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In this study, the aim was to reduce the complexity of the costly non-linear unsteady partial 
differential equations governing the aerodynamic flows into a simpler lower-dimensional model. 
Modal decomposition method; namely Proper Orthogonal Decomposition (POD) was applied in 
conjunction with the Modified Linear Stochastic Measurement (MLSM) to achieve a reduced order 
model with high accuracy and low computational cost. The methods were applied to the surface 
pressure values of a DU96-W180 Wind Turbine Airfoil with emphasis on stall control application. 
It was found that using only three POD modes, most of the system energy (up to 99%) was captured 
where the reconstructed pressure distribution matched the CFD one obtained from OpenFOAM 
simulations. Besides, using only two pressure probes, one upstream and the other downstream, the 
surface pressure field was reconstructed with high accuracy. This application is important in reducing 
the computational time from several hours to just few seconds for applications involving recursive 
solution of the Navier-Stokes equations.  

 
Keywords: POD, MLSM, CFD, OpenFOAM. 

 

1. Introduction 

Reduced-order models (ROMs) are mainly aiming at 
capturing detailed knowledge of the physical behavior of 
flow field via simple, robust, and convenient models. The 
nature of aerodynamic flows yields non-linear unsteady 
partial differential equations whose computation requires 
numerical algorithms to be implemented on parallel 
massive super-computers which is a very complex task [1]. 
Thus the essential need arises for other efficient tools to 
reducing the original complicated system of equations into 
a simple lower-dimensional model characterizing the 
physical process and capturing its behavior with relatively 
smaller number of degrees of freedom and lower 
computational cost [1]. The computation of a ROM could 
be done by either numerical simulations or measured 
experimental data. Those models were successfully 
applied in various areas like steady analysis and design of 
inviscid airfoils, thermal chemical processing, and 
dynamical models [2]. The major contributions in 
reduced-order modeling are currently focused on unsteady 
aerodynamics. However, they can be applied to steady 
aerodynamics applications too.  

Lumley [3] was the first to propose Proper Orthogonal 
Decomposition (POD) in 1967 as a neutral method for the 

study of coherent structures in turbulent flows. The 
attractiveness of the POD method lies in the fact that it is 
a linear procedure [2] and efficient in the design of robust 
feedback controllers leading to better controlled air flow 
over airfoils. Afterwards, much computational and 
experimental work has been done by using this method to 
validate its effectiveness [4]. To name a few, Siegel et al. 
in 2004 [5] have showed promising results for POD based 
feedback control when applied to a laminar flow around a 
circular cylinder. Moreover, controlling cylinder wake 
was achieved through POD models in 2006 by 
Luchtenburg et al [6], Siegel et al [7], and in suppressing 
the separation over airfoils by Ausseur et al. [8]. 

On the other hand, Modified Linear Stochastic 
Measurements (MLSM) method is applied alongside POD 
method to reconstruct the flow field for the whole domain 
knowing only one of the variables of the flow field at some 
few points. Adrian [9] was the first to propose applying 
linear stochastic estimation (LSE) in 1977 to a set of 
instantaneous data. He realized that using the 
instantaneous data information along with the statistical 
information inside the correlation tensor could yield a 
method to estimate the flow field. Next, this deduction 
was interpreted by Cole et al. [10] in the shear layer of an 
axisymmetric jet in 1991 where using the information 
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from only few radial locations, the radial velocity across 
the shear layer of the jet was estimated successfully. 
Afterwards, the research of Adrian and Cole et al. was 
expanded in 1994 by Bonnet et al. [11] to a 
complementary method where both the POD and LSE are 
combined to get POD’s time series coefficients using the 
instantaneous data of the velocity that was measured on 
coarse grids of hot wire. This method was formerly called 
the Modified Linear Stochastic Estimation (MLSE), but 
later renamed to Modified Linear Stochastic Measurement 
so as to distinguish between the actual measurement 
technique being done in this case and the estimation 
process usually associated with a plant estimation in 
control applications community. 

