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Influence of Fitness Quantization Noise
on the Performance of Interactive PSO

Yu NAKANO

Abstract— We analyze the influence of quantization noise in
fitness values on the search performance of Particle Swarm
Optimization (PSO) and propose methods for reducing the
negative influence of the noise to help realize a practical
Interactive PSO. First, we compare the convergences of PSO
and genetic algorithms (GA) with several different levels of
quantized fitness values and show that PSO has a higher
sensitivity to quantization noise than GA. Second, we analyze
the sensitivity of each of the three components that determine
the subsequent generation’s PSO velocities and show that the
sensitivities of the three components are almost equivalent.
This implies that we need to develop methods for reducing the
effect of quantization noise on all three components of the PSO
velocity. As one of the solution, we propose a method using the
average location of multiple global bests of same fitness value
and another method for multimodal searching spaces using sub-
global bests obtained by clustering.

I. INTRODUCTION

Interactive Evolutionary Computation (IEC) has been ap-
plied in a wide variety of fields such as the arts, engineering
and others [7]. The IEC user plays the role filled by the
fitness function in normal EC; we can say that an IEC
is an EC where the fitness function is replaced with a
human. A user can embed his or her preferences, intuition,
knowledge, experiences, or KANSEI in general, through
designing/optimizing target systems by giving his or her
subjective evaluations to the EC-generated individuals. With
the exception of this human evaluation stage, the procedures
in IEC are otherwise identical to normal EC.

However, there are still problems impeding its practical
application, with the problem of IEC user fatigue caused by
interacting with a tireless computer being the most signifi-
cant. Several approaches for solving this problem have been
proposed [7]: learning the user’s evaluation characteristics so
that they can be modeled, improving the IEC interface used
for displaying phenotypes of individuals and receiving the
user-input IEC fitness values, accelerating the EC search,
letting the IEC user intervene in the EC search, preparing
other user models for predicting the IEC user’s fitness, and
others [2].

In this paper, we try to solve the user fatigue problem by
extending the IEC framework and handling the EC portion
of the IEC in a manner completely different from these
previous approaches. The reason why IEC adopts EC is that
the EC can search for the global optimum without requiring
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information about the searching space such as its gradient.
Any optimization technique that has this characteristic can
be used instead of EC in IEC. Particle Swarm Optimization
(PSO) [4] is one such optimization technique, and using it
we can create Interactive PSO (IPSO).

A comparison of genetic algorithms (GA) [3] and PSO
suggests that [IPSO may be a promising framework. It is said
that PSO is more effective for searching the landscape of
simple shapes, while GA is better than PSO for complex
multimodal searching spaces, and we have confirmed this
tendency using benchmark functions [6]. This tendency is
theoretically reasonable because the information used by a
PSO search are the relative direction to the global best (gpest)
and the local best (/j.5¢), and the precision of these directions
is high when the searching landscape is simple.

Most IEC applications involve tasks where IEC users can
reach the global optimum area within several generations. As
IEC users cannot distinguish between similar individuals or
do not give dramatically different fitness values for similar
individuals, we can assume that the landscapes of the search
spaces in most IEC applications are not complex. If this
assumption is correct, we may be able to expect better
searching convergence by replacing the EC of IEC with PSO.

However, an experimental comparison of Interactive GA
(IGA) and IPSO using a simulator with a modeled pseudo-
human that outputs relative fitness from a five point scale
matched to benchmark functions did not meet this expec-
tation. The performances of the IPSO are almost all equal
to or lower than those achieved with IGA regardless of the
complexity of the functions [6].

The objectives of this paper are (1) to analyze, with regards
to quantization noise, why IPSO is not superior to IGA in
tasks for which PSO is better than GA and (2) propose
solutions to reduce the effect of fitness quantization noise.
As one of the solutions, we propose an improvement to the
calculation method for the components of the PSO velocity
in order to make IPSO practical.

A simulation method for IPSO and IGA, along with a
comparison of the results using the two procedures, is pre-
sented in section 2. We discuss the influence of quantization
noise on the quantized fitness levels of IPSO in section 3 and
analyze the noise sensitivities of each of the components that
determine PSO velocity in section 4. Finally, discuss how to
reduce the influence of the quantization noise on the IPSO
performance and evaluate its efficiency in section 5.



