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This work presents an application of the Unstructured Multi-dimensional Tangent Hyperbolic 
Interface Capturing (UMTHINC), volume of fluid, scheme for the multi-phase solution of free 
surface flows on unstructured mesh. The applicability of the UMTHINC to practical engineering 
problems with interfacial multiphase flow is investigated and the accuracy of the results are reported. 
The UMTHINC is integrated into an in-house unstructured incompressible flow solver and used as 
an engine to capture the moving interface. The well-known dam break problems with and without an 
obstacle are used to evaluate the accuracy and performance of the scheme. This work is limited to 
two dimensional cases with no turbulence modeling. The relationship between the sharpness 
parameter β, and CFL number is examined and reported. The results are well analyzed and compared 
to experimental data wherever possible. The results show that the UMTHINC interface capturing 
method is able to accurately capture the interface without the complexity and computation cost of 
the geometrical reconstruction method.  
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1.  Introduction  

When considering flows with multiple fluids such as 
free surface flow and multiphase flow (droplets and 
bubbles), there are many approaches to solving such 
flows; the first and oldest approach is interface tracking, 
and the second is interface capturing. The latter is more 
popular with the CFD community due to its adaptability 
to different flow structures and different kinds of grids not 
to mention its computational efficiency.   

The Tangent Hyperbolic Interface Capturing (THINC) 
method was originally developed by Xiao et al1) as an 
algebraic method of capturing the discontinuous transition 
of physical properties associated with multi-phase flows. 
Since the method provides an algebraic model for the 
transition between different fluids, it becomes relatively 
easy to compute the convective fluxes which is the target 
of advection schemes. The method was extended to 
unstructured grid by Satoshi Li et al.2,3) and  Xie B. et 
al.4) and designated as Unstructured Multidimensional 
THINC (UMTHINC).  

In this paper, the interface capturing volume of fluid 
method UMTHINC is applied to unstructured grid in two-
dimensional free surface flow. The method is briefly 
described and the different numerical aspects of the 
methods are analyzed. The efficiency and accuracy of the 
method is investigated by solving the standard benchmark 
case problem of dam break with and without an obstacle. 

2. Numerical Method 

2.1 Transport equations 
The two-dimensional incompressible Navier-Stokes 

equation is considered for the present simulations. No 
turbulence modeling was applied in this work and the 
surface tension effect was neglected due to its limited 
effect in such body force dominated flows. In order to 
facilitate the handling of pressure boundary conditions, 
the pressure and body force are modified as shown in eqn 
(1) to recover the simple zero gradient pressure boundary 
conditions. 

( ) d
D

p
Dt

        
U

U g x  (1)

where U is the velocity vector,   is kinematic 
viscosity, dp  is the working pressure variable, g  is the 
gravity acceleration vector and   is the density. The 
working pressure dp  is defined as dp p   g x  with 
p  as the static pressure and x  as the position vector.  

In this work, the volume of fluid method is used to 
model multiple fluids by considering an indicator/color 
function to distinguish between each fluid and the rest of 
the fluids. Such function ( , )C tx  is defined such that it 
is equal to one if x  falls in fluid 1 and zero otherwise. 
The time evolution of the indicator/color function can be 
represented by the following advection equation 

( )
C

C C
t


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U U  (2)
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The volume fraction   in cell volume   is defined 
as  

1
( , )

ii

C x t dx



   (3)

Rewriting equation (2) in term of the volume fraction 

( )
t
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
U U  (4)

The density and viscosity are computed from volume 
fraction as  

(1 )

(1 )
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In the THINC method, the interface is defined as 
piecewise hyperbolic tangent profile, so the 
indicator/color function is now approximated as  

1
( ) (1 ( ( ( ) )))

2
C tanh P d  x x  (6)

where   is the sharpness parameter which controls how 
steep(thin) is the interface region between fluids,  

( ) 0P d x  is the interface equation and ( )P x  can be 
a linear or quadratic polynomial with coefficients based 
on the unit normal vector ( , )x yn n  and curvature matrix 

pqI , , ,p q x y , of the interface. In this work only linear 
interface construction is considered. The reader is referred 
to references2–4) for more details.  

2.2 Numerical Algorithm 
In this work, the two-dimensional incompressible 

laminar flow is solved using the non-iterative time 
advancement PISO method5–7) with 3 neighbor correction 
and one non-orthogonally correction steps during each 
time step to ensure that both the continuity and momentum 
equations are satisfied.  

First order time implicit scheme was applied for the 
time discretization. The second order linear upwind 
scheme was applied for the convection term and the least 
square method was used to compute the velocity gradients. 

The finite volume formulation of the UMTHINC 
method can be written as 

1 1

( ) ( )1 faces faces

ij ijf
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 With the face value defined based on the THINC 
method approximation 

( )

ij

i

S

f C x dS    
(8)

The numerical method used to implement UMTHINC 
can be summarized in the following steps: 

1- The calculation of the interface unit normal xn , yn          
2- Calculation of the coefficient d   
3- Calculation of the face flux. 
4- Advancing the volume fraction. 