Recent applications of POD/MLSM by Schmit and 
Glauser in 2003 [12] and 2004 [13] to the wake flow for 
the wing of a Micro Air Vehicle (MAV) shows the validity 
of MLSM to external flows applications. They mounted 
dynamic strain gages on their MAV’s flexible wing and 
was able to reconstruct the wake velocity field with 
reasonable accuracy. Moreover, Glauser et al. [14] showed 
in 2004 that a POD/MLSM technique could reasonably 
estimate the velocity field over NACA-4412 airfoil from 
only the information given by pressure sensors at the 
surface of the airfoil. Besides, in 2009, El-Desouky [15] 
applied the POD/MLSM technique to control the unsteady 
Kármán vortex shedding for a circular cylinder and was 
able to achieve over 96% of the system energy using only 
4 modes.  

 
2. Proper orthogonal decomposition 

Simply, an eigenvalue problem needs to be solved. A 
linear system is formed from the eigenfunctions that can 
be computed from a set of data extracted from the system. 
Using a mathematical approach that is based on the 
Karhunen-Loeve decomposition in which any field 
variable is decomposed into a finite number of empirical 
orthogonal eigenfunctions derived from the set of the 
readings and are chosen to maximize their mean square 
projection onto the field variable. Thus, POD optimally 
describes the energy content in the flow using the 
minimum number of eigenfunctions [4]. The procedure 
that is followed here is similar to the work of El-Desouky 
[15]. However, the POD model input data are the airfoil 
surface pressure readings instead of the full domain 
velocity readings. That’s an alternative way to capture 
separation locations via pressure gradient values [4]. 
 
2.1 POD modeling 

Let i ( , ), i 1 , 2...,N=P x t , represents the set of N 
snapshots of the pressure flow field variable at the location 

( x , y )=x x ... The average value of these set of 
snapshots is calculated from: 

i N

i
i 1

1 ( , )
N

=

=

= ∑P P x t   (1) 

A new data set representing the pressure fluctuations or 
variation is: 

 i i= −Pv P P  (2) 
An optimal compact description of the data in Eqn. 2 

needs to be defined. According to Karhunen-Loeve 
expansion, such data set can be represented by the 
following series: 

si N

i i
i 1

( , ) ( ) ( )φ
=

=

= ∑Pv x t α t x        (3) 

where sN  is the number of the modes used, i ( )α t  is 
the amplitude of each mode, and i ( )φ x  is the 
eigenmode. In order to get the optimal set of the 
eigenmodes, φ , it requires that the basis functions 
(eigenmodes) to be the solution of the POD Fredholm 
integral equation: 

( , ) ( )d ( )φ φ′ ′ =∫C x x x x λ x        (4) 

where C  is a kernel calculated as follows: 
i N

i i
i 1

1( , ) ( , ) ( , )
N

=

=

′ ′= ∑C x x Pv x t Pv x t  (5) 

where ( , )′C x x  is the data set averaged two-point 
( , )′x x  correlation matrix, x  and ′x are two distinct 
points, and N  is the number of snapshots. Using the 
snapshots method so as to get the POD modes φ , an 
eigenvalue problem needs to be constructed: 

j N

ij j i
j 1

=

=

=∑ L ψ λψ     (6) 

where λ  and ψ  are the eigenvalues and eigenvectors 
of L , respectively, and L  is the correlation matrix 
defined by: 

T
ij i j i j

1 1( ) d
N N

= ⋅ = ∫L Pv Pv Pv Pv x     (7) 

where i j( )⋅Pv Pv  represents the dot (inner) product 
and the superscript T indicates the transpose of variation 
pressure vector. It is noted that L  is a symmetric 
positive definite matrix yielding real eigenvalues and 
orthogonal eigenmodes that represent a full set of 
solutions inside the data set space [16]. The eigenmodes 
φ  are calculated as follows: 

si N

i i i
i 1

( , )φ
=

=

= ∑ ψ Pv x t   (8) 

and i ( )α t  is calculated from: 

T
i ii i

i T
i i i i

( , ) d( , )( )
d

φφ
φ φ φ φ

⋅
= =

⋅
∫

∫
Pv x t xPv x tα t

x
     (9) 

To sum up, the POD model can be constructed by 
following the steps listed below: 
1. Extract the pressure snapshots iP  (readings sets) from 

numerical or experimental methods. 
2. Get the average pressure P  flow field parameter 

using Eqn. 1. 
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3. Get the pressure variance iPv  using Eqn. 2. 
4. Compute the correlation matrix ijL   using Eqn. 7. 
5. Get the eigenvalues λ  and eigenvectors iψ  by 

solving Eqn. 6. 
6. Get the basis functions iφ  using Eqn. 8. 
7. Get the mode value i ( )α t  using Eqn. 9. 
8. Reconstruct the pressure ( , )Pv x t  flow field 

parameter using Eqn. 3. 
 

