
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Study on Sustainability of Open Source
Software Projects

山下, 一寛

https://doi.org/10.15017/1807066

出版情報：九州大学, 2016, 博士（情報科学）, 課程博士
バージョン：
権利関係：全文ファイル公表済

A Study on Sustainability of Open Source

Software Projects

March 2017

Kazuhiro Yamashita

Abstract

Open Source Software (OSS) is computer software with source code that any-

one can study, change, and enhance. Since the quality of OSS systems is sufficient

to use in enterprises, more and more enterprises have introduced OSS systems into

their businesses. As OSS systems are becoming a type of infrastructure for en-

terprises, stoppage of the development and maintenance of OSS projects has a

large impact on enterprise users. Therefore, the sustainability of OSS projects is

important.

In this dissertation, we consider sustainability from two perspectives; evolv-

ability and stability. Evolvability is the ability to sustainably grow the project

and stability is the ability to maintain the current project. We also consider the

relationships between OSS projects because the resources that developers can de-

vote to OSS projects are limited and OSS projects compete for developers and

their contributions. We introduce magnet and sticky metrics from social sciences

and demonstrate their applicability for understanding OSS sustainability. Magnet

is a measure of attracting new developers and corresponds to evolvability. Sticky

is a measure of retaining existing developers and corresponds to stability. By

comparing these metrics between projects, we classify the projects into four cat-

egories (attractive, fluctuating, stagnant, and terminal) and show the transitions

of categories with time.

Furthermore, we focus on core developers who play important roles in OSS

projects. To investigate the impact of core developers on sustainability of OSS

projects, we revisit the findings of prior studies.

The contributions of this dissertation are as follows.

(1) We introduce the magnet and sticky metrics for understanding OSS sus-

Abstract iii

tainability. We apply the magnet and sticky metrics that were originally proposed

in social sciences to the OSS context and show the applicability of these metrics

in understanding sustainability of OSS projects.

(2) We empirically evaluate the availability of the magnet and sticky metrics

using a large number of GitHub projects. To show the availability of the magnet

and sticky metrics based approach, we perform an empirical study with a large

number of GitHub projects. We find that 53% of terminal projects (low mag-

net/low sticky) eventually decay into a state of less than ten developers and 55%

of attractive projects (high magnet/high sticky) maintain their popularity.

(3) We revisit prior findings about core developers by performing large empir-

ical study. There are claims in literature about proportions of core developers in

successful OSS projects; however, the claims are based on only a few case studies

(at most 9 projects). We empirically evaluate the claims by analyzing a large

number of GitHub projects.

This dissertation is organized as follows. Chapter 1 gives the background of

the work and an overview of this dissertation. Chapter 2 presents a survey of

literature related to sustainability of OSS projects. In Chapter 3, we introduce

the magnet and sticky metrics to the OSS environment and show the availability

of these metrics in a small sample of GitHub projects. Chapter 4 shows the result

of a large empirical study on sustainability of OSS projects using the magnet and

sticky metrics. Chapter 5 presents an empirical study of the impact of the ratio of

core developers on sustainability of OSS projects. In Chapter 6, we discuss results

of our study and show additional results for future direction. Finally, Chapter 7

presents a summary of this dissertation.

Kyushu University Graduate School of Information Science and Electrical Engineering

Acknowledgement iv

Acknowledgement

During this work, I have been fortunate to have received assistance from many individuals.

To the following people, I owe an enormous debt of gratitude. Without these people this

dissertation would never have been possible.

First and foremost, I would like to express my sincere gratitude to my supervisor, Professor

Naoyasu Ubayashi for his supervision and guidance for my research. Without his help, I could

not successfully accomplish the doctoral degree.

I would like to express my sincere appreciation to Professor Katsuro Inoue, in Osaka

University, for his valuable comments and helpful suggestions on this dissertation.

I would like to express my sincere gratitude to Professor Akira Fukuda for his helpful

comments, valuable questions, and kind advice for my work.

I also would like to express sincere appreciation to Professor Jianjun Zhao for his valuable

questions and discussions for this work.

I would like to express sincere gratitude to Associate Professor Kenji Hisazumi for his

valuable questions and discussions for this work.

I also would like to express a deep appreciation to Associate Professor Yasutaka Kamei.

His zealous coaching and support have strongly encouraged me, and his helpful comments

and suggestions made it possible to complete this work.

A special thanks to Professor Ahmed E. Hassan, Shane McIntosh and Meiyappan Nagap-

pan. Their technical and editorial advice was essential to the completion of this dissertation.

They have taught me innumerable lessons and insights on the workings of academic research

Kyushu University Graduate School of Information Science and Electrical Engineering

Acknowledgement v

in general.

I would like to express my appreciation to the clerks of our laboratory, including Ms.

Minori Yoshio and Ms. Aya Miura. Their kind support has been quite helpful for me to

prepare this dissertation.

I want to thank to members of Principles of Software Languages Laboratory (POSL) and

Software Analysis and Intelligence Laboratory (SAIL) who work with me.

Finally, without the support of my family and friends, this dissertation would not have

been possible.

Kyushu University Graduate School of Information Science and Electrical Engineering

Related Publications vi

Related Publications

The following publications are related to this dissertation:

• (Chapter 3) Magnet or Sticky?: An OSS Project-by-Project Typology.

Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, and Naoyasu Ubayashi. In

Proceedings of the 11th Working Conference on Mining Software Repositories (MSR),

pages 344–347, 2014.

• (Chapter 5) Revisiting the Applicability of the Pareto Principle to Core

Development Teams in Open Source Software Projects.

Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, Ahmed E. Hassan, and Naoy-

asu Ubayashi. In Proceedings of the 14th International Workshop on Principles of

Software Evolution (IWPSE), pages 46–55, 2015.

• (Chapter 4) Magnet or Sticky?: Measuring Project Characteristics from the

Perspective of Developer Attraction and Retention.

Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, Ahmed E. Hassan, and Naoy-

asu Ubayashi. Journal of Information Processing, 24(2):339–348, 2016.

The following publications are not directly related to the material in this dissertation,

but were produced in parallel to the research performed for this dissertation.

• Studying Just-In-Time Defect Prediction using Cross-Project Models.

Yasutaka Kamei, Takafumi Fukushima, Shane McIntosh, Kazuhiro Yamashita, Naoy-

asu Ubayashi, and Ahmed E. Hassan. Journal of Empirical Software Engineering,

Kyushu University Graduate School of Information Science and Electrical Engineering

Related Publications i

Volume 21, Issue 5, pages 2072–2106, 2016.

• Thresholds for Size and Complexity Metrics: A Case Study from the Per-

spective of Defect Density.

Kazuhiro Yamashita, Changyun Huang, Meiyappan Nagappan, Yasutaka Kamei, Au-

dris Mockus, Ahmed E. Hassan and Naoyasu Ubayashi. In Proceedings of the 2016

IEEE International Conference on Software Quality, Reliability & Security (QRS),

pages 191–201, 2016.

• An Empirical Study of Just-In-Time Defect Prediction Using Cross-Project

Models.

Takafumi Fukushima, Yasutaka Kamei, Shane McIntosh, Kazuhiro Yamashita, and

Naoyasu Ubayashi. In Proceedings of the 11th Working Conference on Mining Software

Repositories (MSR), pages 172–181, 2014.

Kyushu University Graduate School of Information Science and Electrical Engineering

Contents ii

Contents

Acknowledgement iv

Related Publications vi

1 Introduction 1

1.1 Background . 1

1.2 Overview of the Research . 4

1.3 Dissertation Contribution . 8

1.4 Dissertation Organization . 9

2 A Literature Survey on Sustainability of Open Source Software Projects 10

2.1 Introduction . 10

2.1.1 Sustainability of OSS Projects . 11

2.1.2 Organization of Chapter . 13

2.2 Evolvability . 14

2.3 Stability . 16

2.4 Core Developers . 20

2.5 Summary . 23

3 Introduction of Magnet and Sticky For OSS Sustainability 25

3.1 Introduction . 25

3.1.1 Organization of Chapter . 26

Kyushu University Graduate School of Information Science and Electrical Engineering

Contents iii

3.2 Study Design . 26

3.2.1 Definition of Magnet and Sticky . 26

3.2.2 Research Question . 28

3.2.3 Dataset . 29

3.3 Study Results . 29

3.4 Summary . 37

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS 38

4.1 Introduction . 38

4.1.1 Organization of Chapter . 39

4.2 Study Design . 40

4.2.1 Definition of Magnet and Sticky . 40

4.2.2 Research Questions — Motivation and Approach 43

4.2.3 Dataset . 44

4.2.4 Developers . 46

4.2.5 Projects . 46

4.3 Pilot Study . 48

4.4 Study Results . 50

4.5 Discussion . 57

4.5.1 Discussion of RQ1 . 57

4.5.2 Discussion of RQ2 . 57

4.6 Threats to Validity . 58

4.6.1 Construct Validity . 58

4.6.2 Internal Validity . 59

4.6.3 External Validity . 59

4.7 Summary . 59

5 Revisiting the Proportion of Core Developers for OSS Sustainability 61

Kyushu University Graduate School of Information Science and Electrical Engineering

Contents iv

5.1 Introduction . 61

5.1.1 Organization of Chapter . 62

5.2 Study Design . 63

5.2.1 Definition of Core Developers . 63

5.2.2 Research Question . 65

5.2.3 Dataset . 66

5.3 Study Results . 69

5.4 Discussion . 80

5.4.1 The Bus Factor . 80

5.4.2 Core and Non-core Developer Activity 80

5.4.3 The Impact of Thresholds . 81

5.5 Threats to Validity . 81

5.5.1 Construct Validity . 81

5.5.2 Internal Validity . 82

5.5.3 External Validity . 82

5.6 Summary . 83

6 Discussion 84

6.1 Introduction . 84

6.1.1 Summary of findings . 84

6.2 Implication and Future Research Direction . 85

6.2.1 Researchers . 85

6.2.2 OSS Developers . 86

6.2.3 Users and Enterprises . 87

7 Conclusion 89

7.1 Contributions . 89

Kyushu University Graduate School of Information Science and Electrical Engineering

LIST OF FIGURES v

List of Figures

1.1 Bazaar style development lifecycle [87] . 2

1.2 An overview of our study . 4

2.1 General structure of an OSS community based on the onion model [65] 20

3.1 Example of magnet or sticky of values by our definition in 2011 28

3.2 Distribution of magnet and sticky values for the studied projects 31

3.3 The likelihood of quadrant transitions . 35

4.1 Calculation examples of our newly defined magnet and sticky values 42

4.2 Release duration (days) . 47

4.3 Distribution of magnet and sticky values for the studied projects 51

4.4 Beanplots of magnet and sticky values, grouped by developer size 52

4.5 The likelihood of quadrant transitions . 54

4.6 Likelihood of quadrant transitions from the first period 56

5.1 Identifying core developers using an example project 63

5.2 An overview of our data extraction approach 66

5.3 Distribution of projects of each size categories (Commit-Based) 71

5.4 Distribution of projects of each size categories (LOC-Based) 72

5.5 Distribution of projects of each size categories (Access-Based) 73

5.6 The distribution of projects according to the number of core developers 77

Kyushu University Graduate School of Information Science and Electrical Engineering

LIST OF TABLES vi

List of Tables

2.1 An overview of prior studies about evolvability 13

2.2 An overview of prior studies about stability 17

2.3 An overview of the results of prior work about core developers 21

3.1 An overview of the dataset collected using queries like: “select count(id) from

TABLE” . 29

3.2 Number of new developers and unique developers in each year 32

3.3 Quadrant transitions of long-lived open source projects. 33

4.1 Overview of the GHTorrent dataset used in this study 45

4.2 Release duration of major, minor, patch upgrades of GitHub projects (days) . 49

4.3 Median values of magnet and sticky OSS projects released on GitHub 50

4.4 Projects with sticky values of 1.0 . 53

5.1 Finding self-identified mirror projects. 66

5.2 The spread of projects among strata of project size and age 74

5.3 Distributions of projects according to the number of core developers 76

5.4 Keywords used to classify commits [34] . 77

5.5 Developer activity . 79

5.6 The proportion of projects that are Pareto compliant when we use other thresh-

old values. 81

Kyushu University Graduate School of Information Science and Electrical Engineering

1 Introduction 1

Chapter 1

Introduction

1.1 Background

Open Source Software (OSS) is computer software with source code that anyone can study,

change, and enhance [5, 56]. The OSS development mainly relies on volunteer developers [76],

although recently there have been cases of employed developers [55, 79] and commercial OSS

entitles [78]. Figure 1.1 shows an overview of the lifecycle of the bazaar style development,

which is a typical OSS development style. Community of users and developers submit various

types of contributions (e.g., modification, bug fix and bug report) to the community and the

contributions are integrated into the implementation after review by developers (mainly core

developers).

Since OSS is available for free and for any purpose by following the license, not only

individual users but also enterprises use OSS for reducing costs such as license fees and

development costs. In particular, large system integrators (individuals or enterprises that

build information systems for their clients by combining subsystems of hardware and software)

and solution providers (individuals or enterprises that address problems of their client by

building and maintaining information systems) stand to gain the most from OSS systems

because they increase profits thorough direct cost savings and the ability to reach more

customers through improved pricing flexibility [78]. According to a survey conducted by

Kyushu University Graduate School of Information Science and Electrical Engineering

1 Introduction 2

Figure 1.1: Bazaar style development lifecycle [87]

Black Duck Software, which is a software company that assists companies to secure and

manage their usage of OSS, 78% of enterprises run a part or all of their business operations on

OSS systems.1 In addition to the survey by Black Duck Software, another survey conducted

by Information-technology Promotion Agency, Japan (IPA), shows that 66.8% of Japanese

enterprises have introduced OSS systems [43].

As many enterprises use OSS systems, sustainability (i.e., the ability of an organism or

an ecosystem to maintain its activity and productivity over time [9]) of OSS projects has

become one of the most important problems. If the introduced OSS projects are abandoned,

enterprises need to maintain the OSS systems on their own or replace them, and maintaining

or replacing OSS systems takes additional costs. In fact, some enterprises hesitate to intro-

duce OSS because of the concern “It is unclear how long the OSS project will be developed

and maintained” [43]. Since OSS developers can leave the projects freely [25, 60], there is

always the possibility that the activities for developing and maintaining the projects will

stop. Furthermore, prior studies indicate that a large number of OSS projects fail (i.e., there

is no activities) [8, 54]. Hence, in this dissertation, we focus on sustainability of OSS projects

to avoid selecting projects whose maintenance and development will stop in near future.

1https://www.blackducksoftware.com/future-of-open-source

Kyushu University Graduate School of Information Science and Electrical Engineering

https://www.blackducksoftware.com/future-of-open-source

1 Introduction 3

In this dissertation, we consider sustainability from the following two perspectives: evolv-

ability (i.e., the ability to sustainably grow the project) and stability (i.e., the ability to

sustain the current project). According to Kraut et al. [53], turnover of members in com-

munities is inevitable. If a community does not obtain new members to substitute those

who leave the project, the community is eventually abandoned. New members can also be a

source of innovation, new ideas, work procedures, and other resources that the group needs.

According to Robles et al. [80], most developers’ contribution is only temporary. A lack

of sustained developers (i.e., lack of stability) not only threatens the quality [94] and the

release schedule [41] of an OSS project but also its entire existence [11, 86]. Therefore, the

measure of sustainability of OSS projects should include the two perspectives of evolvability

and stability.

For a better understanding of sustainability of OSS projects, it is also important to

consider relationships between projects. Developers can participate in multiple projects [95]

and their resources for OSS development are limited. Since developers want to devote their

resources to projects that are more attractive to them, being more attractive than others

may affect the sustainability of the projects.

In this dissertation, to measure the sustainability of OSS projects with consideration for

the above-mentioned perspectives and relationships, we introduce the magnet and sticky

metrics from social sciences [70] and demonstrate their applicability in the OSS field. These

metrics are based on the transition of population between states and were used originally to

categorize states in the United States of America into five types (e.g., high magnet/low sticky

and neither here nor there). In the original study [70], magnet states are those in which a

high share of adults who live there now have moved there from some other state and sticky

states are those in which a high share of adults who were born there now live there.

In our study, the magnet and sticky metrics are based on the transition of developers

between projects. For projects, new developers are a source of innovation, new ideas, and

work procedures [53]. The magnet metric shows the ability to attract new developers and

Kyushu University Graduate School of Information Science and Electrical Engineering

1 Introduction 4

OSS A

OSS B

Time

Magnet (Evolvability) Sticky (Stability)

Outsider New Developer Developer Core Developer

1

2

3

4

5

A

A

A,B

B

B

A

A

A,B

B

A

A

A,B

B

Figure 1.2: An overview of our study

corresponds to evolvability. For projects, losing existing developers affects performance and

the quality of the work because of losing experience [42]. The sticky metric shows the ability

to retain existing developers and corresponds to stability. We measure sustainability of OSS

projects by using a combination of the magnet and sticky metrics.

Furthermore, we focus on core developers in a deeper analysis. Core developers are more

active and play important role in OSS projects than other developers [64, 65]. Losing core

developers has a larger impact on sustainability of OSS projects than losing other developers,

so we decided to perform a deeper analysis focusing on core developers.

1.2 Overview of the Research

Now we present an overview of the dissertation. The dissertation presents a literature survey

of related studies and the results of our three studies, all of which are closely related to sus-

tainability of OSS projects. Before introducing our study, we show the results of a literature

Kyushu University Graduate School of Information Science and Electrical Engineering

1 Introduction 5

survey on sustainability of OSS projects. Our first study introduces the magnet and sticky

metrics to understand project sustainability. Moreover, we demonstrate the applicability of

the magnet and sticky metrics, which were originally proposed by Pew Research Center [70],

in the OSS situation using a small set of sample projects. The second study expands the

target projects of our first study to whole GitHub projects; then, we generalize the findings

of the first study. The third study focuses on core developers and revisits a finding of prior

studies about the proportion of core developers in successful (long-lived) OSS projects.

(Chapter 2) Literature Survey on Sustainability of Open Source Software Projects

We present a literature survey of researches from the perspectives of evolvability, stability,

and core developers.

In this dissertation, we study evolvability using the magnet metric (attracting new devel-

opers) and stability using the sticky metric (retaining developers). Furthermore, we study

the impact of core developers. In the following chapters, we describe our studies [105–107].

