九州大学学術情報リポジトリ Kyushu University Institutional Repository

世代間移動ベクトル群の収束点推定法

村田, 昇 ^{早稲田大学理工学術院}

西井, 龍映 九州大学マス・フォア・インダストリ研究所

髙木,英行 九州大学大学院芸術工学研究院

裴, 岩 会津大学コンピュータ理工学部

https://hdl.handle.net/2324/1808916

出版情報:進化計算シンポジウム. 2014, 2014-12-21. 進化計算学会 バージョン: 権利関係:

世代間移動ベクトル群の収束点推定法

村田昇[†], 西井龍映^{††}, 高木英行[‡], 裴岩^{‡‡}

早稲田大学理工学術院[†], 九州大学マス・フォア・インダストリ研究所^{††}, 九州大学大学院芸術工学研究院[‡], 会津大学コンピュータ理工学部^{‡‡}

1 はじめに

進化計算の主要研究の1つは,最適化の高度 化である.新しい進化計算アルゴリズムの開発 ^{1,2,6)},進化計算演算の改良^{3,4)},fitness空間の 近似による大局的最適解の粗く速い推測⁵⁾,等 の色々な取り組みがなされて来た.

探索が成功する進化計算は,時には局所最適解 に引き寄せながらも,逐次探索で大局的最適解に 向かっていく.したがって,世代間の移動ベクト ルは,大局的最適解方向を推察する有力な情報 である.特に,進化戦略,差分進化,群知能のよ うに,第k世代の探索点と第k+1世代の探索点 との間に一対一対応がある場合,世代間の個体 の移動ベクトルがFig.1のように複数得られる. d次元探索空間でのこれら複数の移動ベクトルが 向かっている点(Fig.1の 印)は大局的最適解 推測に有効な新しい探索点となりえる^{7,8,10)}.

本論文は,遺伝的アルゴリズムや遺伝的プロ グラミングのようにn個の親個体群から次世代の n個の子個体群を生成する進化計算ではなく,上 述のように親個体と子個体とが一対一対応する ような進化計算を扱う.その上で,本論文の第1 の目的は,これら複数の親子間の移動ベクトル が向かう方向,すなわち,Fig.1の 印位置を推 定する方法を示すことである.第2の目的は,こ の推測点が最適化の探索における有力な個体に なり得ることを示すことである.

[‡] Hideyuki TAKAGI

^{‡‡} Yan PEI (http://web-ext.u-aizu.ac.jp/~peiyan/) School of Science and Engineering, Waseda University (†) Institute of Mathematics for Industry, Kyushu University (††)

Fig. 1 d次元探索空間上の第k世代の個体 (a_i , i = 1, 2, ..., n)と第k + 1世代の個体(c_i , i = 1, 2, ..., n)が構成する世代間移動ベクトルが 向かう先().

以下第2節ではこの 印位置の推定方法と,行 列演算を行わない近似方法,逐次方法を示す. 第3節ではその推定した 印位置は有力なエリー ト個体になり得ることをfitness順位で示す.

2 世代間移動ベクトルが目指す点

2.1 記号の定義

個体数 $n \operatorname{cd}$ 次元の探索空間を前節で述べた 進化計算で探索する際,第i番目の親個体を a_i , その子個体を c_i ,移動ベクトルを $b_i = c_i - a_i$ と する. $\{(a_i, c_i), i = 1, 2, ..., n; a_i, c_i \in \mathbb{R}^d\}$.また, b_i の単位方向ベクトル $b_{0i} = b_i / ||b_i||$ ($b_{0i}^{\mathrm{T}} b_{0i} = 1$) も定義する.なお,本論文でのベクトル表現は 縦ベクトルとしている.

 $n個のベクトル<math>a_i$ を基点とするベクトル b_i が 与えられた時,これらの b_i を有向線分としそれ らを延長して作られた直線群に最も近い点を $x \in \mathbb{R}^d$ とする.このxを求めることが本論文の第 1の目的である.

Estimation Methods of the Convergence Point of Moving Vectors Between Generations

[†] Noboru MURATA (noboru.murata @ eb.waseda.ac.jp)

^{††} Ryuei NISHII (nishii @ imi.kyushu-u.ac.jp)

⁽http://www.design.kyushu-u.ac.jp/~takagi/)

Faculty of Design, Kyushu University (‡)

School of Computer Science and Engineering, the University of Aizu $(\ddagger\ddagger)$

2.2 推定法1:行列演算を用いる厳密解

前節の有向線分から作られる直線の式は式(1) で表される.