The approximation degree of the data set solution 
( , )P x t  (the respect to 

sN ( , )P x t  (the reconstructed 
solution by POD using sN  modes), by checking how 
their ratio, NE , is CFD solution) can be measured with 
near to unity: 

    

si N

i
i 1

N i N

i
i 1

E

=

=
=

=

=
∑

∑

λ

λ
          (10) 

The above expression can also be used to show the 
relative energy associated with a specific mode to the total 
system energy. As proven by Sirovich [17], the POD 
expansion is optimal in the minimization of the mean 
square error between the full data set and its 
reconstruction, and required modes number describing the 
data set for a certain error as well. 

 
3. Modified linear stochastic measurement 

It’s a method used to represent flow field alongside the 
POD method. The Modified Linear Stochastic 
Measurements (MLSM) method simply is as follows: 
Given one of the variables of the flow field at some few 
points; the flow field for the whole domain can be 
reconstructed. In the previous section, it's shown that the 
POD method represents the flow field by two series 
functions; a space series function ( )φ x  and a time 
series function ( )α t . In this section, the MLSM method 

yields the value of  n ( )α t  by measuring pressure at this 
time at various distinct locations. Using the airfoil surface 
pressure only, MLSM technique provides the ability to 
predict the flow state around the airfoil for all the time 
domain. Compared to the POD technique in the 
calculation of the time expansion coefficient, MLSM is 
characterized by its speed, accurate results with fewer 
calculations, and better memory savings [4]. 
 
3.1 MLSM formulation  

The low-dimensional flow time expansion coefficient 
 n ( )α t  can be directly measured from a few number of 
sensors or CFD computed pressure readings located on the 
airfoil surface. Using these instantaneous pressure 
readings i ( )P t  at each streamwise location i  on the 
airfoil surface, the estimated POD time expansion 
coefficient can be describes as series expansion per each 
POD mode n  as follows [18]: 

 n ni i nij i j

nijk i j k

( t ) ( t ) ( t ) ( )
( ) ( ) ( ) ...

i , j , k [1 ,q ]

= +

+ +

∈

α A P B P P t
C P t P t P t     

                                

 
 

(11) 

where  n ( )α t  is the mode value using MLSM method or 
any higher order and q  is the number of the used 
pressure sensors (reading points). By applying truncation 
to the above series non-linear terms, we could obtain a 
simplified expression for  n ( )α t  [4]: 



2
n ni i i( ) ( ) O [ ( )]= +α t A P t P t        (12) 

The MLSM coefficients niA  are chosen in a way to 
minimize the mean squared error 

 nαe  which is defined 
as: 





n

2 2
n n ni i n[ ( ) ( )] [ ( ) ( )]= − = −αe α t α t A P t α t   (13) 

and by applying minimization condition 
 n

ni

0
∂

=
∂

αe
A

.  

It follows that it can be represented as a linear system 
of equations of matrix size q  in the unknowns vector 

niA  as follows: 

1 2 q

1 2 2

2
1 1

2
2

2
q q

q

1 2 q

 
 
 
 
 
 
  

P P P P P

P P P P P

P P P P P





   



n1

n 2

nq

 
 
 
 
 
  

A
A

A


n 1

n 2

n q

 
 
 =  
 
  

α P
α P

α P



(14) 

By solving the linear system in Eqn. 14, the MLSM 
coefficients can be extracted then substituted in Eqn. 12 to 
get the estimated POD coefficients. Next, the estimated 
pressure distribution over the airfoil can be reconstructed 
by combining the POD eigenfunctions i ( )φ x , that were 
calculated earlier, with the estimated POD coefficients 

i ( )α t  by rewriting Eqn. 3 as follows: 



sn N

n n
n 1

( , ) ( ) ( )φ
=

=

= ∑Pv x t α t x       (15)  