II. GA vs. PSO AND INTERACTIVE PSO VSs.
INTERACTIVE GA

A. GA vs. PSO

It is said that PSO for less complex functions is faster than
GA, and that GA for complex functions is faster than PSO. In
a preliminary experiment, we compare them to clarify their
different characteristics.

In this experiment, we use eight benchmark functions to
compare the performance of PSO and GA. The optimization
functions tasked are DeJong’s F1-F5 functions [1] and three
other functions (F6-F8).

F1, a quadratic function: f(z;) = >°_ 2

F2, the Rosenbrock function:
Flai) = 100(z12 — 22)° + (1- 1)

F3, a step function: f(z;) = > ., |xi]

F4, a 4-D function with standard Gaussian noise:
flag) = Y2 (i) + Gauss(0, 1)

F5, the Shekel’s foxholes function: )
f(@i) = 10.002 + Z?ll m ,

where 50 values of a;; previously prepared.

F6, the Rastrigin function:
flz) =20+ 7 (22 — 10 cos(2ma;))

F7, the Griewangk function:

Fla) = 14 355 S5, (2 — 100) =TT, cos(Z=100)

%

F8, the Schwefel function: f(xz;) = Zle(—xi sin(y/Z;)).

<

PSO and GA were run 50 times each, per function, under
the experimental conditions list in Table 1.

The average fitness values of the 50 bests at every 10th
generation are shown in the Table II. These results match
our expectations; they show that PSO for less complex
functions converges faster than GA, and GA for more com-
plex functions converges faster and found better solutions
than PSO. In most cases, it seems natural that an IEC
user will not change his/her evaluations dramatically when
optimization parameters change slightly. This suggests that
the psychological evaluation characteristics of an IEC user
are not complex. This intuition is supported by the fact that
IEC users obtain satisfactory solutions with a much smaller
population size and within significantly fewer generations
than in normal EC tasks. If this guess is true, we can expect
that IPSO is faster than IGA.

B. Interactive PSO vs. Interactive GA

Unlike normal EC based on a fitness function, we need to
add two fitness converters to normal EC in order to simulate
IPSO; one simulates the discretization of relative fitness
levels due to human evaluation, and the other converts from
relative to absolute fitness levels. The first converter is also
necessary to simulate IGA. We compare IPSO to IGA using
these IPSO and IGA simulators with the aforementioned
benchmark functions. As previously stated, an IEC user
plays the role of the fitness function in EC which assigns
a fitness value to each individual. We can therefore simulate

TABLE 1
EXPERIMENTAL CONDITIONS FOR PSO vs. GA

PSO [ GA
evaluation levels 5
f of individuals 200
max. generation 50
constriction coefficient 0.9 -
max. velocity 1.0 -
crossover rate - 0.7
crossover - two-point crossover
elitist rate - 0.05
mutation rate - 0.01
selection - roulette wheel selection

TABLE II
EXPERIMENTAL RESULTS FOR PSO Vvs. GA: AVERAGE OF 50 RUNS.
GRAY CELLS INDICATE WHICH HAS BETTER PERFORMANCE, PSO OR

GA.
[gen. [ func. [ GA [ PSO [ func. [ GA [ PSO |
T T03 | 1.05 108 22
10 0.01 | 0.00 0.99 1.96
20 0.00 | 0.00 0.99 119
301 ' 000 Too0 | P 0.99 .19
40 0.00 | 0.00 0.99 119
50 0.00 1 0.00 0.99 .19
T 028 [ 026 342 349
10 001 | 0.00 0.34 0.57
20 0.0T ] 0.00 0.12 | 0.01
301 ¥ [oor o000 | FO 0.08 | 0.00
20 0.00 | 0.00 0.06 | 0.00
30 0.00 | 0.00 0.05 | 0.00
T 1036 [ 4.14 0.02 0.02
10 270 ] 0.00 0.00 0.00
20 038 | 0.00 0.00 0.00
301 ¥ o1 1000 | T’ 0.00 0.00
0 0.08 | 0.00 0.00 0.00
50 0.04 | 0.00 0.00 0.06
T g88 | 013 7144 | 6978
10 2126 | 428 -837.39 [ 830.1
20 60T | 083 -837.96 | 8333
0] ™ 12004 | P | 83796 3333
0 002 [ 034 -837.96 | 8333
30 065 | 023 -837.96 | 8333

the IEC user by using the benchmark functions as the fitness
functions. Figs. 1 and 2 show the frameworks used in EC
and IEC and an IEC simulation.

