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Abstract: We propose a triple comparison-based interactive differential evolution (IDE)
algorithm and differential evolution (DE) algorithm. The comparison of target vector and
trial vector supports a local fitness landscape for IDE and DE algorithms to conduct a
memetic search. In addition to the target vector and trial vector used in canonical IDE
and DE algorithm frameworks, we conduct a memetic search around whichever vector
has better fitness. We use a random number from a normal distribution generator or a
uniform distribution generator to perturb the vector, thereby generating a third vector. By
comparing the target vector, the trial vector, and the third vector, we implement a triple
comparison mechanism in IDE and DE algorithms. A Gaussian mixture model is used as
a pseudo-IDE user for evaluating the IDE and 25 benchmark functions from the CEC2005
test suite are employed to evaluate the DE. We compare our proposals with canonical
IDE and triple comparison-based IDE implemented by opposite-based learning and apply
several statistical tests to investigate the significance of our proposed algorithms. We also
compare our proposals with several evaluation metrics, such as number of function calls,
success rate and acceleration rate. Our proposed triple comparison-based IDE and DE
algorithms show significantly better optimization performance arising from the evaluation
results. We also investigate potential issues arising from our proposal and discuss some
open topics and future opportunities.
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1 Introduction

Evolutionary computation (EC) is a meta-heuristic
technique that is used to solve complex problems
which are hard to solve using conventional optimization
methods [13]. Interactive EC (IEC) is a niche research
field within the EC community that embeds the feeling,
knowledge, and experience of a real human into EC
optimization, so as to make IEC algorithm converge
to a real human’s preference rather than to the
fitness function(s) of an optimized problem. Extending
the range of IEC applications scale and enhancing
IEC algorithm performance (including improving IEC
interface) are two primary research subjects within
the IEC field. One of these involves applying IEC
optimization principles and techniques to a variety of
industrial and commercial applications that require the
assistance of a real human in the optimization process.
The other pursues the discovery of more effective and
efficient IEC algorithms or interfaces to obtain a better
optimization result, while at the same time relieving
human fatigue due to psychological and physiological
limitations of real humans when they interact with an
IEC algorithm.

There are three research perspectives in IEC for
obtaining a more effective and efficient IEC algorithm
and interface [5]. The first is to approximate the
fitness landscape of a real human’s subjective evaluation
space, attempting to build optimized problem structures
to assist the IEC search. Several methods have
been proposed which deal with this aspect, such as
dimensionality reduction techniques [7], Fourier analysis
[6], and support vector regression [8]. The second
perspective is to develop a new search mechanism
within a canonical IEC algorithm to enhance its
performance or to design a better interface, which
improves human-computer communication. A kernel
method-based human model is studied to assist the
IEC user in reducing his/her fatigue [10]. The third
research approach is to create a new IEC/EC algorithm
in order to achieve better performance of IEC/EC
optimization [3, 4]. This paper takes the second
perspective and tries to develop a new search mechanism
in canonical differential evolution to enhance its
optimization performance.

Differential evolution (DE) is a type of population-
based optimization algorithm [11]. It searches for the
global optimum using a differential vector between two
individuals for which the length is in proportion to the
distribution size of the individuals in general and for
which each parent individual generates its offspring. DE
has the characteristics of a paired comparison scheme
where there is a competition between the target vector
and the trial vector. Its benefit for IEC application is
that it allows a real human to give fitness based on the
paired comparison of two objects rather than to give
multiple fitness values for several objects at the same
time. Paired comparison-based IDE does not modify any
parts of its algorithm because the algorithm already
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includes paired comparison by nature. Since pairs of
individuals are presented to the IDE user for comparison
without modifying the canonical DE algorithm, the IDE
is expected to be a promising IEC method. Because
each human has his or her limitations for assigning
fitness to IEC algorithms from one generation to the
next, the paired comparison can significantly relieve
IEC user fatigue [14]. Reference [9] uses the opposite
point(s) of a target vector and/or a trial vector from
opposition-based learning for implementing triple and
quadruple comparison schemes in canonical IDE and DE.
This can significantly enhance optimization performance
of canonical IDE and DE, especially for relieving user
fatigue in IDE applications.

By drawing inspiration from multiple comparison
implementation in IDE algorithm, fitness landscapes can
support information on search conditions and problem
structures to develop a new multiple comparison-based
IDE algorithm. There are a variety of representations
of the fitness landscape. One specific representation
from an IDE algorithm is that of the fitness of a
target vector and trial vector. When the fitness of the
target vector is better than that of the trial vector, it
indicates that searching around the target vector has
the potential to obtain the global optimum with higher
probability, and vice versa. Based on this hypothesis,
in this paper, we propose a new triple comparison-
based IDE, which conducts a memetic search around
whichever is the better vector, be it the target vector
or the trial vector. We implement the memetic search
by perturbation with a normal distribution generator
or a uniform distribution generator. The novel memetic
search of the local fitness landscape obtained from a
paired comparison of target vector and trial vector
highlights the originality of this work. We use a Gaussian
mixture model (GMM) as a pseudo IDE user to evaluate
our proposal, and 25 benchmark problems to evaluate
our proposal in DE. From the evaluation of our proposal,
this new triple comparison-based IDE/DE algorithm
can obtain a better optimization performance than a
canonical IDE/DE algorithm.

Following this introductory section, we briefly review
conventional paired comparison-based IDE and DE,
triple and quadruple comparison-based IDE and DE
by using opposition-based learning in section 2. Section
3 presents our new triple comparison-based IDE and
DE by memetic search with the local fitness landscape
obtained from a paired comparison of target vector and
trial vector. The memetic search is implemented by
conducting a perturbation from a normal distribution
generator or a uniform distribution generator. In sections
4 and 5, we evaluate our proposal by using GMM and
25 benchmark functions for IDE and DE, respectively
We analyze and discuss some open topics and issues
arising from the evaluation results of IDE and DE in each
section. Finally, in section 6, we conclude the current
work and present some future opportunities, which invite
investigation.

Copyright c⃝ 2009 Inderscience Enterprises Ltd.
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2 A Brief Review of Related Works

2.1 Notations

In this section, we present a brief review on canonical
DE, paired comparison-based IDE, triple and quadruple
comparison-based IDE, and related concepts, such as
optimization and opposition-based learning. We make
some notations in advance.

In general, the optimization process can be described
as follows. Given the following single objective function
{f : Rn −→ R}, the optimization algorithm seeks the
point x ∈ Rn, for which f(x) has the minimal value.

There are some vector concepts in IDE/DE
algorithm, i.e., base vector (basei,j), target vector
(targeti,j), trial vector (triali,j), and mutant vector
(mutanti,j), i and j is the index of individual and
index of dimension, respectively. There are two special
parameters in DE, scale factor F and crossover rate Cr.
The same concepts and notations also appear in the IDE
algorithm.