Figure 1.2 shows an overview of our study. The figure is based on the developer joining model,

which is a model representing the stages and forces that influence the joining processes of a

developer to an OSS project [91]. When developers are not joined with any projects, they

are called outsiders. In the figure, three developers (1, 2, and 3) join OSS A and three

developers (3, 4, and 5) join OSS B, and they are called new developers. As we explained

above, developers can participate in multiple projects as developer 3 has done [95]. If the

new developers continue their contribution, they come to be called developers. Developers

can also leave the projects freely, as developer 5 has done. After sustained contributions,

some developers become core developers in the projects (developers 1 and 4) [65].

(Chapter 3) Magnet or Sticky?: An OSS Project-by-Project Typology

This research introduces two metrics (i.e., magnet and sticky) into the software development

context and demonstrates the applicability of these metrics with a small sample of GitHub

projects. Using the MSR challenge dataset [31], which includes 90 sampled projects and fork

repositories, we examine the applicability of the concept. Magnet projects are those where

Kyushu University Graduate School of Information Science and Electrical Engineering

1 Introduction 6

a large proportion of the developers are new. Sticky projects are those in which a large

proportion of developers have made contributions in the prior year. By observing transitions

of the two metrics values and the state of projects, we capture the relationships between the

metrics and the actual state of projects (i.e., the project the became popular or obsolete).

Our results showed the following findings:

• Stickiness is a more common project attribute than magnetism. Furthermore, we find

that sticky projects such as django have a characteristic that they are used profession-

ally by the most loyal developers and magnet projects such as Homebrew have simple

contribution processes.

• 23% of terminal quadrant (i.e., low magnet and low sticky) projects eventually decay

into a state where they have less than ten developers. Projects that are classified into

other three quadrants do not decay into this state.

• 50% of attractive quadrant (i.e., high magnet and high sticky) projects remain in the

attractive quadrant, suggesting that our quadrant analysis can successfully identify

projects at the risk of becoming obsolete.

• Many quadrant transitions are accompanied by interesting events in a project’s history.

From the second findings, projects with low magnet and low sticky values have a risk of

becoming obsolete. On the other hand, if the magnet or sticky value is high, the projects

retain their members. These findings suggest that combination of evolvability and stability

is important for understanding sustainability of OSS projects.

(Chapter 4) Magnet or Sticky?: Measuring project characteristics from the per-

spective of developer attraction and retention

Since the results of Chapter 3 are based on 90 GitHub projects, the results are not suffi-

ciently general. Therefore, in this research, we generalize the findings of the first study with

all GitHub projects (16,552 projects are selected from 8,510,504 repositories using criteria

described in Chapter 4).

Kyushu University Graduate School of Information Science and Electrical Engineering

1 Introduction 7

The findings are as follow:

• Larger projects attract and retain more developers than smaller projects. 23% of de-

velopers remain with the same project irrespective of size (total number of developers),

and new developers tend to join popular projects.

• 53% of the terminal projects eventually decay into a state of less than ten developers,

while 55% of the attractive projects maintain their popularity.

• Only 13% of the projects in the first time period maintained ten or more developers in

the second period.

These findings confirm our findings in Chapter 3 since these findings are similar to the

findings in Chapter 3. For instance, in Chapter 3, we find that projects only from the terminal

quadrant decay into a state of less than ten developers. In this chapter, we find that even

though projects decay into such a state, the proportion of terminal projects (53%) that decay

into that state is much higher than that of other projects (attractive: 3%, fluctuating: 8%,

and stagnant: 28%). We also find that 55% of attractive projects remain in the quadrant,

similar to the result of Chapter 3.

(Chapter 5) Revisiting the Applicability of the Pareto Principle to Core Devel-

opment Teams in Open Source Software Projects

This research revisits the findings about the proportion of core developers in OSS projects.

Our study finds that retaining existing developers is important for the sustainability of OSS

projects. Since the proportion of core developers is one of the most popular metrics studied

by previous works [19, 28, 30, 52, 64, 65, 83], we assume that core developers are more rele-

vant to the sustainability than all developers. Prior studies have claimed that the proportion

of core developers in successful (long-lived) projects follow the Pareto Principle [30, 52, 83].

Since prior studies were done on only 1–9 case study systems, their findings are not suffi-

ciently general. Hence, in this research, we set out to replicate prior studies with a large set

of GitHub projects.

Kyushu University Graduate School of Information Science and Electrical Engineering

1 Introduction 8

The findings are as follow:

• Contrary to prior works, we find that there are several projects with a larger or smaller

proportion of core developers than the one considered to be compliant with the Pareto

principle. Moreover, we find that the core team of most projects has 15 or fewer

members.

• The proportions of contributions of core and non-core developers are similar.

The results show that proportion of core developers doed not follow the Pareto principle in

contrast to prior studies. These findings suggest that it is difficult to infer the sustainability

of the projects based on whether or not the proportion of core developers follows the Pareto

principle.

1.3 Dissertation Contribution

The major contributions of this dissertation are as follows:

• We introduce the magnet and sticky metrics to quantitatively evaluate project sustain-

ability. For stability, we study the sticky metric, which is calculated as the proportion

of developers who are retained in the same project. For evolvability, we study the mag-

net metric, which is calculated as the proportion of new developers who participate in

a target project among all new developers. (Chapter 3, 4)

• We empirically demonstrate the applicability of the magnet and sticky measures with a

large set of GitHub projects. We find that 53% of the projects with smaller magnet and

sticky values than the median values of those metrics eventually decay into a state of

less than ten developers. On the other hand, 55% of the projects with larger values than

the median values maintain their popularity. These findings suggest that by using both

evolvability and stability measures, it is possible to capture features of sustainability of

Kyushu University Graduate School of Information Science and Electrical Engineering

1 Introduction 9

OSS projects. Moreover, it is possible to quantitatively measure the evolvability and

stability of OSS projects by using these metrics. (Chapter 4)

• We empirically study the impact of the structural ratio of core developers on sustainabil-

ity of OSS projects. In contrast to prior findings, we find that core team proportions do

not follow the Pareto principle. Moreover, we find that the core team of most projects

has 15 or fewer members. (Chapter 5)

1.4 Dissertation Organization

The remainder of the dissertation is organized as follows.

Chapter 2 presents the survey results on literature related to sustainability of OSS projects.

In Chapter 3, we introduce the magnet and sticky metrics and show their applicability using

a sample of projects. In Chapter 4, we generalize the results of Chapter 3 using all GitHub

projects. Chapter 5 presents an empirical study of the impact of ratio of core developers on

sustainability of OSS projects. In Chapter 6, we discuss our results and future directions of

the research. Finally, Chapter 7 presents conclusions of this dissertation.

Kyushu University Graduate School of Information Science and Electrical Engineering

2 A Literature Survey on Sustainability of Open Source Software Projects10

Chapter 2

A Literature Survey on Sustainability

of Open Source Software Projects

2.1 Introduction

Open Source Software (OSS) development mainly relies on volunteer developers. Many un-

specified developers join, collaborate, and develop OSS, Eric Raymond called the development

style as “bazaar style” [76]. The aspects of the bazaar style are as follows [25, 60]:

1. Developers can join and leave from OSS projects freely.

Although the software is developed mainly by the developers who start the project, the

number of developers increases with growth of the project and large projects have more

than 200 developers working on them [67].

2. Developers join OSS projects as primarily as volunteers.

Developers employed in OSS projects are rare and most developers join OSS projects

for collaborating with developers all over the world and satisfying their intellectual

curiosity by, for example, studying and sharing development techniques [6, 16, 17].

3. There is no strict chain of command in OSS projects.

As we mentioned in 1, developers can join and retire freely. Therefore, there is no strict

Kyushu University Graduate School of Information Science and Electrical Engineering

2 A Literature Survey on Sustainability of Open Source Software Projects11

chain of command, and developers contribute according to their own wishes similar to

buying and selling in a bazaar [76].

4. User interactive communities.

Users play an important role in OSS communities. The feedback from users is eval-

uation in an enterprise situation. The user feedback lets developers feel that they

are contributing to meet social needs [76]. Moreover, reporting defects from users is

important for OSS communities.

5. Distributed development environment through networks.

In OSS projects, developers distributed geographically collaborate with each other

through networks. In such a situation, non-face-to-face and non-synchronous communi-

cation such as mailing lists (ML) and boards is only way for communication. Therefore,

the communication medium has a large impact on the communication networks [108].

2.1.1 Sustainability of OSS Projects

Because of concerns stemmed from aspects explained in Section 2.1, some companies hesitate

to apply OSS systems even if there are advantages of introducing OSS systems. Examples of

such concerns include “It is unclear which OSS system should be introduced because there

are too many systems.” “It is difficult to evaluate OSS systems and their maturity.” “It is

difficult to garner technical support when problems occur.” and “It is unclear how long the

OSS project will be developed and maintained” [43].

In this dissertation, we focus on the concern of “It is unclear how long the OSS project will

be developed and maintained,” i.e., sustainability of the OSS project, because this concern

is the basis of other concerns. For instance, sustainability is one of the reasons of selecting

a particular OSS system and one of the points of evaluation. This concern stems from the

second aspect that we listed in Section 2.1. Developers being able to leave projects freely

means the projects can stop when the developers leave. Therefore, several studies have

Kyushu University Graduate School of Information Science and Electrical Engineering

2 A Literature Survey on Sustainability of Open Source Software Projects12

focused on sustainability of OSS projects.

Sustainability is generally defined as the ability of an organism or an ecosystem to main-

tain its activity and productivity over time [9]. For maintaining activity and productivity

over time, maintaining enough resources (i.e., developers and their contributions) for the

activity and productivity is important. In this dissertation, we consider sustainability from

the perspectives of evolvability and stability perspectives.

Evolvability is the ability to sustainably grow the projects. One of the factors related to

evolvability is new members. New members can be a source of innovation, new ideas, and

work procedures or the resources that the group needs [53].

Stability is the ability to maintain the projects in their current states. One of the factors

related to stability is the retention of existing developers. High retention of existing developers

might lead to a stable project because a lack of sustained developers threatens a project’s

existence [11, 86]. Additionally, high retention of core developers has more impact on the

sustainability because core developers implement most of the new functionality [64] and are

responsible for guiding and coordinating the development of an OSS project [65] .

To build a suitable measure for sustainability of OSS projects, we also need to consider

the context. There are many current OSS projects in the world, many projects haring similar

goals and features. Even though developers can participate in multiple projects [95], resources

that the developers can devote to OSS activities are limited. Hence, developers prioritize OSS

projects in line with their interests and purposes.

From the viewpoint of OSS projects, developers and their contributions are necessary

to sustain the projects. To attract developers and their contributions, it is important that

a project is developer-friendly (e.g., well documented and easy to extend) compared with

other similar projects and such developer-friendly characteristics would lead to sustainable

projects. Therefore, we assume that the measure should include information such as the

relationship between projects.

Kyushu University Graduate School of Information Science and Electrical Engineering

2 A Literature Survey on Sustainability of Open Source Software Projects13

Table 2.1: An overview of prior studies about evolvability
Paper Target Metrics Methodology Relationship Dataset
Colazo;
2009 [11]

Attract devel-
opers

License Regression
Model

62

Meirelles;
2010 [62]

Attract de-
velopers and
users

Source code
metrics

Regression
Model

6,773

Santos;
2013 [85]

Attract new
developers
and users

OSS Charac-
teristics

Structural
Equation
Modeling

4,000 <

Stewart;
2002 [92]

Attract users Intended
audience,
License, De-
velopment
Status and
Sponsorship

ANCOVA 240

Ververs;
2011 [97]

Attract new
developers

Events, re-
leases, issues
and services

Correlation 1

Wu;
2007 [103,
104]

Attract users Communication
pattern

Three-Stage
Least Squares

56

Chengalur-
Smith; 2003,
2010 [8, 9]

Number of ar-
tifacts

Developer At-
traction

PLS Model X 2,772

Raja;
2012 [74]

Sustainability Vigor, Re-
silience and
Organization

Regression
Model

290

Kraut;
2012 [53]

Dealing with
new develop-
ers

- Survey -

2.1.2 Organization of Chapter

This chapter is organized as follows. In Section 2.2, we show prior works on sustainability

of OSS projects from the evolvability perspective. Section 2.3 presents prior studies on

sustainability from the stability perspective. Section 2.4 focuses on core developers. Finally,

we summarize the chapter in Section 2.5.

Kyushu University Graduate School of Information Science and Electrical Engineering

2 A Literature Survey on Sustainability of Open Source Software Projects14

2.2 Evolvability

In this section, we discuss prior studies focusing on evolvability. As we explained in Sub-

section 2.1.1, one of the factors related to evolvability is new members (i.e., developers and

users). New developers are a source of innovation, new ideas, and work procedures [53], and

a significant fraction of OSS projects fail due to their inability to attract a sufficient number

of developers [57]. It is important for sustainable growth to attract new developers and users.

Table 2.1 an overview of shows prior studies focusing on evolvability. The prior studies can

classified into two types. One is studying factors that affect attracting developers, users, and

downloads (as a proxy of number of users). The other is investigating the impact of attraction

of developers or users on development activities (e.g., number of closed and opened artifacts).

First, we discuss studies on factors that affect attracting new developers and users. Colazo

and Fang [11] investigate the relationships between licenses and development activities. They

divide licenses into two types (i.e., Copylefted and Noncopylefted) and study the effects on

development activities such as total number of developers, coding activity, and development

speed. Their results show that the total number of developers, coding activity, and speed are

higher in copylefted OSS projects than in noncopylefted projects. Hence, the type of license

affect the total number of developers.

Meirelles et al. [62] focus on the relationships between source code metrics (e.g., LOC and

number of methods) and attractiveness (i.e., number of downloads and number of members).

The results of their analysis of over 6,000 projects support two hypotheses. “OSS projects

with higher structural complexity have lower attractiveness” and “OSS projects with more

lines of code have higher attractiveness”.

Santos et al. [85] consider attractiveness as an array of project values perceived by its

potential and actual visitors, users and developers. As the indicators of visitors, users,

and developers, they use number of hits of the project website, number of downloads, and

number of registered members, respectively. One of their findings is that life-span (i.e., age)

is a positive and statistically significant predictor of attractiveness.

Kyushu University Graduate School of Information Science and Electrical Engineering

2 A Literature Survey on Sustainability of Open Source Software Projects15

Stewart et al. [92] determine factors that affect the Vitality (the number of announcements

about a project and the time since its last release, i.e., project activity) and Popularity (the

number of people who subscribe to the project as well as hits to the website, i.e., users) of

OSS projects by conducting an exploratory study on a sample of 240 OSS projects listed

on the www.freshmeat.net. They consider Vitality as an indicator of how much developer

effort and attention is expanded on a project and Popularity as an indicator of how much

user attention is focused on a project. From the result of ANCOVA analysis, they find that

Vitality, development status, sponsorship, and category have a significant effect on Popularity.

Ververs et al. [97] focus on the factors affecting developer participation in the Debian

project. By using correlation, they find that the most important factors are specific events

such as CeBIT1 (a computer exhibition) and Debian Day2 (a day on which several speakers

talk about current developments in Debian), new or stable releases, issues and the introduc-

tion of new developer services.

Wu et al. [103, 104] investigate the effect of communication patterns on the sustainability

of OSS. Their findings suggest that communication patterns do not affect user attraction.

They use Project Centrality and Project Density as indicators of communication patterns.

Their results show that the communication patterns have significant effects on development

activity (i.e., number of closed bug), but not on popularity (i.e., number of downloads). Angel

Mary et al. [59] propose a communication validation tool as they consider effective commu-

nication between the OSS developer communities is one of the signposts that contribute to

OSS success.

Next, we discuss studies that investigate the impact of evolvability factors such as attract-

ing developers and users to sustainable development activities. Chengalur-Smith et al. [8, 9]

investigate what characteristics of projects and projects’ ecological environments influence

their future sustainability by analyzing 2,772 OSS projects. In their study, they define a sus-

tainable project as one that exhibits software development and maintenance activity over the

1http://www.cebit.de/en/
2https://wiki.debian.org/DebianDay

Kyushu University Graduate School of Information Science and Electrical Engineering

http://www.cebit.de/en/
https://wiki.debian.org/DebianDay

2 A Literature Survey on Sustainability of Open Source Software Projects16

long run. They measure different factors in three different periods. In the first period, they

measure Development Base (i.e., number of developers), Age and Niche Size (i.e., Audience

Niche, Programming Language Niche and Operation System Niche). In the second period,

they measure Developer Attraction and User Attraction. In the last period, they measure

Sustainability (i.e., number of artifacts opened and closed). From the empirical study using

a partial least squares (PLS) model, which is a regression-based structural equation modeling

(SEM) technique [10], they find that Developer Attraction has the largest effect on project

sustainability.

Raja and Tretter [74] propose a metric (Viability Index: VI) to measure project sustain-

ability. The metric consists of three dimensions, i.e., Vigor (the ability to evolve), Resilience

(the ability to respond to internal external perturbations), and Organization (the amount of

structure in a project), which is calculated as V I = −3.834+0.36V igor+0.232Resil+0.5Org.

Although many of the prior studies focus on new developers and users, they count new

developers in a single project (i.e., target project). On the other hand, magnet is calculated

as the proportion of new developers working on a target project among all new developers.

Moreover, in prior studies, only Chengalur-Smith et al. [8, 9] use an indicator (Niche size)

that considers the relationships between projects (relationship column in Table 2.1). In our

study, we divide projects into four categories by comparing their magnet and sticky values

to consider the relationships between the projects.

2.3 Stability

In addition to evolvability, stability is also important for sustainability [86]. Table 2.2 shows

an overview of prior studies focusing on stability.

First, we discuss studies focusing on factors that affect retention of developers and users.

Colazo et al. [11] investigate the relationship between license type and retention of devel-

opers as well. From their result, retention of developers is higher in projects that apply

noncopylefted license, in contrast to their result on attraction of developers.