Step1: The calculation of the interface normal ,x yn n  
The interface unit normal is computed from 

i

i







in  (9)

In reference4), the authors used the least square method 
to compute the gradient of the volume of fraction at the 
cell nodes/vertices then obtained the value at the cell 
center by simple averaging. We found such method to be 
computationally expensive, as it involves so many 
repeated memory visits, not to mention memory 
consuming. So other methods were attempted to calculate 
the gradient directly at the cell center. The cell-based least 
square method, LSQ, which computes the gradient based 
on the cell’s nearest neighbors (cells that share a common 
face) only was chosen to compute the gradient.  
Step2:  Calculation of the coefficient d 

An approximation formula for the coefficient d is given 
by references2), the expression is derieveds by performing 
the analytical integration in the dominating direction (the 
direction with the highest absolute value of the normal 
component) and numerical integration (using Gauss-
Legendre quadrature) in the other directions. In order to 
reduce the computational cost and obtain an algebraic 
expression for the coefficient d, only two points are used 
in the numerical integration. As a result, some error is to 
be expected in the value of d which means that  

1
( , )

i
i

i

C x t dx 


 
   (10)

Such error can cause instability and inaccuracy that 
would put some additional limitations to the maximum 
CFL number and maximum sharpness parameters that can 
be used. We found that this aspect requires more extensive 
study and investigation which is beyond the scope of this 
work. 
Step3: Calculation of the face flux 

Satoshi Li et al.2,3) and Xie B. et al.4) used Gauss-
Legendre Quadrature to approximate the face flux across 
the face using 1 or 2 points. We investigated the effect of 
the number of points on the accuracy of the computations 
and found the effect to be quite small (less than 5%). 
Step4: Advancing the volume fraction. 

The explicit Euler and minimum storage explicit 
Runge-Kutta schemes, RK46NL8), was tested for time 
marching and no significant difference, other than the 
additional computational cost of the six stage scheme, was 
found. Consequently, the Euler explicit scheme was used 
for the time advancement of the volume fraction in this 
work.  
 
3.  Results 
3.1 Dam break without an obstacle 

The computational domain is taken as 1 m by 1 m with 
100 cells in each dimension. Adaptive time stepping was 
adopted with a specified maximum value of CFL number 
and the simulation was conducted for 1.2 seconds. A 
sharpness parameter  of 3.0 was used for this simulation 
and interface. The water column is 0.2 m by 0.4 m with the 
density and viscosity of water taken as 997 kg/m3 and 
8.9x10-4 m2/s respectively. The density and viscosity of air 
were taken as 1.185 kg/m3 and 1.789x10-5 m2/s and the 
gravity acceleration was set to 9.81 m/s2.  
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   Three computational grids with different cell shapes 
were considered for this simulation and designated as A, B, 
and C as shown in Fig. 1. The number of cells for all three 
grids is roughly 10,000 cells with an average (effective) 
cell size of 0.01m.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) Grid A 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Grid B 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(c) Grid C 

Fig. 1: Computational grid in dam break case without 
      an obstacle 
The results were compared to experimental data of Hu 

and Seyoushi9) and Koshizuka and Oka10) as shown in Fig 
2.  

The computed results on all considered grids are 
consistent with each other and compare very well with Hu 
and Seyoushi9) but with some deviation with Koshizuka10). 

The deviation may be attributed to the difference in the 
water column height or the experimental setup such as gate 
motion11). 

Fig. 2: Comparison of the wave front speed with 
         experimental data9,10) 

 
An investigation into the relation between the sharpness 

parameter  and the max CFL number was conducted and 
the following findings were obtained. A sharpness 
parameter  between 2.5 and 4.0 is necessary to accurately 
resolve the interface within one or two cells at best. For this 
range, the maximum CFL number necessary to maintain a 
stable and bounded solution is 0.20, and 0.25 for triangular 
and quad mesh respectively. These findings are consistent 
with limits provided by Satoshi Li et al.3) for triangular and 
tetrahedral mesh. Exceeding these limits may result in 
unbounded values and eventually compromising the 
stability of the solver. Such behavior may be attributed to 
the inaccuracy in computing the coefficient value d , as 
mentioned in the previous section, or the inaccuracy of the 
interface normal values.  

For the remainder of this work, the max. CFL number 
used to produce the following results is taken as 0.15 
regardless of the mesh type.      

Fig. 3 depicts a comparison between the free surface 
profile on the three grids employed in the case. The 
comparison shows that the computed solutions are fairly 
similar with some differences on grid C at 1.0t s . This 
can be attributed to the poor behavior of triangular mesh 
near the walls, especially on such coarse mesh. Another 
point, which can also be seen in Fig 2, is that wave front 
on structured quad mesh is a bit faster than the other grids. 
A reason for this could be the inaccurate boundary layer 
treatment or insufficient orthogonality correction.  

