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Spin-spin correlation functions of the q-VBS state

of an integer spin model

Chikashi Arita∗ and Kohei Motegi†

Abstract

We consider the valence-bond-solid ground state of the q-deformed higher-spin
AKLT model (q-VBS state). We investigate the eigenvalues and eigenvectors of a
matrix (G matrix), which is constructed from the matrix product representation of
the q-VBS state. We compute the longitudinal and transverse spin-spin correlation
functions, and determine the correlation amplitudes and correlation lengths for real q.

1 Introduction

In one-dimensional quantum systems, a completely different behavior for the integer spin
chains from the half-integer spin chains was predicted by Haldane [1, 2]. The antiferro-
magnetic isotopric spin-1 model introduced by Affleck, Kennedy, Lieb and Tasaki (AKLT
model) [3], whose ground state can be exactly calculated, has been a useful toy model to
validate Haldane’s prediction of the massive behavior for integer spin chains. Moreover, it
lead to a deeper understanding for integer spin chains such as the discovery of the special
type of long-range order [4, 5].

The AKLT model has been generalized to higher-spin models, anisotropic models,
etc [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The Hamiltonians are essentially linear
combinations of projection operators with nonnegative coefficients, and their ground states
are called valence-bond-solid (VBS) state.

There are largely three types of representations for the ground state which are equiv-
alent to each other: the Schwinger boson representation, the spin coherent representation
and the matrix product representation. For isotropic higher-spin models, the spin-spin
correlation functions [18] and the entanglement entropy [19, 20] have been calculated by
utilizing the spin coherent representation and the properties of Legendre polynomials. For
the q-deformed spin-1 model, spin-spin correlation functions were evaluated [7, 8, 9] from
the matrix product representation.

In this paper, we consider the ground state of a q-deformed higher-integer-spin model
which was constructed recently in [22] (q-VBS state). From its matrix product repre-
sentation, we analyze one and two point functions of the q-VBS ground state for real
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†Okayama Institute for Quantum Physics
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q. We notice that a matrix, which is constructed from the matrix product representa-
tion, plays a fundamental role in computing correlation functions, especially spin-spin two
point correlation functions. Investigating the structure of the matrix in detail, we obtain
its eigenvalues and eigenvectors. Utilizing the results, we determine the correlation am-
plitudes and correlation lengths of the longitudinal and transverse spin-spin correlation
functions.

This paper is organized as follows. In the next section, we briefly review the quantum
group Uq(su(2)), and investigate the finite dimensional highest weight representation in
terms of Schwinger bosons. In Section 3, we precisely define the higher-spin generalization
of the q-deformed AKLT model on an L-site chain, and rigorously derive its q-VBS ground
state in a matrix product form. The squared norm of the state will be written in terms of
the trace of the L-th power of a matrix G, which plays an important role in this paper. In
section 4, we obtain the eigenvalues and eigenvectors of G. Utilizing them, we compute one
and two point functions in Section 5. Especially, we determine the correlation amplitudes
and correlation lengths of the longitudinal and transverse spin-spin correlation functions.
Section 6 is devoted to the conclusion of this paper.

2 The quantum group Uq(su(2))

We introduce several notations. Let us define the q-integer, q-factorial and q-binomial
coefficient for N ∈ Z≥0 as

[N ] =
qN − q−N

q − q−1
, [N ]! =


N∏

I=1

[I] N ∈ N,

1 N = 0,[
N
K

]
=


[N ]!

[K]![N − K]!
K = 0, . . . , N,

0 otherwise,

(2.1)

respectively.
The quantum group Uq(su(2)) [23, 24] is defined by generators X+, X− and H with

relations [
X+, X−]

=
qH − q−H

q − q−1
,

[
H,X±]

= ±2X±. (2.2)

The comultiplication is given by

∆
(
X±)

= X± ⊗ qH/2 + q−H/2 ⊗ X±, ∆(H) = H ⊗ Id + Id ⊗ H. (2.3)

Uq(su(2)) has the Schwinger boson representation, where the generators are realized
as

X+ = a†b, X− = b†a, H = Na − Nb, (2.4)

with q-bosons a and b satisfying

aa† − qa†a = q−Na , bb† − qb†b = q−Nb , (2.5)

[Na, a] = −a, [Na, a
†] = a†, [Nb, b] = −b, [Nb, b

†] = b†. (2.6)
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We denote the space where (2j+1)-dimensional highest weight representation of Uq(su(2))
is realized by Vj . The basis of Vj is given by

|j;m〉 =
(a†)j+m(b†)j−m√
[j + m]![j − m]!

|vac〉, (m = −j, . . . , j). (2.7)

The Weyl representation which we describe below, is an equivalent representation to
the Schwinger boson representation, and is efficient for practical calculation. Let us denote
the q-bosons a and b acting on the α-th site as aα and bα. The Weyl representation is to
represent a†α, b†α, aα and bα on the space of polynomials C[xα, yα] as

a†α = xα, b†α = yα, aα =
1
xα

Dxα
q − Dxα

q−1

q − q−1
, bα =

1
yα

Dyα
q − Dyα

q−1

q − q−1
, (2.8)

where

Dxα
p f(xα, yα) = f(pxα, yα), Dyα

p f(xα, yα) = f(xα, pyα). (2.9)