2.2 Differential Evolution

Differential evolution (DE) is a population-based
optimization algorithm [11]. DE uses a differential vector
from two random individuals to perturb a base vector
(the vector with best fitness value (DE-best) or a
third random vector (DE-rand) from a population) to
implement a mutation operation and obtain a mutant
vector. It conducts a crossover operation between the
mutant vector and the target vector to create a trial
vector. Following this, it compares the fitness of the
target vector and trial vector to enable the better one to
survive into the next generation. The formal expression
of this search mechanism is shown in Eq. (1). F is a scale
factor that needs to be set whose range is usually within
(0, 2] from the discussion of [11]. Note that the target
vector, base vector, and two random vectors are four
different vectors, so the minimum size of a population is
four in DE.

mutanti,j = basei,j + F ∗ (x1i,j − x2i,j). (1)

2.3 Paired Comparison-Based Interactive
Differential Evolution

When the individuals of an IEC optimization are
voice or video, i.e., time series objects, IEC users
have to compare an individual with others in their
memory. As a result, IEC users’ mental stress and
fatigue become overwhelming. It has been pointed out
that human beings have limited memory and cannot
process more than five to nine different pieces of
information simultaneously [2]. The population sizes
of many IEC systems frequently exceed this memory
limitation. Consequently, displaying 10 – 20 voices,
images or videos to an IEC user is not practical.

Algorithm 1 Paired comparison-based interactive
differential evolution and differential evolution
algorithm. PS: population size; Dim: dimension; G:
generation; maxIter: maximum generation; i: index
of individual; j: index of dimension; f(*) is a fitness
function.
Generate an initial population.
Evaluate the fitness for each individual.
for G = 1 to maxIter do
for i = 1 to PS do
k=rand(1,Dim)
for j = 1 to Dim do

if rand[0, 1) < Cr or j == k then
mutanti,j = basei,j + F ∗ (x1i,j − x2i,j)
triali,j = mutanti,j

else
triali,j = targeti,j

end if
end for

end for
/*Paired Comparison Mechanism*/
for i = 1 to PS do
if f(triali) < f(targeti) then

replace targeti with triali
end if

end for
end for
return the optimum

Paired comparison-based IEC solves this problem
by replacing comparison of all individuals with paired
comparisons. This is expected to reduce IEC user
fatigue. One of the concrete implementations of
paired comparison is a tournament interactive genetic
algorithm (IGA) [1]. The obtained fitness of tournament
IGA has noise because the tournament is not a round
robin competition against the canonical IGA algorithm.
The noise influences an IGA selection operation so as to
reduce IGA search performance. One promising subject
for future research is to improve the method by which
efficient paired comparison-based IEC algorithms are
implemented.

The IDE/DE algorithm includes paired comparison
naturally as part of Algorithm 1. Paired comparison-
based IDE does not revise any parts of its canonical
DE algorithm [14]. Since it displays paired comparisons
of individuals to an IDE user with the canonical DE
algorithm, the IDE algorithm is expected to be a
promising paired comparison IEC method.

2.4 Multiple Comparison-Based Interactive
Differential Evolution

2.4.1 Opposite Point

Opposition-based learning (OBL) [15] is used for
machine learning [16] and acceleration of optimization
search (OBL optimization). The philosophy of OBL
is that if the original hypothesis is not adequate, we
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should consider it in respect to its opposite hypothesis.
Suppose that x ∈ [a, b] is a real number, the opposition
point of x is given as OP (x) = a+ b− x. By extending
this principle into a multi-dimensional space, opposition
point, OP (X), of one point on a n-dimensional
real space, X =(x1, x2, ..., xn) (xi ∈ [ai, bi]; i = 1, 2, ..., n;
ai, bi ∈ R), is given by Eq.s (2) and (3).

OP (xi) = ai + bi − xi. (2)

OP (X) = {OP (x1), OP (x2), ..., OP (xn)}. (3)

2.4.2 Triple and Quadruple Comparison-Based
Interactive Differential Evolution

The triple and quadruple comparison-based IDE uses
not only a target vector and a trial vector, but
also their opposition vector(s) at every comparison in
the IDE search [9]. There are three implementations
for combining target vector, trial vector, and their
opposition vector(s). Two triple comparison-based IDEs
are implemented by comparing a target vector, a trial
vector and either the opposite point of the target vector
or the opposite point of the trial vector. A quadruple
comparison-based IDE is implemented by comparing a
target vector, a trial vector, and the opposite points of
the target vector and the trial vector.

Two different mirror points for calculating opposition
points can be used. One is the center gravity point of an
individual distribution, the other is the whole searching
space because a big shift of individuals may accelerate
DE convergence especially in the early generations. From
the empirical study of these two methods, there is not
a significant difference between the two methods [9].
Accordingly, we use the latter one, whole searching
ranges, in our experimental evaluation.

3 Memetic Search in Interactive Differential
Evolution and Differential Evolution for
Implementing a Multiple Comparison
Mechanism

3.1 Local Fitness Landscape from Paired
Comparison

The fitness landscape is originally a biological concept
that is used to visualize the relationship between a
biological entity and its evolutionary process. In the
evolutionary optimization field, it presents the solution
of optimized problems and the extent to which these
problems are capable of being solved. Most such
problems can be represented by fitness function(s).
In IEC, the fitness landscape can act as a tool to
analyze human models of physiology or psychology,
which present a human’s preference, according to the
optimized objective of an IEC application.

In the IDE/DE, the fitness of the target vector
and the trial vector supports a local fitness landscape
when comparing their paired comparison fitness

Target

Trial

Fitness

Search Space

Promising search direc!on

Promising search range

Figure 1 The local fitness landscape for the paired
comparison of the target vector and the trial
vector in IDE/DE, taking a maximum
optimization problem as an example. The fitness
of the trial vector is higher than that of the target
vector in this figure, meaning that the promising
search range is around the trial vector, the
promising search direction is from the target
vector to the trial vector, and vice versa. We
apply memetic search by perturbing the vector
with better fitness by a generator of some
distribution (we use a uniform distribution
generator or a normal distribution generator in
this paper) to implement a triple
comparison-based IDE/DE algorithm.

value. The individual (either target vector or trial
vector) with better relative fitness indicates a search
region where there may be a global optimum. The
implied information about search conditions and
landscape provide the opportunity to improve IDE/DE
optimization performance. Figure 1 illustrates the local
fitness landscape for the paired comparison of a target
vector and trial vector in the IDE/DE. If the fitness of
the trial vector is better than that of the target vector,
it means that by searching around the trial vector,
there would be a great probability of finding the global
optimum, and vice versa. The promising search direction
is from the vector with lower fitness to the vector with
higher fitness, and the promising search range is around
the vector with higher fitness.