The first converter transforms absolute values obtained
from a fitness function to relative discrete fitness values,
i.e. it simulates human evaluation. An IEC user evaluates
all individuals according to a scale with n rating levels, e.g.
1, 2, 3, 4, and 5 points, for each generation, while normal
EC uses a continuous fitness function. We use five levels
for the fitness values in our experiments. The human relative
discrete fitness values on a 1 to 5 scale is simulated for the
IPSO and IGA trials by dividing into five equal partitions
the range between the highest fitness and the lowest fitness
amongst all the individuals in a generation. The same discrete
fitness value is assigned to an individual regardless of where
it falls within a given partition, and the difference between
the real fitness and the discrete fitness for each individual is
the quantization noise in its fitness level.

The second converter converts from the relative fitness
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of a real or simulated IEC user to absolute fitness based
on a scale which is common to all generations. The PSO
offspring searching points are calculated using three velocity
components, consisting of: current velocity; velocity towards
Jvest, that is the best searching point amongst all particles
(or individuals) over all past generations; and velocity to the
lpest, that is the best searching point for the current particle
over all past generations. Since an IPSO user evaluates
individuals with relative fitness, we cannot directly use fitness
values from the past and cannot calculate gpes: and lpest
from relative fitness values. The second converter solves this
problem.

The method for converting from relative fitness to absolute
fitness is to copy some individuals from the n-th generation
to the next (n + 1)-th generation and correct all fitnesses
using the average difference between the fitness values for
these individuals in the n-th and the (n + 1)-th generations
[8]. Suppose an individual is rated as 3 points in the n-th
generation, and the evaluation of the same individual is rated
as 2 points in the (n + 1)-th generation; we assume that the
fitness values of all individuals increased 1 point on average
versus those in the n-th generation, and thus add 1 point
to all individuals in the (n + 1)-th generation to obtain the
absolute fitness. When we copy multiple individuals to the
next generation, the average of difference in fitness is used
to correct for relative fitness.

The average fitness values of the 50 bests at every
10th generation are shown in the Table IIl. Experimental
conditions are the same as those listed in Table 1. IPSO
demonstrated poorer convergence than IGA for most cases.
As the comparisons of PSO and GA showed that PSO
was superior to GA for less complex functions, such as
unimodal functions, and this seemed reasonable because
PSO’s velocity has a similar effect to that of a gradient, we
expected that IPSO would be superior to IGA for the simple
benchmark functions here. However, as can be seen from
Tables I and 111, reality did not match our expectations.

TABLE III
EXPERIMENTAL RESULTS OF IPSO vS. IGA: AVERAGE OF 50 RUNS.
GRAY CELLS INDICATE BETTER PERFOMANCE.

[ gen. | func. [ IGA [ TIPSO | func. [ IGA [ TIPSO |
T 617 | 567 33087 | 22544
10 135 [ 274 3137 | 269
20 070 [ LI 1082 [ 223
301 ! | 037 (oae ] P | s44 725
20 025 [032 422 714
30 0.16 [ 0.8 3.54 2038
T 1260 | 938 33 3.4
10 451 | 256 487 587
20 147 [ 184 3.76 231
0] 2 o3 618 ] O | 337 3.47
0 036 [ 416 3.20 313
30 022 [ 201 3.12 2.66
T 158 [ 164 020 | 0.19
0 744 | 0.76 0.07 0.14
20 550 | 030 0.05 0.13
0] B rasmio2 | 7| oo 0.10
0 344 ] 0.00 0.02 0.08
30 302 ] 0.00 0.02 0.06
T 413 | 1396 3949 | 4441
10 616 [ 67.0 7204 [ 6671
20 345 [396 7398 [ -699.8
301 ™ | 245 289 P | 7500 [70709
0 197 [ 237 7578 | 7227
50 160 [ 217 7607 [ <7294

III. TOLERANCE OF IPSO TO QUANTIZATION NOISE

The experiments in the previous section demonstrated that
the convergence characteristics of IPSO vs. IGA for functions
of different complexities did not match to those of PSO vs.
GA. There are two possible explanations: the degradation is
primarily caused by the first or second converter introduced
to simulate IPSO (see Fig. 2). In this paper, we focus on
the first converter, which is used to generate relative discrete
fitness values, and analyze the IPSO characteristics.