The generators of Uq(su(2)) are now represented as

X+
α =

xα

yα

Dyα
q − Dyα

q−1

q − q−1
, X−

α =
yα

xα

Dxα
q − Dxα

q−1

q − q−1
, qHα = Dxα

q Dyα

q−1 . (2.10)

The tensor product of two irreducible representations has the Clebsch-Gordan decom-
position

VS ⊗ VS =
2S⊕

J=0

VJ , (2.11)

|S; m1〉 ⊗ |S;m2〉 =
2S∑

J=0

[
S S J
m1 m2 m1 + m2

]
|J ; m1 + m2〉, (2.12)

where[
S1 S2 J
m1 m2 m

]
= δm1+m2,m(−1)S1−m1qm1(m1+m2+1)+{S2(S2+1)−S1(S1+1)−J(J+1)}/2

×

√
[J + m]![J − m]![S1 − m1]![S2 − m2]![S1 + S2 − J ]![2J + 1]

[S1 + m1]![S2 + m2]![S1 − S2 + J ]![S2 − S1 + J ]![S1 + S2 + J + 1]!
(2.13)

×
Min(J−m,S1−m1,S2+J−m1)∑
z=Max(0,−S1−m1,J−S2−m1)

(−qm+J+1)z[S1 + m1 + z]![S2 + J − m1 − z]!
[z]![J − m − z]![S1 − m1 − z]![S2 − J + m1 + z]!

,

is the q-analog of the Clebsch-Gordan coefficient [21].1 This coefficient is compatible with
the inverse of the decomposition (2.12)

|J ; m〉 =
∑

m1+m2=m

[
S S J
m1 m2 m1 + m2

]
|S; m1〉 ⊗ |S; m2〉. (2.14)

1Note that the factor qm1m2/2 is missing in [21].
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For later purpose, we will also investigate the Clebsch-Gordan decomposition of Uq(su(2))
in terms of the Schwinger boson or the Weyl representation. Utilizing

∆X±
αβ =X±

α ⊗ qHβ/2 + q−Hα/2 ⊗ X±
β , (2.15)

one can show that the highest weight vector vJ ∈ VJ (∆X+vJ = 0) acting on the α-th
and β-th site is given by

vJ = (xαxβ)J
2S−J∏
ν=1

(xαyβ − q2(ν−S−1)xβyα). (2.16)

Moreover, we can show the following:

Proposition 2.1.(
∆X−

αβ

)n
vJ =(xαxβ)J−nqnS [n]!

n∑
µ=0

q−2µS

[
J
µ

] [
J

n − µ

]
(xαyβ)µ (xβyα)n−µ

×
2S−J∏
ν=1

(
xαyβ − q2(ν−S−1)xβyα

)
.

(2.17)

A proof of this proposition is given in Appendix A.

Remark 2.2. Let n ≥ 2J + 1. Noting[
J
µ

] [
J

n − µ

]
= 0, (2.18)

for 0 ≤ µ ≤ n, one can see that (
∆X−

αβ

)n
vJ = 0. (2.19)

3 q-VBS state

The model we treat in this paper is an anisotropic integer spin-S Hamiltonian on an L-site
chain with the periodic boundary condition

H =
∑

k∈ZL

2S∑
J=S+1

CJ(k, k + 1) (πJ)k,k+1 , (3.1)

where CJ(k, k + 1) > 0, and (πJ)k,k+1, which acts on the k-th and (k + 1)-th sites, is the
Uq(su(2)) projection operator from VS ⊗ VS to VJ as

πJ =
S∑

m1,m2,m′
1,m′

2=0

[
S S J
m1 m2 m1 + m2

] [
S S J
m′

1 m′
2 m′

1 + m′
2

]
× δm1+m2,m′

1+m′
2
|S; m′

1〉〈S;m1| ⊗ |S;m′
2〉〈S; m2|.

(3.2)
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The nonnegativity

〈ψ| (πJ)k,k+1 |ψ〉 ≥ 0 (for any vector |ψ〉) (3.3)

implies that all the eigenvalues of H are nonnegative. (Of course, 〈ψ| is the Hermitian
conjugate of |ψ〉.) Moreover, we will see that the energy of the ground state |Ψ〉 is zero:

H|Ψ〉 = 0. (3.4)

Since we set CJ(k, k + 1) > 0, we find that (3.4) is equivalent to

(πJ)k,k+1 |Ψ〉 = 0 (∀k ∈ ZL, ∀J ∈ {S + 1, . . . , 2S}) , (3.5)

noting the nonnegativity (3.3). From Proposition 2.1, one observes that any vector in⊕
0≤J≤S VJ ⊂ VS ⊗ VS of the k-th and (k + 1)-th sites has the form