3.2 Memetic Search for Implementing a New
Triple Comparison Mechanism

With the local fitness landscape obtained from paired
comparison in IDE, we propose a memetic search
method in the IDE algorithm to implement a new
triple comparison-based IDE/DE. When we find a vector
with higher fitness from comparison of target and
trial vectors, the IDE/DE algorithm can conduct a
memetic search by perturbing the vector to generate a
third vector in order to implement a triple comparison
mechanism. Here the originality of our proposal can be
seen. The promising search direction is from the one
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with lower fitness to the other, and perturbation can
be implemented by adding a random number from a
generator. In this paper, we use a normal distribution
(Eq. (4), µ = 0, σ = 1) or a uniform distribution (Eq.
(5), a = 0, b = 1) as generators in our experimental
evaluation.

N(x, µ, σ2) =
1

σ
√
2π

exp(
−|x− u|2

2σ2
). (4)

U(x, a, b) =
1

b− a
. (5)

Besides a target vector and a trial vector in the
canonical IDE/DE framework, the third vector is from
perturbation on whichever the better of the target
and trial vectors. Eq.s (6) and (7) show the two
implementations of the third vector (thirdi,j) from a
normal distribution generator and a uniform distribution
generator, respectively. Abbreviations, betteri,j and
worsei,j , are whichever the vector with better and worse
fitness from target vector and trial vector in Eq.s (6)
and (7). Thus we can perform a memetic search in the
IDE/DE algorithm. After we obtain a third vector from
Eq. (6) or Eq. (7), the IDE/DE algorithm compares the
target vector, the trial vector, and the third vector to
implement a triple comparison mechanism in IDE/DE.

Boundary condition handling presents a problem
when we conduct a memetic search in IDE and DE.
The third vector produced by the memetic search can
be occasionally generated beyond the current search
range. When this condition happens, we should replace
it with a reasonable individual or give up the memetic
search at this time to make sure the IDE/DE searches in
the search range of the problem under optimization. In
the evaluation, we generate a uniform random number
within the search range when this condition occurs.

thirdi,j = betteri,j + (betteri,j − worsei,j) ∗N(0, 1).(6)

thirdi,j = betteri,j + (betteri,j − worsei,j) ∗ U(0, 1).(7)

The evaluation metric for IDE is user fatigue extent
rather than the number of fitness calculation, which is
related with user fatigue but is not in proportion to
it. Suppose to compare the user fatigues of choosing
the best IDE object between two objects and that
among three or four objects. The mental load from
few comparisons must be less than that from more
comparisons, but this does not that the mean mental
load from the triple comparison is 1.5 times greater
than that from a paired comparison. Even when IDE
tasks are time series optimization problems, such as
music or movies, where we cannot compare spatially
and simultaneously, an IDE user’s mental load must
increase, but its ratio may not become 1.5 times as
well. Generally speaking, when the number of individual
comparisons is within the number that an IDE user can
memorize, IEC user fatigue is lower; when it exceeds
the maximum memory capacity, user fatigue drastically
increases. Paying attention to this fact, we develop

our proposed methods requiring triple comparisons and
aim to reduce the total user fatigue by accelerating
IDE search even if the user fatigue of each comparison
increases. This is the philosophy motivating our use of
a multiple comparison mechanism in our proposed IEC
algorithm.

4 Optimization Evaluation and Discussion
of Interactive Differential Evolution

4.1 Benchmark Functions and Experimental
Conditions

User fatigue is an important evaluation factor for IEC.
When mental loads for evaluating individuals are the
same, we may say that the IEC user fatigue is in
proportion to the total time until the IEC user finds a
satisfactory individual. However, when mental loads for
evaluating one individual are different due to different
IEC interfaces, this relation is not always true. There
are cases where IEC user fatigue is low thanks to easy
evaluation even if total evaluation time until to the
goal is long. There are opposite cases where IEC user
fatigue is low thanks to short total evaluation time even
though the mental load for one evaluation is high. We
need to evaluate acceleration methods by analyzing the
load of one evaluation and convergence characteristics
through IEC simulation, and then we need to conduct a
human subjective evaluation to confirm the simulation
results. This paper performs an IEC simulation of the
former stage. We use Gaussian mixture models (GMM)
as pseudo-IDE user for evaluation in this section.
Concretely, we combine four Gaussian functions (k = 4)
and implement the characteristics expressed by Eq. (8)
in 3 dimensions (3-D), 5-D, 7-D, and 10-D. Figure 3 is a
3-D representation of a Gaussian mixture model.

GMM(x) =
k∑

i=1

ai exp(−
n∑

j=1

(xij − µij)
2

2σ2
ij

). (8)

where

σ =


1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2

 .

µ =


−1 1.5−2 2.5 −1 1.5−2 2.5 −1 1.5
0 −2 3 1 0 −2 3 1 0 −2

−2.5−2 1.5 3.5−2.5−2 1.5 3.5−2.5−2
−2 1 −1 3 −2 1 −1 3 −2 1

 .

ai =
(
3.1, 3.4, 4.1, 3.0

)T
.
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Table 1 Abbreviations used for the proposed algorithms and the algorithms used for comparison in the experimental
evaluations.

Abbreviations Meaning
(I)DE-best standard (I)DE/best/1/bin [11].

(I)DE-best-target triple comparison-based (I)DE with opposite point of target vector, the base vector is the
best vector, there are three points used in this algorithm, i.e., target vector, trial vector, and
opposite point of target vector [9].

(I)DE-best-trial triple comparison-based (I)DE with opposite point of trial vector, the base vector is the best
vector, there are three points used in this algorithm, i.e., target vector, trial vector, and
opposite point of trial vector [9].

(I)DE-best-normal triple comparison-based (I)DE by memetic search with normal distribution, the base vector
is the best vector, there are three points used in this algorithm, i.e., target vector, trial
vector, and a point from disturbing whichever the better one of the target and trial vectors
with a normal distribution.

(I)DE-best-rand triple comparison-based (I)DE by memetic search with uniform distribution, the base vector
is the best vector, there are three points used in this algorithm, i.e., target vector, trial
vector, and a point from disturbing whichever the better one of the target and trial vectors
with a uniform distribution.

(I)DE-rand standard (I)DE/rand/1/bin [11].
(I)DE-rand-target triple comparison-based (I)DE with opposite point of target vector, the base vector is the

random vector, there are three points used in this algorithm, i.e., target vector, trial vector,
and opposite point of target vector [9].

(I)DE-rand-trial triple comparison-based (I)DE with opposite point of trial vector, the base vector is the
random vector, there are three points used in this algorithm, i.e., target vector, trial vector,
and opposite point of trial vector [9].

(I)DE-rand-normal triple comparison-based (I)DE by memetic search with normal distribution, the base vector
is the random vector, there are three points used in this algorithm, i.e., target vector, trial
vector, and a point from disturbing whichever the better one of the target and trial vectors
with a normal distribution.