直線
$$i: \boldsymbol{a}_i + t_i \boldsymbol{b}_i, t_i \in \mathbb{R}$$
 (1)

求める点xと直線群との距離は式(2)で表される.

$$\mathbf{J}(\boldsymbol{x}, \{t_i\}) = \sum_{i=1}^{n} \|\boldsymbol{a}_i + t_i \boldsymbol{b}_i - \boldsymbol{x}\|^2$$
(2)

したがってこの距離を最小にする点xと直線のパ ラメータ $\{t_i, i = 1, ..., n\}$ を求める式(3)を解くこ とで求める解が得られる.

$$\min_{\boldsymbol{x},\{t_i\}} \mathbf{J}(\boldsymbol{x},\{t_i\}) = \min_{\boldsymbol{x}} \sum_{i=1}^n \min_{t_i} \|\boldsymbol{a}_i + t_i \boldsymbol{b}_i - \boldsymbol{x}\|^2$$
(3)

点*x*を固定すれば,この点から直線*i*上の最短点 を与える*t_i*は個別に決められる.これは点*x*から 直線*i*への直交射影となるので,

$$\boldsymbol{b}_i^{\mathrm{T}}(\boldsymbol{a}_i + t_i \boldsymbol{b}_i - \boldsymbol{x}) = 0$$
 (直交条件) (4)

この式より

$$t_i = \frac{\boldsymbol{b}_i^{\mathrm{T}}(\boldsymbol{x} - \boldsymbol{a}_i)}{\|\boldsymbol{b}_i\|^2} \tag{5}$$

となる. $(x \cdot y = x^{\mathrm{T}}y)$ を用いて書いていることに注意)

式(5)を式(3)の||·||部分に代入して整理すると

$$\boldsymbol{b}_{i} \frac{(\boldsymbol{b}_{i})^{\mathrm{T}}(\boldsymbol{x} - \boldsymbol{a}_{i})}{\|\boldsymbol{b}_{i}\|^{2}} - (\boldsymbol{x} - \boldsymbol{a}_{i}) = \left\{ \frac{\boldsymbol{b}_{i} \boldsymbol{b}_{i}^{\mathrm{T}}}{\|\boldsymbol{b}_{i}\|^{2}} - \mathrm{I}_{d} \right\} (\boldsymbol{x} - \boldsymbol{a}_{i})$$
(6)

となる. I_d は単位行列である.ここで

$$I_{d} - \frac{\boldsymbol{b}_{i} \boldsymbol{b}_{i}^{1}}{\|\boldsymbol{b}_{i}\|^{2}} = I_{d} - \boldsymbol{b}_{0i} \boldsymbol{b}_{0i}^{\mathrm{T}} = H_{i}$$
(7)

とおくと,式(2)から $\{t_i\}$ を消去した目的関数

$$\mathbf{J}(\boldsymbol{x}) = \sum_{i=1}^{n} (\boldsymbol{x} - \boldsymbol{a}_i)^{\mathrm{T}} H_i^{\mathrm{T}} H_i (\boldsymbol{x} - \boldsymbol{a}_i) \qquad (8)$$

が得られるので,これを*x*に関して最小化すれば 良い.求める点*x*の推定値*x*は,*x*の各要素で偏 微分し,0とおけばよい.

$$\frac{\partial \mathbf{J}(\boldsymbol{x})}{\partial \boldsymbol{x}} = 2\sum_{i=1}^{n} H_{i}^{\mathrm{T}} H_{i}(\boldsymbol{x} - \boldsymbol{a}_{i})$$
$$= 2\left\{ \left(\sum_{i=1}^{n} H_{i}^{\mathrm{T}} H_{i} \right) \boldsymbol{x} - \left(\sum_{i=1}^{n} H_{i}^{\mathrm{T}} H_{i} \boldsymbol{a}_{i} \right) \right\}$$
$$= 0 \tag{9}$$

これより推定値は

$$\hat{\boldsymbol{x}} = \left(\sum_{i=1}^{n} H_i^{\mathrm{T}} H_i\right)^{-1} \left(\sum_{i=1}^{n} H_i^{\mathrm{T}} H_i \boldsymbol{a}_i\right)$$
(10)

で与えられる.