∑
0≤A,B≤S

CABxA
k yS−A

k xB
k+1y

S−B
k+1

S∏
m=1

(qmxkyk+1 − q−mykxk+1), (3.6)

where CAB does not depend on xk, yk, xk+1 or yk+1. Thus, the condition (3.5) imposes
the restriction that |Ψ〉 has the form

|Ψ〉 = P ({xk}k∈ZL
, {yk}k∈ZL

)
∏

k∈ZL

S∏
m=1

(qmxkyk+1 − q−mykxk+1) (3.7)

with some polynomials P such that this form is consistent with (3.6) for ∀k ∈ ZL. The
unique choice of P with such consistency is a constant (which can be set to be 1), and we
achieve the unique ground state

|Ψ〉 =
∏

k∈ZL

S∏
m=1

(qmxkyk+1 − q−mykxk+1). (3.8)

In the Schwinger boson representation, we have

|Ψ〉 =
∏

k∈ZL

S∏
m=1

(qma†kb
†
k+1 − q−mb†ka

†
k+1)|vac〉, (3.9)

which is a generalization of the q = 1 case [6]. Note that each site have the correct spin
value: Nk|Ψ〉 = S|Ψ〉 (k ∈ ZL) where Nk := (Nak

+ Nbk
)/2. Our ground state is a q-

deformation of the valence-bond-solid (VBS) state, which we call q-VBS state, see figure
1.

The Schwinger boson representation of the ground state (3.9) can be transformed
into the following equivalent form called the matrix product representation [22], which
generalizes the q = 1 [25] or S = 1 [7] case. Noting (2.7), we have

|Ψ〉 = Tr[g1 ⋆ g2 ⋆ · · · ⋆ gL−1 ⋆ gL], (3.10)
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Figure 1: Conceptual figure of the q-VBS state. Each line is a q-deformed valence bond,
and the circle ⃝ represents the q-symmetrization of spin-1/2 particles • at each site.

where gk is an (S +1)× (S +1) vector-valued matrix acting on the k-th site whose element
is given by

gk(i, i′) = (−1)S−iq(i+i′−S)(S+1)/2

√[
S
i

] [
S
i′

]
[S − i + i′]![S + i − i′]! |S; i′ − i〉k

=: hii′ |S; i′ − i〉k, (0 ≤ i, i′ ≤ S).
(3.11)

The symbol ⋆ for two (S + 1) × (S + 1) vector-valued matrices

x =

 |x00〉 · · · |x0S〉
...

. . .
...

|xS0〉 · · · |xSS〉

 , y =

 |y00〉 · · · |y0S〉
...

. . .
...

|yS0〉 · · · |ySS〉

 , (3.12)

is defined by

x ⋆ y =


∑S

u=0 |x0u〉 ⊗ |yu0〉 · · ·
∑S

u=0 |x0u〉 ⊗ |yuS〉
...

. . .
...∑S

u=0 |xSu〉 ⊗ |yu0〉 · · ·
∑S

u=0 |xSu〉 ⊗ |yuS〉

 , (3.13)

which is apparently an additive operation.
For example, for S = 2,

gk =

 h00|2; 0〉k h01|2; 1〉k h02|2; 2〉k
h10|2;−1〉k h11|2; 0〉k h12|2; 1〉k
h20|2;−2〉k h21|2;−1〉k h22|2; 0〉k

 , (3.14)

and the product in the form (3.10) is calculated as

g1 ⋆ · · · ⋆ gL

=

 (g1 ⋆ · · · ⋆ gL) (0, 0) (g1 ⋆ · · · ⋆ gL) (0, 1) (g1 ⋆ · · · ⋆ gL) (0, 2)
(g1 ⋆ · · · ⋆ gL) (1, 0) (g1 ⋆ · · · ⋆ gL) (1, 1) (g1 ⋆ · · · ⋆ gL) (1, 2)
(g1 ⋆ · · · ⋆ gL) (2, 0) (g1 ⋆ · · · ⋆ gL) (2, 1) (g1 ⋆ · · · ⋆ gL) (2, 2)

 ,
(3.15)

with

(g1 ⋆ · · · ⋆ gL) (i, i′)

=
∑

ik=0,1,2

hii2hi2i3 · · ·hiL−1iLhiLi′

× |2; i2 − i〉1 ⊗ |2; i3 − i2〉2 ⊗ · · · ⊗ |2; iL − iL−1〉L−1 ⊗ |2; i′ − iL〉L.

(3.16)
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Then the matrix product ground state (3.10) is

(g1 ⋆ · · · ⋆ gL) (0, 0) + (g1 ⋆ · · · ⋆ gL) (1, 1) + (g1 ⋆ · · · ⋆ gL) (2, 2)

=
∑

ik=0,1,2

hi1i2hi2i3 · · ·hiL−1iLhiLi1

× |2; i2 − i1〉1 ⊗ |2; i3 − i2〉2 ⊗ · · · ⊗ |2; iL − iL−1〉L−1 ⊗ |2; i1 − iL〉L.