(I)DE-rand-rand triple comparison-based (I)DE by memetic search with uniform distribution, the base vector
is the random vector, there are three points used in this algorithm, i.e., target vector, trial
vector, and a point from disturbing whichever the better one of the target and trial vectors
with a uniform distribution.
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Figure 3 3-D view of a Gaussian mixture model.

4.2 Algorithm Parameter Setting and Evaluation
Metrics

We test each benchmark function for 20 generations
and 30 independent runs. The parameter settings
of canonical paired comparison-based IDE, triple
comparison-based IDE and our proposed new triple
comparison-based IDE by a memetic search are listed in
Table 2. Figure 2 shows the average convergence curves

of the best fitness values over 30 runs for all 4 benchmark
functions. Table 3 shows their mean values.

In IDE/DE algorithm frameworks, there are two
parameters that should be specially considered, i.e., scale
factor F and crossover rate Cr. Regarding scale factor
F , we set it as 1 following from the discussion of [11],
which suggested that F should lie within (0,2]. If F is too
large, the convergence of IDE/DE becomes slow. On the
contrary, if it is too small, it leads to local optimum for
the multi-modal problems. So we choose it as 1, neither
too large nor too small. Regarding crossover rate Cr, if
it is 1, which means the trial vector is equal to mutant
vector, it reduces the processing time of the crossover
operation. The same considerations are taking in setting
the parameters for the DE evaluation. Abbreviations
used in Figure 2 and Table 3 are given in Table 1.

We apply the Wilcoxon signed-rank test on
our proposed algorithm and the algorithms used
to evaluate the significant difference of the two
algorithms. Additionally, we apply the Friedman test and
Bonferroni-Dunn test on one of our proposed algorithms
and the comparision algorithms to rank them and
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Figure 2 Average convergence curves for 30 running with 3-D, 5-D, 7-D, and 10-D Gaussian mixture models.

Table 2 IDE experiment parameters setting.

population size 20
max. search generation 20
dimensions of benchmark functions, D 3, 5, 7, 10

# of trial runs 30
scale factor, F 1
crossover rate, Cr 1

evaluate the significance of their differences. Note that
we take our proposed algorithm as a control algorithm
in the Bonferroni-Dunn test.

4.3 Discussion on Optimization Performance of
Our Proposal

In our proposed algorithm, when we find the promising
search region from a comparison of target vector and
trial vector, we conduct a memetic search in the region to
implement a triple comparison-based IDE so as to relieve
IDE user fatigue. Although the IDE user must compare
three objects, as opposed two in the original IDE, this
does not mean that user fatigue is 1.5 times greater
than the original IDE. This is one factor motivating our
proposed memetic search in the triple comparison-based
IDE.

Figure 2 demonstrates that the convergence speed of
the proposed algorithms is faster than the corresponding
IDE algorithm and triple comparison-based IDE
algorithms in [9]. We observe that all of our proposed
algorithms significantly outperform the canonical paired
comparison-based IDE and triple comparison-based IDE
algorithms of [9] for the IDE with the best vector
as base vector from Table 3 according to Wilcoxon
signed-rank test. However, for the IDE algorithms
where the random vector is used as the base vector,
our proposed algorithm performance acceleration is
not obvious, and the proposed algorithm applied in
a lower dimensional problem is better than when
applied to a higher dimensional problem. This may
be because the memetic search in our proposal can
enhance the exploitation capability of IDE and its
search range influences our proposal’s performances.
In our experimental evaluation, we only investigate
the performance of our proposal using a normal
distribution generator (N(µ, σ), µ = 0, σ = 1) and a
uniform distribution generator (U(a, b), a = 0, b = 1).
We will further investigate the issue of generator
selection and the influence of its parameters in our future
work.
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Figure 4 Bonferroni-Dunn test using our proposed algorithm as the control algorithm in each comparison group. From this
evaluation, we can conclude that our proposed algorithm is significantly better than the comparison algorithms in
each group.

Table 3 Mean value of all the comparison algorithms at
20th generation. Marks †, ‡, § indicate our
proposed algorithms are significantly better than
canonical paired comparison-based IDE, triple
comparison-based IDE with opposite point of
target vector, and triple comparison-based IDE
with opposite point of trial vector, respectively,
from Wilcoxon signed-rank (p < 0.05).

Algorithm 3-D 5-D 7-D 10-D

IDE-best -5.58818 -3.02461 -1.85508 -0.74791
IDE-best-target -5.58665 -3.11135 -1.95467 -0.79504
IDE-best-trial -5.62214 -2.96281 -1.97154 -0.90041

IDE-best-normal -5.68788†‡§ -3.44824†‡§ -2.51374†‡§ -1.11205†‡§
IDE-best-rand -5.71373†‡§ -3.44642†‡§ -2.33407†‡§ -1.09868†‡§

IDE-rand -5.49153 -2.84135 -1.60453 -0.34802
IDE-rand-target -5.5353 -2.76868 -1.637 -0.583
IDE-rand-trial -5.54368 -2.91589 -1.78787 -0.65426

IDE-rand-normal -5.64681†‡§ -3.09815†‡ -1.91501†‡ -0.6054†
IDE-rand-rand -5.62434†‡§ -3.01962‡ -1.60471 -0.53337†

We conduct Wilcoxon signed-rank tests on our
proposed algorithm between the case of normal
distribution perturbation and uniform distribution
perturbation. With the exception of rand-normal and
rand-rand algorithms applied on 3-D and 7-D problems,
there is not any significant difference between these
two algorithms. It can be concluded that a memetic
search with different distribution may obtain the same
evaluation result.

Our proposed algorithm needs fitness evaluation 1.5
times more than that of canonical paired comparison-
based IDE and the same as triple comparison-based IDE
with opposition-based learning. For IDE/best algorithm,
in every generation, it needs (2× populationsize+
populationsize)× generation times evaluations, 2×
populationsize times evaluations are for paired
comparison and populationsize times evaluations are for
choosing the best vector as base vector. For IDE/rand
algorithm, in every generation, (2× populationsize)×
generation times evaluations and 2× populationsize
times evaluations are required for paired comparison. In
our evaluation experiments, IDE/best needs 1200 fitness
evaluations at the 20th generation, and IDE/best + our
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Table 4 Mean value of all the comparision algorithms at
the same fitness evaluation times (IDE-best
algorithm group is up to 1200 evaluation times,
and IDE-rand algorithm group is up to 600
evaluation times.). Marks †, ‡, § indicate our
proposed algorithms are significantly better than
canonical paired comparison-based IDE, triple
comparison-based IDE with opposite point of
target vector and triple comparison-based IDE
with opposite point of trial vector, respectively,
from Wilcoxon signed-rank (p < 0.05).