ところで, H_i は $H_i^{T}H_i = H_i^2 = H_i$ という性質 を持つ(射影行列)ので,式(10)は以下のように書 き直すことができる.

$$\hat{\boldsymbol{x}} = \left(\sum_{i=1}^{n} H_{i}\right)^{-1} \left(\sum_{i=1}^{n} H_{i} \boldsymbol{a}_{i}\right)$$

$$\therefore = \left\{\sum_{i=1}^{n} \left(I_{d} - \boldsymbol{b}_{0i} \boldsymbol{b}_{0i}^{\mathrm{T}}\right)\right\}^{-1} \left\{\sum_{i=1}^{n} \left(I_{d} - \boldsymbol{b}_{0i} \boldsymbol{b}_{0i}^{\mathrm{T}}\right) \boldsymbol{a}_{i}\right\}$$
(11)

2.3 推定法2:行列演算を行わない近似解

以下では,式(11)をNeumann級数展開し低次 の項のみで近似計算することを考える.式(11) は以下のように展開される.

$$\hat{\boldsymbol{x}} = \left\{ \sum_{i=1}^{n} \left(I_d - \boldsymbol{b}_{0i} \boldsymbol{b}_{0i}^{\mathrm{T}} \right) \right\}^{-1} \left\{ \sum_{i=1}^{n} \left(I_d - \boldsymbol{b}_{0i} \boldsymbol{b}_{0i}^{\mathrm{T}} \right) \boldsymbol{a}_i \right\} \\
= \frac{1}{n} \left\{ I_d + \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{b}_{0i} \boldsymbol{b}_{0i}^{\mathrm{T}} \right) + \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{b}_{0i} \boldsymbol{b}_{0i}^{\mathrm{T}} \right)^2 + \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{b}_{0i} \boldsymbol{b}_{0i}^{\mathrm{T}} \right)^3 + \cdots \right\} \\
\times \left\{ \sum_{i=1}^{n} \left(I_d - \boldsymbol{b}_{0i} \boldsymbol{b}_{0i}^{\mathrm{T}} \right) \boldsymbol{a}_i \right\}$$
(12)

この級数展開の0次の項(*I*_dの部分)を用いたもの は,式(13)になり,逆行列演算や行列のメモリが 不要になり計算時間が簡便になる.計算機資源 に応じて用いる展開次数を増やすことで精度を 上げることが可能である.

$$\hat{\boldsymbol{x}} \approx \frac{1}{n} \left\{ \sum_{i=1}^{n} \left(I_d - \boldsymbol{b}_{0i} \boldsymbol{b}_{0i}^{\mathrm{T}} \right) \boldsymbol{a}_i \right\}$$
$$\approx \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{a}_i - \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{b}_{0i} \boldsymbol{b}_{0i}^{\mathrm{T}} \boldsymbol{a}_i \qquad (13)$$

 $b_{0i}b_{0i}^{T}$ は行列になるので2次元のメモリが必要で ある.しかし,変形することでベクトルの1次元 メモリを使って演算できる.すなわち,

$$\begin{aligned} \boldsymbol{b}_{0i}\boldsymbol{b}_{0i}^{\mathrm{T}}\boldsymbol{a}_{i} &= \boldsymbol{b}_{0i}(\boldsymbol{b}_{0i}^{\mathrm{T}}\boldsymbol{a}_{i}) \\ &= \boldsymbol{b}_{0i}(\boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{b}_{0i}) (() 内 はスカラ) \\ &= (\boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{b}_{0i})\boldsymbol{b}_{0i} \end{aligned}$$
(14)

これを式(13)に代入すると

$$\therefore \hat{\boldsymbol{x}} \approx \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{a}_{i} - \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{a}_{i}^{\mathrm{T}} \boldsymbol{b}_{0i}) \boldsymbol{b}_{0i} \qquad (15)$$

なお,式(13)で一般に $\frac{1}{n}\sum_{i=1} b_{0i}b_{0i}^{\mathrm{T}} \neq 0$ である から,推定量が位置共変にならないという点に 注意する必要がある.

2.4 推定法3:行列演算を行わない逐次計算

式(3)のxと{t_i}の最小化を交互に繰り返す方法 を考える.この方法は,収束点においてNeumann 級数展開の式が成り立っているので,逐次的に 第2.4節のNeumann級数展開を行って近似解を求 めているともいえる.