(3.17)

We define g†k by replacing each ket vector in the matrix gk by its corresponding vectors:

g†k(i, i
′) = hii′ k〈S; i′ − i|. (3.18)

For example, for S = 2,

g†k =

 h00 k〈2; 0| h01 k〈2; 1| h02 k〈2; 2|
h10 k〈2;−1| h11 k〈2; 0| h12 k〈2; 1|
h20 k〈2;−2| h21 k〈2;−1| h22 k〈2; 0|

 . (3.19)

Now we introduce “G matrix”, which will play an important role in our study. Let us set
an (S + 1)2 dimensional vector space W and its dual orthogonal space W ∗ as

W =
⊕

0≤a,b≤S

C|a, b〉〉, W ∗ =
⊕

0≤a,b≤S

C〈〈a, b|. (3.20)

Here, {|a, b〉〉 | a, b = 0, . . . , S} ({〈〈a, b| | a, b = 0, . . . , S}) is an orthonormal (dual or-
thonormal) basis. We define an (S + 1)2 × (S + 1)2 matrix G acting on the space W
as

G(a,b;c,d) = 〈〈a, b|G|c, d〉〉 = g†(a, c)g(b, d), (3.21)

or equivalently as

G = g† ⊗ g. (3.22)

We also introduce GA for an operator A acting on the one-site vector space VS as

(GA)(a,b;c,d) = 〈〈a, b|GA|c, d〉〉 = g†(a, c)Ag(b, d). (3.23)

Each element of the matrix G can be expressed explicitly as

G(a,b;c,d) = δc−a,d−bTabcd, (3.24)

where

Tabcd = hachbd = (−1)a+bq(a+b+c+d−2S)(S+1)/2

×

√[
S
a

] [
S
b

] [
S
c

] [
S
d

]
[S − a + c]![S + a − c]![S − b + d]![S + b − d]! .

(3.25)
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Each element of GA for A = Sz, S+ and S−, which act on |S; m〉 as

Sz|S; m〉 =m|S; m〉, (3.26)

S+|S; m〉 =
√

(S − m)(S + m + 1)|S; m + 1〉, (3.27)

S−|S; m〉 =
√

(S + m)(S − m + 1)|S; m − 1〉, (3.28)

can be also expressed as

(GSz)(a,b;c,d) =δc−a,d−b(d − b)Tabcd, (3.29)

(GS+)(a,b;c,d) =δc−a,d−b+1

√
(S − d + b)(S + d − b + 1)Tabcd, (3.30)

(GS−)(a,b;c,d) =δc−a,d−b−1

√
(S + d − b)(S − d + b + 1)Tabcd. (3.31)

The squared norm of the ground state is calculated as

〈Ψ|Ψ〉 =Tr
[
g†1 ⋆ · · · ⋆ g†L

]
Tr [g1 ⋆ · · · ⋆ gL]

=Tr
[(

g†1 ⋆ · · · ⋆ g†L

)
⊗ (g1 ⋆ · · · ⋆ gL)

]
=Tr

[(
g†1 ⊗ g1

)
⋆ · · · ⋆

(
g†L ⊗ gL

)]
=TrGL.

(3.32)

Note that the elements of g†k ⊗ gk = G are no longer vectors, and thus we can replace the
symbol ⋆ by the usual product in the third line of (3.32). The one point function 〈A〉 of
an operator A can be written in terms of G and GA as

〈A〉 =
〈Ψ|A1|Ψ〉
〈Ψ|Ψ〉

=
Tr

[
g†1 ⋆ · · · ⋆ g†L

]
Tr [A1g1 ⋆ g2 ⋆ · · · ⋆ gL]

〈Ψ|Ψ〉
=

TrGAGL−1

TrGL
, (3.33)

where Akgk is defined by (Akgk) (i, i′) = Ak (gk(i, i′)). In the same way, the two point
function of A and B can also be written in terms of G,GA and GB as

〈A1Br〉 =
(
TrGL

)−1
TrGAGr−2GBGL−r. (3.34)

Investigating the eigenvalues and eigenvectors of the matrix G will be crucial for the
analysis of correlation functions. In the next section, we study the G matrix in detail.

4 Spectral structure of the G matrix

In [22], we conjectured that the spectrum of G is given by

λℓ = (−1)ℓ ([S]!)2
[

2S + 1
S − ℓ

]
, (ℓ = 0, 1, . . . , S), (4.1)

where the degree of the degeneracy of each λℓ is 2ℓ + 1. One can easily find that

|λ0| > |λ1| > · · · > |λS |. (4.2)
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In this section, we prove the conjecture by giving an exact form for the eigenvector corre-
sponding to each eigenvalue.
First one observes that the G matrix has the following block diagonal structure:

G =
⊕

−S≤j≤S

G(j), G(j) ∈ EndWj , (4.3)

W =
⊕

−S≤j≤S

Wj , Wj =


⊕

0≤i≤S−j

C|i, i + j〉〉 j ≥ 0,⊕
0≤i≤S+j

C|i − j, i〉〉 j < 0.
(4.4)

The size of each block G(j) is (S − |j| + 1) × (S − |j| + 1). Each element of G(j) is

〈〈a, a + j|G(j)|c, c + j〉〉 =(−1)jq(a+c+j−S)(S+1) [S − a + c]! [S + a − c]!

×

√[
S
a

] [
S

a + j

] [
S
c

] [
S

c + j

]
.