Algorithm 3-D 5-D 7-D 10-D

IDE-best -5.58818 -3.02461 -1.85508 -0.74791
IDE-best-target -5.51597 -2.94033 -1.77527 -0.62989
IDE-best-trial -5.53919 -2.82137 -1.61431 -0.74783

IDE-best-normal -5.64594‡§ -3.14348‡§ -2.15022†‡§ -0.9563‡
IDE-best-rand -5.64783††‡§ -3.24266‡§ -2.02005§ -0.80181

IDE-rand -5.34486 -2.66371 -1.35938 -0.29417
IDE-rand-target -5.36312 -2.33027 -1.25474 -0.2598
IDE-rand-trial -5.29119 -2.46786 -1.29446 -0.26509

IDE-rand-normal -5.35965 -2.55776 -1.15553 -0.27792
IDE-rand-rand -5.32643 -2.51741 -0.9993 -0.25344

proposal reaches the same number of fitness evaluations
at the 15th generation. For the same reason, IDE/rand
needs 600 fitness evaluations by the 15th generation,
and IDE/rand + our proposal reaches this number
of fitness evaluations at the 10th generation. Table 4
presents the Wilcoxon signed-rank test in this condition,
and the result indicates that our proposal IDE/best
+ our proposal is significantly better than some of its
competitors, and IDE/rand + our proposal seems the
same as the canonical IDE and proposals of [9].

4.4 Discussion on Algorithms Ranking

We apply the Friedman test and Bonferroni-Dunn
test on our proposed algorithm and their comparison
algorithms. The metric evaluation of critical difference
is calculated by Eq. (9). Figure 4 illustrates the critical
difference between the algorithm ranks. k = 4 for each
comparison group (one for our proposed algorithm
and 3 for the comparison algorithms; note that our
proposed algorithm is the control method.), and N =
4 (4 benchmark problems), q is equal to q(α = 0.01) =
2.936, and q(α = 0.05) = 2.394 from Appendix Table
B.16 of reference [17].

CD = qα

√
k(k + 1)

6 ∗N
. (9)

In all sub-figures of Figure 4, our proposed algorithms
are the control algorithm. This indicates that our
proposed algorithms can obtain significantly better
performance than canonical paired comparison-based
IDE and triple comparison-based IDE by OBL with
a significance level of α < 0.05. It also demonstrates
that the memetic search method used to implement
a triple comparison mechanism in IDE is better than
that implemented by OBL. We will investigate these
two implementations of the triple comparison method
theoretically in the future.

5 Evaluation and Discussion of Differential
Evolution Optimization

5.1 Benchmark Functions and Experimental
Conditions

We use 25 benchmark functions from [12] to evaluate our
proposed algorithms with the newly introduced triple
comparison by memetic search in DE. Table 7 presents
the benchmark functions’ type, characteristic, search
bound and optimum fitness values. Their landscapes
have a variety of characteristics. They include both uni-
modal and multi-modal, shifted, rotated, and global
optimum on the bounds.

The evaluated algorithms (Table 1) are the same as
in section 4. The DE experimental parameters are set
as shown in Table 2. The evaluation is conducted under
difficult search conditions; only 50 individuals are used
to search 5 dimensions (5-D) and 10-D functions.

Table 7 Test Functions (Uni=Uni-modal,
Multi=Multi-modal, Sh=Shifted, Rt=Rotated,
GB=Global on Bounds, HC=Hybrid Composition,
NM=Number Matrix)

No. Type Characteristic Bounds Optimum fitness

F1 Sh Sphere -450

F2 Sh Schwefel 1.2 -450

F3 Uni Sh Rt Elliptic [−100, 100] -450

F4 f2 with Noise -450

F5 Schwefel 2.6 GB -310

F6 Sh Rosenbrock [−100, 100] 390

F7 Sh Rt Griewank [0, 600] -180

F8 Sh Rt Ackley GB [−32, 32] -140

F9 Sh Rastrigin [−5, 5] -330

F10 Multi Sh Rt Rastrigin [−5, 5] -330

F11 Sh Rt Weierstrass [−0.5, 0.5] 90

F12 Schwefel 2.13 [π, π] -460

F13 Sh Expanded F8F2 [−3, 1] -130

F14 Sh Rt Scaffer F6 [−100, 100] -300

F15 HC Function 120

F16 Rt HC Function 1 120

F17 f16 with Noise 120

F18 Rt HC Function 2 10

F19 f18with Basin 10

F20 Hybrid f18 with GB [−5, 5] 10

F21 Rt HC Funtion 3 360

F22 f21 with NM 360

F23 NC Rt f21 360

F24 Rt HC Function 4 260

F25 f24 without Bounds 260

5.2 Algorithm Parameter Setting and Evaluation
Metrics

For all algorithms, we run up to 1000 generations with 30
independent runs. The population size is 50. The scale
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Table 5 Mean value of all the comparison algorithms at 1000th generation. Marks †, ‡, § show our proposed algorithms are
significantly better than canonical DE, triple comparison-based DE with opposite point of target vector and triple
comparison-based DE with opposite point of trial vector, respectively.

DE-best DE-best-target DE-best-trial DE-best-normal DE-best-rand DE-rand DE-rand-target DE-rand-trial DE-rand-normal DE-rand-rand Ave.

F1 193.4554 -33.8007 267.6453 -449.853†‡§ -450†‡§ -414.47 -420.162 -418.083 -449.999†‡§ -449.981†‡§ -262.525
F2 -30.5252 -92.0418 -149.129 -337.633†‡§ -449.716†‡§ -421.736 -417.616 -410.76 -447.812†‡§ -449.974†‡§ -320.694
F3 2237212 2355786 2302850 987614.1 270925.9 215058.7 195402.5 192488.5 96892.44†‡§ 57317.3†‡§ 891154.811

F4 -40.0224 52.08288 26.45469 -391.352†‡§ -445.256†‡§ -413.826 -420.179 -423.46 -448.037†‡§ -449.759†‡§ -295.335
F5 -275.547 -307.68 -308.901 -310†‡§ -310†‡§ -309.972 -309.969 -309.964†‡§ -309.993 -305.931 -305.796
F6 3576282 7612198 3830604 24934.29†‡§ 491.467†‡§ 35496.74 25629.46 22811.32 398.3847†‡§ 413.0122†‡§ 1512925.912

F7 -148.704 -150.031 -144.839 -178.768†‡§ -179.14†‡§ -177.865 -177.722 -177.635 -179.226†‡§ -179.278†‡§ -169.321
F8 -119.446 -119.44 -119.55 -119.621†‡§ -119.621†‡§ -119.893 -119.912 -119.91 -119.631 -119.674 -119.670
F9 -277.863 -279.649 -280.894 -298.761†‡§ -304.227†‡§ -306.239 -307.217 -307.377 -316.092†‡§ -315.959†‡§ -299.428

