}\right\rangle\right\rangle_{2}$		
$\downarrow I_{2}$	I	I	I		I		
W_{1}	$\left.\left\|\lambda_{S}\right\rangle\right\rangle_{1}$	$\left.\left\|\lambda_{S-1}\right\rangle\right\rangle_{1}$	$\left.\left\|\lambda_{S-2}\right\rangle\right\rangle_{1}$		$\left.\left\|\lambda_{2}\right\rangle\right\rangle_{1}$	$\left.\left\|\lambda_{1}\right\rangle\right\rangle_{1}$	
$\downarrow I_{1}$	I	I	I		I	I	
W_{0}	$\left\|\lambda_{S}\right\rangle_{0}$	$\left\|\lambda_{S-1}\right\rangle_{0}$	$\left.\left\|\lambda_{S-2}\right\rangle\right\rangle_{0}$		$\left\|\lambda_{2}\right\rangle_{0}$	$\left\|\lambda_{1}\right\rangle_{0}$	$\left\|\lambda_{0}\right\rangle_{0}$
$\uparrow_{I_{-1}}$	1	1	1		1	1	
W_{-1}	$\left\|\lambda_{S}\right\rangle_{-1}$	$\left\|\lambda_{S-1}\right\rangle_{-1}$	$\left.\left\|\lambda_{S-2}\right\rangle\right\rangle_{-1}$	\ldots	$\left.\left\|\lambda_{2}\right\rangle\right\rangle_{-1}$	$\left.\left\|\lambda_{1}\right\rangle\right\rangle_{-1}$	
$\uparrow_{I_{-2}}$	1	1	\uparrow		1		
W_{-2}	$\left.\left\|\lambda_{S}\right\rangle\right\rangle_{-2}$	$\left\|\lambda_{S-1}\right\rangle_{-2}$	$\left.\left\|\lambda_{S-2}\right\rangle\right\rangle_{-2}$		$\left.\left\|\lambda_{2}\right\rangle\right\rangle_{-2}$		
:	!	.	:				
W_{-S+2}	$\left.\left\|\lambda_{S}\right\rangle\right\rangle_{-S+2}$	$\left\|\lambda_{S-1}\right\rangle_{\rangle_{-S+2}}$	$\left.\left\|\lambda_{S-2}\right\rangle\right\rangle_{-S+2}$				
$\uparrow_{I_{-S+1}}$	1	1					
W_{-S+1}	$\left\|\lambda_{S}\right\rangle_{-S+1}$	$\left\|\lambda_{S-1}\right\rangle_{-S+1}$					
$\uparrow_{I_{-S}}$	1						
W_{-S}	$\left.\left\|\lambda_{S}\right\rangle\right\rangle_{-S}$						

Figure 2: Structure of the eigenvectors of G (3.21).
we obtain

$$
\left.\begin{array}{rl}
\left.\left\langle\langle a, a+j| G^{(j)} \mid \lambda_{j}\right\rangle\right\rangle_{j}= & (-1)^{j} q^{(a+j-S-1)(S+1)-(j+1)} \sqrt{\left[\begin{array}{c}
S \\
a
\end{array}\right]\left[\begin{array}{c}
S \\
a+j
\end{array}\right] \underline{[S-j]!}} \\
& \times[S]!\left[q^{-S j+a(j-S)+S^{2}+2 S+2}\right. \tag{4.16}\\
& =(-1)^{j}([S]!)^{2}\left[\begin{array}{c}
2 S+1 \\
S-j
\end{array}\right][S-a]![a+j]! \\
S-j
\end{array}\right] q^{(j+1) a} \sqrt{\frac{[S-j]![a+j]![S-a]!}{[S]![j]![S-a-j]![a]!}}
$$