Our hypothesis is that IPSO is too sensitive to the quanti-
zation noise that is caused by the difference between actual
fitness and the quantized fitness given by the IPSO user as
discussed in the previous section. This noise is the main
reason for the poor convergence. If this hypothesis is correct
and we can develop measures to counteract the quantization
noise in fitness, we may obtain similar performance in
a comparison between IPSO and IGA as we did in the
comparison between PSO and GA. Since it is expected that
the search space landscapes of IEC tasks are simple, we hope
to achieve better performance with the improved IPSO.

To test our hypothesis, we observed IPSO performance
along with quantization noise as we changed the number
of quantization levels used for fitness (for 5, 10, 100, and
1000 levels) at the first converter mentioned in the previous
section. Experimental conditions were otherwise the same
as listed in Table I. Figs. 3 and 4 show these experimental
results for two of eight benchmark functions.

The new experimental results demonstrated that the con-
vergence performance of IGA did not greatly depend on
the number of quantization levels in fitness. On the other
hand, the convergence performance of IPSO became better as
fitness quantization levels increased, i.e in inverse proportion
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Fig. 3. IPSO and IGA searches for the F; function with four different
quantization levels.

to the quantization noise.

These experimental results clearly show that IPSO perfor-
mance is influenced by the amount of quantization noise. The
same results were also obtained for the other six benchmark
functions. We therefore conclude that our hypothesis is
correct, and unlike IGA (and GA), IPSO (and PSO) suffers
from excessive sensitivity to quantization noise.

IV. ANALYZING THE TOLERANCE OF EACH COMPONENT
OF IPSO VELOCITY TO QUANTIZATION NOISE

What component of IPSO is excessively sensitive to fitness
quantization noise? If it is possible to find a single component
which is responsible for the greatest sensitivity, we can focus
our efforts on improving it. All individuals share a common
Gpest> and each individual remembers its lpesr. The gpest
is the best searching point in the searching histories of all
individuals, while the ;.4 is the best searching point in the
searching history of a given individual. There is only one
Jbest, While each individual has a lpest.

A PSO’s velocity is determined by the velocity compo-
nents of gpesr and lpes; and a momentum velocity. A term
directed towards the g.s; determines the searching direction
of the whole PSO population, while a term directed towards
the lpes: tries to search for the best searching point in the
individual’s past.
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(b) IGA search for the F5 function.

Fig. 4. IPSO and IGA searches for the F» functions with four different
quantization levels.

In this section, we evaluate the noise tolerance of each
component determining PSO velocity. The velocity is ex-
presig:d accordirg to the fo&gwing equation. .

V new :wlvold+w2(P _?i)"*'w?)(Plbcst
V' velocity,

w: weight coefficient of each term,

P: positions of gpest and lpest,

x: current position of each individual

Gbest - ?1)

To evaluate the effect of quantization noise on each of
the three velocity components, we discretize the fitness of
one component while using unquantized fitness values for
the remaining two components. We test three combinations
of discrete fitness (with quantization noise) and noiseless
continuous fitness. The experimental conditions used are the
same as those from the previous section.

Fig. 5 shows the experimental results for the benchmark
functions of Fy, F5, and Fs. The results of IPSO from the
previous section and normal PSO are also illustrated in these
figures for reference.

The experimental results show that (1) IPSO performance
becomes worse than normal PSO when any of velocity
components include quantization noise in fitness and (2)
there is no signficant difference in sensitivity to quantization
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noise among the three velocity components. In conclusion,
we cannot improve the IPSO’s performance by improving
the noise sensitive of just one or two components, but rather
must solve the effect of noise sensitivity for all components.

V. IMPROVING THE NOISE TOLERANCE OF THE gpest
VELOCITY
A. Two Proposals

We introduce a method for reducing the negative influence
on the search performance of all individuals caused by the
fitness value quantization noise in the calculation of gpes:.

To accomplish this, we use the location of multiple gpests
that are assigned the same best fitness value using one of the
two below listed approaches.

(a) Let gyest = the center of gravity over all g,ﬁests

In this method, gy is calculated as the center of gravity
over the multiple gp.s; candidates to which the same highest
fitness is given (see Fig. 6(a)). Because fitness values are
taken over some fitness range as described for the converter
of section II-B, it is inevitable that the same discrete value
will be given to individuals which fall in the same partition.
Consequently, it is common for multiple individuals to have
the same highest fitness value. If the gp.s; is chosen at
random from the multiple g;_,s, the actual best may not be
chosen, due to the quantization of fitness levels. This method
(a) minimizes the fluctuation of the quantization noise and
stabilizes the gpes:. When the multiple best géests are near to
the global optimum, the method may accelerate convergence
as in the case of Fig. 6(a).