F10 -259.986 -259.882 -259.949 -276.744†‡§ -277.489†‡§ -282.316 -281.646 -284.125 -296.192†‡§ -299.442†‡§ -277.777
F11 99.70575 99.75439 99.70235 96.85224†‡§ 95.12038†‡§ 94.5809 95.46711 95.43329 98.83612 98.05506 97.351
F12 40129.9 44939.13 32233.67 24411.69†‡ 18986.78†‡§ 4968.164 3683.398 3058.884 8090.315 9904.339 19040.628

F13 -122.327 -122.15 -123.027 -125.836†‡§ -126.557†‡§ -126.213 -126.176 -126.237 -127.684†‡§ -128.004†‡§ -125.421
F14 -295.901 -295.948 -295.974 -296.094†‡§ -296.157†‡§ -296.567 -296.528 -296.644 -296.348 -296.281 -296.244
F15 682.9748 681.0848 665.1281 530.3528†‡§ 505.8682†‡§ 557.9363 574.885 608.8543 565.9005 535.0564 590.804

F16 397.4698 393.2986 390.0029 354.7217†‡§ 355.0738†‡§ 337.3688 328.7351 334.7326 297.6289†‡§ 290.0357†‡§ 347.907
F17 394.8716 389.054 394.2845 349.8379†‡§ 366.9631†‡§ 330.2865 336.7578 322.3315 312.0499†‡§ 309.8791†‡§ 350.632
F18 929.0445 951.4049 951.1026 749.3402†‡§ 786.655 †‡§ 578.9428 579.7486 562.1065 398.4057†‡§ 602.3826 708.913

F19 918.7944 948.9641 940.677 745.4966†‡§ 787.6388†‡§ 591.2802 583.9887 553.0895 426.8287†‡§ 618.9495 711.571
F20 931.4755 939.004 931.474 775.7908†‡§ 789.7336†‡§ 610.5591 581.8392 544.3689 463.1416†‡§ 640.3234 720.771
F21 1337.38 1364.828 1300.608 1047.535†‡§ 1240.305†‡§ 929.7804 909.7599 911.1893 1026.82 1387.776 1145.598

F22 1233.855 1232.115 1227.136 1184.359†‡§ 1174.511†‡§ 1164.546 1147.519 1147.206 1131.453†‡§ 1056.947†‡§ 1169.965
F23 1366.119 1390.442 1378.996 1145.157†‡§ 1253.834‡ 970.7627 965.0779 981.2438 1146.44 1360.522 1195.859
F24 829.3185 978.665 909.5946 674.743†‡§ 704.022†‡§ 497.6214 496.5886 492.813 677.7884 685.0006 694.616

F25 1992.419 1990.693 1989.407 689.1103†‡§ 709.6839†‡§ 2000.03 2001.975 1999.778 700.119†‡§ 733.7863†‡§ 1480.700

Table 6 Mean value of all the comparison algorithms at the same fitness evaluation time’s generation (DE-best and
DE-rand at the 900 generation and others at the 600th generation). Marks †, ‡, § show our proposed algorithms are
significantly better than canonical DE, triple comparison-based DE with opposite point of target vector and triple
comparison-based DE with opposite point of trial vector, respectively.

DE-best DE-best-target DE-best-trial DE-best-normal DE-best-rand DE-rand DE-rand-target DE-rand-trial DE-rand-normal DE-rand-rand
F1 193.4554 -33.8007 267.6453 -449.853†‡§ -450†‡§ -414.47 -419.905 -417.853 -449.747†‡§ -448.304†‡§
F2 -30.5252 -92.0418 -149.129 -337.633†‡§ -449.716†‡§ -421.736 -417.239 -410.76 -446.126†‡§ -447.029†‡§
F3 2237212 2355786 2302850 1000404†‡§ 278393.1†‡§ 215076.4 203060 205373.8 137327.1†‡§ 89565.01†‡§
F4 -40.0197 52.11947 26.57674 -391.346†‡§ -440.478†‡§ -413.826 -417.162 -421.005 -444.133†‡§ -441.353†‡§
F5 -275.547 -307.68 -308.901 -310†‡§ -310†‡§ -309.913 -304.928 -304.701 -307.862§ -244.126†‡§
F6 3576282 7612198 3830604 24934.29†‡§ 491.4867†‡§ 35496.74 26923.43 23231.23 784.3448†‡§ 2660.284†‡§
F7 -148.704 -150.031 -144.839 -178.768†‡§ -179.14†‡§ -177.865 -177.722 -177.601 -179.129†‡§ -179.054†‡§
F8 -119.446 -119.44 -119.55 -119.569†‡ -119.619†‡ -119.881 -119.702 -119.71 -119.599 -119.652

F9 -277.863 -279.649 -280.894 -298.761†‡§ -304.223†‡§ -306.239 -307.201 -307.061 -314.899†‡§ -314.413†‡§
F10 -259.986 -259.882 -259.949 -276.744†‡§ -277.477†‡§ -282.316 -280.664 -283.744 -295.969†‡§ -298.482†‡§
F11 99.70575 99.75439 99.70235 97.27338†‡§ 95.2624†‡§ 94.63565 96.46316 96.72212 99.18288 98.79825

F12 40129.9 44939.13 32233.67 24417.19†‡ 18987.17†‡§ 5437.609 10248.61 9868.917 20227.67 19610.54
F13 -122.327 -122.15 -123.027 -125.836†‡§ -126.557†‡§ -126.213 -126.175 -126.213 -127.608†‡§ -127.869†‡§
F14 -295.901 -295.948 -295.974 -296.094† -296.157†‡§ -296.52 -296.308 -296.399 -296.138 -296.174

F15 682.9748 681.0848 665.1281 530.3528†‡§ 505.8699†‡§ 557.9545 575.1057 609.1143 567.0017 545.6756
F16 397.4698 393.2986 390.0029 354.7314†‡§ 355.0741†‡§ 337.3689 328.7351 334.74 300.89†‡§ 292.8369†‡§
F17 394.8722 389.0568 394.2876 349.8702†‡§ 366.9973†‡§ 330.2959 336.7789 324.1745 316.4441†‡ 321.6932‡
F18 929.0445 951.4049 951.1026 752.5895†‡§ 789.0976†‡§ 578.9428 579.7486 562.1071 405.9448†‡§ 614.2533
F19 918.7944 948.9641 940.677 747.8883†‡§ 789.3667†‡§ 591.2802 583.9887 553.0998 433.4875†‡§ 628.5128
F20 931.4755 939.004 931.474 778.0431†‡§ 791.7951†‡§ 610.5591 581.8392 544.3689 470.2662†‡ 661.1316

F21 1337.38 1364.828 1300.608 1048.843†‡§ 1243.305 929.7804 909.9198 911.2944 1073.532 1440.504
F22 1233.855 1232.115 1227.136 1185.364†‡§ 1175.073 1164.546 1147.519 1147.206 1134.368†‡§ 1079.894†‡§
F23 1366.119 1390.442 1378.996 1145.692†‡§ 1257.182‡ 970.7627 965.0779 981.2438 1194.684 1411.144

F24 829.3951 981.358 912.3688 680.907†‡§ 706.3744†‡§ 497.6254 496.6826 492.8677 683.9339 691.3242
F25 1993.253 1994.792 1995.784 698.3492†‡§ 721.5549†‡§ 2001.062 2009.588 2008.884 709.135†‡§ 745.9672†‡§
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factor (F ) of the DE is set to 1 and the crossover rate
(Cr) is set to 1 as well as discussed in section 4.