Note that the first element of $\left|\lambda_{j}\right\rangle_{j}$ is 1 by the definition (4.12): $\left\langle\left\langle 0, j \mid \lambda_{j}\right\rangle\right\rangle_{j}=1$.
Next, we show by induction that $G^{(j)}$ has eigenvalues $\lambda_{\ell}(j \leq \ell \leq S)$ and their corresponding eigenvectors are given by $\left.\left|\lambda_{\ell}\right\rangle\right\rangle_{j}$ defined by (4.13). Suppose the theorem is true for $\left|\lambda_{\ell}\right\rangle_{j+1}, \ell=j+1, \ldots, S(j \geq 0)$, that is to say that the block diagonal matrix $G^{(j+1)}$ has the eigenvalues λ_{ℓ} and their corresponding eigenvectors $\left.\left.\left|\lambda_{\ell}\right\rangle\right\rangle_{j+1}\left(G^{(j+1)}\left|\lambda_{\ell}\right\rangle\right\rangle_{j+1}=\lambda_{\ell}\left|\lambda_{\ell}\right\rangle\right\rangle_{j+1}$ with $\left|\lambda_{\ell}\right\rangle_{j+1} \neq 0$) for $\ell=j+1, \ldots, S$. Additionally, suppose that the first element
of each $\left|\lambda_{\ell}\right\rangle_{j+1}$ is 1. Using the intertwining relation (4.10), one finds $G^{(j)} I_{j+1}\left|\lambda_{\ell}\right\rangle_{j+1}=$ $\lambda_{\ell} I_{j+1}\left|\lambda_{\ell}\right\rangle_{j+1}$. We also find that the first element of $\left.I_{j+1}\left|\lambda_{\ell}\right\rangle\right\rangle_{j+1}$ is 1 , and thus $I_{j+1}\left|\lambda_{\ell}\right\rangle_{j+1}$ is nonzero. Furthermore, thanks to $\ell_{1} \neq \ell_{2} \Rightarrow \lambda_{\ell_{1}} \neq \lambda_{\ell_{2}}$, the vectors $I_{j+1}\left|\lambda_{\ell}\right\rangle_{j+1}$ $(j+1 \leq \ell \leq S)$ are distinct (in other words, I_{j+1} is injective). We have already constructed the remaining eigenvector of $G^{(j)}$ explicitly, which is $\left|\lambda_{j}\right\rangle_{j}$ with its eigenvalue λ_{j} distinct from $\lambda_{\ell}(j+1 \leq \ell \leq S)$.

The conjecture for the eigenvalues of the G matrix that we exhibited in the beginning of this section follows as a simple corollary of Theorem 4.2. Moreover, we constructed their eigenvectors which are important for computing spin-spin correlation functions.

Proposition 4.3. The squared norm of $\left.\left|\lambda_{\ell}\right\rangle\right\rangle_{j}$ is

$$
\begin{equation*}
{ }_{j}\left\langle\left\langle\lambda_{\ell} \mid \lambda_{\ell}\right\rangle\right\rangle_{j}=q^{S(|j|+1)-\ell(\ell+1)} \frac{[S+\ell+1]![\ell-|j|]![S-\ell]![|j|]!}{[S]![\ell+|j|]![S-|j|]![2 \ell+1]}, \tag{4.17}
\end{equation*}
$$

where we denote the transpose of $\left.\left|\lambda_{\ell}\right\rangle\right\rangle_{j}$ by ${ }_{j}\left\langle\left\langle\lambda_{\ell}\right|\right.$.
We prove this proposition only for $j \geq 0$.
Proof of Proposition 4.3. One can easily show that the product of intertwiners (which is also an intertwiner) has the following form by induction:

$$
\begin{align*}
& \left.\left\langle\langle a, a+j| I_{j+1} I_{j+2} \cdots I_{\ell+1} I_{\ell} \mid c, c+\ell\right\rangle\right\rangle \\
= & (-1)^{a-c} q^{c j-a \ell}\left[\begin{array}{c}
\ell-j \\
a-c
\end{array}\right] \sqrt{\frac{[j]![S-\ell]![a]![S-c]![c+\ell]![S-(a+j)]!}{[\ell]![S-j]![c]![S-a]![a+j]![S-(c+\ell)]!}} . \tag{4.18}
\end{align*}
$$

Then, $\left.{ }_{j}\left\langle\left\langle\lambda_{\ell} \mid \lambda_{\ell}\right\rangle\right\rangle_{j}={ }_{\ell}\left\langle\left\langle\lambda_{\ell}\right|\left(I_{j+1} \cdots I_{\ell}\right)^{\mathrm{T}} I_{j+1} \cdots I_{\ell} \mid \lambda_{\ell}\right\rangle\right\rangle_{\ell}$ is calculated as

$$
\begin{align*}
& j\left\langle\left\langle\lambda_{\ell} \mid \lambda_{\ell}\right\rangle\right\rangle_{j}=\frac{([S-\ell]!)^{2}[j]!}{[S]!([\ell]!)^{2}[S-j]!} \sum_{\substack{0 \leq a \leq S, j \\
0 \leq i, i^{\prime} \leq S}}(-1)^{i+i^{\prime}} q^{\left(i+i^{\prime}\right)(\ell+j+1)-2 a \ell} \tag{4.19}\\
& \quad \times\left[\begin{array}{l}
\ell-j \\
a-i
\end{array}\right]\left[\begin{array}{c}
\ell-j \\
a-i^{\prime}
\end{array}\right][S-i][i+\ell]![S-(i+\ell)]!\left[i^{\prime}\right]!\left[\left[i^{\prime}+\ell\right]![a]![S-(a+j)]!\right. \\
& \left.\quad\left[i^{\prime}+\ell\right)\right]![S-a]![a+j]!
\end{align*}
$$

The triple sum has the closed form

$$
\begin{equation*}
q^{(j+1) S-\ell(\ell+1)} \frac{([\ell]!)^{2}[\ell-j]![S+\ell+1]!}{[S-\ell]![j+\ell]![2 \ell+1]}, \tag{4.20}
\end{equation*}
$$

which finishes the proof.