Kyushu University Graduate School of Information Science and Electrical Engineering

2 A Literature Survey on Sustainability of Open Source Software Projects17

Table 2.2: An overview of prior studies about stability
Paper Target Metrics Methodology Relationship Dataset
Colazo;
2009 [11]

Retention of
developers

License Regression
Model

62

Zhou;
2012 [111]

Retention of
new develop-
ers

Willingness,
Macro-
climate and
Micro-climate

Regression
Model

2

Fang;
2009 [24]

Sustained
participation

Situated
Learning
and Identity
Construction

Questionnaires 1

Qureshi;
2011 [73]

Sustained
participation

Level of So-
cialization

Growth
Mixture
Modeling

40

Schilling;
2012 [86]

Sustained
participation

Person-Job
and Person-
Team

Regression
Model

1

Chengalur-
Smith; 2003,
2010 [8, 9]

Number of ar-
tifacts

Development
Base

PLS Model X 2,772

Samoladas;
2010 [84]

Survival
(Existence
of commit
activities)

Number of
developers

Survival
Analysis

1,147

Midha;
2007 [63]

Retention of
developers

Complexity
and Modular-
ity

Regression
Model

70

Rastogi;
2014 [75]

Sustained
participation

ARIMA
model

1

Sharma;
2012 [88]

Turnover Role of the
developer,
number of
projects,
past activ-
ity, tenure,
project age
and number
of developers

Hierarchical
Linear Model

X 40

Steinmacher;
2013 [91]

Retention of
new develop-
ers

- Questionnaires 1

Kyushu University Graduate School of Information Science and Electrical Engineering

2 A Literature Survey on Sustainability of Open Source Software Projects18

Zhou and Mockus [111] investigate the factors that make a new joiner into a long-term

contributor (LTC). From the case study on Gnome and Mozilla projects, they find that the

differences between developers are in their capacity, willingness and opportunity to contribute

when they join. More specifically, the most important factor is the pro-community attitude

represented by the first contribution. Von Krogh et al. [98] found that new developers to the

Freenet project will more likely undertake certain actions than long-term developers.

Fang and Neufeld [24] also study sustained participation in OSS projects. By applying the

theory of legitimate peripheral participation, they find that situated learning (the process of

acting knowledgeably and purposefully in the world) and identity construction (the process

of being identified within the community) are positively linked to sustained participation.

Qureshi and Fang [73] claim that motivating, engaging, and retaining new contributors

promotes a sustainable community. Steinmacher et al. [91] find that the absences of response,

politeness, usefulness, or the author of answers influence the retention of new developers.

Schilling et al. [86] predict which developer will be retained using the Person-Job (P-J)

fit [22], which describes the suitability of an individual for a particular job and the Person-

Team (P-T) fit [101], which describes the rational compatibility between an individual and

the existing team. From their experiments, they find that level of relevant development

experience is strongly associated with developers’ project retention and familiarity with the

coordination practices of the project team has a strong association with the retaining time.

There are also studies focusing on the impact of stability factors on sustainability. Since

the number of developers is one of the basic indicators of stability, many studies have used

that as a metric. Chengalur-Smith et al. [9] investigate the relationship between sustainability

and development base (i.e., number of developers). From their results, there is no significant

direct effect of the development base on sustainability, even though the development base

affects developer attraction.

As another example, Samoladas et al. [84] apply survival analysis, which analyzes the

expected time until one or more events such as death happen, to OSS projects and try to

Kyushu University Graduate School of Information Science and Electrical Engineering

2 A Literature Survey on Sustainability of Open Source Software Projects19

estimate future development of OSS projects. One of their findings is that the number of

developers affects the sustainability of the project. More specifically, if the project has more

than 20 developers, the probability of survival does not fall below 80%.

There are studies that focus on the opposite phenomenon (i.e., developer turnover and

project termination). In contrast to studies on sustained participation, some studies focus

on developer turnover [26, 44, 81, 88], since turnover may affect the performance and the

quality of work because of losing experience [42]. According to Foucault et al. [26], turnover

1) has a positive impact since the most unsatisfied members leave the team and only the

most motivated ones stay [18], 2) helps renew experience and knowledge on the team [45],

and 3) increases social interactions [15]. Robles et al. [81] applied the concept of developer

turnover to OSS projects. From a case study using long-lived projects with focus on core

developers, they find that these projects suffered from yearly turnover in core teams and

had to rely heavily on regeneration. Sharma et al. [88] examine developer turnover using

the Hierarchical Linear Modeling (HLM) approach, which is an ordinary least square (OLS)

regression-based analysis that takes the hierarchical structure of the data into account. They

suggest that past activity, developer role, project size, and project age are the main predictors

of turnover.

Many of the prior studies focus on how to retain existing developers. Some studies

especially focus on new developers, since retaining new developers is more difficult than

retaining experienced developers due to the lack of experience in the project [90]. Moreover,

some studies focus on the opposite phenomenon, i.e., turnover of developers. For better

understanding sustainability, the opposite phenomenon might be helpful.

Similar to evolvability studies, there are a few studies that consider relationships between

projects (e.g., number of projects in Sharma et al.’s study [88]). Furthermore, to the best of

our knowledge, there are surprisingly no studies focusing on the impact of the proportion of

retaining developers on sustainability.

In this dissertation, we use the sticky metric as an indicator of stability and demonstrate

Kyushu University Graduate School of Information Science and Electrical Engineering

2 A Literature Survey on Sustainability of Open Source Software Projects20

Passive Users

Readers

Bug Reporters

Bug Fixers

Peripheral Developers

Active Developers

Project Leader

Core Developers

Figure 2.1: General structure of an OSS community based on the onion model [65]

the impact of the metric on sustainability. Furthermore, we consider the relationship between

projects by comparing the values of sticky metric for the projects.

2.4 Core Developers

Although there is no strict chain of command, there are roles of developers (e.g., Leader,

Core Developer and Peripheral Developer) and the developers who have more important

roles may have larger impact to sustainability. Figure 2.1 shows a general structure of an

OSS community based on the onion model [65].

In Chapter 5, we focus on the impact of proportion of core developers to the sustainability

of OSS projects. Prior work has also analyzed the proportion of core developers in OSS

projects. There are several definitions of core developer. Mockus et al. [64] hypothesize

Kyushu University Graduate School of Information Science and Electrical Engineering

2 A Literature Survey on Sustainability of Open Source Software Projects21

Table 2.3: An overview of the results of prior work about core developers

Paper Dataset Result
Mockus et al. [64] Apache and Mozilla 10 to 15 developers per-

formed 80% of the contribu-
tions.

Dinh-Trong and Bieman [19] FreeBSD 28 to 42 developers per-
formed 80% of the contribu-
tions.

Koch and Shneider [52] GNOME 52 developers (out of 301
developers) performed 80%
of the contributions.

Goeminne and Mens [30] Brasero, Evince and Wine 20% of developers per-
formed 85%, 80% and more
than 90% of the contribu-
tions in each project.

Robles et al. [83] GNOME The core group has been
identified as the 20% most
contributing committers.

Geldenhuys [28] 9 OSS projects 3%-9% of developers per-
formed 80% of the contribu-
tions.

that (1) the open source development model would rely on a team of core developers who

control code base and (2) these core developers create 80% or more of new functionality.

Nakakoji et al. [65] state that core developers are responsible for guiding and coordinating

the development of an OSS project.

Table 2.3 provides an overview of the results of the prior work and the datasets that were

analyzed. Mockus et al. [64] hypothesize that the open source development model would rely

on a team of core developers who control the code base and that these core developers would

create 80% or more of the new functionality. Furthermore, Mockus et al. argue that the core

team would be no larger than 10 to 15 people based on analysis of the Apache and Mozilla

projects. Crowston et al. [14] compared three approaches to identify the core developers

within 116 SourceForge projects using bug fixing activities. Although the results differ among

the three studied approaches, all of the approaches indicate that the core developers make up

a small fraction of the total number of contributors. Goeminne and Mens [30] found evidence

Kyushu University Graduate School of Information Science and Electrical Engineering

2 A Literature Survey on Sustainability of Open Source Software Projects22

for the Pareto principle in three activities (development, email discussion and bug tracker

activity) in three OSS projects. Robles et al. [83] arrived at similar conclusions — the core

team makes up roughly 20% of the contributing committers.

On the other hand, other studies arrive at contradictory conclusions. For example, Dinh-

Trong and Bieman [19] replicated Mockus et al.’s work using data from the FreeBSD project,

finding that 28-42 out of 161-265 developers perform 80% of the contributions. Koch and

Shneider [52] find that 52 out of 301 developers make 80% of the contributions in the GNOME

project. Through analysis of nine systems, Geldenhuys [28] finds that the proportion of core

developers does not comply with the Pareto principle.

Much of the prior work analyzes a small number of subject systems. We assume that using

small number of subject systems is the reason why prior works had contradictory evidences.

Hence, we set out to analyze core teams in a large number of systems to find out the impact

of proportion of core developers to sustainability of OSS projects in Chapter 5.

Some studies have investigated the role migration in OSS. Nakakoji et al. [65], Ye and

Kishida [109] and Jensen and Scacchi [46] found that the extent to which each developer

influences an OSS project establishes a hierarchy among the developers. Nakakoji et al. [65]

claimed that a sustainable OSS project must evolve both the systems and the community.

They identified three evolution patterns exploration-oriented, utility-oriented, and service-

oriented. Ye and Kishida [109] sought to understand why people participate in OSS projects.

They assume that learning in practice motivates OSS developers. Along with this learning

process, a developer’s role transformation in the OSS community provides extrinsic motiva-

tion. Jensen and Scacchi [46] investigated the role migration and project career advancement

processes of OSS developers, focusing on three large OSS projects. They discussed the roles

and layers in each projects and the migration between the roles and layers of developers who

joined the projects.

Ducheneaut [20], Herraiz et al. [36], Bird et al. [3], and Shibuya and Tamai [89] also

studied the role immigration process of OSS participants. Drawing on personal experience,

Kyushu University Graduate School of Information Science and Electrical Engineering

2 A Literature Survey on Sustainability of Open Source Software Projects23

Deucheneaut described the six steps toward becoming a Python developer. In their experi-

ments on three large projects, Bird et al. found that a submission history of patch upgrades

can effectively elevate a joiner to developer status. Herraiz et al. discovered two groups of

role migration; volunteer developers who proceed in a step-by-step fashion, and sponsored

developers who suddenly migrate their roles. Shibuya and Tamai studied the openness (trans-

parency and accessibility [102]) of three projects. They found that each project facilitates

participation of new developers in different ways.

In addition to the size of core teams and role migration in OSS projects, Mockus et

al. [64] hypothesized that a group, which is larger by an order of magnitude than the core

team, will repair defects. From this hypothesis, we derive that non-core developers focus

more on maintenance activity (e.g., bug fixing) than implementation activity. Goeminne and

Bieman [30] showed that 2-6 out of the top 20 developers also contributed to plenty of the

bug report and email discussions.

Robles et al. [82], Hindle et al. [39], and Vasilescu et al. [96] studied the various activities

in projects. Hindle et al. distinguished four types of files and Robles et al. proposed eight

different activities. Recently, Vasilescu et al. extended this number to 14 activities and

empirically studied how the workloads of projects/contributors varied across the software

ecosystem.

Because of small number of case study systems, claims of proportion of core developers

in successful projects vary. Our study generalize prior findings with large set of OSS projects

which are hosted on GitHub. Furthermore, we quantitatively compare the contribution

activity of core and non-core developers.

2.5 Summary

In this chapter, we discuss prior works related to this dissertation. From the results of this

literature survey, we find that only a few studies consider relationships between projects to

capture the situation. Our approach compares the values of the magnet and sticky metrics for

Kyushu University Graduate School of Information Science and Electrical Engineering

2 A Literature Survey on Sustainability of Open Source Software Projects24

OSS projects. Furthermore, we combine the magnet and sticky metrics and do not consider

these metrics individually.

For core developers, we focus on the proportion of core developers in projects as the first

step of studying the impact of core developers on sustainability. According to the literature

survey, we find that claims of prior studies about the proportion of core developers vary (e.g.,

some studies claims that the proportion follows the Pareto principle) because of the small

number of case study systems. Hence, we generalize such observations about the proportion

of core developers in projects with a large number of case study systems.

Kyushu University Graduate School of Information Science and Electrical Engineering

3 Introduction of Magnet and Sticky For OSS Sustainability 25

Chapter 3

Introduction of Magnet and Sticky

For OSS Sustainability

3.1 Introduction

In this chapter, we introduce the magnet and sticky metrics and the way to measure the

sustainability of open source software (OSS) projects, and demonstrate the applicability

with a small sample of GitHub projects.

Using census data, the Pew Research Center, a research body that studies the issues, at-

titudes and trends shaping America and the world, launched a Social & Demographic Trends

study. The study reports that just 28% of adults born in Alaska still live there. Further-

more, 86% of adult residents of Nevada migrated there from a different state, suggesting

that Nevada is quite “magnetic”. Such population studies illustrate the migratory trends of

citizens in America.

For software engineers, migratory trends of open source contributors is of interest. To

become a popular and long-lived project, maintainers need to retain existing contributors and

attract new ones. Mockus et al. [64] find that although the Apache and Mozilla open source

projects have a small core team of developers, there is a larger community of contributors.

Kyushu University Graduate School of Information Science and Electrical Engineering

3 Introduction of Magnet and Sticky For OSS Sustainability 26

While prior work has explored contributor immigration [3] and Long Term Contributors

(LTCs) [111], to the best of our knowledge, the “sticky” and “magnetic” nature of open

source projects has not yet been explored. Hence in this study, we set out to adapt the

“magnet” and “sticky” metrics described in the Pew Research study for the context of open

source projects. We then use these metrics to explore the sticky or magnetic nature of open

source projects in the MSR challenge dataset [31]. Using the dataset, we address two research

questions that we describe in next section (Section 3.2).

3.1.1 Organization of Chapter

The remainder of the chapter is organized as follows. Section 3.2 provides our study design

such as our definitions of magnet and sticky metrics for the open source context, our research

questions and the areas of the MSR challenge dataset that we leverage for our study. In

Section 3.3, we present the results of our study. Finally, Section 3.4 draws conclusions.

3.2 Study Design

3.2.1 Definition of Magnet and Sticky

The Pew Research Center report1 defines magnet states as those states where a large pro-

portion of adults who live there have moved from another state. Thus, the magnet metric

for a state is the proportion of adult residents of a state who were not born in the state.

Furthermore, the report also defines sticky states as those states where a large proportion of

adults who were born there continue to live there. Thus, the sticky metric for a state is the

proportion of adult residents who were born in the state.

These definitions are sound for a study of populations, where a single adult can only

occupy one state at a time. However, the definition cannot be applied directly to open source

projects, where a contributor can contribute to several projects at the same time. Therefore,

1http://www.pewsocialtrends.org/2009/03/11/magnet-or-sticky/

Kyushu University Graduate School of Information Science and Electrical Engineering

http://www.pewsocialtrends.org/2009/03/11/magnet-or-sticky/

3 Introduction of Magnet and Sticky For OSS Sustainability 27

we expand original definition to apply to open source projects as follows:

Magnet projects are those that attract a large proportion of new contributors. Thus, we

calculate the magnetism of a project as the proportion of contributors who made their

first contribution in the time period under study who contribute to a given project.

Sticky projects are those where a large proportion of the contributors will keep making

contributions in the time period the following and under study. Thus, we calculate the

stickiness of a project as the proportion of the contributors in the time period under

study who have also made contributions in the following time period.

While our definitions are based on contributors, in this study, we focus on developers. We

plan to explore other types of contributions in future work. Furthermore, our definition is

based on time periods in the abstract sense. We select development years as the granularity

for this study because we believe that years provide a coarse enough granularity to observe

high-level trends. Coarser or finer granularities can also be explored.

Figure 3.1 shows an example of our definition. In this example, we examine the 2011

time period. There are five developers (A, B, C, D and E) and two projects (1 and 2). To

calculate the magnet metric, we observe that there are three new developers (B, C and D),

and two of them contribute to project 1 (B and C), while one developer (D) contributes to

project 2. In this case, magnet value of project 1 is 2/3 and project 2 is 1/3.

To calculate the sticky metric, in project 1, three developers contribute in 2011 (A, B

and C) two of them also contribute in 2012 (A and B). Hence, the sticky value of project 1

is 2/3. In project 2, one developer contributes to the project in 2011 (D) and two developers

(D and E) contribute to in 2012. However, the sticky metric only considers the number of

developers who contribute to the project in the studied time period and the next one. Hence,

sticky value of project 2 is not 2/1, but rather 1/1.

Kyushu University Graduate School of Information Science and Electrical Engineering

3 Introduction of Magnet and Sticky For OSS Sustainability 28

P
ro

je
ct

 1
P

ro
je

ct
 2

2010 2011 2012

Sticky = 2/3
Magnet = 2/3

Sticky = 1/1
Magnet = 1/3

A

B

C

D

E

= Commit or
pull request

Figure 3.1: Example of magnet or sticky of values by our definition in 2011

3.2.2 Research Question

In this chapter, we first introduce magnet and sticky metrics to OSS context for understanding

sustainability of OSS projects. Before starting deep analysis using these metrics, we need

to evaluate the applicability to OSS context. Hence, we address the following two research

questions.

(RQ1) What are typical values of magnet and sticky in OSS?

Although most of the studied projects tend to be more sticky than they are mag-

netic, highly magnetic projects like Homebrew consistently attract many developers

by simplifying the contribution process.

(RQ2) How do magnet and sticky values change over time?

Our quadrant analysis can identify projects at risk of becoming obsolete. Further-

more, quadrant transitions are often accompanied by interesting events.

Kyushu University Graduate School of Information Science and Electrical Engineering

3 Introduction of Magnet and Sticky For OSS Sustainability 29

Table 3.1: An overview of the dataset collected using queries like: “select count(id) from
TABLE”

Users # Projects # Commits
499,485 108,718 555,325

3.2.3 Dataset

In this study, we analyze the GitHub dataset provided by Gousios [31]. The dataset includes

a variety of software evolution data from 90 OSS projects, such as issues, pull requests,

organizations, followers, stars and labels. However, in this study, we only operate on code

authorship data in the commits and pull requests tables. Although these 90 OSS projects are

forked thousands of times, we focus on the commit and pull request activity in the original

repository.

An overview of the data we study is presented in Table 3.1. Note that each of the IDs

are unique for each studied table. Therefore, Table 3.1 shows the number of unique users,

projects and commits.

In this study, we consider a developer to be one who authors code changes to a project. In

the GitHub dataset, a developer can either perform the commit himself or send a pull request

to an upstream repository maintainer. We consider both actions as development activity for

our magnet and sticky analysis.

3.3 Study Results

We now present the results of our study with respect to our two research questions. For each

question, we discuss our approach, quantitative and qualitative results.

(RQ1) What are typical values of magnet and sticky in OSS?