(4.5)

We construct intertwiners among the 2S +1 block diagonal matrices G(j) (j = −S, . . . , S).
This helps us to construct eigenvectors of each block diagonal matrix from another block
with a smaller size. (The same idea was used in [26] to study the spectrum of a multi-
species exclusion process). Let us define a family of linear operators {Ij}−S≤j≤−1,1≤j≤S

as

Ij ∈ Hom(Wj ,Wj−1), (4.6)

〈〈a, a + j − 1|Ij |c, c + j〉〉 =


q−a

√
[a + j] [S − a − j + 1]

[j] [S − j + 1]
c = a,

−q1−a−j

√
[a] [S − a + 1]
[j] [S − j + 1]

c = a − 1,

0 otherwise

(4.7)

for 1 ≤ j ≤ S, and

Ij ∈ Hom(Wj , Wj+1), (4.8)

〈〈a − j − 1, a|Ij |c − j, c〉〉 =


q−a

√
[a − j] [S − a + j + 1]

[−j] [S + j + 1]
c = a,

−q1−a+j

√
[a] [S − a + 1]
[−j] [S + j + 1]

c = a − 1,

0 otherwise.

(4.9)

for −S ≤ j ≤ −1. By direct calculation, one finds
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Proposition 4.1. The matrix Ij enjoys the intertwining relation

IjG
(j) =G(j−1)Ij for 1 ≤ j ≤ S,

IjG
(j) =G(j+1)Ij for − S ≤ j ≤ −1.

(4.10)

With the use of Proposition 4.1, one can show the following:

Theorem 4.2. Each block matrix G(j) has a simple (nondegenerated) spectrum

Spec G(j) = {λℓ}|j|≤ℓ≤S , (4.11)

and the corresponding eigenvectors are given by

|λ|j|〉〉j =



∑
0≤i≤S−ℓ

q(ℓ+1)i

√
[S − ℓ]! [i + ℓ]! [S − i]!
[S]![ℓ]![S − i − ℓ]![i]!

|i, i + ℓ〉〉 j ≥ 0,

∑
0≤i≤S−ℓ

q(ℓ+1)i

√
[S − ℓ]! [i + ℓ]! [S − i]!
[S]![ℓ]![S − i − ℓ]![i]!

|i + ℓ, i〉〉 j < 0,

(4.12)

for ℓ = |j|, and

|λℓ〉〉j =

{
Ij+1|λℓ〉〉j+1 = Ij+1Ij+2 · · · Iℓ|λℓ〉〉ℓ j ≥ 0,

Ij−1|λℓ〉〉j−1 = Ij−1Ij−2 · · · I−ℓ|λℓ〉〉−ℓ j < 0.
(4.13)

for |j| + 1 ≤ ℓ ≤ S.

Figure 2 is helpful to understand how the eigenvectors are constructed. We prove this
theorem below for only j ≥ 0 since one can show it for j < 0 in the same way.

Proof of Theorem 4.2. First, by direct calculation given below, we find that G(j) has an
eigenvalue λj and its eigenvector is |λj〉〉j defined by (4.12). Each element of G(j)|λj〉〉j is
calculated as

〈〈a, a + j|G(j)|λj〉〉j
=

∑
0≤c≤S−j

(−1)jq(a+c+j−S)(S+1) [S − a + c]! [S + a − c]!

×

√[
S
a

] [
S

a + j

] [
S
c

] [
S

c + j

]
q(j+1)c

√
[S − j]! [c + j]! [S − c]!
[S]! [j]! [S − c − j]! [c]!

= (−1)jq(a+j−S−1)(S+1)−(j+1)

√[
S
a

] [
S

a + j

]
[S − j]!
[S]! [j]!

× [S]!
∑

0≤c≤S−j

q(c+1)(S+j+2) [S − a + c]! [S + a − c]!
[S − c − j]![c]!

.

(4.14)

Using the formula∑
0≤k≤n

[
α + n − k

n − k

] [
β + k

k

]
qk(α+β+2) =

[
α + β + n + 1

n

]
qn(1+β), (4.15)
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WS |λS〉〉S
↓IS

7→

WS−1 |λS〉〉S−1 |λS−1〉〉S−1

↓IS−1

7→ 7→

WS−2 |λS〉〉S−2 |λS−1〉〉S−2 |λS−2〉〉S−2

...
...

...
...

. . .

W2 |λS〉〉2 |λS−1〉〉2 |λS−2〉〉2 . . . |λ2〉〉2
↓I2

7→ 7→ 7→ 7→
W1 |λS〉〉1 |λS−1〉〉1 |λS−2〉〉1 . . . |λ2〉〉1 |λ1〉〉1
↓I1

7→ 7→ 7→ 7→ 7→

W0 |λS〉〉0 |λS−1〉〉0 |λS−2〉〉0 . . . |λ2〉〉0 |λ1〉〉0 |λ0〉〉0
↑I−1 7→ 7→ 7→ 7→ 7→

W−1 |λS〉〉−1 |λS−1〉〉−1 |λS−2〉〉−1 . . . |λ2〉〉−1 |λ1〉〉−1

↑I−2 7→ 7→ 7→ 7→

W−2 |λS〉〉−2 |λS−1〉〉−2 |λS−2〉〉−2 . . . |λ2〉〉−2

...
...

...
...

...