5 Spin-spin correlation functions

In the last section, we investigated the eigenvalues and eigenvectors of the G matrix. By utilizing Theorem 4.2 and noting (4.2), the one point function $\langle A\rangle$ can be represented as

$$
\begin{equation*}
\langle A\rangle=\lambda_{0}^{-1} \frac{\left.{ }_{0}\left\langle\left\langle\lambda_{0}\right| G_{A} \mid \lambda_{0}\right\rangle\right\rangle_{0}}{{ }_{0}\left\langle\left\langle\lambda_{0} \mid \lambda_{0}\right\rangle\right\rangle_{0}} \tag{5.1}
\end{equation*}
$$

in the thermodynamic limit $L \rightarrow \infty$. As an application, we can calculate the probability of finding $S^{z}=m$ value as

$$
\begin{align*}
\operatorname{Prob}\left(S^{z}=m\right) & =\langle\mid S ; m\rangle\langle S ; m \mid\rangle \\
& =\frac{[S+m]![S-m]!}{[2 S+1]!} \sum_{i=0}^{S} q^{(S+2)(2 i-m-S)}\left[\begin{array}{c}
S \\
i-m
\end{array}\right]\left[\begin{array}{c}
S \\
i
\end{array}\right] \tag{5.2}
\end{align*}
$$

The two point function (3.34) can be also represented as

$$
\begin{equation*}
\left\langle A_{1} B_{r}\right\rangle=\sum_{\ell=0}^{S} \lambda_{\ell}^{-2}\left(\frac{\lambda_{\ell}}{\lambda_{0}}\right)^{r} \sum_{j=-\ell}^{\ell} \frac{\left.\left.{ }_{0}\left\langle\left\langle\lambda_{0}\right| G_{A} \mid \lambda_{\ell}\right\rangle\right\rangle_{j j}\left\langle\left\langle\lambda_{\ell}\right| G_{B} \mid \lambda_{0}\right\rangle\right\rangle_{0}}{{ }_{0}\left\langle\left\langle\lambda_{0} \mid \lambda_{0}\right\rangle\right\rangle_{0 j}\left\langle\left\langle\lambda_{\ell} \mid \lambda_{\ell}\right\rangle\right\rangle_{j}}, \tag{5.3}
\end{equation*}
$$

in the thermodynamic limit. Inserting (3.29), (3.30), (3.31), (4.1), (4.12), (4.13) and (4.17) into (5.3), one finds the large-distance $(r \rightarrow \infty)$ behaviors of the spin-spin correlation functions $\left\langle S_{1}^{z} S_{r}^{z}\right\rangle$ and $\left\langle S_{1}^{+} S_{r}^{-}\right\rangle$are

$$
\begin{align*}
\left\langle S_{1}^{z} S_{r}^{z}\right\rangle & \left.=-\frac{[3][S+2]}{q^{2 S-2}[S]([2 S+1]!)^{2}}\left(0\left\langle\left\langle\lambda_{1}\right| G_{S^{z}} \mid \lambda_{0}\right\rangle\right\rangle_{0}\right)^{2}\left(-\frac{[S]}{[S+2]}\right)^{r} \tag{5.4}\\
\left\langle S_{1}^{+} S_{r}^{-}\right\rangle & \left.=-\frac{[2][3][S+2]}{q^{3 S-2}([2 S+1]![S])^{2}}\left(-1\left\langle\left\langle\lambda_{1}\right| G_{S^{-}} \mid \lambda_{0}\right\rangle\right\rangle_{0}\right)^{2}\left(-\frac{[S]}{[S+2]}\right)^{r}, \tag{5.5}
\end{align*}
$$