点xが与えられたとき,xに最も近い直線i上の 点を $y_i(x)$ とする.

$$\boldsymbol{y}_i(\boldsymbol{x}) = \boldsymbol{a}_i + t_i(\boldsymbol{x})\boldsymbol{b}_i \tag{16}$$

ただし, $t_i(x)$ は式(5)より式(17)で表される.

$$t_i(\boldsymbol{x}) = \frac{\boldsymbol{b}_i^{\mathrm{T}}(\boldsymbol{x} - \boldsymbol{a}_i)}{\|\boldsymbol{b}_i\|^2}$$
(17)

一方, $y_i(x)$, (i = 1, 2, ..., n)が与えられたとき, これらからの距離の総和が最短となる点x'は, $y_i(x)$ の重心であるので,式(18)で表される.

$$\boldsymbol{x}' = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{y}_i(\boldsymbol{x}) \tag{18}$$

以上より,次の逐次解法が得られる.

逐次解法
 Step 1 xの初期化 . 例えば , $x = \frac{1}{n} \sum_{i=1}^{n} c_i$ Step 2 xから直線に射影し , 式(16)で $y_i(x)$ を求める .
 Step 3 式(18)で得られる射影点の重心x'を
 新たなxとする .
 Step 4 収束するまでStep 2へ

本節の逐次法の収束性は保障される.式(18)の 更新によって明らかに

$$\sum_{i=1}^{n} \|\boldsymbol{y}_{i}(\boldsymbol{x}) - \boldsymbol{x}'\|^{2} \leq \sum_{i=1}^{n} \|\boldsymbol{y}_{i}(\boldsymbol{x}) - \boldsymbol{x}\|^{2}$$
(19)

であり,また式(16)の更新によって

$$\sum_{i=1}^{n} \|\boldsymbol{y}_{i}(\boldsymbol{x}') - \boldsymbol{x}'\|^{2} \leq \sum_{i=1}^{n} \|\boldsymbol{y}_{i}(\boldsymbol{x}) - \boldsymbol{x}'\|^{2} \qquad (20)$$

となるので,式(8)において,J $(x') \leq J(x)$ であり,収束性が保証される.

3 有効性の評価

第2節で求めた移動ベクトルが向かう推定座標 xが有力なエリート個体になり得ることを,表1 のベンチマーク関数を使った評価実験で示す. 具体的には,差分進化を用い,前世代のtarget vector と現世代の target vector が異なる場合に 形成される世代間移動ベクトルが向かう点xを求 める.次に,このx + 全個体のfitness順位を求め, ベンチマーク関数毎に提案3手法で得られたxの 順位をTable 2に示して探索個体群と比較する.

Table 1 実験に用いたCEC2005のベンチマーク関数⁹⁾. (Sh=Shifted, Rt=Rotated, GB=Global on Bounds, NS=Non-Separable)

	/	1			/			
No.	name	Modality	\mathbf{Sh}	Rt	GB	NS	Search	Optimum
							range	fitness
f_1	Sphere		\checkmark					-450
f_2	Schwefel 1.2	Uni-						-450
f_3	Elliptic	modal					[-100, 100]	-450
f_4	f_2 with Noise							-450
f_5	Schwefel 2.6							-310
f_6	Rosenbrock		\checkmark			\checkmark	[-100, 100]	390
f_7	Griewank		\checkmark	\checkmark		\checkmark	[0, 600]	-180
f_8	Ackley						[-32, 32]	-140
f_9	Rastrigin	Multi-	\checkmark				[-5, 5]	-330
f_{10}	Rastrigin	modal	\checkmark	\checkmark		\checkmark	[-5, 5]	-330
f_{11}	Weierstrass						[-0.5, 0.5]	90
f_{12}	Schwefel 2.13		\checkmark			\checkmark	$[\pi,\pi]$	-460
f_{13}	Expanded F8F2		\checkmark			\checkmark	[-3, 1]	-130
f_{14}	Scaffer F6						[-100, 100]	-300

実験条件は,差分進化演算(DE/rand, F=1, CR=1),2,5,10次元のベンチマーク関数に, (DE/rand, F=1, CR=1,40個体)の差分進化を100 世代までの探索で,実験環境は,Windows 8.1 (x84) のPC (Intel(R) Core(T) i7-4500 U CPU@ 1.80GHz 2.39GHz,4GRAM)上のMatlab R2011b である. 推定法3は第2.4の反復を10回繰り返して*x*を求 めた. 得られた*x* は探索の高速化に色々利用できると 考えられる.代表的な方法は,最悪個体と入れ 換えることである^{7,8,10)}.しかし,*x*を探索に 組み込んでの高速化効果の評価は今後の研究に 譲り,本論文では,*x*が有力なエリート候補にな り得ることに焦点を当てて評価する.