 
4. Results and discussions 

4.1 MLSM formulation  
In this section, the OpenFOAM®’s CFD solution of the 

air flow over a DU-96-W-180 airfoil, obtained by Halawa 
[19], is compared with the reconstructed POD solution 
using different number of modes Ns where the maximum 

sN 30= . The different factors affecting the 
reconstructed POD solution are shown and discussed. 
Besides, the distribution of the POD modes, eigenvalues, 
and the captured energy by using different number of 
modes are shown. Thereafter, using different number of 
modes, the POD modes and their corresponding solutions 
(reconstruction of the flow) are presented and compared 
to the CFD solution showing the error difference. The 
POD procedure was executed by implementing a 
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MATLAB® subroutine whose results are discussed as 
follows. The relative energy associated with each of the 
first five modes is bar graphed in Fig. 1. It clearly shows 
that only the first few POD modes possess the main energy 
of the system. 

 

Fig. 1: Relative energy of POD modes. 
 

Alternatively, Fig. 2 also verifies that using only 3 POD 
modes can capture most of the system energy up to 99%, 
while the first mode only possesses around 75%. Thereby 
the POD is a powerful tool for getting reduced order 
solution with only few number of modes (i.e. few 
calculations). 

 
Fig. 2: Captured energy with the number of used POD 

modes 
 

The log of the eigenvalues of the POD modes are shown 
in Fig. 3. It can be observed from that the first mode has 
the highest eigenvalue. Besides, as the number of 
eigenmodes increases their corresponding eigenvalues are 
nearly zero. Thus, Fig. 3 confirms that the solution can be 
reconstructed using few number of POD modes. 

 
Fig. 3: Log of eigen values with the number of used 

POD modes 
The first four pressure POD modes functions of the 

flow around the airfoil are shown in Fig. 4. It is obvious 
that the first mode function is the dominant mode mapping 

the usual pressure distribution with maximum energy 
content (physical representation). The second mode 
shows different distribution (less energy 
content/amplitude) when combined with the first one will 
yield more accurate resultant pressure distribution. The 
rest of the modes starting from the third mode are clearly 
of low impact on the pressure distribution verifying Fig. 1 
as expected. Furthermore, considering the pressure 
gradient of each mode, the first mode showed the highest 
gradient so it had the dominant effect on flow separation. 
Thus, first-mode is sufficient to predict separation and 
should be considered for future feedback control. 

 
Fig. 4: Pressure POD mode functions distribution of 

flow around the airfoil  
The variation of the amplitude of each of the first four 

POD modes with the non-dimensional time,  t is 
presented in Fig. 5. The non-dimensional is defined here 
as the actual time divided by L / U ∞  which is equal to 
100 in this case, where, L  is the airfoil chord length and 
U ∞  is the flow velocity. The calculations were done here 
using Eqn. 9. It can be concluded from Fig. 5 that as the 
mode number increases the frequency of the 
corresponding amplitude increases. Thus, accompanied 
by the results in Fig. 4, the highest impact on the flow field 
results from the first mode. 

 
Fig. 5: Variation of the amplitude of each POD mode 

with the non-dimensional time 

- 39 -



POD & MLSM Application on DU96-W180 Wind Turbine Airfoil 

The reconstruction of the average pressure field was 
done using Eqn. 3. Fig. 6 shows a comparison between the 
CFD solution obtained from OpenFOAM® and the POD 
reconstructed solution for the pressure coefficient 
distribution, Cp , defined in Eqn. 16, using one, two, three, 
and four POD modes in the expansion of Eqn. 3. The one-
POD-mode solution shows a very similar solution to the 
CFD solution because of the high-energy content however 
with some deviation due to missing energy portion 
(around 25%). The two-POD-mode solution shows more 
promising results with much higher accuracy that the first 
mode only. Starting from three-POD-mode solution, the 
results are matching the CFD solution due to achieving 
near the 99% of the energy content. 