When the proposed methods are applied to a non-
interactive DE, the number of fitness calculations for
one comparison becomes three times from two times
in the canonical paired comparison-based DE, i.e., the
calculation time of the proposal becomes 1.5 times of
the canonical DE. The point of our proposed method for
canonical non-interactive DE is whether the acceleration
performance of the proposed methods exceeds the
increase of fitness calculation time so that the total
calculation time is surely reduced.

Because there is no need to evaluate IDE user fatigue,
as was done in section 4, the evaluation indices used
in this section for comparing our proposed methods
applied to DE are the number of fitness calculations
(NFC) until the convergence threshold (CT ) is reached
and the success rate (SR) for those that reach the CT .
The lower the NFC is, the faster convergence is. A
successful convergence is counted when a convergence
reaches the CT defined by Eq. (10). All benchmark
functions are evaluated by an acceleration rate, AR, too,
to evaluate convergence speed. It is defined using NFC
at the maximum generation, the 1,000th generation, in
Eq. (13), and AR > 1 means that the proposed method
converges faster than canonical DE. Success rate, SR,
is defined by the number of trials that reached the
convergence threshold, CT , in Eq. (12). Furthermore,
average acceleration rate and average success rate are
calculated and used for the final evaluation results.

converg. threshold, V TR = average fitness of each

method at MAXNFC − th

generation. (10)

NFC = average# of fitness

calculation until convergence

reaches CT. (11)

success rate, SR =
# of reached to CT

# of MAXNFC
. (12)

acceleration rate, AR =
NFCcanonicalDE

NFCproposal
. (13)

5.3 Optimization Performance of Our Proposal

We apply a Wilcoxon signed-rank test on our evaluation
results of mean value at the final generation (Table 3)
and at the generation when the compared algorithms
achieve the same comparison times, i.e., the 900
generation for canonical DE and the 600th generation
for the proposals of reference [9] and this paper (Table
4). From Table 3, except a few cases (such as F3),
DE/best + proposed methods are significantly better
than canonical DE and the proposals of reference [9].
However, the performance of DE/rand + proposed
methods are not as the same as that of DE/best +
proposed methods. Because the memetic search is a local

search method, it definitely can enhance the exploitation
capability of the algorithm around the best individual;
this is the reason why the performance of DE/best +
proposed methods is better than that of the DE/rand +
proposed methods.

Our original proposal is to develop a new triple
comparison-based IDE, and this search scheme can also
be applied to DE. The comparison time is a suitable
evaluation metric to compare the proposed methods
with their comparison algorithms. Table 4 presents these
results, i.e., when the total number of comparisons is
1800 (when it is the 600th generation in the methods
of reference [9] and the proposal of this paper, and
the 900th generation in canonical DE). We conduct a
Wilcoxon signed-rank test at this condition. From the
result of this evaluation, the proposed triple comparison
DE significantly outperforms that of its competitors as
well. This illustrates the advantage of our proposal.

From the NFC, SR and AR metrics, DE-rand-trial
and DE-rand-normal obtain the first and second winners
in SR, and DE-best-normal and DE-best-rand obtain
the first and second winners in AR. This indicates the
exploitation capability of our proposed methods can
enhance DE search by introducing a memetic search
scheme. Although it is not a statistical result, we can also
observe that the average performance of our proposal is
better that of the compared algorithms.

6 Conclusion and Future Works

We proposed a new triple comparison-based IDE
algorithm and DE algorithm using a memetic search
from a fitness landscape obtained by a comparison of
target vector and trial vector. The local fitness landscape
obtained from the canonical DE algorithm supports
information that indicates a promising search region.
We implement the memetic search by perturbing the
vector with the better fitness with a vector from a
normal distribution and a uniform distribution. The
originality of implementing a new triple comparison-
based IDE for relieving IDE user fatigue motivates
this work. We initially studied the performance of our
proposed algorithms in both IDE and DE.

In the future, applying the proposed algorithms to
a variety of IEC applications will be the primary focus
of our study. In this paper, we initially investigated the
performance of our proposal with a pseudo-user in IDE
and found that the proposed algorithms significantly
outperform the comparison algorithms. In the next step,
we will study its application issues to discover new
knowledge from each IEC application domain. We will
also investigate the issue of the parameters settings for
the random number generator, and implementations of
our proposal using other distribution generators. The
question as to why a third vector that comes from
memetic search is better than that from OBL in theory
needs further research. It will be necessary to establish
related mathematical models to explain these differences.
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Table 8 The number of function calls (NFC in Eq. (11)), success rate (SR in Eq. (12)), acceleration rate (AR in Eq. (13))
and fitness value to reach (VTR in Eq. (10)) of 5-D benchmark function..

Func. DE-best DE-best-target DE-best-trial DE-best-normal DE-best-rand
NFC SR AR NFC SR AR NFC SR AR NFC SR AR NFC SR AR