Approach. We calculate magnet and sticky values for the studied OSS projects as described

in Section 3.2. To visualize the data, we plot magnet and sticky values for each project against

Kyushu University Graduate School of Information Science and Electrical Engineering

3 Introduction of Magnet and Sticky For OSS Sustainability 30

each other, and (similar to Khomh et al. [51]) divide the plot into four quadrants:

Attractive: Projects with high magnet and sticky values. Attractive projects are successful

in both attracting new developers and retaining existing ones.

Fluctuating: Projects with high magnet values, but low sticky ones. Fluctuating projects

are successful at attracting new developers, but unsuccessful at retaining existing ones.

Stagnant: Projects with low magnet values, but high sticky ones. Stagnant projects retain

the existing development team well, but struggle to attract new members.

Terminal: Projects with low magnet and sticky values. Terminal projects struggle to retain

existing developers and do not attract new ones.

The quadrant thresholds can be dynamically configured. In this study, we use the median

magnet and sticky values as the thresholds, since the median is a robust measure that is not

heavily influenced by outliers.

As described in Section 3.2, the sticky value of a year under study depends on the number

of developers in that year and the following one. Hence, to address RQ1, we focus on the

most recent year (2011) that has a complete year of historical data recorded after it (2012).

We are not able to use the data of 2012 or other more recent years because the dataset only

contains partial results from the 2013 (i.e., until October) and no results from 2014 yet.

Note that the sticky value depends on the number of developers who contribute in the

target year (Figure 3.1). If the number of developers in the target year is small, the sticky

value tends to be high. Therefore, to reduce the influence of noise on our results, we filter

away projects that have ten or fewer developers.

Quantitative results. Figure 3.2 shows the magnet vs. sticky quadrant plot of OSS

projects in 2011. Attractive projects land in the red quadrant (upper-right), fluctuating

projects land in the green quadrant (upper-left), stagnant projects land in the blue quadrant

(lower-right) and terminal projects land in the purple quadrant (lower-left).

Figure 3.2 shows that magnet values tend to be much smaller than the sticky values.

Indeed, most projects have sticky values that are larger than their magnet values. In other

Kyushu University Graduate School of Information Science and Electrical Engineering

3 Introduction of Magnet and Sticky For OSS Sustainability 31

●

●●

●

●

●
●

●

●

●
●

●●

●

●
●● ●

●

●

●

●●

●● ● ●
●●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

0.00

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6 0.8
Sticky

M
ag

ne
t

e Homebrew

eDjango

Figure 3.2: Distribution of magnet and sticky values for the studied projects

words, stickiness is a more common attribute of a software project than magnetism. This

finding is in agreement with the original magnet vs. sticky study of American states, where

the median of sticky value was 0.580 and the median of magnet value was 0.39.2 Like citizens

who become accustomed to their environment, developers who contribute to a project are

likely to continue contributing to the same project.

Manual analysis. Figure 3.2 shows that there are projects with extreme magnet and

sticky values. We manually inspect two such projects, i.e., the projects that have the highest

magnet and sticky values.

The Homebrew3 project has the largest magnet value in Figure 3.2. Homebrew is a popular

package management tool for Mac OS X that began development in 2009. We suspect that

in addition to Homebrew’s popularity, it is especially magnetic because it is relatively easy to

contribute to it. For example, the smallest contribution that one can make to Homebrew is

a “Formula cookbook”, i.e., a package description that specifies the URL of a package and

how it can be installed. Since most package descriptions are written in high-level scripting

2http://www.pewsocialtrends.org/2009/03/11/sticky-states/
3http://brew.sh/

Kyushu University Graduate School of Information Science and Electrical Engineering

http://www.pewsocialtrends.org/2009/03/11/sticky-states/
http://brew.sh/

3 Introduction of Magnet and Sticky For OSS Sustainability 32

Table 3.2: Number of new developers and unique developers in each year

Year New Devs Unique Devs Year New Devs Unique Devs
2003 17 17 2009 1,045 1,287
2004 9 21 2010 2,768 3,190
2005 45 54 2011 6,745 7,944
2006 55 91 2012 7,988 10,606
2007 66 128 2013 6,643 9,860
2008 483 565

languages,4 the barrier to entry for newcomers is relatively low.

The django project has the largest sticky value. Django is a high-level python web frame-

work that began development in 2005. Django is used by several popular web applications,

such as: (1) Instagram – a popular social image sharing application5 and (2) ReviewBoard

– a peer reviewing web application.6 To investigate why the django project is so sticky, we

studied the professional activity of the ten most active and loyal developers.

We find that although prior work by Zhou et al. reports that the most important factor to

becoming a long term contributor to an open source project is a pro-community attitude [111],

many of the top contributors are motivated by their professional activity. For example, many

of the most loyal django developers began contributing during the initial development period

or shortly after it. Of the ten top contributors, eight are paid to develop web applications

professionally, and use django to do so. Their work on django is thus likely motivated by

their professional activity.

Stickiness is a more common project attribute than magnetism. Especially sticky projects

like django are used professionally by many of the most loyal contributors. Especially

magnetic projects like Homebrew have simple contribution processes.

4https://github.com/Homebrew/homebrew/wiki/Formula-Cookbook
5http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances-dozens-of
6http://www.reviewboard.org/

Kyushu University Graduate School of Information Science and Electrical Engineering

https://github.com/Homebrew/homebrew/wiki/Formula-Cookbook
http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances-dozens-of
http://www.reviewboard.org/

3 Introduction of Magnet and Sticky For OSS Sustainability 33

T
ab

le
3.

3:
Q

u
ad

ra
n
t

tr
an

si
ti

on
s

of
lo

n
g-

li
ve

d
op

en
so

u
rc

e
p
ro

je
ct

s.

Q
u
ad

ra
n
t

in
20

11
P

ro
je

ct
N

am
e

20
04

20
05

20
06

20
07

20
08

20
09

20
10

ra
il
s

*
T

er
m

in
al

S
ta

gn
an

t
S
ta

gn
an

t
F

lu
ct

u
at

in
g

F
lu

ct
u
at

in
g

A
tt

ra
ct

iv
e

A
tt

ra
ct

iv
e

x
b
m

c
-

S
ta

gn
an

t
A

tt
ra

ct
iv

e
A

tt
ra

ct
iv

e
S
ta

gn
an

t
A

tt
ra

ct
iv

e
T

er
m

in
al

d
ja

n
go

-
*

*
S
ta

gn
an

t
S
ta

gn
an

t
S
ta

gn
an

t
S
ta

gn
an

t
jq

u
er

y
-

-
F

lu
ct

u
at

in
g

T
er

m
in

al
*

A
tt

ra
ct

iv
e

F
lu

ct
u
at

in
g

F
lu

ct
u
at

in
g

p
ap

er
cl

ip
-

-
-

*
F

lu
ct

u
at

in
g

T
er

m
in

al
F

lu
ct

u
at

in
g

co
m

p
as

s
-

-
-

-
*

F
lu

ct
u
at

in
g

F
lu

ct
u
at

in
g

sc
al

a
T

er
m

in
al

T
er

m
in

al
*

*
A

tt
ra

ct
iv

e
T

er
m

in
al

F
lu

ct
u
at

in
g

S
ta

gn
an

t
m

em
ca

ch
ed

*
*

T
er

m
in

al
F

lu
ct

u
at

in
g

S
ta

gn
an

t
T

er
m

in
al

*
cl

o
ju

re
-

-
*

*
*

A
tt

ra
ct

iv
e

A
tt

ra
ct

iv
e

d
ja

n
go

-
d
eb

u
g-

to
ol

b
ar

-
-

-
-

T
er

m
in

al
T

er
m

in
al

T
er

m
in

al

T
er

m
in

al
je

k
y
ll

-
-

-
-

F
lu

ct
u
at

in
g

F
lu

ct
u
at

in
g

T
er

m
in

al
b
lu

ep
ri

n
t-

cs
s

-
-

-
*

*
T

er
m

in
al

*

Kyushu University Graduate School of Information Science and Electrical Engineering

3 Introduction of Magnet and Sticky For OSS Sustainability 34

(RQ2) How do magnet and sticky values change over time?

Approach. We first analyze how all of the studied projects transition among the quadrants

of Figure 3.2 as they age. Since the boundaries of the quadrants will likely change, we

recalculate the boundaries for each studied year.

Quantitative results. Figure 3.3 illustrates quadrant transition likelihood using a state

transition diagram. Each value describes the likelihood of a transition from one quadrant to

another (or the same) quadrant. The direction of the arrow indicates the direction of the

quadrant change. For example, Figure 3.3 shows that the likelihood of transitioning from

the attractive quadrant to the fluctuating one is 22%. We use the “*” state to represent the

years when projects did not satisfy our filtering criteria (ten or more developers). To improve

the readability of the figure, we plot two “*” states, however they are semantically identical.

This figure shows that terminal quadrant projects are the only ones that drop into the

filtered away state (“*”). This agrees with our intuition, in that terminal quadrant projects

are losing team members and struggling to attract new ones, which if continued for a long

enough period of time would lead to the death of a project. Projects in the other quadrants

are successful at either attracting new developers (high magnet) or retaining the existing

ones (high sticky), and are unlikely to decay in size like those in the terminal quadrant.

We also find that fluctuating projects have same likelihood of transition to other three

categories (i.e., attractive, stagnant, terminal). This also agrees with intuition, in that fluc-

tuating projects have plenty of turnover in the development team, and hence could transition

to any of the other quadrants at any time.

Figure 3.3 also shows that there is often a higher likelihood of transition from higher

quadrants to lower ones than vice versa. This is likely due to the fact that increasing the

stickiness or magnetic nature of a project requires effort to obtain (and retain) more develop-

ers. Nonetheless, in two out of nine cases (i.e., attractive-stagnant and fluctuating-terminal),

projects are more likely to transition from the lower quadrant to the higher one than vice

versa. While the difference in the fluctuating-terminal transition flow is minimal (i.e., only

Kyushu University Graduate School of Information Science and Electrical Engineering

3 Introduction of Magnet and Sticky For OSS Sustainability 35

Attrac
tive

Termi
nal

Fluctu
ating

Stagna
nt

50%

22%

59%

14%

14%

45%

5%

27%

37%

17%

18%

6%

20%

22%14%

9%

＊＊

40%40%

18%

26%

9%

8%23%

0%

0%

0%

Figure 3.3: The likelihood of quadrant transitions

four percentage points differentiate the two directions), the attractive-stagnant case has a

much broader separation. The reversal of transition flow in the attractive-stagnant case is

likely because 70% of the studied projects only began development after 2009 (see Table 3.3).

The short nature of much of the studied project history causes “trendy”, short-lived, but

highly popular applications to influence our results.

Furthermore, to confirm the risk of becoming obsolete, we check how many of the projects

that enter the filtered state (“*”) were in the terminal state just before. We find that two-

thirds of filtered state projects originate from the terminal state.

Manual analysis. We select three projects from each quadrant that have the longest

history, and study each quadrant transition that they make in depth. Table 3.3 shows the

quadrant transition history of the 12 selected projects. In this table, “-” means that the

project was not yet under development, and “*” means that the project started, yet, lacked

a large enough contributing team to satisfy our filtering criteria (i.e., more than ten active

developers).

Kyushu University Graduate School of Information Science and Electrical Engineering

3 Introduction of Magnet and Sticky For OSS Sustainability 36

We first discuss the Rails project, which is one of the most popular web application

frameworks, as it transitions through the quadrant states. The first version of Rails was

released in 2004, version 1.0 was released in Dec. 2005, version 2.0 was released in Dec. 2007

and version 3.0 released in Aug. 2010. From the Table 3.3, Rails became a highly magnetic

project in 2008, which coincides with the release of version 1.2 (1.2.6 is a stable version in ver.

1.x) and 2.0. We suspect that the appearance of the stable version increased the visibility

of Rails, which in turn increased developer interest. Furthermore, the Rails 2.0 introduced

SQLite3 as the backend datastore and encouraged the use of REpresentational State Transfer

(REST), which also likely intrigued technology-motivated developers to participate.

Next, we discuss the jQuery project, which began development in 2006 and is one of

the most popular JavaScript libraries today. Interestingly, Table 3.3 shows that jQuery has

transitioned between three quadrants and “*” state during its lifespan. The bursty nature

agrees with the hypothesis of Bird et al. [3] that the rate of immigration in open source

projects is non-monotonic. Early in development, jQuery transitioned from the terminal

quadrant to “*” in 2008 and then to the attractive quadrant in 2009. Although the transition

from the terminal quadrant to “*” state is not uncommon, the transition from “*” state

directly to the attractive quadrant is interesting and worth exploring. In fact, on Sep. 2008,

Microsoft and Nokia announce their support for jQuery.7 This news generated much interest

in jQuery.

On the other hand, blueprint-css – a CSS framework designed to ensure cross-browser

compatibility when working with CSS – is classified as a terminal project by our quadrant

plots. Blueprint-css transitions from “*” to the terminal quadrant in 2009 and 2011. From

the transition, we can suspect that this project will be closed before too long. In fact, the

project’s last release (version 1.0.1) was May 14, 2011.

7http://blog.jquery.com/2008/09/28/jquery-microsoft-nokia/

Kyushu University Graduate School of Information Science and Electrical Engineering

http://blog.jquery.com/2008/09/28/jquery-microsoft-nokia/

3 Introduction of Magnet and Sticky For OSS Sustainability 37

23% of terminal quadrant projects eventually decay into a state where they have ten or

fewer contributors, suggesting that our quadrant analysis can successfully identify projects

at risk of becoming obsolete. Furthermore, we find that many quadrant transitions are

accompanied by interesting events in a project’s history.

3.4 Summary

Migratory trends of open source developers are of interest for software engineers. Project

maintainers would like to retain the active developers that they have and would also like to

attract new ones to grow the community.

This study applied the magnet and sticky population concepts to a set of open source

projects.

We find that:

• Stickiness is a more common project attribute than magnetism, which can be motivated

by more than a pro-community attitude [111], but also by professional activity (e.g.,

django).

• Quadrant plots can effectively identify at-risk projects. Projects decay into a state that

have less than ten developers only from terminal state.

• Quadrant transitions often coincide with interesting events in a project’s history.

From the findings, we successfully show the applicability of the magnet and sticky metrics

to OSS projects since the metrics can capture the project characteristics. Furthermore, we

can find at-risk projects from quadrant analysis and transition analysis. It suggests that the

metrics are useful for understanding sustainability of OSS projects.

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS38

Chapter 4

Studying the Applicability of Magnet

and Sticky with Large Set of OSS

4.1 Introduction

In Chapter 3, we introduce the magnet and sticky metrics and the way to measure the

sustainability of open source software (OSS) projects, and demonstrate the applicability

of the metrics with a small sample of GitHub projects [31]. Since the dataset used in the

preliminary study includes 90 projects that were not randomly selected and not representative

of GitHub,1 the findings of the preliminary study are not sufficiently general.

In this chapter, we extend our preliminary study (Chapter 3). The largest extension is

for the dataset. We now analyze 16,552 GitHub projects that have more than ten forks and

developers (cf., Section 4.2). GitHub is one of the largest social coding platforms in the

world, hosting many types of OSS projects. Furthermore, we modify the definition of the

sticky value to improve its usability and investigate the typical duration between releases to

avoid ad hoc decision about duration.

The summary of extensions is as below:

1http://2014.msrconf.org/challenge.php (Accessed 2015-06-15)

Kyushu University Graduate School of Information Science and Electrical Engineering

http://2014.msrconf.org/challenge.php

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS39

• Modifying the definitions of sticky values (Section 4.2).

• Adding a pilot study to investigate the typical duration between releases (Section 4.3).

• Extending the number of target projects from 90 to 16,552 (RQ1, 2).

• Adopting the typical release duration as time period in our experiments (RQ1, 2).

To generalize the results of our preliminary study, we address same research questions:

(RQ1) What are the typical distributions of projects from the magnet and sticky

perspectives?

Motivation: Applying the concepts of magnet and sticky in an OSS context, we

seek the project distributions of these concepts.

Result: 23% of contributors remain with a project. Lager projects attract larger

number of new contributors than smaller projects.

(RQ2) How do the Magnet and sticky values change over time?

Motivation: By investigating the transitions of magnet and sticky values, we can

capture the temporal evolution and decay of the projects.

Result: 53% of terminal projects eventually decay into a state of have fewer than ten

contributors. On the other hand, 55% of attractive projects keep their popularity.

Furthermore, stagnant projects are more likely to decay than fluctuating projects.

4.1.1 Organization of Chapter

The remainder of the chapter is organized as follows. Section 4.2 describes our study design

such as definitions of magnet and sticky metrics, research questions that we address and

dataset that we use in this study. Section 4.3 and 4.4 present the results of pilot studies

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS40

investigating the release duration in OSS projects and studies that we conduct using the large-

scale of OSS projects, respectively. Then, we discuss our results in Section 4.5. Section 4.7

concludes the chapter.

4.2 Study Design

This section provides an overview of our study. First, we show definition of magnet and

sticky metrics, develop our research questions and motivations, then describe our dataset.

4.2.1 Definition of Magnet and Sticky

Measuring Contributor Retention and Attraction in OSS

This subsection describes our measurements of personnel retention and attraction in OSS. In

this study, we use the magnet and sticky metrics defined by the Pew Research Center [70] for

illustrating the migratory trends of citizens in the United States. The sticky metric revealed

that just 28% of people are born in Alaska, but more than 75% of those born in Texas, remain

in their birth states as adults. Furthermore, the magnet metric revealed that 86% of adult

residents of Nevada had migrated from a different state.

Magnet and Sticky in State Populations

The Pew Research Center report [70] defines Magnet states as states that attract a large

proportion of adults from other states. Thus, the magnet metric of a state is the proportion

of adult residents who were not born in that state, relative to the total state population. The

report also defines Sticky states as states that retain a large proportion of the people born in

that state. Thus, the sticky metric of a state is the proportion of adult residents who were

born in that state, relative to the residents born and living in the entire United States.

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS41

Magnet and Sticky in OSS Projects

The definitions of magnet and sticky are unambiguous in population studies, in which a single

adult occupies only one state at a time, but are not directly applicable to open source projects,

because contributors can contribute to several projects at the same time. Furthermore, the

birth and current residence states of a single adult are identified from certificates of residence;

however, no such document records the projects contributed by a developer. Therefore, if a

developer commits to a project during a certain period, we identify that the developer has

joined the project during that period. Therefore, the identification depends on the duration

of the contribution period. In our preliminary study [107], we tentatively assigned the time

window of the analysis as one year. In the present study, we more rigorously assess the time

window as six months in a pilot study, see Section 4.3.