where

$$
\begin{align*}
& \left.{ }_{0}\left\langle\left\langle\lambda_{1}\right| G_{S^{z}} \mid \lambda_{0}\right\rangle\right\rangle_{0}=\frac{q^{-S^{2}-S-1}}{q^{S}-q^{-S}} \sum_{i, i^{\prime}=0}^{S}\left(i-i^{\prime}\right) q^{(S+2)\left(i+i^{\prime}\right)} \tag{5.6}\\
& \quad \times\left\{q^{S+1}+q^{-S-1}-\left(q+q^{-1}\right) q^{2 i^{\prime}-S}\right\}\left[S+i-i^{\prime}\right]!\left[S+i^{\prime}-i\right]!\left[\begin{array}{c}
S \\
i
\end{array}\right]\left[\begin{array}{c}
S \\
i^{\prime}
\end{array}\right] \\
& \left.\left.{ }_{-1}\left\langle\left\langle\lambda_{1}\right| G_{S^{-}} \mid \lambda_{0}\right\rangle\right\rangle_{0}={ }_{0}\left\langle\left\langle\lambda_{0}\right| G_{S^{+}} \mid \lambda_{1}\right\rangle\right\rangle_{-1} \\
& \quad=-q^{-S^{2}-S / 2+1 / 2} \sum_{i=0}^{S} \sum_{i^{\prime}=0}^{S-1} q^{(S+2) i+(S+3) i^{\prime}} \sqrt{\left[\begin{array}{c}
S \\
i^{\prime}+1
\end{array}\right]\left[\begin{array}{c}
S \\
i^{\prime}
\end{array}\right]} \tag{5.7}\\
& \quad \times \sqrt{\left(S+i-i^{\prime}\right)\left[S+i-i^{\prime}\right]\left(S-i+i^{\prime}+1\right)\left[S-i+i^{\prime}+1\right]} \\
& \quad \times \sqrt{\left[i^{\prime}+1\right]\left[S-i^{\prime}\right][S]^{-1}}\left[S+i^{\prime}-i\right]!\left[S+i-i^{\prime}-1\right]!\left[\begin{array}{c}
S \\
i
\end{array}\right]
\end{align*}
$$

Note that the terms with $(j, \ell)=(0,1)$ and $(-1,1)$ in (5.3) dominate the large-distance behaviors of $\left\langle S_{1}^{z} S_{r}^{z}\right\rangle$ and $\left\langle S_{1}^{+} S_{r}^{-}\right\rangle$, respectively, since

$$
\begin{align*}
& \left.\left.\left.{ }_{0}\left\langle\left\langle\lambda_{0}\right| G_{S^{z}} \mid \lambda_{0}\right\rangle\right\rangle_{0}={ }_{1}\left\langle\left\langle\lambda_{1}\right| G_{S^{z}} \mid \lambda_{0}\right\rangle\right\rangle_{0}={ }_{-1}\left\langle\left\langle\lambda_{1}\right| G_{S^{z}} \mid \lambda_{0}\right\rangle\right\rangle_{0}=0, \tag{5.8}\\
& \left.\left.\left.{ }_{0}\left\langle\left\langle\lambda_{0}\right| G_{S^{-}} \mid \lambda_{0}\right\rangle\right\rangle_{0}={ }_{1}\left\langle\left\langle\lambda_{1}\right| G_{S^{-}} \mid \lambda_{0}\right\rangle\right\rangle_{0}={ }_{0}\left\langle\left\langle\lambda_{1}\right| G_{S^{-}} \mid \lambda_{0}\right\rangle\right\rangle_{0}=0 . \tag{5.9}
\end{align*}
$$

Both $\left\langle S_{1}^{z} S_{r}^{z}\right\rangle$ and $\left\langle S_{1}^{+} S_{r}^{-}\right\rangle$exhibit exponential decay with correlation length

$$
\begin{equation*}
\zeta=\left(\ln \frac{[S+2]}{[S]}\right)^{-1} \tag{5.10}
\end{equation*}
$$

generalizing the results for $q=1[18]$ or $S=1[7]$ case.

6 Conclusion

In this paper, we investigated one and two point functions of the q-VBS ground state of an integer spin model (the q-deformed higher-spin AKLT model). The formulation of correlation functions by use of the matrix product representation of the ground state shows that the structure of a matrix, which we call G matrix, plays an important role. We obtained the eigenvalues and eigenvectors of the G matrix with the help of constructing intertwiners connecting different block diagonal matrices of G. Then we calculated the spin-spin correlation functions by use of the eigenvalues and eigenvectors of the G matrix, and determined the correlation amplitudes and correlation lengths of the longitudinal and transverse spin-spin correlation functions.

It is interesting to investigate other types of correlation functions. For example, the entanglement entropy, which is defined in terms of the reduced density matrix, is a typical quantification of the entanglement of quantum systems. It is intriguing to calculate the entanglement entropy for the q-deformed model and observe the change from the isotropic point $[19,27,28]$ (see also $[29,30]$ for other VBS states).