また,本論文での推定方法を組み込むことに よって増加する計算コストを評価するため,14 関数で100世代までの探索したCPU時間を計測 した.提案手法を通常差分進化を組み込んだ場 合の平均CPU時間と組み込まない通常差分進化 の場合の平均CPU時間比をTable 3に示す.

Table 3 提案推定法を組み込んだ場合のCPU時間の増加比率 = (差分進化+推定法)/(差分進化のみ).14関数(2,5,10次元)を100世代まで計算して計測.

関数の次元	推定法1	推定法2	推定法3
2	1.09	2.27	2.35
5	1.37	1.99	1.81
10	1.30	1.88	1.53

4 考察

予想どおり,本提案手法は,単峰性関数(f₁~ f₅)には有力解となる点を推定できそうである. 今後この推定位置をエリート個体として探索に 利用することで進化計算の高速化に寄与するこ とが期待できる.

14のbenchmark関数中, *f*₈, *f*₁₁, *f*₁₂, *f*₁₄の4関 数に対して本提案手法はまったく有効に働かな かった.しかしこれらのfitness景観(Fig. 2)を 見れば,探索が徐々に最適解に近づく形状では ないので当然とも言える.

Fig. 2 提案手法がまったく効かなかった4関数 . 左から $f_8, f_{11}, f_{12}, f_{14}$.図は文献 $^{9)}$ より .

第2に近似計算を考察する.推定法2では Neumann級数展開した第0次の項で推定法1の近 似をした.しかし,次元数の低い単峰性関数($f_1 \sim f_5$)で推論法1と3に対して結果に違いが出て いる.推定する集中点xは大局的最適解そのもの ではないとはいうもの,探索に利用するには近 似度合が大きすぎるのであろう.10回反復計算 をした推定法3は推定法1と遜色がないので,級 数展開した項をもう少し計算すれば同様の性能 が得られることが判るが,CPU時間の比較を見 る限り,推定法2の次数項を上げて計算すること のメリットは少ないと思われる.

逆行列計算を含み最もCPU時間がかかると 考えられた推定法1が他の推定法よりも速い. Matlabの行列演算は一般に高速であることが言 われているので,このためと思われる.しかし, 行列演算ベースでない,例えばC言語でcodingを して比較していないので,推定法2と3が推定法1 に比べて今回の実験結果程の差がでるのかどう かは不明である.

5 結論

本論文では,世代間の個体の移動方向ベクト ル群がどこに収束しようとしているかを計算す る方法を提案した.個体群全体が最適解に向か う単峰性関数では,早くから最適解に近いと思 われる推定収束点を求めることができ,進化計 算の高速化に寄与できる可能性が示された.こ の寄与のさせ方には色々考え得られ,今後の研 究で取り組んでいく.

多峰性関数では,個体は最適解だけでなく局 所最適解にも収束しようとするため,移動ベク トル群は異なる複数の収束点に向かおうとして いるはずである.この異なる収束点毎に移動ベ クトルを分類できれば,進化計算の高速化に寄 与するだけでなく,局所最適解を探す新しいニッ チ手法にも使える可能性を秘めている.今後の 大きな研究方向の1つである.

参考文献

- Back, T., Hammel, U., and Schwefel, H.-P., "Evolutionary computation: Comments on the history and current state," IEEE Trans. on Evolutionary Computation, vol.1, no.1, pp.3–17 (1997).
- Coello Coello, C.A. "Evolutionary multi-objective optimization: A historical view of the field," IEEE Computational Intelligence Magazine (2006).
- Das, S. and Suganthan, P.N. "Differential evolution: A survey of the state-of-the-art," IEEE Trans. on Evolutionary Computation, vol.15, no.1, pp.4– 31 (2011).
- Eiben, Á.E., Hinterding, R., and Michalewicz, Z., "Parameter control in evolutionary algorithms," IEEE Trans. on Evolutionary Computation, vol.3, no.2, pp.124–141 (1999).