Using this duration, we divide time into periods. The period of interest is denoted the

target period (pi). The periods immediately preceding and succeeding the target period are

called the previous period (pi−1) and the following period (pi+1), respectively.

In our preliminary study [107], the sticky metric was defined as the proportion of con-

tributors in both pi and pi+1. In this study, we modify the definition to the proportion of

contributors in pi−1 and pi. In this manner, we can predict the status of the projects in pi+1

(i.e., the future status).

Therefore, we redefine the magnet and sticky metrics as follows:

Magnet projects are projects that attract a large proportion of new contributors. Thus,

the magnetism of a project is the proportion of contributors who contributed during a

particular period, but not during previous periods.

Sticky projects are projects in which many contributors continue making contributions.

Thus, the stickiness of a project is the proportion of contributors who contributed

during a particular period and also during previous periods.

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS42

Pr
oj
ec
t	 1
	

Pr
oj
ec
t	 2
	

S,cky	 =	 1/2	
Magnet	 =	 1/3	

S,cky	 =	 	 1/1	
Magnet	 =	 2/3	

A	

B	

C	

D	

E	

=	 Commit	 or	 	
pull	 request	

F	
Period	

pi-‐1	 pi	

Figure 4.1: Calculation examples of our newly defined magnet and sticky values

Illustrative Example

The quantification of our definitions is demonstrated in Figure 4.1. In this example, we

examine two projects during period pi. There are six developers (A, B, C, D, E, and F)

and two projects (1 and 2). Circles show the commits or pull requests contributed by the

developers (listed down the left-hand side). For example, while developer A makes two

contributions during period pi, developer B makes no contributions during that period. To

calculate the magnet metric, we observe that three new developers (C, E, and F) join the

team at pi, one of whom contributes to project 1 (C), while the others (E and F) contribute

to project 2. In this case, the magnet values of projects 1 and 2 are 1
3

and 2
3
, respectively.

To calculate the sticky metrics, we note that two developers (A and B) contributed to

project 1 at pi−1, one of whom (A) also contributes at pi. Hence, the sticky value of project

1 is 1
2
. One developer (D) contributes to project 2 at pi−1, and three developers (D, E, and

F) contribute at pi. However, the sticky metric only considers the number of contributors

during pi−1 and pi. Hence, the sticky value of project 2 is not 3
1
, but rather 1

1
.

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS43

4.2.2 Research Questions — Motivation and Approach

(RQ1) What are the typical distributions of projects from the magnet and sticky

perspectives?

Motivation. First, we overview the trends of magnet and sticky values in the OSS context.

This research question was addressed in our preliminary study [107], but here we expand the

number of case study projects from 90 to 16,552. We also reconsider the time window. In

this study, we established the time window as six months in a pilot study.

Approach. The magnet and sticky values of the studied OSS projects are calculated as

described in Section 4.2.1. To visualize the data, we plot the magnet and sticky values of

each project against each other project, and (similar to Khomh et al. [51]) divide the plot

into four quadrants, as done in our preliminary study [107]:

Attractive projects (with high magnet and sticky values) successfully attract new devel-

opers while retaining their existing ones.

Fluctuating projects (with high magnet values, and low sticky values) successfully attract

new developers but tend to lose existing ones.

Stagnant projects (with low magnet values, and high sticky values) retain their existing

development team but struggle to attract new members.

Terminal projects (with low magnet and sticky values) struggle to retain existing devel-

opers while failing to attract new ones.

The quadrant thresholds can be dynamically configured. In this study, we use the median

magnet and sticky values as the thresholds, as the median is a robust measure that is not

heavily influenced by outliers.

As in our preliminary study [107], we focus on the latter six months of the most recently

completed year of historical data (i.e., from July to December of 2013). The most recent

dataset includes the largest number of projects.

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS44

Note that the sticky value depends on the number of contributors in both the target and

the previous time periods (Figure 4.1). If few developers have contributed in the previous

time period is small, the sticky value tends to be high. Therefore, to reduce the noise in our

results, we filter out projects with less than ten developers in the previous time period. We

also consider the time period in which the project started. The sticky value of a start-up

project is 0, because all of the developers are new and no developer has contributed during

the previous time period. Therefore, we filter out new projects in the target time period.

Besides an overview of the distribution, we also show typical values of differently sized

projects. As mentioned above, the magnet and sticky metrics are influenced by the number

of total developers in the target and previous time periods. Therefore, we divide projects

according to their number of developers, and display the median magnet and sticky values

of projects in each size category.

(RQ2) How do the Magnet and sticky values change over time?

Motivation. By investigating the changes in magnet and sticky values, we can capture the

temporal evolution and decay of the projects.

Approach. We analyze how the aging projects transit among the quadrants of Figure 4.3.

As the quadrant boundaries will likely change, the boundaries are recalculated in each time

period. In this study, we track the magnet and sticky values from 2000 to 2013 (i.e., thorough

28 time periods).

4.2.3 Dataset

Our dataset is the GitHub dataset “GHTorrent” provided by Gousios [31].2 Part of this

dataset is provided in the MySQL database and includes diverse software evolution data

from a large collection of OSS projects, such as issue reports, pull requests, organizations,

followers, stars and labels. We focus on the code authorship data in the commits and pull

2We use MySQL databases dump at 2014/04/02

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS45

Table 4.1: Overview of the GHTorrent dataset used in this study

Dataset #Users #Repos #Commits #PullReqs
This Study 3,426,046 8,510,504 96,999,485 3,200,428
Preliminary Study 499,485 108,718 555,325 78,955

requests tables.

GitHub has unique features such as fork and pull request for collaborative development.

GitHub describes Fork as a copy of a repository. Forking a repository allows you to freely

experiment with changes without affecting the original project.3 Pull request allows users to

“tell others about changes you’ve pushed to a repository on GitHub. Once a pull request

is sent, interested parties can review the set of changes, discuss potential modifications, and

even push follow-up commits if necessary.”4 A typical development process on GitHub, driven

by fork and pull requests, proceeds as follows:

1. A developer forks a repository to which he or she hopes to contribute.

2. The developer makes changes to the fork repository.

3. The developer sends a pull request to the original repository to reflect his or her changes

to the original repository.

4. If the owner of the original repository allows the pull request, the changes are included

in the original repository.

Table 4.1 overviews the dataset used in our study. This dataset is 800 times larger than

that accessed in our preliminary study [107]. Besides the higher number of repositories,

the current dataset includes more users, commits and pull requests than the dataset of the

preliminary study.

As described above, the entire dataset is divided into sub-datasets covering different time

periods. Therefore, we examine the column created at. However, this column contains

uninterpretable or nonsensical dates such as ’0000-00-00’, ’0000-00-00 00:00:00’, and 2025 (as

3https://help.github.com/articles/fork-a-repo/ (Accessed 2015-06-15)
4https://help.github.com/articles/using-pull-requests/ (Accessed 2015-06-15)

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS46

the commit year). As the dates of commit and pull requests are critical to our analysis, we

filtered out such cases.

4.2.4 Developers

In this study, a developer is a person who alters software code. In the GitHub dataset,

developers can either perform the commit themselves or send a pull request to an upstream

repository maintainer. Both actions are viewed as developmental activity in our magnet and

sticky analyses. According to Kalliamvakou et al. [48], most of the accepted pull requests

sent from fork repositories are absent in the histories of original repositories. Therefore, we

mine the developer information from both the original and fork repositories. In particular,

we obtain the author information from the retrieved commits. From the pull requests, we

obtain the information of actors who send (i.e., open) the pull requests.

The GitHub system identifies authors as registered or non-registered from the email ad-

dresses of the commits.5 If the author of a commit is not registered, GitHub records the

author information that can be obtained from Git, such as name and email address, along

with a unique id. In this system, some developers are assigned multiple user ids. There-

fore, we clean the data using the tool6 that matches users with their information recorded in

GitHub (e.g., login name, actual name, email address and location).

4.2.5 Projects

Not all of the repositories included in our dataset are software projects [48]. Other repository

categories include, but are not limited to, Experimental (e.g., examples, demonstrations and

samples,) and Storage (e.g., configuration files and personal use). We assume that the number

of fork repositories and developers is negligible in these categories, since these repositories

do not require collaboration with others. To identify software projects, we note the number

5https://help.github.com/articles/why-are-my-commits-linked-to-the-wrong-user/ (Accessed 2015-06-15)
6https://github.com/bvasiles/ght unmasking aliases (Accessed 2015-06-15)

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS47

●

●●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0

200

400

600

major minor patch
Type of Release

D
ur

at
io

n
(D

ay
)

Figure 4.2: Release duration (days)

of fork repositories and number of developers, both of which indicate collaborative activity.

Projects with less than 10 fork repositories and 10 developers are filtered out. The post-

filtered dataset includes 16,552 original repositories.

Our study focuses on projects adopting the pull-based model, which excludes the 55%

of the GitHub projects using shared repository models [32]. Moreover, we filtered projects

with fewer than 10 forks. Therefore, our findings are not generalizable to shared repository

models.

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS48

4.3 Pilot Study

In our preliminary study [107], we tentatively assigned the target period of the magnetism

and retention calculations as one year. However, the validity of this assignment was not

discussed. In the present study, the appropriate period is identified in a pilot study.

In defect prediction, code review and other studies relying on Mining Software Reposito-

ries (MSR), experiments are conducted at the release-level [49, 61]. However, when conduct-

ing experiments across multiple projects, the release-level is inappropriate for two reasons.

First, we desire to compare metrics at the same time; second, multiple projects are not

released simultaneously.

Instead of the release-level, we therefore adopt the representative release duration. Some

of the large projects regularly update their products [50]; Google Chrome and Mozilla Firefox

update their products every six weeks (i.e., adopt a rapid release model). If all the projects in

our dataset are periodically updated at the same rate, that period becomes a useful parameter

in the magnetism and retention calculations. Therefore, we manually inspect some projects

to determine the constancy of their update periods. Unfortunately, unlike Google Chrome

and Mozilla Firefox, most projects are not regularly upgraded. Hence, to identify the typical

release period of the GitHub projects, we calculate the duration between the releases of each

project.

Approach. GitHub releases the products7 and provides the API to access the released

information. We extract the release information (version number and published date) of

all target projects from the GitHub API. The published and git tag dates are independent,

although both dates have the same version name and release date of the updated version

onto GitHub. Although GitHub recommends the semantic labeling of new versions (in MA-

JOR.MINOR.PATCH number format) [71], some projects do not follow this recommendation.

Projects not adopting the semantic versioning system are removed from our analysis. We

also remove alpha versions and release candidates (e.g., 1.0.0-alpha, 1.0.0-pre), because such

7https://help.github.com/articles/creating-releases/ (Accessed 2015-06-15)

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS49

Table 4.2: Release duration of major, minor, patch upgrades of GitHub projects (days)

Major Release Minor Release Patch Release
Min 9 1 1
1st Qu. 68.8 20 6
Median 167.5 52 18
Mean 202.8 84.2 38.5
3rd Qu. 316.3 117 45
Max 650 620 609
NumberOfUpdate 98 2,021 6,092

versions are candidates rather than official releases. After filtering, we extract the release

information of 16,682 versions of 1,778 projects. From this information, we calculate the

duration of Major, Minor and Patch releases.

In the semantic versioning system [71], a major release denotes an update of incompatible

API changes, and the version number changes from (x.0.0) to (x+1.0.0). Minor releases

add functionality to a project in a backwards-compatible manner, and alter the version

number from (x.y.0) to (x.y+1.0). Patch releases correct backwards-compatible bugs, and

are marked by version number changes from (x.y.z) to (x.y.z+1).

Multiple versions (even major upgrades) were occasionally released on the same day, and

in different order from their version numbers. We presumed that such projects had been

moved to GitHub from another hosting service (e.g., SourceForge), and had been previously

released. A developer could then release all versions onto GitHub on the same day. Therefore,

we filter out updates with duration below one day and released in different order from their

version numbers.

Results. The duration distributions of the major, minor, and patch updates are presented

in Figure 4.2 and Table 4.2. To improve the accuracy of the pilot study, we focus on duration

between the 1st and 3rd quantiles.

Figure 4.2 reveals clear duration differences between the major, minor, and patch releases.

At the patch level, the duration at the 1st and 3rd quantiles are 6 days and 45 days, respec-

tively, with a median of 18 days (approximately half a month). For minor upgrades, the

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS50

Table 4.3: Median values of magnet and sticky OSS projects released on GitHub

Metrics
of Total Developers in Project

10-50 51-100 101-500 501- Total

Median Magnet 0 2.9e-04 7.5e-04 9.1e-03 4.9e-05
Median Sticky 0.23 0.23 0.24 0.51 0.23
of Projects 4,275 217 112 8 4,612

duration at the 1st and 3rd quantiles are 20 days and 117 days, respectively, with a median

of 52 days (approximately two months). At the major level, the duration of the 1st and 3rd

quantiles are 69 days and 316 days, respectively, and the median is 168 days (approximately

half a year).

New versions of GitHub projects are released in 18 days at the patch level, 52 days at

the minor level and 168 days at the major level.

The pilot study revealed the typical duration of each level of releases. In the following

study, we adopt the median duration of the major release as the time window, because the

major release is the most important update of a project.

4.4 Study Results

(RQ1) What are the typical distributions of projects from the mag-

net and sticky perspectives?

Figure 4.3 presents a magnet vs. sticky quadrant plot of the OSS projects released on GitHub

during the latest time period (July to December of 2013). Attractive, fluctuating, stagnant,

and terminal projects land in the red (upper-right), green (upper-left), blue (lower-right), and

purple (lower-left) quadrants, respectively. The names of the extremely attractive projects

are annotated in the figure.

The median magnet value is quite small, and the median sticky value is only 0.23 (Fig-

ure 4.3). Although the magnet value is typically below 0.005 (marked by the horizontal