Acknowledgements

The authors thank Atsuo Kuniba and Kazumitsu Sakai for useful discussion. CA also thanks Kirone Mallick and Andreas Schadschneider for the very kind hospitality during his stay in Europe. This work is supported by Grant-in-Aid for Young Scientists (B) 22740106 and Global COE program "Education and Research Hub for Math-for-Industry."

A Proof of Proposition 2.1

We prove Proposition 2.1 by induction. Suppose that Proposition 2.1 holds for $\left(\Delta X_{\alpha \beta}^{-}\right)^{n} v_{J}$. We calculate the four terms of the action of

$$
\begin{align*}
\Delta X_{\alpha \beta}^{-}= & \frac{1}{q-q^{-1}} \frac{y_{\alpha}}{x_{\alpha}} D_{q}^{x_{\alpha}} \otimes D_{\sqrt{q}}^{x_{\beta}} D_{1 / \sqrt{q}}^{y_{\beta}}-\frac{1}{q-q^{-1}} \frac{y_{\alpha}}{x_{\alpha}} D_{q^{-1}}^{x_{\alpha}} \otimes D_{\sqrt{q}}^{x_{\beta}} D_{1 / \sqrt{q}}^{y_{\beta}} \\
& +\frac{1}{q-q^{-1}} D_{1 / \sqrt{q}}^{x_{\alpha}} D_{\sqrt{q}}^{y_{\alpha}} \otimes \frac{y_{\beta}}{x_{\beta}} D_{q}^{x_{\beta}}-\frac{1}{q-q^{-1}} D_{1 / \sqrt{q}}^{x_{\alpha}} D_{\sqrt{q}}^{y_{\alpha}} \otimes \frac{y_{\beta}}{x_{\beta}} D_{q^{-1}}^{x_{\beta}}, \tag{A.1}
\end{align*}
$$

on $\left(\Delta X_{\alpha \beta}^{-}\right)^{n} v_{J}$, separately.

$$
\begin{align*}
& \left(\frac{y_{\alpha}}{x_{\alpha}} D_{q}^{x_{\alpha}} \otimes D_{\sqrt{q}}^{x_{\beta}} D_{1 / \sqrt{q}}^{y_{\beta}}\right)\left(\Delta X_{\alpha \beta}^{-}\right)^{n} v_{J} / q^{(n+1) S}[n]!\left(x_{\alpha} x_{\beta}\right)^{J-(n+1)} \tag{A.2}\\
= & \sum_{\mu=0}^{n} q^{-2 \mu S+J-n}\left[\begin{array}{c}
J \\
\mu
\end{array}\right]\left[\begin{array}{c}
J \\
n-\mu
\end{array}\right]\left(x_{\alpha} y_{\beta}\right)^{\mu}\left(x_{\beta} y_{\alpha}\right)^{n+1-\mu} \prod_{\nu=1}^{2 S-J}\left(x_{\alpha} y_{\beta}-q^{2(\nu-S-1)} x_{\beta} y_{\alpha}\right),
\end{align*}
$$

$$
\begin{aligned}
& \left(\frac{y_{\alpha}}{x_{\alpha}} D_{q^{-1}}^{x_{\alpha}} \otimes D_{\sqrt{q}}^{x_{\beta}} D_{1 / \sqrt{q}}^{y_{\beta}}\right)\left(\Delta X_{\alpha \beta}^{-}\right)^{n} v_{J} / q^{(n+1) S}[n]!\left(x_{\alpha} x_{\beta}\right)^{J-(n+1)} \\
= & \sum_{\mu=0}^{n} q^{-2 \mu S-2 \mu-4 S+J+n}\left[\begin{array}{c}
J \\
\mu
\end{array}\right]\left[\begin{array}{c}
J \\
n-\mu
\end{array}\right]\left(x_{\alpha} y_{\beta}\right)^{\mu}\left(x_{\beta} y_{\alpha}\right)^{n+1-\mu} \prod_{\nu=1}^{2 S-J}\left(x_{\alpha} y_{\beta}-q^{2(\nu-S)} x_{\beta} y_{\alpha}\right), \\
& \left(D_{1 / \sqrt{q}}^{x_{\alpha}} D_{\sqrt{q}}^{y_{\alpha}} \otimes \frac{y_{\beta}}{x_{\beta}} D_{q}^{x_{\beta}}\right)\left(\Delta X_{\alpha \beta}^{-}\right)^{n} v_{J} / q^{(n+1) S}[n]!\left(x_{\alpha} x_{\beta}\right)^{J-(n+1)} \\
= & \sum_{\mu=0}^{n} q^{-2 \mu S-2 \mu-2 S+J+n}\left[\begin{array}{c}
J \\
\mu
\end{array}\right]\left[\begin{array}{c}
J \\
n-\mu
\end{array}\right]\left(x_{\alpha} y_{\beta}\right)^{\mu+1}\left(x_{\beta} y_{\alpha}\right)^{n-\mu} \prod_{\nu=1}^{2 S-J}\left(x_{\alpha} y_{\beta}-q^{2(\nu-S)} x_{\beta} y_{\alpha}\right), \\
& \left(D_{1 / \sqrt{q}}^{x_{\alpha}} D_{\sqrt{q}}^{y_{\alpha}} \otimes \frac{y_{\beta}}{x_{\beta}} D_{q^{-1}}^{x_{\beta}}\right)\left(\Delta X_{\alpha \beta}^{-}\right)^{n} v_{J} / q^{(n+1) S}[n]!\left(x_{\alpha} x_{\beta}\right)^{J-(n+1)} \\
= & \sum_{\mu=0}^{n} q^{-2 \mu S-2 S-J+n}\left[\begin{array}{c}
J \\
\mu
\end{array}\right]\left[\begin{array}{c}
J \\
n-\mu
\end{array}\right]\left(x_{\alpha} y_{\beta}\right)^{\mu+1}\left(x_{\beta} y_{\alpha}\right)^{n-\mu} \prod_{\nu=1}^{2 S-J}\left(x_{\alpha} y_{\beta}-q^{2(\nu-S-1)} x_{\beta} y_{\alpha}\right) .
\end{aligned}
$$