W−S+2 |λS〉〉−S+2 |λS−1〉〉−S+2 |λS−2〉〉−S+2

↑I−S+1 7→ 7→

W−S+1 |λS〉〉−S+1 |λS−1〉〉−S+1

↑I−S 7→

W−S |λS〉〉−S

Figure 2: Structure of the eigenvectors of G (3.21).

we obtain

〈〈a, a + j|G(j)|λj〉〉j = (−1)jq(a+j−S−1)(S+1)−(j+1)

√[
S
a

] [
S

a + j

]
[S − j]!
[S]! [j]!

× [S]! q−Sj+a(j−S)+S2+2S+2

[
2S + 1
S − j

]
[S − a]! [a + j]!

= (−1)j ([S]!)2
[

2S + 1
S − j

]
q(j+1)a

√
[S − j]! [a + j]! [S − a]!
[S]! [j]! [S − a − j]! [a]!

= λj〈〈a, a + j|λj〉〉j .

(4.16)

Note that the first element of |λj〉〉j is 1 by the definition (4.12): 〈〈0, j|λj〉〉j = 1.
Next, we show by induction that G(j) has eigenvalues λℓ (j ≤ ℓ ≤ S) and their corre-

sponding eigenvectors are given by |λℓ〉〉j defined by (4.13). Suppose the theorem is true for
|λℓ〉〉j+1, ℓ = j+1, . . . , S (j ≥ 0), that is to say that the block diagonal matrix G(j+1) has the
eigenvalues λℓ and their corresponding eigenvectors |λℓ〉〉j+1

(
G(j+1)|λℓ〉〉j+1 = λℓ|λℓ〉〉j+1

with |λℓ〉〉j+1 ̸= 0
)

for ℓ = j + 1, . . . , S. Additionally, suppose that the first element

11



of each |λℓ〉〉j+1 is 1. Using the intertwining relation (4.10), one finds G(j)Ij+1|λℓ〉〉j+1 =
λℓIj+1|λℓ〉〉j+1. We also find that the first element of Ij+1|λℓ〉〉j+1 is 1, and thus Ij+1|λℓ〉〉j+1

is nonzero. Furthermore, thanks to ℓ1 ̸= ℓ2 ⇒ λℓ1 ̸= λℓ2 , the vectors Ij+1|λℓ〉〉j+1

(j + 1 ≤ ℓ ≤ S) are distinct (in other words, Ij+1 is injective). We have already con-
structed the remaining eigenvector of G(j) explicitly, which is |λj〉〉j with its eigenvalue λj

distinct from λℓ (j + 1 ≤ ℓ ≤ S).

The conjecture for the eigenvalues of the G matrix that we exhibited in the beginning
of this section follows as a simple corollary of Theorem 4.2. Moreover, we constructed
their eigenvectors which are important for computing spin-spin correlation functions.

Proposition 4.3. The squared norm of |λℓ〉〉j is

j〈〈λℓ|λℓ〉〉j = qS(|j|+1)−ℓ(ℓ+1) [S + ℓ + 1]![ℓ − |j|]![S − ℓ]![|j|]!
[S]![ℓ + |j|]![S − |j|]![2ℓ + 1]

, (4.17)

where we denote the transpose of |λℓ〉〉j by j〈〈λℓ|.

We prove this proposition only for j ≥ 0.

Proof of Proposition 4.3. One can easily show that the product of intertwiners (which is
also an intertwiner) has the following form by induction:

〈〈a, a + j|Ij+1Ij+2 · · · Iℓ+1Iℓ|c, c + ℓ〉〉

=(−1)a−cqcj−aℓ

[
ℓ − j
a − c

]√
[j]![S − ℓ]![a]![S − c]![c + ℓ]![S − (a + j)]!
[ℓ]![S − j]![c]![S − a]![a + j]![S − (c + ℓ)]!

.
(4.18)

Then, j〈〈λℓ|λℓ〉〉j = ℓ〈〈λℓ| (Ij+1 · · · Iℓ)
T Ij+1 · · · Iℓ|λℓ〉〉ℓ is calculated as

j〈〈λℓ|λℓ〉〉j =
([S − ℓ]!)2 [j]!

[S]! ([ℓ]!)2 [S − j]!

∑
0≤a≤S−j
0≤i,i′≤S

(−1)i+i′q(i+i′)(ℓ+j+1)−2aℓ

×
[

ℓ − j
a − i

] [
ℓ − j
a − i′

]
[S − i]![i + ℓ]![S − i′]![i′ + ℓ]![a]![S − (a + j)]!

[i]![S − (i + ℓ)]![i′]![S − (i′ + ℓ)]![S − a]![a + j]!
.

(4.19)

The triple sum has the closed form

q(j+1)S−ℓ(ℓ+1) ([ℓ]!)
2 [ℓ − j]![S + ℓ + 1]!

[S − ℓ]![j + ℓ]![2ℓ + 1]
, (4.20)

which finishes the proof.

5 Spin-spin correlation functions

In the last section, we investigated the eigenvalues and eigenvectors of the G matrix. By
utilizing Theorem 4.2 and noting (4.2), the one point function 〈A〉 can be represented as

〈A〉 = λ−1
0

0〈〈λ0|GA|λ0〉〉0
0〈〈λ0|λ0〉〉0

(5.1)

12



in the thermodynamic limit L → ∞. As an application, we can calculate the probability
of finding Sz = m value as

Prob(Sz = m) =
〈
|S; m〉〈S; m|

〉
=

[S + m]![S − m]!
[2S + 1]!