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS51

●

●

●

●

●

●

●

●

●

●

● ●● ●
●

● ● ●● ●●

●

●●

●

●●

●

●● ●● ●

●

●
●

●
●

●
●●●

●

●●

●

●●
●

● ● ●
●

●

●● ●
●

●
● ●

●
●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●● ● ●

●

●●●
●

●● ●
●

●

●

●●

●
●●

●●

●

●

●

●●
●

●● ●

●

●

●

●

●

●

●

● ●

●●●
●●

●

● ●

●

●

● ●
●

● ●
●

●

●

●

●
● ●● ●

●

●

●
●●●

●
●

●

●

●

● ●

●

●
●● ● ●●● ●●

●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●● ●
●

●● ●

●

● ●●●●

●

●

●●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●●● ●●

●

●

●

●

●

●
● ●

●
●● ●

●

●
●

●
●

●

●

●

●

●

●
●

●● ● ●
●

●
●

●
●●

●
●

●

●●
●●●

●● ● ●

● ●●
● ●● ●● ●●● ●● ●

●

●

●
●

●

●● ●

●

● ●● ● ● ●●

●

● ● ●● ●

●

●●
●●● ●● ●

●●
●●●● ● ●●● ●

●

●●
● ●● ●●

●

●
●●

●

● ● ●

●

●● ●
● ●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●● ● ● ●

●

●
●● ●

●

●●● ●●● ●

●

●
●● ●●

●
●● ●●●

●

●
●

●●

●

●
●●

●
●

● ●●● ● ●

●

●

●

●

●

●●

●

●●

●

● ●

●
●

●

●

● ● ●●
● ●● ●●●

●
●

●
●

●● ●
●

● ●●

●

● ●●

●

●●● ●●● ●●●
●

●

●●●
●

● ●
●

●

●
●

●
● ●

●
●

●

●

●

●

●

●
●

●

●
●●●

●
●●

●

● ●●
●●●●●● ● ●

●

●● ●● ● ●●
● ●

●

●

● ●● ●●
●●

●

●

● ●●●
●

●● ●● ●●

●

●

●

● ●

●

●
● ●

●
●

●

●

● ●
●

● ● ●
●

●

●

●

●●
●

●
● ● ●●

●
●

●

●

●
●● ●● ●

● ●

● ●
●● ●

●●●

●

●

●● ● ●
●

●

●

● ●● ●
●

●
●●

●●

●● ●●● ●

●

●●

●
●

●

● ●
● ●

●

●

●● ●●●● ● ●● ●
● ●

●
●

●

●●

●
●

●
●● ●● ●

●
●● ●●

●
● ●

●
●

●

●
●

●● ●●● ●● ● ●
● ●● ●●● ●

●

●

● ●

● ●● ● ●● ●●

●

●●

●
● ●● ●

●

●●
●

●● ●●● ●●
●

●● ●●

●

● ● ●●●● ● ●●
●

●
●

●

●

●

●
●

●
●

●
●●

●

●
●

●● ● ● ●

●

● ●
●

●●
●

●● ●●● ●●

●

● ●
●

●

● ●
● ●● ●● ●●

●●●
●

●

●

●●●●
●

●● ● ●● ●●●
●●

● ● ●

●

● ●

●

●
● ●

● ●

●

●

●

●● ●

●

●●● ●
●

●

●
●● ●●

●● ●● ● ● ●
●

●

●●

●

● ● ●
●●

●
●

●

●

●

●● ● ●
●

●● ●●●● ● ●●

●

●

●
●

●
●

●● ●●
●

●

●●

●

●● ●

●
●●

● ● ●●●●

●

●● ●●●● ●● ●● ● ●

●

●

●

●

●

●

● ●●

●

● ● ●
●

●
●

● ● ●● ●
●

● ●
●

● ● ● ●
●

●●●● ● ●●

●

●
●●

●

●● ●●● ● ● ●● ●● ● ●● ●
●● ●

●

●● ● ●
●

● ●● ●● ●●
●

● ●●● ●
●

●
●

● ● ●
●

●
●

●

● ●●

●

●

●

●

●

● ●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●

● ●
●●

● ●
● ●

●● ●
● ●● ●

●
●●

●

●●
● ● ●●● ● ●● ●● ●

●

●
●

●● ●●

●

● ●● ● ●
●

●● ●● ●● ●
●

●

●

●
●

● ●
● ●

●

●●●

●
●● ● ●

●

●●
●● ●

●

●

●
●

● ● ● ●●●

●
●

●

●●●
●

●●

●

● ●●● ●● ●●●● ●

●

●●

●

●●
●

● ●● ●● ●●● ●
● ●●

●
●●

● ●●● ●
●

● ●● ● ●
●

●

●

●●
● ●

●● ●● ●●
●● ●●

●
●● ● ● ●●

●

●

● ● ●● ●
● ●●● ● ● ●● ●●

●

● ●● ●●● ●

●

●● ●● ●● ●●
●●

●
●

●● ● ●
●● ● ●

●

●● ●
●

●

●

●●

●

●
●

●●●●
●●

●

● ●
●

●●

● ●●● ● ●● ●● ●●● ●● ●●

●

●
●

●● ●● ●●●

● ●

●
●

●
●

●
●

●● ● ●●

●

●● ● ●●●
● ●

● ●●● ●●● ●●
●

●●

●

●●

●

●

●
●

● ●● ● ●●

●

●●●
●

● ●●

●

●●

●

●●●
●

●
●

●● ● ●● ●●● ●
●

●

●
● ●●●

●

● ●●●
●

●
●

●●

●

●
●●

●
●●● ●● ●

●

●● ● ●●●

●

● ●● ●●

●

●●
●

●●
●

● ● ● ●
●

●
●●● ●●

●●
●

●

●

●●
●

● ●
●

●

●

●

●●● ● ●●
● ●● ● ●●

●
●

● ●●
●

●
●●

●
●

●● ●●
●

● ●

●●

●●●
● ● ●●

●●

● ●
●

●

●● ●●

●

●
●

●
● ● ●●●●● ● ●

● ●

●

●

● ●● ●
●

● ●●● ● ●●●●

●

●

●

●●●
●
●

●

● ●
●●

●● ●● ●
●●

●

●●●
●● ●● ●●

●

● ●

●

● ●●
●

●
●● ●●● ●●●

●●
●

●
●

● ●● ●

●

●●

●

●
● ●●● ● ● ●

●

●
●● ●● ●

●
●●● ●

●

●● ● ●●●

●

● ●
●

●●●
● ●●

●●
●●●

●

●

● ●●●●
●

● ●
●

● ● ●

●

●●●
●

●

●

● ●●

●

●

●

● ●● ● ● ● ●

●
●

● ● ● ●●

●

●
●

●●● ●

●

●● ●●
●●

●
● ● ●● ●

●

● ● ●
●●

● ●● ●● ●● ●●

●

●●●
●

●

●

●

●● ● ●
●

●● ● ●

●
●

●●●

●
●

●●
●●●● ● ●

●

●

●●

●

●● ●●

●

●●● ●●● ●●
●

●●

●

●

●

● ● ● ●

●

●

●
●●● ● ●●

●

●
●●● ●

●

●

●

●
● ●● ●● ●● ●

● ● ●● ● ● ●● ●● ● ●● ●●
●

●●
● ●

●

● ●● ●

●

● ● ●●●● ●● ● ●●

●
●● ● ● ● ●●

●
●

●
●

● ●
●

● ●

●

●●

●

●

●

●
●

●
● ●●

●
●

●●●
●

●
●

●
● ●●●

●

●

●

●● ● ● ●● ●●● ●
● ●●● ● ●●● ●●

●
●

●

● ●
●

●

●

●●

●

●

●
● ●● ●

●

●●●
●● ●

●

●●●

●

● ●● ●●

●

●

●

● ●●
●

●●

●

●●
●

●● ●

●

●●● ●
●

●

● ●● ●● ●

●

●●●● ●
●●

● ●● ●● ●● ●●

●
●● ●●● ●

●

●●
● ●●

●

●
● ●●

●

●● ●● ●●●
●

●
●

● ●
●

● ●●●

●

●

●

●● ● ●● ●●
●●

●
● ● ●● ●●

●● ●●●

●

●

●

●

●●● ●● ●● ●
● ●● ●● ●●

●

●

●

●
●

● ●●

●

●● ●●●● ●●
● ●

● ●●● ● ●●● ●●

●

●●

●

● ● ●●
● ●

●

●● ●● ●●

●

●
●

●
● ●

●
●

●
●

●● ●●
●

●● ●●
●

●● ● ● ●●●●● ●● ●● ●● ●
●

● ●
●

●
●●●●

●

● ●●●●

●

● ●

● ●
●

●●●●●

●

●● ●●● ● ● ●● ●
● ●●●

●
●●

●●

●

●

●● ●● ●●● ●
●

●
●

●
● ●

●

●

● ●

●

●
●

● ●
●

●●● ●
● ●

●

●

●

●●
●

●●● ●● ●● ●

●

●● ● ●●● ● ●
● ●

●● ●● ●● ●

●

●
●

● ●

●

●
●

●

●

●

●

●
●● ● ● ●●●

●
●

●

●
● ●●●

●
●●

●

●● ●● ●●
●● ● ●● ●● ●

●

●●●● ●● ● ●
● ●

●

●
●

●
● ●●● ●

●

●● ●●

●

● ●● ●●●●
● ●●● ●

●
● ●

● ● ●●● ● ●
●

● ●● ●
●

● ● ●● ●●● ●
●

●

●
●● ●

●

●

●

●

● ● ●

●

● ●●●
●●●

●● ● ●
● ●● ● ●● ●● ●●● ●●

●
●● ●● ●●

●
●●

●

●●●●
●

● ●
●
●

● ●
●

●

●
●

●●

●

●
●

●
●

●● ●● ● ●● ● ●

●

●
●

●
● ● ●● ●● ●

●

●

●

● ●●●● ● ●●● ●
●

● ●

●

● ●● ●● ●● ●
●

●

●
●●

●
●

●
● ●

●

●● ●● ●●
●●

●

●
●

● ● ●●
●

● ●

●

●

●

●

●

●

●● ●●

●

●●● ●● ● ●● ●●● ● ●● ● ●●
●● ●●

●

●● ● ● ●● ● ●
●●●

●

●●●

●

●●
●

●●
●

●
● ●●

● ●
●

●

●● ●● ●●
●● ●●●●●● ● ● ●

● ●● ● ●● ● ●
●

● ●● ● ●●

●

●● ●●

●

●
●●

●

●

●

●

●

● ●●● ● ● ●●

●
●

●
●

●● ● ●

●

●● ●●
●

●● ●
●

● ●●
● ●●●

●

●

●

●
●

● ●● ● ●

●

●●
●

● ●●●●

●

●● ●● ●

●

●
●

● ●●
● ●●● ●●● ● ●●●

●

●●●●● ● ●● ●● ●● ●●● ●●
● ●

●

●
●●● ●

●
●

●

● ● ●

●

● ●●● ● ●●
●●●

●
●

●
●●

●

●

●●● ●● ● ●● ●●● ●
●

● ●●

●

●

●●
●● ●●

●
●

●

●
●

●●● ●●● ●●● ●
●

●● ●●● ● ●●● ●●
●

●
●●

●
● ● ● ●●

●
●

●

● ● ●

●

●● ●
●

●●● ●●● ●●● ●●● ●●● ● ●●

●

●

●

● ●●●

●

●● ●● ●●
●●●

●
● ●●

●

●● ●●

●
● ●● ● ●●

●

●

●
●●

●
●●● ● ●●● ●● ●●● ●●

●

●●
●●

● ●●

●

●●● ● ●●● ● ● ●
●●

● ●● ●● ●
●

● ●● ●●●

●

●
●

● ●● ● ●●●
●

●

●

●

●●
● ● ●●●●

●

●

●●●
●

●● ●
●●

● ● ● ●● ●●● ● ●

●

●

●
●

●●

●

● ●● ●●● ●
●

● ●●●
●

●
●

●● ●●● ●● ● ●● ● ●

●
●

●
●●● ● ●

●
● ●● ● ● ●●● ●●

●

● ●●
●

●● ●●● ●●● ● ●●

●

●

●

●●●
●

●●●
●

●

●

● ●●
●●

●
●

●

●
●

●● ●●

●
●

●

● ●● ●● ●●● ●● ● ●● ● ● ● ●●●
●

●●●● ●
●●●

●

●● ●

●

● ●●
● ● ●

●●
● ●●●● ● ●●

●●
●

● ● ● ●

●

●●

●

●

●
●

● ● ● ●

●

●●● ●
●

● ●

●

●

●

●●

●

● ●●

●

● ●
●

●●● ● ●● ●●

●

●
●

● ● ●
● ●●

● ●
●

●

●● ●

●

● ●●● ●● ● ●●

●

● ●● ● ●●●
● ●

●

●

●● ●

●

● ● ●
●●

●
●

●● ●● ●
●

●● ●●● ●● ● ●● ● ●●●●

●

●●●
●

●
●

●
●

●

●
● ●●

●

●

●

●●
●

● ●●
●● ●

●

●

●●
● ●● ● ● ●

●

●●● ● ●●
●

● ●

●

●● ●

●

● ●
●

● ●●● ● ●●
●●

● ●
● ●

●
●●

●●●● ●●

●

●● ●●
●●● ● ●●●● ●●

●
●● ●● ●

●
●●

● ●●● ●●●

●

●● ●●
●

● ●

●

●
●

●

●
●

●

●●
●

● ● ●●
●

● ● ● ●● ● ●●●●●● ● ●●● ●●●

●

●
●●● ●● ●●

● ●
● ●● ● ●

●● ●

●
●

●
●

●
●

●● ●● ●● ● ● ● ●

●

●
●

●

● ● ●● ●● ● ●● ●● ●
●

●● ●●
●

●
●●●●● ●

●

●● ●
●●● ●

●
●

●

●
●
● ●●●● ●

●
●●

● ●●●

● ●

●●

●

● ●● ●●●●
●

●● ●● ● ●

●

●
●

●

●●

●

●

●

●

●●● ●● ● ● ●● ●●●

●

●●● ●●

●

●
●

● ●

●

● ●● ●●
●●

●● ●

●

●

● ● ●●

●
●●

●●● ●

●

●● ●●

●

●● ●
●●● ● ●

●

● ● ●●
●

●●

●
●● ● ●●●●●

●
●

●●

●

● ● ● ●
●

● ●● ● ●●●●

●
● ●

●
● ●● ●● ●●●

●

● ●● ●
●

●

● ●
●

● ● ●●● ● ●● ● ●

●

● ●●● ●●
●

● ●
●

● ●● ●
●

●

●●
●

● ●

●

●●● ● ● ●●●● ●● ●
● ●

●
●

●
●● ● ●● ●●●

●
●

● ●
●● ●

●

●● ●

●

●
●

● ● ●
●

●

●

●

●●

●

●●●● ● ●●

●

●

●

● ●
●

●● ●● ● ●● ●●
● ●

●

●
●

●

●
●●

●
● ● ●●● ●

●●
● ●● ●

●

●● ●●
●

●●
●

●●

●

●● ●●
●

●
● ●●

●

●● ●●
●

●●●●

●

● ●●● ● ●●● ●● ● ●
● ●●● ●● ● ●● ●

●●● ●
●

●● ●●● ● ●● ● ● ●●●
●● ● ● ●●

●●● ●● ●● ●● ●●

●
●

● ● ●●
●

●

●● ●
●

● ●
●●

●

● ● ●●● ● ●
●

●
●

●

● ● ●● ●●● ● ●
●

●

●●●● ●●● ● ●●● ● ● ● ●

●

●●
●

● ●●● ●
●

● ●

●

●●

●
●

●●

●

●● ●● ● ●
●

●

●
● ●●●

●

●

●

●●
●

●● ●● ●

●

●●● ●●●● ● ●
● ● ●●●

●
● ● ●●● ●● ●●●

●

●

●
●

●
●

●●
●

●
●

●● ● ●
●

●● ●
●
●● ●●

●

●
●

● ●

●

●● ●●● ●

●

●

●

●
●● ●●

●●

●

●
●

● ●●●● ●● ●●●● ●●● ●
●

● ●●●

●

●●

●

● ●●
●

●● ●●● ● ●
●●●

●
●

●
●

●

●

●

●

●

● ●●● ●

●

● ●●●

●

●●
● ●

● ●

●

●
●

●
●●

●

● ● ●● ●
●

●

●●● ● ●

●

●● ●●●
●

● ●●●
●

●

● ●●
●

● ●
●

● ●● ●

●

●●
●

●

●

●
●

●●● ● ●● ●● ● ●● ●● ●
●● ●●

●
●

●

● ●●●

●

● ●● ●

●

●
●●● ● ●●● ●

●

● ●

●

● ●●●
●● ●

●

● ● ●
●

●● ●
●

●●●
●

● ●● ●
●

● ●

●
●

●● ● ● ● ●
●

●●●● ●●●
●●

●
●

● ● ● ●● ●●● ● ●●●
●

● ●
●

● ●●

●

●

●

●
●

● ●
●

●
●

●● ●● ● ●● ● ●●

●

●

●

●

●

●

●

● ●

●

● ●● ● ●
● ●● ● ●●● ●●

●

●
●

●
●

●
●

●

●

●
●

●

●
●●●

●

●

●

●
●

●

●●

●

●● ● ●●
●

●

●
●

● ●
●

●

●

●

●
●●

●

● ●●
●●

●●
●● ●●

●●

●● ● ●●
●

●● ●●

●
●●● ●

●

●● ●●
●

● ●● ●

●

●
● ●●●

●
● ●● ●

● ●

●

●
● ●●

●● ● ●●● ●●
●

●

●

●●
●●● ●● ●●

●

● ●

●

●
● ●

●

●

●

●

● ●● ● ●● ●
●● ●

●
●

●

●

●
●●

●

● ●● ●
●

●
●

●

●

● ● ● ●
●

●
●●

●●

●

●● ●●●

●
●●

●● ●
●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●●

●●

●

●

●●●●● ●● ●
●

● ● ●● ●●

●

● ●

●
● ●

●
●●

●

●●
●

●●●
●

● ● ●

●

●● ●
● ●●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●
●● ●

●
● ●●

●

●

● ●●

●

●●

●

●

● ●

●

●●

●

●
●

●

●●●

●

●
●

●

● ●●● ●

●
●

●●
●

●
●●● ●

●

● ●●
●

● ●●

●
●

●●
●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●
●

●● ●
● ●

●●
●

● ●

●

●
●

●

●

●

0.000

0.005

0.010

0.015

0.00 0.25 0.50 0.75 1.00
Sticky

M
ag

ne
t

eHomebrew

eLinux

eChromium

eAngular.js

eSpecs

eMozilla-central

Figure 4.3: Distribution of magnet and sticky values for the studied projects

division on the plot), some projects have large magnet values. These findings suggest that

the distribution of the number of new developers in each project is highly skewed, and that

approximately 23% of developers remain in the same projects.

The results are similar to our preliminary study [107]. In preliminary study, magnet

values are much smaller than sticky values and only a few projects have large magnet value.

Furthermore, the median sticky value is approximately 20%.

Six of the projects have exceptionally high magnet, namely, Linux, Homebrew, Chromium,

Angular.js, Specs, and Mozilla-central. Linux is among the most famous projects, and

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS52

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

10−50 51−100 101−500 501− Total

Number of Developers

M
ag

ne
t a

nd
 S

tic
ky

 V
al

ue
s

Magnet
Sticky

Figure 4.4: Beanplots of magnet and sticky values, grouped by developer size

Homebrew is a popular package management tool for Mac OS X. The web browser project

Chromium is basis of Google Chrome. Angular.js is the web framework for JavaScript, Specs

is a repository for the public CocoaPods8 specification, and Mozilla-central is a repository

for source codes implemented by the Mozilla foundation such as Firefox web browser.

The Linux, Chromium, Homebrew and Mozilla-central projects are well-known and uni-

versally popular. Therefore, many developers are expected to join these projects.

The popularity of Angular.js and CocoaPods during the analysis period was checked

by Google Trends9, which records the number of query searches on Google in chronological

order. In papers [13, 100], the popularity of a project is assessed from the numbers of web

8CocoaPods is the dependency manager for Swift and Objective-C.
9https://www.google.co.jp/trends/ (Accessed 2015-10-15)

Kyushu University Graduate School of Information Science and Electrical Engineering

https://www.google.co.jp/trends/

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS53

Table 4.4: Projects with sticky values of 1.0

Name

DIRACGRID/DIRAC
JetBrains/MPS
georchestra/georgestra
dxw/wordpress
virtual-world-framework/vwf
open-mpi/ompi-svn-mirror
rose-compiler/edg4x-rose
stackforge/savanna
PCGen/pcgen
crosswalk-project/crosswalk

pages indexed by Google and views of the project page. However, the popularity trends of the

projects are difficult to identify by these indicators. Therefore, we identify the popularities

of the projects thorough Google Trends. The search numbers of both Angular.js10 and

CocoaPods11 were increasing from 2013. Therefore, we assume that as the projects gained

popularity from 2013, they increasingly attracted new-comers to their development. This

finding suggests that the magnet and sticky values well-indicate the fame and popularity of

a project.

Ten projects in Figure 4.3 have a sticky value of 1.0 (we put a framed box around the

projects). The names of these ten projects are listed in Table 4.4. To identify the reason

for such high sticky values, we check their web pages and the developers’ affiliations to find

out the primary developers and maintainers of the projects. If more than half of developers

belong to companies, we consider that the projects are supported by those companies. All the

projects in Table 4.4 are found to be developed or supported by companies or laboratories.

In general, non-company developers are likely to join OSS projects as hobbyists [55], but

company and laboratory developers probably join OSS projects as part of their work [55, 79].

Therefore, projects supported by company or laboratory developers are more likely to be

constantly contributed by the same developers than projects supported by non-company

10https://www.google.co.jp/trends/explore#q=angularjs (Accessed 2015-10-15)
11https://www.google.co.jp/trends/explore#q=CocoaPods (Accessed 2015-10-15)

Kyushu University Graduate School of Information Science and Electrical Engineering

https://www.google.co.jp/trends/explore##q=angularjs
https://www.google.co.jp/trends/explore##q=CocoaPods

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS54

A"rac
&ve	

Termi
nal	

Fluctu
a&ng	

Stagna
nt	

55%	

10%	

39%	

14%	

33%	

28%	

6%	

35%	

18%	

15%	

8%	

18%	

3%	

13%	6%	

3%	

＊
	

＊
	

88%	88%	

3%	

5%	

2%	

1%	53%	

3%	

8%	

28%	

Figure 4.5: The likelihood of quadrant transitions

developers.