F1 56424 0.010 70578 0.108 3.020 87174 0.016 0.988 5205 0.471 11.212 5118 0.472 11.809
F2 56262 0.010 79179 0.060 1.592 79251 0.060 1.559 25593 0.358 7.556 6237 0.465 9.345
F3 48818 0.031 70068 0.111 2.717 70278 0.110 2.864 33939 0.311 5.807 9321 0.448 8.552
F4 46848 0.037 81615 0.047 1.086 81618 0.047 1.167 15078 0.416 6.709 11637 0.435 6.057
F5 13112 0.130 14508 0.419 1.415 16917 0.406 1.266 8442 0.453 1.612 8700 0.452 1.529
F6 37488 0.063 50361 0.220 3.557 53397 0.203 3.924 4023 0.478 9.255 4119 0.477 10.016
F7 56248 0.010 84375 0.031 1.352 84729 0.029 1.006 7593 0.458 11.777 5037 0.472 11.453
F8 56520 0.010 76896 0.073 1.398 68856 0.117 1.950 73707 0.091 1.044 71406 0.103 1.882
F9 56600 0.009 79164 0.060 1.263 78894 0.062 2.104 47718 0.235 6.221 36102 0.299 8.360
F10 56106 0.011 90000 0.000 0.623 90000 0.000 0.623 54027 0.200 4.697 55656 0.191 6.831
F11 48476 0.032 78534 0.064 2.161 84267 0.032 1.508 54273 0.198 2.118 33801 0.312 5.540
F12 56342 0.010 87117 0.016 0.643 61428 0.159 1.992 50196 0.221 3.954 50109 0.222 9.315
F13 58292 0.005 90000 0.000 0.648 87114 0.016 1.210 42318 0.265 6.670 22125 0.377 11.335
F14 56512 0.010 84777 0.029 0.927 84765 0.029 0.934 67995 0.122 3.466 64752 0.140 3.848
F15 46416 0.038 64230 0.143 3.418 69564 0.114 2.677 35328 0.304 9.565 35730 0.302 9.529
F16 52254 0.022 87069 0.016 1.525 87117 0.016 1.128 55479 0.192 7.754 61335 0.159 4.821
F17 60000 0.000 81348 0.048 2.560 78582 0.063 2.433 42099 0.266 7.430 64620 0.141 4.091
F18 50382 0.027 78393 0.064 2.588 81453 0.047 0.970 61131 0.160 4.265 70914 0.106 2.978
F19 50358 0.027 81345 0.048 1.666 78579 0.063 1.744 61200 0.160 4.723 67935 0.123 3.382
F20 50350 0.027 78423 0.064 2.344 78573 0.063 1.742 63990 0.145 4.706 69975 0.111 3.463
F21 41016 0.053 67368 0.126 1.952 67086 0.127 3.054 30177 0.332 8.011 58863 0.173 3.476
F22 60000 0.000 84195 0.032 2.090 84294 0.032 1.535 67287 0.126 4.030 52443 0.209 5.672
F23 45090 0.041 67185 0.127 4.064 73263 0.093 2.150 35703 0.302 6.697 54036 0.200 5.659
F24 37654 0.062 76563 0.075 1.338 67530 0.125 1.971 23742 0.368 2.478 22467 0.375 4.004
F25 60000 0.000 90000 0.000 0.667 90000 0.000 0.667 1137 0.494 66.461 1098 0.494 70.375

Ave. 50302 0.027 75731 0.079 1.864 75389 0.081 1.727 38695 0.285 8.329 37741 0.290 8.933

Table 9 The umber of function calls (NFC in Eq. (11)), success rate (SR in Eq. (12)), acceleration rate (AR in Eq. (13))
and fitness value to reach (VTR in Eq. (10)) of 10-D benchmark function..

Func. DE-rand DE-rand-target DE-rand-trial DE-rand-normal DE-rand-rand
NFC SR AR NFC SR AR NFC SR AR NFC SR AR NFC SR AR

F1 37616 0.130 4.462 20532 0.386 2.799 20487 0.386 2.805 13275 0.426 4.338 17472 0.403 3.329
F2 37508 0.121 3.479 24156 0.366 2.385 24963 0.361 2.268 22089 0.377 2.642 23073 0.372 2.455
F3 32545 0.118 3.238 25632 0.358 2.322 27318 0.348 1.997 24891 0.362 2.033 29322 0.337 1.723
F4 31232 0.117 2.694 26460 0.353 1.808 27819 0.345 1.721 24543 0.364 1.965 26172 0.355 1.813
F5 8741 0.072 0.418 50919 0.217 0.253 52221 0.210 0.253 47541 0.236 0.276 79404 0.059 0.179
F6 24992 0.141 4.162 14079 0.422 2.771 14328 0.420 2.730 10056 0.444 3.900 11943 0.434 3.188
F7 37498 0.131 4.412 18648 0.396 3.074 21015 0.383 3.013 15498 0.414 3.735 16374 0.409 3.494
F8 37680 0.069 4.664 53424 0.203 1.266 51324 0.215 1.939 76980 0.072 1.343 59817 0.168 3.151
F9 37733 0.091 2.705 40077 0.277 1.824 42138 0.266 1.794 31098 0.327 2.055 28947 0.339 2.169
F10 37404 0.080 3.960 47379 0.237 2.164 47247 0.238 2.413 28341 0.343 3.338 26898 0.351 3.170
F11 32317 0.100 2.730 48627 0.230 1.490 53604 0.202 1.186 89982 0.000 0.539 86307 0.021 0.589
F12 37561 0.107 3.624 36072 0.300 2.065 35397 0.303 3.428 56766 0.185 1.640 52761 0.207 2.966
F13 38861 0.083 3.053 51048 0.216 1.635 45201 0.249 1.931 27969 0.345 2.535 26748 0.351 2.462
F14 37674 0.060 1.992 56046 0.189 1.402 52428 0.209 1.921 75948 0.078 0.824 64413 0.142 1.283
F15 30944 0.064 2.836 60192 0.166 1.450 66003 0.133 1.227 68850 0.118 2.381 66267 0.132 1.238
F16 34836 0.090 3.777 33060 0.316 2.933 41286 0.271 2.464 18861 0.395 3.237 18429 0.398 3.916
F17 40000 0.086 2.687 43197 0.260 2.049 40371 0.276 2.033 30129 0.333 2.433 35658 0.302 1.936
F18 33588 0.115 7.260 30354 0.331 5.115 19032 0.394 5.787 19368 0.392 5.780 53985 0.200 2.597
F19 33572 0.106 7.249 33144 0.316 4.416 21714 0.379 5.503 24051 0.366 5.569 56454 0.186 2.451
F20 33566 0.101 7.412 29646 0.335 5.621 18801 0.396 5.952 26691 0.352 6.644 59904 0.167 2.266
F21 27344 0.135 4.450 14586 0.419 2.838 14214 0.421 2.994 41112 0.272 2.336 84321 0.032 0.515
F22 40000 0.111 4.532 34044 0.311 2.619 24876 0.362 3.608 23601 0.369 3.353 34731 0.307 4.211
F23 30060 0.144 5.662 13311 0.426 3.590 12444 0.431 3.679 52533 0.208 1.748 80565 0.052 0.720
F24 25102 0.143 4.505 12465 0.431 3.195 13386 0.426 2.962 31677 0.324 1.916 48828 0.229 0.922
F25 40000 0.000 1.000 90000 0.000 0.667 90000 0.000 0.667 1560 0.491 43.205 912 0.495 80.553

Ave. 33535 0.101 3.879 36283 0.298 2.470 35104 0.305 2.651 35336 0.304 4.391 43588 0.258 5.332



Local Fitness Landscape from Paired Comparison-Based Memetic Search in IDE and DE 13

This and the other issues and problems arising from the
current study will be the subject of ongoing work in the
future.
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