3.2 Dam break with an obstacle 
The dam break with an obstacle was solved using the 

same solver configuration but with different grids. The 
initial configuration of the problem is shown in Fig. 4. The 
first grid is a uniform quad mesh with an average cell size 
of 0.005 m. 
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Grid A 

    

Grid B 

    

Grid C 

    
Fig. 3: Evolution of the free surface profile on three different grids for the dam break without an obstacle at time 

        instances (from left to right) t = 0.0, 0.25, 0.50, and 1.0 seconds 

 

Fig. 4: Dam break with an obstacle (Initial configuration)
 
The second is a triangular mesh (as shown in Fig. 5), 

which was refined near the wall boundaries, with an 
average cell size of 0.002 m. The two grids will be 
designated as grid  and grid  .  

The computed results are compared with the 
experimental data provided by Kolke12). For this problem, 
the comparison is qualitative and limited to the 
visualization of the free surface profile at specified times. 
Referring to Fig 6, the computed results compare well with 

the experimental data on both grids with some differences 
observed at t = 0.50 s. An interesting point is that the 
computed solution on grid   appears to agree with the 
experiment much better than grid  . This agreement could 
be the result of the excessive cell refinement near the walls 
and especially the obstacle walls. Another interesting 
observation is the loss of momentum in the computed 
solution at t = 0.5s as the water, unlike the experiment, 
doesn’t reach the downstream wall. The reason for this 
could be the insufficient accuracy of the momentum 
advection scheme and omission of the surface tension 
contribution which affects thin splash waves.  

 

Fig. 5: Computational grid ( grid  )  in dam break case  
         with an obstacle  

0.08m 

0.015m 

0.146m 

0.58m 

0.292m 

0.
45

m
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4. Conclusion  

   The UMTHINC method was applied to solve the 
violent impact of water resulted from dam break with 
sufficient accuracy when compared to experimental data. 
The method was found capable of handling both 
unstructured quad and triangular mesh with no additional 
complication in coding. The triangle mesh, however, was 
found to require further refinement near the boundary 
walls and in areas with expected presence of small droplets 
and bubbles in order to accurately resolve the interface.   

 

 

A relatively low courant cumber (CFL < 0.25) was 
found necessary to ensure an accurate and bounded 
solution of the volume fraction at a sufficiently high 
sharpness parameter (   > 2.5).  

Extensive study is necessary to determine the extent 
effect of the inaccuracy in calculating the coefficient d  
on the overall accuracy, boundedness, and stability of the 
solution. 

 

 
(a) t = 0.16s 

 
(b) t = 0.24s 

 
(c) t = 0.32s 

  

(d) t = 0.50s 

Fig. 6: Comparison of present numerical results with experimental data12 

grid    

grid    

grid    

grid    grid 

grid 

grid 

grid 

- 56 -



EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 04, Issue 01, pp. 52-57, March 2017 

 

References 

1) Xiao F, Honma Y, Kono T. A simple algebraic interface 

capturing scheme using hyperbolic tangent function. Int 

J Numer Methods Fluids, 48(9):1023-1040, 2005. 

2) Ii S, Sugiyama K, Takeuchi S, Takagi S, Matsumoto Y, 

Xiao F. An interface capturing method with a continuous 

function: The THINC method with multi-dimensional 

reconstruction. J Comput Phys, 231(5):2328-2358, 2012. 

3) Ii S, Xie B, Xiao F. An interface capturing method with 

a continuous function: The THINC method on 

unstructured triangular and tetrahedral meshes. J 

Comput Phys, 259:260-269, 2014. 

4) Xie B, Ii S, Xiao F. An efficient and accurate algebraic 

interface capturing method for unstructured grids in 2 

and 3 dimensions: The THINC method with quadratic 

surface representation. Int J Numer Methods Fluids, 

76(12):1025-1042, 2014. 

5) Versteeg HK, Malalasekera W. An Introduction to 

Computational Fluid Dynamics: The Finite Volume 

Method. Pearson Education Ltd.; 2007. 

6) Ferziger JH, Peric M. Computational Methods for Fluid 

Dynamics. Springer Berlin Heidelberg; 2012. 

7) Ubbink O. Numerical prediction of two fluid systems 

with sharp interfaces. 1997. 

8) Berland J, Bogey C, Bailly C. Low-dissipation and low-

dispersion fourth-order Runge–Kutta algorithm. 

Comput Fluids, 35(10):1459–1463, 2006. 

9) Hu C, Sueyoshi M. Numerical simulation and 

experiment on dam break problem. J Mar Sci Appl., 

9(2):109-114, 2010. 

10) Koshizuka S, Oka Y. Moving-Particle Semi-Implicit 

Method for Fragmentation of Incompressible Fluid, Vol 

123. American Nuclear Society; 1996. 

11) Ye Z, Zhao X, Deng Z. Numerical investigation of the 

gate motion effect on a dam break flow. J Mar Sci 

Technol., 21(4):579-591, 2016. 

12) Kölke A. Modellierung und Diskretisierung bewegter 

Diskontinuitäten in randgekoppelten Mehrfeldsystemen. 

2005. 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- 57 -