Table 2 世代間移動ベクトルの推定された収束点*x*のfitness順位(第1~41位).第2~25世代,第26~50世代,第51~75世代,第76~100世代の平均順位.

世代	2 - 25	26 - 50	51 - 75	76 - 100	2 - 25	26 - 50	51 - 75	76 - 100	2 - 25	26 - 50	51 - 75	76 - 100
2-D関数	2次元	;関数評(価時の平	均順位	5次元	;関数評(面時の平	均順位	10次テ	ī 関数評	価時の	平均順位
f_1	9.1	7.2	11.5	9.6	2.8	6.0	4.8	2.6	1.2	4.9	7.9	17.8
f_2	10.5	6.7	11.4	10.5	4.8	1.8	2.2	4.6	2.7	1.8	5.4	12.8
f_3	18.2	19.8	15.2	15.0	7.5	7.7	6.5	14.4	5.7	10.0	16.2	19.4
f_4	12.0	11.4	11.2	13.6	4.3	4.0	7.0	8.1	2.7	10.5	17.8	15.0
f_5	29.4	28.2	26.2	37.6	19.7	16.0	11.8	16.8	7.8	11.8	12.5	13.1
f_6	31.0	34.9	33.7	37.3	4.0	13.8	13.5	27.0	1.8	4.3	12.2	7.3
f_7	14.5	34.8	38.4	24.8	4.9	3.9	4.7	13.2	2.5	3.5	15.4	17.7
f_8	37.0	40.0	41.0	41.0	37.7	41.0	41.0	41.0	37.0	41.0	41.0	38.5
f_9	34.8	25.5	11.5	7.6	26.4	35.4	38.1	41.0	10.0	30.1	39.6	38.4
f_{10}	26.3	34.2	11.3	10.8	14.7	35.8	40.2	37.7	7.6	22.7	33.8	39.2
f_{11}	38.3	40.3	38.8	37.6	36.2	40.8	38.2	39.8	36.6	39.2	39.3	40.7
f_{12}	37.9	41.0	41.0	41.0	34.3	40.1	41.0	41.0	39.0	40.6	41.0	41.0
f_{13}	32.2	39.8	22.3	7.9	5.0	23.7	39.3	39.5	2.8	15.6	23.6	24.9
f_{14}	35.7	30.7	38.7	34.8	35.4	38.4	38.6	40.2	31.9	37.0	40.9	38.4
		(-) 10								_ 10 - / 1		

(a) 推定法1によって得られた集中点xの25世代間平均順位

(b) 推定法2によって得られた集中点xの25世代間平均順位

世代	2 - 25	26 - 50	51 - 75	76 - 100	2 - 25	26 - 50	51 - 75	76 - 100	2 - 25	26 - 50	51 - 75	76 - 100	
5-D関数	2次元	;関数評(価時の平	均順位	5次元	;関数評	価時の平	均順位	10次元関数評価時の平均順位				
f_1	37.5	41.0	41.0	41.0	3.9	28.8	40.2	39.6	1.2	1.8	6.9	15.6	
f_2	36.5	41.0	41.0	41.0	6.5	28.2	41.0	41.0	2.8	3.5	8.0	20.8	
f_3	31.8	36.6	41.0	41.0	5.7	5.4	8.4	10.4	6.5	8.7	12.8	13.6	
f_4	37.1	41.0	41.0	41.0	9.6	33.0	40.2	41.0	3.4	4.5	12.3	12.4	
f_5	39.3	41.0	41.0	41.0	31.6	41.0	41.0	41.0	8.6	10.7	19.4	25.2	
f_6	37.5	40.5	41.0	41.0	4.5	18.3	40.0	41.0	1.8	3.4	5.2	5.6	
f_7	28.8	41.0	41.0	41.0	6.9	16.0	32.0	38.6	1.8	1.9	11.0	16.5	
f_8	36.5	40.3	41.0	41.0	35.0	41.0	40.0	40.9	37.6	41.0	41.0	41.0	
f_9	32.6	40.8	41.0	41.0	24.2	37.4	40.9	40.8	6.7	29.4	39.0	37.8	
f_{10}	32.0	40.7	41.0	41.0	17.6	29.0	39.2	37.8	7.3	22.4	29.4	38.6	
f_{11}	37.7	41.0	41.0	41.0	37.1	41.0	41.0	41.0	36.5	40.0	41.0	40.5	
f_{12}	39.4	41.0	41.0	41.0	37.5	40.7	41.0	41.0	37.4	40.9	41.0	40.8	
f_{13}	30.6	40.3	41.0	41.0	6.3	29.0	36.4	39.2	2.7	9.3	13.5	21.0	
f_{14}	40.1	40.7	41.0	41.0	30.3	37.8	35.4	39.0	34.5	37.3	40.6	40.6	