S∑
i=0

q(S+2)(2i−m−S)

[
S

i − m

] [
S
i

]
.

(5.2)

The two point function (3.34) can be also represented as

〈A1Br〉 =
S∑

ℓ=0

λ−2
ℓ

(
λℓ

λ0

)r ℓ∑
j=−ℓ

0〈〈λ0|GA|λℓ〉〉jj〈〈λℓ|GB|λ0〉〉0
0〈〈λ0|λ0〉〉0j〈〈λℓ|λℓ〉〉j

, (5.3)

in the thermodynamic limit. Inserting (3.29), (3.30), (3.31), (4.1), (4.12), (4.13) and (4.17)
into (5.3), one finds the large-distance (r → ∞) behaviors of the spin-spin correlation
functions 〈Sz

1Sz
r 〉 and 〈S+

1 S−
r 〉 are

〈Sz
1Sz

r 〉 = − [3][S + 2]
q2S−2[S]([2S + 1]!)2

(0〈〈λ1|GSz |λ0〉〉0)
2

(
− [S]

[S + 2]

)r

, (5.4)

〈S+
1 S−

r 〉 = − [2][3][S + 2]
q3S−2([2S + 1]![S])2

(−1〈〈λ1|GS− |λ0〉〉0)
2

(
− [S]

[S + 2]

)r

, (5.5)

where

0〈〈λ1|GSz |λ0〉〉0 =
q−S2−S−1

qS − q−S

S∑
i,i′=0

(i − i′)q(S+2)(i+i′)

× {qS+1 + q−S−1 − (q + q−1)q2i′−S}[S + i − i′]![S + i′ − i]!
[

S
i

] [
S
i′

]
,

(5.6)

−1〈〈λ1|GS− |λ0〉〉0 = 0〈〈λ0|GS+ |λ1〉〉−1

= −q−S2−S/2+1/2
S∑

i=0

S−1∑
i′=0

q(S+2)i+(S+3)i′

√[
S

i′ + 1

] [
S
i′

]
×

√
(S + i − i′)[S + i − i′](S − i + i′ + 1)[S − i + i′ + 1]

×
√

[i′ + 1][S − i′][S]−1[S + i′ − i]![S + i − i′ − 1]!
[

S
i

]
.

(5.7)

Note that the terms with (j, ℓ) = (0, 1) and (−1, 1) in (5.3) dominate the large-distance
behaviors of 〈Sz

1Sz
r 〉 and 〈S+

1 S−
r 〉, respectively, since

0〈〈λ0|GSz |λ0〉〉0 = 1〈〈λ1|GSz |λ0〉〉0 = −1〈〈λ1|GSz |λ0〉〉0 = 0, (5.8)

0〈〈λ0|GS− |λ0〉〉0 = 1〈〈λ1|GS− |λ0〉〉0 = 0〈〈λ1|GS− |λ0〉〉0 = 0. (5.9)

Both 〈Sz
1Sz

r 〉 and 〈S+
1 S−

r 〉 exhibit exponential decay with correlation length

ζ =
(

ln
[S + 2]

[S]

)−1

, (5.10)

generalizing the results for q = 1 [18] or S = 1 [7] case.

13



6 Conclusion

In this paper, we investigated one and two point functions of the q-VBS ground state
of an integer spin model (the q-deformed higher-spin AKLT model). The formulation
of correlation functions by use of the matrix product representation of the ground state
shows that the structure of a matrix, which we call G matrix, plays an important role. We
obtained the eigenvalues and eigenvectors of the G matrix with the help of constructing
intertwiners connecting different block diagonal matrices of G. Then we calculated the
spin-spin correlation functions by use of the eigenvalues and eigenvectors of the G matrix,
and determined the correlation amplitudes and correlation lengths of the longitudinal and
transverse spin-spin correlation functions.

It is interesting to investigate other types of correlation functions. For example, the
entanglement entropy, which is defined in terms of the reduced density matrix, is a typical
quantification of the entanglement of quantum systems. It is intriguing to calculate the
entanglement entropy for the q-deformed model and observe the change from the isotropic
point [19, 27, 28] (see also [29, 30] for other VBS states).
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A Proof of Proposition 2.1

We prove Proposition 2.1 by induction. Suppose that Proposition 2.1 holds for
(
∆X−

αβ

)n
vJ .

We calculate the four terms of the action of

∆X−
αβ =

1
q − q−1

yα

xα
Dxα

q ⊗ D
xβ√

qD
yβ

1/
√

q −
1

q − q−1

yα

xα
Dxα

q−1 ⊗ D
xβ√

qD
yβ

1/
√

q

+
1

q − q−1
Dxα

1/
√

qD
yα√

q ⊗
yβ

xβ
D

xβ
q − 1

q − q−1
Dxα

1/
√

qD
yα√

q ⊗
yβ

xβ
D

xβ

q−1 ,
(A.1)

on
(
∆X−

αβ

)n
vJ , separately.