(A.4) - (A.3) gives

$$
\begin{align*}
& \quad \sum_{\mu=0}^{n} q^{-2 \mu S-2 \mu-2 S+J+n}\left[\begin{array}{l}
J \\
\mu
\end{array}\right]\left[\begin{array}{c}
J \\
n-\mu
\end{array}\right]\left(x_{\alpha} y_{\beta}\right)^{\mu}\left(x_{\beta} y_{\alpha}\right)^{n-\mu} \\
& \quad \times\left(x_{\alpha} y_{\beta}-q^{-2 S} x_{\beta} y_{\alpha}\right) \prod_{\nu=1}^{2 S-J}\left(x_{\alpha} y_{\beta}-q^{2(\nu-S)} x_{\beta} y_{\alpha}\right) \\
& =\sum_{\mu=0}^{n} q^{-2 \mu S-2 \mu-2 S+J+n}\left[\begin{array}{l}
J \\
\mu
\end{array}\right]\left[\begin{array}{c}
J \\
n-\mu
\end{array}\right]\left(x_{\alpha} y_{\beta}\right)^{\mu}\left(x_{\beta} y_{\alpha}\right)^{n-\mu} \\
& \quad \times\left(x_{\alpha} y_{\beta}-q^{2(S-J)} x_{\beta} y_{\alpha}\right) \prod_{\nu=1}^{2 S-J}\left(x_{\alpha} y_{\beta}-q^{2(\nu-S-1)} x_{\beta} y_{\alpha}\right) \\
& =\sum_{\mu=0}^{n} q^{-2 \mu S-2 \mu-2 S+J+n}\left[\begin{array}{c}
J \\
\mu
\end{array}\right]\left[\begin{array}{c}
J \\
n-\mu
\end{array}\right]\left(x_{\alpha} y_{\beta}\right)^{\mu+1}\left(x_{\beta} y_{\alpha}\right)^{n-\mu} \\
& \quad \times \prod_{\nu=1}^{2 S-J}\left(x_{\alpha} y_{\beta}-q^{2(\nu-S-1)} x_{\beta} y_{\alpha}\right) \tag{A.6}\\
& - \\
& \sum_{\mu=0}^{n} q^{-2 \mu S-2 \mu-J+n}\left[\begin{array}{c}
J \\
\mu
\end{array}\right]\left[\begin{array}{c}
J \\
n-\mu
\end{array}\right]\left(x_{\alpha} y_{\beta}\right)^{\mu}\left(x_{\beta} y_{\alpha}\right)^{n+1-\mu} \\
& \quad \times \prod_{\nu=1}^{2 S-J}\left(x_{\alpha} y_{\beta}-q^{2(\nu-S-1)} x_{\beta} y_{\alpha}\right) .
\end{align*}
$$