 
Fig. 6: Comparison between CFD solution and POD 

solution using different number of POD modes 
 
 

21 (U )
2

ρ

∞

∞

−
=P

P PC   (16) 

Furthermore, some small pressure spikes were 
encountered near the minimum pressure point due to the 
usual formation of small separation bubble near this 
region. Thus, this region possess some sort of flow 
dynamic instability affecting the surface pressure values 
at this location. The root mean squared error, RMSE of the 
reconstructed POD solution with respect to OpenFOAM® 
CFD solution is shown in Fig. 7 by checking different 
accuracy levels (i.e. mode numbers) at the first non-
dimensional time t  1= . The RMSE is computed from 
Eqn. 17 by taking the square root of the mean of the 
squares of the error between the two solutions for all 
points along the airfoil surface with respect to the mean of 
the original CFD solution. 

Mean( )
RMSE

Mean( )
−

=
2

POD CFD
2

CFD

P P
P

        (17) 

From Fig. 7, it is verified that the error decreases 
drastically when using 2 POD modes and more. It 
confirms the convenience of the POD method in obtaining 
accurate solutions using few calculations. 

 
Fig. 7: RMSE variation with the number of used POD 

modes 
 

4.2 MLSM formulation  

In this section, the MLSM is applied to the 
OpenFOAM®’s CFD solution of the flow around a DU-
96-W-180 airfoil, obtained by Halawa [19], to check the 
accuracy of estimating the time expansion coefficient 
 n ( )α t  by using only the pressure readings from the 
probes (sensors) on the surface of the airfoil. Next, 
numerical results are presented for the MLSM technique 
by measuring the estimated time expansion coefficient 
 n ( )α t  directly and comparing it with the POD time 
expansion coefficients n ( )α t  calculated earlier rather 
than reconstructing the pressure field variable. The 
MLSM results are shown for 20 pressure sensors which 
are distributed, as in Fig. 8a, at equidistant points on the 
airfoil surface along the chord line (x-axis) spanning the 
region from the separation bubble till the separation wake 
zone. Sensitivity study is held for the influence of the 
number of the pressure sensors used and their locations in 
the following section. 
 

 
     (a)                     (b)  

Fig. 8: Sensitivity study using 20-sensors. (a) Sketch of 
airfoil DU-96-W-180 and 20-sensor locations. (b) 
Error distribution between the first mode of POD 
and MLSM for 20 pressure sensors 

 
According to the results of the POD study earlier, it was 

clear that the dominant modes are the first few modes. 
Thus, in this study, the first mode coefficient (captures  
75 % of the total system energy) is being investigated for 
both POD and MLSM methods. Fig. 8b shows the error 
distribution between the first mode of POD and MLSM 
corresponding to the 20 sensor locations in Fig. 8a. 
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4.2.1 Sensitivity study for sensors number and location 

In this section, the influence of the number of the used 
pressure sensors and their locations along the airfoil 
surface on the estimated time expansion coefficient 

1 ( )α t was investigated. Obviously, as shown from 
previous results, the magnitude of the pressure 
fluctuations downstream of the airfoil, as the separation 
wake region is approached, is larger than its upstream 
value. Consequently, it could be predicted that the 
pressure reading sensors downstream will represent the 
flow effectively during the MLSM calculation of 1 ( )α t . 
Fig. 9a to Fig. 9d show the sensors locations and error 
distribution using 2 pressure sensors points for upstream 
and downstream cases, respectively. Besides, Fig. 9e and 
9f shows one-upstream and one-downstream sensors 
locations and error distribution, respectively. 

 

      (a)     (b)  

 

      (c)            (d)  

 

      (e)     (f)  
Fig. 9: Sensitivity study using 2-sensors. (a) 2-upstream, 

(c) 2-downstream, (e) 1-upstream and 1- downstream. 
(b), (d), and (f) Corresponding error distribution 
between the first mode of POD and MLSM for 2 
pressure sensors located at (a), (c), and (e) 
respectively. 

 
Next, the number of the sensor locations was increased 

from 2 to 10 and the 1 ( )α t distribution was checked. 
Similarly,  Fig. 10a to Fig. 10d show the sensors 
locations and 1 ( )α t distribution using 10 pressure 

sensors points for upstream and downstream cases, 
respectively. 

 
     (a)     (b)  

 
    (c)     (d)  

Fig. 10: Sensitivity study using 10-sensors. (a) 10-
upstream, (c) 10-downstream. (b) and (d) 
Corresponding error distribution between the 
first mode of POD and MLSM for 10 pressure 
sensors located at (a) and (c) respectively. 