(
yα

xα
Dxα

q ⊗ D
xβ√

qD
yβ

1/
√

q

) (
∆X−

αβ

)n
vJ

/
q(n+1)S [n]!(xαxβ)J−(n+1) (A.2)

=
n∑

µ=0

q−2µS+J−n

[
J
µ

] [
J

n − µ

]
(xαyβ)µ (xβyα)n+1−µ

2S−J∏
ν=1

(
xαyβ − q2(ν−S−1)xβyα

)
,
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(
yα

xα
Dxα

q−1 ⊗ D
xβ√

qD
yβ

1/
√

q

) (
∆X−

αβ

)n
vJ

/
q(n+1)S [n]!(xαxβ)J−(n+1) (A.3)

=
n∑

µ=0

q−2µS−2µ−4S+J+n

[
J
µ

] [
J

n − µ

]
(xαyβ)µ (xβyα)n+1−µ

2S−J∏
ν=1

(
xαyβ − q2(ν−S)xβyα

)
,

(
Dxα

1/
√

qD
yα√

q ⊗
yβ

xβ
D

xβ
q

) (
∆X−

αβ

)n
vJ

/
q(n+1)S [n]!(xαxβ)J−(n+1) (A.4)

=
n∑

µ=0

q−2µS−2µ−2S+J+n

[
J
µ

] [
J

n − µ

]
(xαyβ)µ+1 (xβyα)n−µ

2S−J∏
ν=1

(
xαyβ − q2(ν−S)xβyα

)
,

(
Dxα

1/
√

qD
yα√

q ⊗
yβ

xβ
D

xβ

q−1

) (
∆X−

αβ

)n
vJ

/
q(n+1)S [n]!(xαxβ)J−(n+1) (A.5)

=
n∑

µ=0

q−2µS−2S−J+n

[
J
µ

] [
J

n − µ

]
(xαyβ)µ+1 (xβyα)n−µ

2S−J∏
ν=1

(
xαyβ − q2(ν−S−1)xβyα

)
.

(A.4) − (A.3) gives

n∑
µ=0

q−2µS−2µ−2S+J+n

[
J
µ

] [
J

n − µ

]
(xαyβ)µ (xβyα)n−µ

×
(
xαyβ − q−2Sxβyα

) 2S−J∏
ν=1

(
xαyβ − q2(ν−S)xβyα

)
=

n∑
µ=0

q−2µS−2µ−2S+J+n

[
J
µ

] [
J

n − µ

]
(xαyβ)µ (xβyα)n−µ

×
(
xαyβ − q2(S−J)xβyα

) 2S−J∏
ν=1

(
xαyβ − q2(ν−S−1)xβyα

)
=

n∑
µ=0

q−2µS−2µ−2S+J+n

[
J
µ

] [
J

n − µ

]
(xαyβ)µ+1 (xβyα)n−µ

×
2S−J∏
ν=1

(
xαyβ − q2(ν−S−1)xβyα

)
−

n∑
µ=0

q−2µS−2µ−J+n

[
J
µ

] [
J

n − µ

]
(xαyβ)µ (xβyα)n+1−µ

×
2S−J∏
ν=1

(
xαyβ − q2(ν−S−1)xβyα

)
.

(A.6)
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Dividing the first term of (A.6) − (A.5) by q − q−1, we obtain

n∑
µ=0

q−2µS−µ−2S+n[J − µ]
[

J
µ

] [
J

n − µ

]
(xαyβ)µ+1 (xβyα)n−µ

×
2S−J∏
ν=1

(
xαyβ − q2(ν−S−1)xβyα

)
=

n+1∑
µ=1

q−2µS−µ+n+1[J − µ + 1]
[

J
µ − 1

] [
J

n + 1 − µ

]
(xαyβ)µ (xβyα)n+1−µ

×
2S−J∏
ν=1

(
xαyβ − q2(ν−S−1)xβyα

)
,

(A.7)

where we replaced µ → µ − 1. Dividing (A.2) − the second term of (A.6) by q − q−1, we
obtain

n∑
µ=0

q−2µS−µ[J + µ − n]
[

J
µ

] [
J

n − µ

]
(xαyβ)µ (xβyα)n+1−µ

×
2S−J∏
ν=1

(
xαyβ − q2(ν−S−1)xβyα

)
.

(A.8)

Since
[

J
−1

]
= 0, we can extend

∑
in (A.7) and (A.8) to 0 ≤ µ ≤ n+1. Finally we have

(A.7) + (A.8) =
n+1∑
µ=0

q−2µS [n + 1]
[

J
µ

] [
J

n + 1 − µ

]
(xαyβ)µ (xβyα)n+1−µ

×
2S−J∏
ν=1

(
xαyβ − q2(ν−S−1)xβyα

)
,

(A.9)

and since(
∆X−

αβ

)n+1
vJ

/
q(n+1)S [n]!(xαxβ)J−(n+1) =

(A.2) + (A.4) − (A.3) − (A.5)
q − q−1

=
(A.2) + (A.6) − (A.5)

q − q−1

= (A.7) + (A.8)
= (A.9),

(A.10)

Proposition 2.1 is true for
(
∆X−

αβ

)n+1
vJ .
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