Dividing the first term of (A.6) - (A.5) by $q-q^{-1}$, we obtain

$$
\begin{align*}
& \quad \sum_{\mu=0}^{n} q^{-2 \mu S-\mu-2 S+n}[J-\mu]\left[\begin{array}{l}
J \\
\mu
\end{array}\right]\left[\begin{array}{c}
J \\
n-\mu
\end{array}\right]\left(x_{\alpha} y_{\beta}\right)^{\mu+1}\left(x_{\beta} y_{\alpha}\right)^{n-\mu} \\
& \quad \times \prod_{\nu=1}^{2 S-J}\left(x_{\alpha} y_{\beta}-q^{2(\nu-S-1)} x_{\beta} y_{\alpha}\right) \\
& = \tag{A.7}\\
& \sum_{\mu=1}^{n+1} q^{-2 \mu S-\mu+n+1}[J-\mu+1]\left[\begin{array}{c}
J \\
\mu-1
\end{array}\right]\left[\begin{array}{c}
J \\
n+1-\mu
\end{array}\right]\left(x_{\alpha} y_{\beta}\right)^{\mu}\left(x_{\beta} y_{\alpha}\right)^{n+1-\mu} \\
& \quad \times \prod_{\nu=1}^{2 S-J}\left(x_{\alpha} y_{\beta}-q^{2(\nu-S-1)} x_{\beta} y_{\alpha}\right),
\end{align*}
$$

where we replaced $\mu \rightarrow \mu-1$. Dividing (A.2) - the second term of (A.6) by $q-q^{-1}$, we obtain

$$
\begin{align*}
& \sum_{\mu=0}^{n} q^{-2 \mu S-\mu}[J+\mu-n]\left[\begin{array}{l}
J \\
\mu
\end{array}\right]\left[\begin{array}{c}
J \\
n-\mu
\end{array}\right]\left(x_{\alpha} y_{\beta}\right)^{\mu}\left(x_{\beta} y_{\alpha}\right)^{n+1-\mu} \\
& \quad \times \prod_{\nu=1}^{2 S-J}\left(x_{\alpha} y_{\beta}-q^{2(\nu-S-1)} x_{\beta} y_{\alpha}\right) . \tag{A.8}
\end{align*}
$$

Since $\left[\begin{array}{c}J \\ -1\end{array}\right]=0$, we can extend \sum in (A.7) and (A.8) to $0 \leq \mu \leq n+1$. Finally we have

$$
\begin{align*}
(\mathrm{A} .7)+(\mathrm{A} .8)= & \sum_{\mu=0}^{n+1} q^{-2 \mu S}[n+1]\left[\begin{array}{l}
J \\
\mu
\end{array}\right]\left[\begin{array}{c}
J \\
n+1-\mu
\end{array}\right]\left(x_{\alpha} y_{\beta}\right)^{\mu}\left(x_{\beta} y_{\alpha}\right)^{n+1-\mu} \tag{A.9}\\
& \times \prod_{\nu=1}^{2 S-J}\left(x_{\alpha} y_{\beta}-q^{2(\nu-S-1)} x_{\beta} y_{\alpha}\right)
\end{align*}
$$

and since

$$
\begin{align*}
\left(\Delta X_{\alpha \beta}^{-}\right)^{n+1} v_{J} / q^{(n+1) S}[n]!\left(x_{\alpha} x_{\beta}\right)^{J-(n+1)} & =\frac{(\mathrm{A} .2)+(\mathrm{A} .4)-(\mathrm{A} .3)-(\mathrm{A} .5)}{q-q^{-1}} \\
& =\frac{(\mathrm{A} .2)+(\mathrm{A} .6)-(\mathrm{A} .5)}{q-q^{-1}} \tag{A.10}\\
& =(\mathrm{A} .7)+(\mathrm{A} .8) \\
& =(\mathrm{A} .9),
\end{align*}
$$

Proposition 2.1 is true for $\left(\Delta X_{\alpha \beta}^{-}\right)^{n+1} v_{J}$.