(c) 推定法3によって得られた集中点xの25世代間平均順位

世代	2 - 25	26 - 50	51 - 75	76 - 100	2 - 25	26 - 50	51 - 75	76 - 100	2 - 25	26 - 50	51 - 75	76 - 100
10-D 関数	2次元	;関数評(面時の平	☑均順位	5次元	;関数評(面時の平	均順位	10次元関数評価時の平均順位			
f_1	9.1	6.7	11.1	9.4	2.8	6.0	4.8	2.6	1.2	5.4	9.4	18.1
f_2	10.1	6.6	11.0	10.3	4.8	1.7	2.2	4.3	2.7	1.8	4.2	10.9
f_3	21.2	24.8	18.6	15.0	7.0	8.2	7.1	12.7	5.8	9.4	15.4	18.4
f_4	10.3	9.8	9.3	8.0	6.6	2.0	6.5	6.6	4.0	7.3	16.0	22.2
f_5	30.9	29.8	26.2	38.7	19.7	16.0	11.8	16.8	7.8	11.4	11.7	11.5
f_6	32.0	34.0	36.3	37.4	4.0	12.9	12.6	28.2	1.8	4.4	10.4	7.1
f_7	13.9	34.6	40.6	27.4	4.9	3.9	4.7	12.3	2.5	4.2	16.2	16.0
f_8	35.5	39.1	41.0	39.5	35.1	38.5	37.1	38.6	37.4	37.8	36.3	38.6
f_9	34.5	25.4	11.4	7.4	26.4	35.4	36.9	40.6	10.0	29.6	37.9	33.2
f_{10}	26.7	35.3	11.1	10.5	14.3	31.1	36.6	35.5	7.6	22.8	31.3	37.9
f_{11}	38.0	40.2	41.0	37.5	35.4	38.4	37.4	38.2	36.5	35.7	38.0	37.7
f_{12}	36.0	40.4	40.1	39.2	35.4	37.4	37.5	37.0	38.9	38.2	38.2	34.6
f_{13}	31.2	36.4	27.1	7.6	5.2	23.3	35.9	37.2	3.2	12.9	20.8	25.0
f_{14}	31.1	31.0	33.6	35.2	36.4	33.7	37.2	33.2	32.6	34.4	37.5	38.5

- Jin, Yaochu, "A Comprehensive survey of fitness approximation in evolutionary computation," Soft Computing, Springer, Vol.9, No.1, pp.3–12 (2005).
- Mullen, R.J., Monekosso, D., Barman, S., and Remagnino, P., "A review of ant algorithms," Expert Systems with Applications, vol.36, no.6, pp.9608– 9617 (2009).
- 7) Pei, Y. and Takagi, H., "Fourier analysis of the fitness landscape for evolutionary search acceleration," IEEE Congress on Evolutionary Computation (CEC2012), pp.1–7, Brisbane, Australia (June, 2012).
- 8) Pei, Y. and Takagi, H., "Comparative study on fitness landscape approximation with Fourier transform," 6th Int. Conf. on Genetic and Evolutionary Computing (ICGEC2012), Kitakyushu, Japan, pp.400–403 (Aug., 2012).
- 9) Suganthan, P. N., Hansen, N., Liang, J. J., et al., "Problem definitions and evaluation criteria for the CEC 2005 special session on realparameter optimization", https://www.lri.fr/ ~hansen/Tech-Report-May-30-05.pdf
- 10) 高木英行,印具毅雄,大西圭「単峰性関数当ては めによるGA収束高速化」知能と情報(日本知 能情報ファジィ学会誌),vol.15, no.2, pp.219-229 (2003).