(a) method (a).

cluster B

cluster A

7
/

Fig. 6.  Determining the gpes using methods (a) and (b). ® and O are
Jvest andgy ., ’s, respectively.

v

(b) method (b).

(b) Let gyest = the center of gravity for the g..,s of each
cluster

In this method, the gp.s;+ candidates are grouped into
clusters, and gp.s¢ for each cluster is calculated as being
at the center of gravity of themultiple gbests in its cluster.
When an IPSO task is a multimodal function, and the fitness
values of local optima are near to that of the global optimum,
the multiple gpes+ candidates may be spread over a very
wide searching space. We cannot expect that their center of
gravity is close to the location of the actual gp.s; in this case,
and the method outlined in (a) may actually reduce TIPSO
performance. Method (b) solves this problem by introducing
clustering.



In method (b), local optima are separated by clustering
gpest candidates. Let’s call the center of gravity of the
multiple gl’;est candidates in each cluster sub-gp.s;. Each
individual uses its nearest sub-gp.s; instead of the gpes: as
shown in Fig. 6(b). As method (b) provides sub-gpes;s that
are close to the local optima, it improves upon method (a)
when operating in a multimodal searching space. In the next
section, we discuss how the K-means method [5] can be used
to determine the clusters.

B. Evaluations of the two Proposed Methods for Determin-
ing a More Accurate Gpest

The methods (a) and (b) from above are applied to the
eight benchmark functions used in section II with the exper-
imental conditions listed in Table I. Since the number of gpes:
candidates produced by a population with 20 individuals is
few, we set 2 as the number of clusters for the K-means
method.

Figs. 8(a) — (c) show the average convergence of the best
fitness after 50 runs of 3 of the 8 benchmark functions.

The method (a) worked well for the unimodal functions of
F and F5, while method (b) did not work for any benchmark
functions. Fjy includes many local minima and looks quite
different from the evaluation characteristics of IPSO users,
so this may explain the poor result.

Next, both methods (a) and (b) were applied to the 2-
D Gaussian mixture model shown in Fig. 7. This function
looks closer to a human evaluation characteristic than does
the tricky function of F5. The 2-D Gaussian mixture model
is expressed as F' = —2.8 %« N(—2,1.5) —3.4x N(3.4,1) —
2.1% N(1,1) — 1.8 * N(—4,0.8), where N(u,0) is a 2-D
normalized Gaussian function and p and o of x-axis and y-
axis are the same. The results in Fig. 8(d) show that there
is no significant difference until after around 50 generations,
whereafter method (b) outperforms the others. Although the
number of clusters that method (b) used in this experiment
was only two, and the Gaussian mixture model has four local
minima, the clustering of method (b) seemed to work well
and reduced the estimation error of gp.s; near the global
optimum.

fitness values

Fig. 7. The Gaussian mixture model used for an experimental evaluation.

VI. DISCUSSION AND CONCLUSIONS

We have made it clear that (1) the convergence of PSO is
deeply influenced by noise in fitness, and the noise sensitivity
of PSO is higher than that of GA and (2) IEC cannot avoid
quantization noise in fitness levels and due to this noise sen-
sitivity, IPSO performance becomes worse than that of IGA.
Following from these observations, we analyzed which factor
in IPSO is most susceptible to noise and determined that
(a) the velocity components which determine the searching
points for the next generation are the main points influenced
by the noise, and (b) the influence of the noise is similar
on all three velocity components. (¢) Consequently, we must
find solutions for reducing the noise sensitivity for each of
the three components.

We proposed two methods for reducing the influence of
the fitness quantization noise on the determination of gpes;-
From the relationships between the types of IEC tasks and
the comparison of PSO and GA, we can expect that IPSO
performance should exceed that of GA if we can reduce the
influence of the noise. The application of the methods to the
determination of lp.s; is not described in this paper; applying
the same idea of using the centers of gravity gravity of lpes:
candidates as the new [pe4:s is the next step of our research.

The following phase will be to analyze the effect of
the conversion in IPSO of fitness levels from relative to
absolute values and to clarify which factors are reducing
TIPSO performance. Based on that analysis, we will develop
methods to counteract these factors and make IPSO practical.
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