References

[1] F.D.M. Haldane, Phys. Lett. A 93 (1983) 464.
[2] F.D.M. Haldane, Phys. Rev. Lett. 50 (1983) 1153.
[3] I. Affleck, T. Kennedy, E.H. Lieb and H. Tasaki, Comm. Math. Phys. 115 (1988) 477.
[4] M. de Nijs and K. Rommelse, Phys. Rev. B 40 (1989) 4709.
[5] H. Tasaki, Phys. Rev. Lett. 66 (1991) 798.
[6] D. P. Arovas, A. Auerbach and F.D.M. Haldane, Phys. Rev. Lett. 60 (1988) 531.
[7] A. Klümper, A. Schadschneider and J. Zittartz, J. Phys. A 24 (1991) L955.
[8] A. Klümper, A. Schadschneider and J. Zittartz, Z. Phys. B 87 (1992) 443.
[9] A. Klümper, A. Schadschneider and J. Zittartz, Europhys. Lett. 24 (1993) 293.
[10] K. Totsuka and M. Suzuki, J. Phys. A 27 (1994) 6443.
[11] M.T. Batchelor and C.M. Yung, Int. J. Mod. Phys. B 8 (1994) 3645.
[12] M. Greiter and S. Rachel, Phys. Rev. B 75 (2007) 184441.
[13] D. Schuricht and S. Rachel, Phys. Rev. B 78 (2008) 014430.
[14] H-H. Tu, G-M. Zhang and T. Xiang, Phys. Rev. B 78 (2008) 094404.
[15] H-H. Tu, G-M. Zhang, T. Xiang, Z-X. Liu and T-K. Ng, Phys. Rev. B 80 (2009) 014401.
[16] V. Karimipour and L. Memarzadeh, Phys. Rev. B 77 (2008) 094416.
[17] D. P. Arovas, K. Hasebe, X-L. Qi and S-C. Zhang, Phys. Rev. B 79 (2009) 224404.
[18] W.D. Freitag and E. Müller-Hartmann, Z. Phys. B 83 (1991) 381.
[19] Y. Xu, H. Katsura, T. Hirano and V.E. Korepin, J. Stat. Phys. 133 (2008) 347.
[20] V.E. Korepin and Y. Xu, Int. J. Mod. Phys. B 24 (2010) 1361.
[21] A. N. Kirillov and N. Yu. Reshetikhin, Adv. Ser. in Math. Phys. vol. 7 (1988) 285
[22] K. Motegi, Phys. Lett. A 374 (2010) 3112.
[23] V. Drinfeld, Sov. Math-Dokl. 32 (1985) 254.
[24] M. Jimbo, Lett. Math. Phys. 10 (1985) 63.
[25] K. Totsuka and M. Suzuki, J. Phys. Condense. Matter 7 (1995) 1639.
[26] C. Arita, A. Kuniba, K. Sakai and T. Sawabe, J. Phys. A 42 (2009) 345002.
[27] H. Fang, V.E.Korepin and V. Roychowdhury, Phys. Rev. Lett. 93 (2004) 227203.
[28] H. Katsura, T. Hirano and Y. Hatsugai, Phys. Rev. B 76 (2007) 012401.
[29] H. Katsura, T. Hirano and V.E. Korepin, J. Phys. A 41 (2008) 135304.
[30] H. Katsura, N. Kawashima, A. Kirillov, V.E. Korepin and S. Tanaka, J. Phys. A 43 (2010) 255303.

List of MI Preprint Series, Kyushu University
 The Global COE Program Math-for-Industry Education \& Research Hub

MI
MI2008-1 Takahiro ITO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristiccurve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a padic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU \& Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI \& Kazuhiro YOKOYAMA Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO \& Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE \& Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA \& Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO On the L^{2} a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions
MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI \& Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI \& Sadanori KONISHI
Variable selection for functional regression model via the L_{1} regularization

MI2009-4 Shuichi KAWANO \& Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI \& Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings

MI2009-6 Kenji KAJIWARA \& Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous $1+1$ dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI \& Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI \& Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO

Generalisation of Mack's formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE \& Teruhisa TSUDA Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric \mathbf{T}-functions of the q-Painlevé system of type $E_{8}^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI \& Kazuhiro YOKOYAMA A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA \& Yoshiyuki KAGEI
Large time behavior of the semigroup on L^{p} spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI \& Tsuyoshi SAWABE Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA \& Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO \& Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO \& Sadanori KONISHI

Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA \& Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER \& Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA \& Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H_{0}^{2}-projection

```
MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine's property (Pm)
```

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI \& Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance

MI2009-30 Yoshiyuki KAGEI \& Yasunori MAEKAWA On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA \& Yoshinori YAMASAKI Hecke's zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU \& Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO \& Teruhisa TSUDA Projective reduction of the discrete Painlevé system of type $\left(A_{2}+A_{1}\right)^{(1)}$

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA \& Daisuke TAGAMI Finite element computation for scattering problems of micro-hologram using DtN map

MI2009-36 Reiichiro KAWAI \& Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic OrnsteinUhlenbeck processes

MI2010-2 Reiichiro KAWAI \& Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE \& Sadanori KONISHI Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA \& Setsuo TANIGUCHI The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI \& Sadanori KONISHI Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI \& Sadanori KONISHI Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups

MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA \& Yoshihiro MIWA
An algebraic approach to underdetermined experiments

Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA \& Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI \& Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI \& Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16 Yu KAWAKAMI \& Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space

MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI \& Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA \& Youichi MIE Lagrangian approach to weakly nonlinear stability of an elliptical flow

MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra

MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI \& Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA \& Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA \& Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA \& Jun KOGURE On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA \& Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model

[^0]: *Faculty of Mathematics, Kyushu University
 ${ }^{\dagger}$ Okayama Institute for Quantum Physics

[^1]: ${ }^{1}$ Note that the factor $q^{m_{1} m_{2} / 2}$ is missing in [21].