 
In conclusion, the previous sensitivity study shows that 

the downstream pressure sensors give accurate result only 
after increasing the number of sensors from 2 to 10. 
Besides, Fig. 8b with 20 pressure sensors shows the best 
accuracy of all presented cases. It shows great agreement 
between the POD results and MLSM ones for the same 
first mode value. Thus, it would represent the flow field 
accurately around the airfoil. Consequently, as the number 
of sensors increases, better accuracy is achieved. However, 
a more practical choice would settle on the case of 2 
pressure sensors (one upstream and the other downstream), 
since it yields acceptable accuracy and would save much 
computations and experimental implications. 
 
4.3 Flow control applications 

One of the promising applications of the POD/MLSM 
method is the closed loop (feedback) active flow control 
(AFC). It’s worth mentioning that AFC can be used in 
many applications to achieve drag reduction, lift 
enhancement, transition delay, separation postponement, 
mixing augmentation, flow-induced noise suppression, 
turbulence management ... etc. In wind energy field, 
active control of the blade flutter of wind turbines using 
aerodynamic control receives great attention recently. The 
role of the POD/MLSM method in the AFC is that it yields 
is a simplified governing equation for the flow that will 
aid in controlling the boundary layer separation in any 
feedback control application upon the block diagram 
shown in Fig. 11. 
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Fig. 11: Closed loop (feedback) active flow control 
block diagram [15]. 

 
The procedure involved in the above block diagram 

could be simply summarized as below: 
 Reading the surface pressure distribution at each time 

step. 
 Using MLSM method to get estimation of the 

dominant i ( )α t  for which we can estimate the 
pressure field. From previous results, the first few 
coefficients have the largest amplitude, largest energy 
capturing and so largest impact in flow, so they are 
used as the controller input. 

 The values of i ( )α t  are compared with      
i ( )α t no_separation to get error as the controller input for 

feedback controller. 
 Then the controller equation depends on the control 

technique.0 (e.g. excitation velocity = fn (error, gain, 
frequency, time)). 

 
Regarding the computational time involved, the CFD 

solution for the case of Halawa [19], took around 6 hours 
on a Linux 12-core workstation. However, the 
POD/MLSM subroutine just took 2-3 seconds to compile 
and generate the physical solution with an acceptable 
accuracy. Thus, the reduction of the system dimensions 
will have a great impact on the feedback control time 
delay problem. 

 

5. Conclusions 

• The nature of aerodynamic flows yields non-linear 
unsteady partial differential equations whose 
computation requires numerical algorithms to be 
implemented on parallel massive super-computers 
which is a very complex task. Thus the essential need 
arises for other efficient tools to reducing the original 
complicated system of equations into a simple lower-
dimensional model characterizing the physical process 
and capturing its behavior with relatively smaller 
number of degrees of freedom and lower 
computational cost. 

• Using POD reduced order model had saved much 
computational time and expressed the flow field 
variables with high accuracy and less complexity. It 
was shown that using only 3 POD modes, most of the 
system energy could be captured (up to 99%) with 
RMS error less than 1%. 

• Using POD in conjunction with MLSM technique was 
also efficient in achieving reduced order model using 
only few surface pressure readings. Using only 2 

pressure sensors, one upstream and the other 
downstream, resulted in reasonable accurate solution. 

• By increasing the number of pressure sensors 
(readings), the accuracy of MLSM increases. However,  
to be more practical, just few readings should be used 
with reasonable accuracy. 

• Application of ROMs is important in reducing the 
computational time form several hours to just few 
seconds for applications involving recursive solution 
of the Navier-Stokes equations or any complex set of 
equations. 

• Using the surface pressure values as an input to the 
POD/MLSM method instead of the whole velocity 
domain, is an efficient way to detect the locations of 
separation and apply the AFC effectively. 

• The MLSM technique has a major impact in reducing 
the delay time in feedback control applications 
requiring recursive solution of complex sets of 
equations. This would be considered for future 
application in AFC. 

• The extension of this application to whole blade and 
full wind turbine scale is an essential step to be 
addressed in the future work. Besides higher Reynolds 
numbers effect need to be investigated alongside 
various turbulence modeling.  
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