We then study the impact of the number of project developers on the magnet and sticky

values. Figure 4.4 shows beanplots of the magnet and sticky values of differently sized projects

(the medians are listed in Table 4.3). In these plots, the left (black) regions and right (gray)

regions indicate the magnet and sticky values, respectively. From left to right, the number

of developers is binned into 10–50, 51–100, 101–500, 501– plus, and all sizes.

From Figure 4.4 and Table 4.3, we find that the magnet and sticky values are generally

higher for larger projects than for smaller projects. As the denominator of the sticky value

is the total number of developers in the previous time period, the sticky value is inversely

proportional to the number of developers. However, large projects tend to have large sticky

values, consistent with our intuition that developers prefer to join and contribute long-term

to such projects.

Larger projects attract and retain more developers than smaller projects. 23% of devel-

opers remain with the same project irrespective of size (total number of developers), and

new developers tend to join popular and famous projects.

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS55

(RQ2) How do the Magnet and sticky values change over time?

Figure 4.5 illustrates the quadrant transition likelihood on a state transition diagram. Per-

centages describe the likelihood of a transition from one quadrant to another (or the same)

quadrant. The direction of the arrow indicates the direction of the quadrant change. For

example, the likelihood of moving from the attractive to the terminal quadrant is 13%. States

marked with “*” indicate projects that failed our filtering criteria (ten or more developers)

during some time periods. To improve the readability of the figure, we plot two “*” states,

although these states are semantically identical.

According to this figure, 3%, 8%, 28%, and 53% of the attractive, fluctuating, stagnant,

and terminal projects entered the filtered out state (“*”). Although any project can drop into

the “*” state, the probability is much higher for terminal projects than for projects in other

quadrants. Therefore, terminal projects are very likely to decay into the “*” state. Intuitively,

we expect that as terminal quadrant projects are losing team members and struggling to

attract new ones, they will eventually die.

This result is different from our preliminary study [107]. In our preliminary study, projects

decay into “*” state only from terminal quadrant, however, in this study, we found that

projects that are in other three quadrants decay into “*” state.

Interestingly, 28% of the stagnant projects, but only 8% of the fluctuating ones, decay

into the “*” state. In both quadrants, one of the two metrics (magnet or sticky) is high;

therefore, we expected that both quadrants would enter the “*” state with similar likelihood.

The observed asymmetry might reflect the impact of number of developers. As fluctuating

(stagnant) projects are characterized by high (low) magnet and low (high) sticky values, it

appears that magnet measure is more affected by number of developers than sticky.

Moreover, projects in the fluctuating, stagnant, and terminal quadrants do not easily

transit to the attractive quadrant. Only 18% of the projects entered the attractive quadrant

from other quadrants, but 55% of the attractive projects maintained their high magnetism

and stickiness. This phenomenon indicates that attractive projects are more stable than

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS56

First	
Period	

A,rac
/ve	

Fluctu
a/ng	

Stagna
nt	

Termi
nal	

＊
	

3%	
2%	

3%	

6%	

87%	

Figure 4.6: Likelihood of quadrant transitions from the first period

projects in other quadrants.

In Figure 4.5, we filtered start-up projects during the time period because the sticky

value of such projects is 0, as earlier described in RQ1. However, the status transitions from

the first time period to the next warrant investigation. Figure 4.6 shows the likelihood of

quadrant transitions from the first to the second time period. Only 13% of the projects

maintained ten or more developers in next one, indicating the difficulty of retaining and

acquiring developers after initiating a project.

53% of the terminal projects eventually decayed into a state of ten or fewer contributors,

while 55% of the attractive projects maintained their popularity. Only 13% of the projects

identified in the first time period had maintained ten or more developers in the second

period.

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS57

4.5 Discussion

This section discusses our analysis and results.

4.5.1 Discussion of RQ1

From the result of calculating magnet and sticky values at latest time period, we obtained the

distributions of the values of projects such as the median magnet value is 0.05 and sticky value

is 0.23. The results are similar to our preliminary study [107]. Furthermore, we found that

larger projects attract and retain larger number of developers. These findings fit our intuition.

The large projects are already known by many people and there are more information of

the projects compared to small projects. Hence, we assume that new developers can find

the projects and the information easily. For existing developers, contributing at fame and

popular project is proud thing and motives them. From these expectations, we assume that

both types of developers (new developers and existing developers) have good motivation to

contribute to the projects in larger projects.

Also, we showed the median of magnet and sticky values at the latest time period. We

assume that the values act as a gauge of project health. If magnet and sticky values of a

project are lower than the median values, the project faces a risk of decaying. In particular,

sticky value is stable across total number of developers. Hence, projects that have lower

sticky values are especially risky.

4.5.2 Discussion of RQ2

From the result of calculating likelihood of quadrant transitions, we found that 53% of ter-

minal projects eventually decay into a state where they have fewer than ten contributors and

55% of attractive projects keep the popularity. We also revealed some different trends from

our preliminary study [107]. In preliminary study, only terminal projects decay into the “*”

state, but in this study, attractive, fluctuating, and stagnant projects also decayed into the

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS58

“*” state. We attribute these differences to the much larger dataset in this study.

We plan to study project survivability (i.e., project keep maintaining) using the transition

in our future work. Chengalur-Smith et al. [9] showed that the number of developers positively

correlates with project survivability. Therefore, we expect that project survivability can be

predicted from the analyzed trends and the definition of project failure, as proposed by

English and Schweik [23]. This estimation is planned for future work, but we must consider

the definition of project death. In this study, the “*” state represents projects with fewer

than ten developers and we consider projects moved to the “*” state as a type of obsolete

projects. However, some projects with few developers are robustly sustained. Therefore, a

small number of developers does not signify that the project will die (i.e., project stops its

development). We must consider the definition of obsolete project in future work.

4.6 Threats to Validity

We now discuss the threats to the validity of our work.

4.6.1 Construct Validity

In this study, we used the number of developers (i.e., related to sustainability of organization)

as a proxy of sustainability and did not evaluate factors showing a lack of development and

maintenance activities, such as the number of commits. Furthermore, we did not evaluate the

availability of magnet and sticky metrics by using statistical test or models, even though we

showed state transition diagrams. However, both the activity and the number of developers

have been used as a proxy of sustainability in several studies [7, 9, 27, 33, 35, 58, 91]. Hence,

we believe that our study demonstrated sufficient applicability of our approach. But, to show

the effectiveness of our approach more clearly, these two points are also important.

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS59

4.6.2 Internal Validity

In this study, we analyzed the GitHub dataset published as GHTorrent [31]. In the dataset,

we analyzed MySQL dump. As we explained at Section 4.2, we divided the dataset into sub

datasets of each time period. We used a column created at to divide the dataset. However,

there are some strange data in the column. For example, the date is ’0000-00-00’ or ’0000-

00-00 00:00:00’ or the date does not make sense, e.g., the year of the commit is 2025. In this

study, since the date of commit and pull request are an important factors, we removed such

cases.

4.6.3 External Validity

In GitHub, 55% of the projects do not use pull-based models but use shared repository

models [32]. Our study focuses on projects using pull-based models, and we filtered projects

with less than 10 forks. Therefore, our findings are not generalized to projects of shared

repository models.

4.7 Summary

Building on our preliminary study (Chapter 3), we aimed to better understand the sus-

tainability of OSS projects. First, we extended the dataset from 90 to 16,552 projects to

generalize our preliminary results. Second, we redefined the sticky metric to better suit our

purpose. Third, we experimentally identified the typical duration between product releases.

In this study, we obtained results similar to and different (RQ2) from our preliminary

study [107]. Roughly, the results of RQ1 are similar to and those of RQ2 are different from

our preliminary study.

The main results of the experiments are summarized below as follows:

• 23% of developers remain in the same projects.

• Larger projects attract and retain more developers.

Kyushu University Graduate School of Information Science and Electrical Engineering

4 Studying the Applicability of Magnet and Sticky with Large Set of OSS60

• 53% of terminal projects eventually decay into a state of fewer than ten contributors.

• 55% of attractive projects remain in the attractive quadrant.

These findings suggest that it is possible to capture features of sustainability of OSS

projects using both evolvability (magnet) and stability (sticky) measures. Moreover, it is

possible to quantitatively measure the evolvability and stability of OSS projects by using

these metrics.

As mentioned in Section 4.5, our future work will investigate the relationship between the

magnet and sticky metrics and analyze sustainability based on activities (such as the number

of commits). We found that terminal projects are abandoned and attractive projects are

frequently sustained. These findings indicate a relationship between sustainability and the

proposed metrics, but cannot quantify this relationship. In particular, we did not define the

failure of projects. Therefore, when investigating this relationship in future work, we should

adopt a definition of project failure, as proposed by English and Schweik [23].

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 61

Chapter 5

Revisiting the Proportion of Core

Developers for OSS Sustainability

5.1 Introduction

Understanding open source software (OSS) communities, i.e., the groups that are responsible

for developing and maintaining an OSS system, is as important as understanding OSS sys-

tems themselves for the sustainability of OSS projects. By studying OSS communities, we

accumulate knowledge about how these communities manage highly distributed development

teams [64, 76]. Such knowledge enables the OSS development model to augment or replace

development models in proprietary settings.

At the heart of OSS communities are core developers, i.e., the developers who take a lead-

ing role in the development and maintenance of a software project. For instance, Nakakoji et

al. [65] state that core developers are responsible for guiding and coordinating the develop-

ment of an OSS project. Core Members are those people who have been involved with the

project for a relative long time and have made significant contributions to the development

and evolution of the system. Mockus et al. [64] define core developers as the most productive

developers who have made roughly 80% of the total contributions. Although these heuristics

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 62

slightly differ, researchers agree that the impact that core developers have on a project is

large.

Recent studies have shown that a small number of developers make a large proportion

of the code contributions [19, 28, 64]. Moreover, it has been shown that the number of core

developers follows the Pareto principle (a.k.a., the 80-20 rule), i.e., 80% of the contributions

are produced by roughly 20% of the contributors [30, 52, 83].

Although the prior work makes important strides towards understanding core teams in

OSS, the conclusions are drawn based on a small sample size (i.e., 1-9 studied systems).

Therefore, in this chapter, we set out to revisit how the Pareto principle applies to core teams

in a large sample of 2,496 GitHub projects. We study GitHub projects because GitHub is one

of the most popular social coding platforms, and many successful OSS systems are developed

on GitHub (e.g., Rails1). Through analysis of the 2,496 GitHub projects, we address the

two research questions.

The main contributions of this chapter are:

• A large-scale analysis of the core teams of 2,496 GitHub projects.

• A comparative analysis of three heuristics for identifying core developers.

5.1.1 Organization of Chapter

The remainder of the chapter is organized as follows. Section 5.2 provides an overview of

the study design including our heuristics for identifying core developers, research questions

and dataset. Section 5.3 shows results of our case study. Section 5.4 discusses findings from

our study. Section 5.5 discloses the threats to the validity of our study. Finally, Section 5.6

draws conclusions.

1https://github.com/rails/rails

Kyushu University Graduate School of Information Science and Electrical Engineering

https://github.com/rails/rails

5 Revisiting the Proportion of Core Developers for OSS Sustainability 63

A	

B	

C	

D	

A	 C	 B	 D	

Cumula)ve	
Commit	 Ra)o	

1.0	

0.8	

0	

Core	 Developer	 Non-‐Core	 Developer	

Number	 of	 Commits	

=	 Commit	

Figure 5.1: Identifying core developers using an example project

5.2 Study Design

5.2.1 Definition of Core Developers

In order to perform our study, we need to define heuristics to identify core developers. Inspired

by previous studies, this study explores three heuristics to identify core developer from the

perspective of contributions as described below.

Commit-Based Heuristic

Several papers [30, 64, 83] use the heuristic to defines core developers as those who produce

roughly 80% of the total contributions. In this study, we adopt this heuristic — after sorting

the developers by their number of contributions in descending order, the core developers are

those who have produced 80% of the project contributions, cumulatively.

For instance, Figure 5.1 shows an example project with four developers: A, B, C, and D.

In order to determine core developers, we first sort the developers by the number of commits

in descending order (A: 6, C: 2, B: 1 and D: 1). Next, we calculate the percentage of total

commits that each developer has produced (A: 60%, C: 20%, B: 10%, and D: 10%). Then,

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 64

we calculate the cumulative percentage (A: 60%, C: 80%, B: 90%, and D: 100%). Finally,

we select core developers, one at a time, moving left to right, until we reach a cumulative

percentage of 80%. In this example, A and C are identified as core developers.

In our algorithm, we do not handle the special case where there are some developers who

have same number of commits on the border of core and non-core developers. We do not

suspect that who we select to be a member of the core team should have a significant impact

on the results, since: (a) these developers have produced the same number of contributions

and (b) they are at the tail end of the core team contributions.

LOC-Based Heuristic

Similar to the commit-based heuristic, the LOC-based heuristic defines core developers ac-

cording to the size of the contributions that they make [52, 64]. While we conduct our

experiments using three size metrics, i.e., the number of added lines, the number of deleted

lines and the churn (the sum of the number of added and deleted lines), we find that the

results are similar across the three metrics. Therefore, to conserve space, we show only the

results for churn in the remainder of the study. Similar to commit-based heuristic, we identify

core developers as those who cumulatively contribute 80% of the churn.

Access-Based Heuristic

Core developers can also be defined as those who have been given direct write access to the

main VCS repository. For example, in projects like PostgreSQL, only core members can

record changes directly in the main VCS repository — other contributors must convince core

developers to record their changes on their behalf [29]. Hence, we can also identify core

developers from a VCS access perspective.

In GitHub, project owners can grant write access to the project’s main repository to other

contributors. GHTorrent collects this information using the collaborators API and stores it

in the project members column [31]. According to the description of the collaborators API,

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 65

the list includes all organization owners and users with access rights.2 Since this list may

include users who are members of an organization, but who did not contribute to a project,

we define the access-based core developers as those who appear in the access list and have

also made at least one commit.

Unfortunately, we find that roughly half of the studied projects do not use the access-

based feature of GitHub. These projects are filtered out of our analysis when we use the

access-based heuristic.

5.2.2 Research Question

From the survey that we described in Chapter 2, we build the following research questions.

(RQ1) Does the proportion of core developers of GitHub projects follow the

Pareto principle?

While the actual proportion of core developers varies depending on the heuristic

of core developers that we use, 26%-58% of projects have core teams that are too

small (≤ 10% of active contributors) or 5%-28% have core teams that are too large

(≥ 30% of active contributors) to be considered compliant with the Pareto principle.

(RQ1) Is there any difference between the contributions of core and non-core

developers?

Surprisingly, we find that the proportions of core and non-core developer activity are

very similar when we normalize them by their contribution rates. For example, bug

fixing activity accounts for 18%-20% of core developer contributions and 21%-22%

of non-core developer contributions.

2https://developer.github.com/v3/repos/collaborators/

Kyushu University Graduate School of Information Science and Electrical Engineering

https://developer.github.com/v3/repos/collaborators/

5 Revisiting the Proportion of Core Developers for OSS Sustainability 66

GHTorrent Data

(1) 
Filter Projects
by GHTorrent

Our Dataset

(2)
Clone

Repositories

(3)
Filter Duplicate

Projects

(4)
Calculate
Metrics

(5)
Filter Projects

by Metrics

(1a) Type of Repos (1b) Num of Devs (1c) Development Env

Figure 5.2: An overview of our data extraction approach

Table 5.1: Finding self-identified mirror projects.
Category Used regular expression [48] #Projects
Mirror Of mirror of . ∗ repo|git repo of 10
Sourceforge sourceforge|sf\.net 6
Bitbucket bitbucket 2
Subversion \W (svn|subversion)\W 4
Mercurial \W (mercurial|hg)\W 0
CVS \Wcvs\W 0
Total - 23

5.2.3 Dataset

In this subsection, we describe how we prepare the dataset of GitHub projects for our study.

Figure 5.2 provides an overview of our dataset preparation steps.

We begin our study with the collection of GitHub project data that is available via

GHTorrent [31]. However, GitHub hosts a large number of repositories, many of which are

not software projects. Hence, we filter the GHTorrent data according to the suggestions of

Kalliamvakou et al. [48]. We take three steps to create our dataset from the available GitHub

projects. Initially, GHTorrent includes 8,510,504 repositories.

(1) Filter Projects by GHTorrent Data

(1a) Type of Repository. In GitHub, there are two types of repositories: main reposito-

ries and fork repositories. A fork is a working copy of a main repository. Forking a repository

allows developers to freely experiment with changes without interfering with the ongoing de-

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 67

velopment of the original project.3 In GitHub, fork repositories can contribute changes back

upstream to the main repositories that they are forked from by issuing pull requests. If the

maintainers of the upstream repository agree with the changes that are proposed by a pull

request, the request is accepted, and the changes are integrated into the main repository. As

all accepted pull requests are stored in main repository, we only extract commits from the

main repository, ignoring commits that only appear in forks.

(1b) Number of Developers. Two types of authorship data are recorded in Git reposi-

tories. The committer is the team member who recorded the changes in the repository using

the git commit command. The author is the team member who produced the code change

itself. In this study, we focus on the authors of the changes, ignoring the committer data,

since the author is the team member who actually produced the changes, while the committer

is the team member responsible for the integration work.

Furthermore, since projects with a small number of developers can easily achieve extreme

core team proportions, we filter away projects that have too few developers (number of

developers < 10).

(1c) Development Environments. In this study, we would like to investigate core de-

velopers especially in projects that are developed on GitHub. Kalliamvakou et al. [48] find

that GitHub is not only a popular social coding platform, it also serves as a popular host

for mirrored repositories.4 Since such mirrored projects may not be developed in the same

manner as projects on GitHub, we need to filter them out of our dataset. To do so, we heed

the advice of Kalliamvakou et al. [48]:

1. Avoid projects that have a large number of committers who are not registered GitHub

users.

2. Avoid projects that explicitly state that they are mirrors in their description.

To address item 1), we filter away projects where less than 90% of the committers are

3https://help.github.com/articles/fork-a-repo/
4e.g., https://github.com/apache

Kyushu University Graduate School of Information Science and Electrical Engineering

https://help.github.com/articles/fork-a-repo/
https://github.com/apache

5 Revisiting the Proportion of Core Developers for OSS Sustainability 68

registered GitHub users. To address item 2), we filter away projects with descriptions that

match the regular expressions listed in Table 5.1, as proposed by the prior work [48].

After applying the filters of steps (1a)-(1c), 4,618 projects remain in our dataset.

(2) Clone Projects

Now that the number of projects has become manageable, we clone the selected repositories

into our local environment to calculate the metrics that we use for our case study. Un-

fortunately, some of the projects that we select from the GHTorrent dataset are no longer

available to be cloned (e.g., deleted repositories). Thus, we cannot include such projects in

our dataset. Nonetheless, we could clone 4,154 projects.

(3) Filter Duplicated Projects

Even after handling explicitly forked repositories, there are still some duplicate repositories

hosted on GitHub (i.e., cloned and registered repositories that were not created using the

GitHub fork feature). Such projects do not count as fork projects, but those projects have

largely the same history as their originals. Since such projects will introduce noise in our

dataset, we first detect them using the steps below, and then filter them out of our dataset.

We use the hashes of commits (SHAs) recorded in the Git repositories to identify dupli-

cated projects. We consider any repositories that shares more than 70% of the same commit

SHAs as a copied repository. We remove both repositories from our dataset because it is

often difficult to determine which repository is the original one and which one is the copy.

After removing these repositories, 3,533 projects remain in our dataset.

(4) Calculate Metrics from Repositories

For the remaining projects, we calculate the metrics that are listed below in order to perform

our case study.

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 69

LOC. We use cloc5 to calculate LOC. Our LOC count does not include code comments or

blank lines.

Total Commits. We count the number of commits by using the git log command with

the --no-merges option.

Total Authors. We identify the unique authors by author name and email address, which

we are able to extract from the commit logs. We use a tool6 to disambiguate author names

and email addresses. We disambiguate names and email addresses of authors because some

developers appear with slightly different forms [28].

Age. We calculate the age of a project (in days) by subtracting the time of the latest

commit from the time of the initial commit.

(5) Filter Projects by Metrics

We not only filter projects that have fewer than 10 developers, but similar to Bissyande et

al. [4], we also filter projects that have fewer than 1,000 LOC.

Finally, we obtain a dataset that includes 2,496 GitHub projects for the commit-based and

LOC-based core developer heuristic. Since 1,284 of these projects do not have the information

that is needed to detect contributors with write access (cf. Section 5.2.1), only the remaining

1,212 projects are studied using the access-based heuristic.

5.3 Study Results

In this section, we present the results of our study with respect to our two research questions.

For each research question, we present our approach and our results.

5http://cloc.sourceforge.net/
6https://github.com/bvasiles/ght_unmasking_aliases

Kyushu University Graduate School of Information Science and Electrical Engineering

http://cloc.sourceforge.net/
https://github.com/bvasiles/ght_unmasking_aliases

5 Revisiting the Proportion of Core Developers for OSS Sustainability 70

(RQ1) Does the proportion of core developers of GitHub projects

follow the Pareto principle?

We begin our study by measuring the proportion of developers who are active enough to be

considered core developers.

Approach. To address our first research question, we calculate the proportion of the

development team that is considered to be part of the core team (cf. Section 5.2) of each

studied project. Then, we use histograms to study the distribution of core team sizes in the

studied projects.

The Pareto principle or the so-called “80-20 rule” states that 80% of the contributions are

performed by roughly 20% of the contributors. In this study, similar to prior work [64, 80], we

add a window of flexibility, considering projects where the core team proportion is 20%±10%

as being compliant with the Pareto principle. Indeed, Mockus et al. [64] showed that the

core team proportions of modules in the Mozilla project are roughly 19%-25%. Moreover,

Robles et al. showed that 10%-20% of developers produced more than 50% activities (in many

cases as much as 90% or 95%).

We address RQ1 using two analyses. First, we analyze the distributions of proportions of

core developers. Then, we split up the projects according to three confounding factors. Since

the core team characteristics of smaller projects likely differs from those of larger projects,

we divide the dataset into three strata (small, medium, and large) along three confounding

factors (system size, team size and project age). We evenly divide the dataset accordingly,

i.e., each stratum includes 832 projects for the commit-based and LOC-based heuristics, and

each stratum includes 404 projects in the access-based heuristic. We then plot histograms of

the core team proportions of projects in each of these nine strata. In this chapter, we do not

show the plots of overall distribution to conserve space because we find that the distributions

of the medium strata follow the same trends as the overall distributions.

Results. Figure 5.3-5.5 show the core team distributions of the studied projects. Table 5.2

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 71

Small Medium Large

0

50

100

150

200

0 25 50 75 0 25 50 75 0 25 50 75
The Percentages of Core Developers

N
um

be
r

of
 P

ro
je

ct
s

(a) LOC

Small Medium Large

0

50

100

150

200

0 25 50 75 0 25 50 75 0 25 50 75
The Percentages of Core Developers

N
um

be
r

of
 P

ro
je

ct
s

(b) Age

Small Medium Large

0

50

100

150

200

0 25 50 75 0 25 50 75 0 25 50 75
The Percentages of Core Developers

N
um

be
r

of
 P

ro
je

ct
s

(c) Total Authors

Figure 5.3: Distribution of projects of each size categories (Commit-Based)

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 72

Small Medium Large

0

50

100

150

200

0 20 40 60 0 20 40 60 0 20 40 60
The Percentages of Core Developers

N
um

be
r

of
 P

ro
je

ct
s

(a) LOC

Small Medium Large

0

50

100

150

200

0 20 40 60 0 20 40 60 0 20 40 60
The Percentages of Core Developers

N
um

be
r

of
 P

ro
je

ct
s

(b) Age

Small Medium Large

0

50

100

150

200

0 20 40 60 0 20 40 60 0 20 40 60
The Percentages of Core Developers

N
um

be
r

of
 P

ro
je

ct
s

(c) Total Authors

Figure 5.4: Distribution of projects of each size categories (LOC-Based)

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 73

Small Medium Large

0

50

100

150

200

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
The Percentages of Core Developers

N
um

be
r

of
 P

ro
je

ct
s

(a) LOC

Small Medium Large

0

50

100

150

200

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
The Percentages of Core Developers

N
um

be
r

of
 P

ro
je

ct
s

(b) Age

Small Medium Large

0

50

100

150

200

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
The Percentages of Core Developers

N
um

be
r

of
 P

ro
je

ct
s

(c) Total Authors

Figure 5.5: Distribution of projects of each size categories (Access-Based)

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 74

Table 5.2: The spread of projects among strata of project size and age

Heuristic Size Metrics Stratum
Proportion of Core Developers

0%-10% 10%-30% 30%-100%

Commit-Based

Small 143 (17%) 411 (49%) 278 (33%)
LOC Medium 264 (32%) 389 (47%) 179 (22%)

Large 242 (29%) 368 (44%) 222 (27%)
Small 94 (11%) 359 (43%) 379 (46%)

Age Medium 203 (24%) 447 (54%) 182 (22%)
Large 352 (42%) 362 (44%) 118 (14%)
Small 80 (10%) 365 (44%) 387 (47%)

Total Authors Medium 224 (27%) 449 (54%) 159 (19%)
Large 345 (41%) 354 (43%) 133 (16%)

General 649 (26%) 1,168 (47%) 679 (27%)

Small 403 (48%) 367 (44%) 62 (7%)
LOC Medium 487 (59%) 304 (37%) 41 (5%)

Large 557 (67%) 253 (30%) 22 (3%)
Small 354 (42%) 376 (45%) 102 (12%)

LOC-Based Age Medium 501 (60%) 316 (38%) 15 (2%)
Large 592 (71%) 232 (28%) 8 (1%)
Small 227 (27%) 497 (60%) 108 (13%)

Total Authors Medium 502 (60%) 315 (38%) 15 (2%)
Large 718 (86%) 112 (13%) 2 (0.2%)

General 1,447 (58%) 924 (37%) 125 (5%)

Small 192 (48%) 100 (25%) 112 (28%)
LOC Medium 211 (52%) 92 (23%) 101 (25%)

Large 177 (44%) 98 (24%) 129 (32%)
Small 115 (28%) 94 (23%) 195 (48%)

Access-Based Age Medium 202 (50%) 107 (26%) 95 (24%)
Large 263 (65%) 89 (22%) 52 (13%)
Small 60 (15%) 87 (22%) 257 (64%)

Total Authors Medium 191 (47%) 143 (35%) 70 (17%)
Large 329 (81%) 60 (15%) 15 (4%)

General 580 (48%) 290 (24%) 342 (28%)

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 75

shows the exact numbers of projects of each category and percentile. In Table 5.2, the gray

colored columns show the Pareto-compliant range.

Contrary to prior results, we find that the core team size of projects distributes

broadly. Figure 5.3-5.5 and Table 5.2 show that the distributions are different according to

the heuristic. Indeed, unlike prior work [30, 52, 83], we find that there are many projects

that fall outside of our range of Pareto compliance (10%-30%).

When we focus on each heuristic and confounding factor, we observe the following trends.

Commit-Based: Table 5.2 shows that, irrespective of the stratum, 43%-54% of the studied

projects are Pareto compliant. When controlling for project age and team size, we find that

the number of projects with the smallest core team size (i.e., 0%-10%) increases as we shift

from the smallest to largest strata. On the other hand, this trend is not as extreme in the

system size strata. Therefore, we conclude that project age and team size have a larger

impact on the core team proportion than system size does.

LOC-Based: The LOC-based heuristic is more right skewed than the commit-based heuristic.

Similar to the commit-based heuristic, Table 5.2 shows that the right skew increases as the

system size increases. Moreover, the total number of authors seems to impact to the core

team proportion because the difference between small and large stratum is the largest among

the three studied metrics.

Access-Based: Figure 5.5 shows that the distributions of the access-based heuristic are similar

to those of the LOC-based heuristic. However, there are more projects that fall in the 30%-

100% range for the access-based heuristic than the LOC-based heuristic. Similar to the

commit-based heuristic (Table 5.2), age and team size also appear to have an impact on the

core team proportion of the access-based heuristic.

Figure 5.6 shows the number of core developers. In Figure 5.6, the x-axis shows the

number of core developers and the y-axis shows the number of projects. Table 5.3 shows the

breakdown of projects stratified by the number of core developers.

From the perspective of core team size, we find support for the findings of prior studies [19,

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 76

Table 5.3: Distributions of projects according to the number of core developers
Number of
Core Devel-
opers

1-9 10-15 16-20 21-50 51-100 101-

Commit-
Based

1,924 (77%) 273 (11%) 98 (4%) 137 (5%) 17 (0.7%) 47 (2%)

LOC-Based 2,397 (96%) 57 (2%) 15 (0.6%) 13 (0.5%) 4 (0.1%) 10 (0.5%)
Access-Based 1,036 (85%) 128 (11%) 24 (2%) 24 (2%) 0 (0%) 0 (0%)

52, 64]. Mockus et al. argue that if the core team uses only an informal means of coordinating,

the group will be no larger than 10-15 people [64]. Conversely, Dinh-Trong and Bieman [19]

find that 28-42 developers provide 80% of the contributions in the FreeBSD project. Koch

and Schneider [52] find that 52 developers provide 80% of the contributions in GNOME

project.

88%-98% of projects have fewer than 16 core developers. Unlike the proportion

of core developers, the distributions of the number of core developers are similar across the

studied heuristics. Indeed, Table 5.3 shows that 88%-98% of the studied GitHub projects

have fewer than 16 core developers.

We further analyze the 2%-12% of projects that have more than 15 core developers to find

out what kind of projects have larger core teams. When using the commit-based heuristic,

275 out of the 299 projects that have more than 15 core developers are categorized in large

stratum of total authors and the remaining 24 projects are in medium stratum. When using

the LOC-based heuristic, 41 of the 42 projects are in large stratum of total authors and the

remaining one project is in medium stratum. When using the access-based heuristic, 27 of

the 48 projects are in large stratum of total authors, and 20 of the remaining 21 projects are

in medium stratum. These observations indicate that most of the projects that have many

core developers also tend to a larger pool of contributors than the other projects.

Contrary to prior work, we find that there are several projects that have larger or smaller

core team proportion than we consider to be compliant with the Pareto principle. More-

over, we find that most projects have 15 or fewer members of the core team.

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 77

0

300

600

900

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
The Number of Core Developers

N
um

be
r

of
 P

ro
je

ct
s

(a) Commit-Based

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
The Number of Core Developers

N
um

be
r

of
 P

ro
je

ct
s

(b) LOC-Based

0

200

400

600

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
The Number of Core Developers

N
um

be
r

of
 P

ro
je

ct
s

(c) Access-Based

Figure 5.6: The distribution of projects according to the number of core developers

Table 5.4: Keywords used to classify commits [34]
Development
Activity Type Keywords
Forward Engineering implement, add, request, new, test,start, includ,

initial, introduc, creat, increas

Maintenance
Activity Type Keywords
Reengineering optimiz, adjust, update, delet, remov, chang,

refactor, replac, modif, (is, are) now, enhance, im-
prov, design change, renam, eliminat, duplicat, re-
structur, simplif, obsolete, rearrang, miss, enhanc

Corrective Engineering bug, fix, issue, error, correct, proper, deprecat,
broke

Management clean, license, merge, release, structure, integrat,
copyright, documentation, manual, javadoc, com-
ment, migrat, repository, code review, polish, up-
grade, style, formatting, organiz, TODO

(RQ2) Is there any difference between the contribution activity of

core and non-core developers?

To address this RQ, we compare the types of contributions that are performed by core and

non-core developers.

Approach. Previous studies have explored the purposes of changes [34, 38, 72]. In this

study, we adopt Hattori and Lanza’s approach to identify the purpose of changes. Hattori

and Lanza [34] proposed a lightweight approach to classify each commit into development

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 78

or maintenance activities based on the accompanying commit messages. They defined four

main activities: forward engineering as development activity; and reengineering, corrective

engineering and management as maintenance activity. They also provide keywords that are

indicative of the type of activity (Table 5.4). Forward engineering activities implement new

requests and add new features. Reengineering activities are related to refactoring, redesign

and other actions to enhance the quality of the code. Corrective engineering activities fix

defects. Management activities are other general maintenance activities that are not related

to system functionality, such as code reformatting and documentation.

To ensure that the classification provided by Hattori and Lanza is sufficient for our dataset,

we manually analyze a randomly selected sample of 384 commit comments. The sample is

selected such that it provides a confidence level of 95% with a confidence interval of ±5%.

The manual analysis reveals that some commits have an empty commit comment. We classify

such commits as empty.

Hattori and Lanza’s approach searches for keywords in commit messages in the following

order: empty comments, management, reengineering, corrective engineering and forward

engineering. The commit comments of so-called tangled changes [37] can match multiple

purpose keyword types. For example, a developer can clean up code and fix a bug within one

commit. For these commits, the approach classifies the commit according to the keyword

that is found first (e.g., the commit described above is classified into reengineering activity).

The commits that could not be classified into any of the classes are marked as unknown.

Using Hattori and Lanza’s approach, we classify and compare the distributions of activities

of core and non-core developers. In total, our commit-based and LOC-based heuristic datasets

includes 5,746,523 commits, and our access-based one contains 2,865,461 commits.

Results. Table 5.5 shows the distribution of activities of core and non-core team members.

Interestingly, the total number of commits that are contributed by core and non-core team

members are very similar when we use either commit-based and LOC-based heuristics. On the

other hand, the access-based heuristic shows that the number of commits of core developers is

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 79

Table 5.5: Developer activity

Type of Activity
Commit-Based LOC-Based Access-Based

Core Non-Core Core Non-Core Core Non-Core
Forward Engi-
neering

15% 18% 16% 18% 17% 16%

Reengineering 29% 30% 29% 30% 24% 30%
Corrective Engi-
neering

20% 21% 20% 22% 18% 21%

Management 14% 13% 14% 13% 12% 15%
Empty 0.1% 0.1% 0.1% 0.1% 0.3% 0.1%
Unknown 22% 17% 22% 17% 30% 19%

Total #of Com-
mits

4,692,063 1,054,460 4,739,121 1,007,402 931,265 1,934,196

less than that of non-core developers. In this study, we only consider the authors of commits.

Hence, this discrepancy between core and non-core contributions might show that many of

the access-based core developers focus on integration work rather than writing code.

The proportions of contribution activity of core and non-core developers are

similar. Irrespective of the core team heuristic, we find that the distributions of activities

are very similar. Reengineering accounts for the largest proportion of activity for both core

and non-core developers, with proportions ranging between 24%-30%. In the other type of

activities, the difference between the proportion of activity of core and non-core developers is

at most 6 percentage points. Therefore, we conclude that the difference in activity proportions

between core and non-core is negligible.

The proportions of contribution activity of core and non-core developers are similar.

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 80

5.4 Discussion

5.4.1 The Bus Factor

We find that more than half of the studied projects have a core team comprised of (at most)

20% of the pool of active developers and more than 88% of the studied projects have a core

team of (at most) 15 developers. These results indicate that many projects have a low bus

factor [12, 77, 93], i.e., face the risk of key personnel leaving the project. Ye and Kishida [109]

find that development of GIMP was once halted because a key core developer left the project.

To avoid such cases, projects must share knowledge among developers.

On the other hand, similar to the work of Dinh-Trong and Bieman [19], we find that

there are projects that have large core teams. In this study, we just show the distribution

and do not investigate each of the projects deeply. In future work, we plan to conduct a

deeper analysis of projects with large core teams. For example, investigating whether or not

such projects have well-defined mechanisms for developer promotion rather than the informal

arrangements that Mockus et al. [64] hypothesized could yield fruitful results.

5.4.2 Core and Non-core Developer Activity

Prior work [64] hypothesized that a group larger by an order of magnitude than the core team

will repair defects. If the hypothesis is true, we assumed that the proportion of maintenance

activity of non-core developers is large. However, our results show that both types of devel-

opers have similar proportions of development activities. Furthermore, when we consider the

number of corrective engineering commits, the number of the commits by core developers is

much larger than that by non-core developers.

Our results may be a characteristic of the GitHub development environment. With the

growth of social coding platforms (e.g., GitHub), the nature of core teams in modern OSS

projects may have changed. For example, GitHub projects boast a higher rate of acceptance

for contributions than the OSS projects of the past did. Indeed, while Jiang et al. [47] find

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 81

Table 5.6: The proportion of projects that are Pareto compliant when we use other threshold
values.

Metric Threshold #ofProjects Proportion

Total Authors
5 2,526 46%
20 1,664 49%

LOC
500 2,685 46%
2,000 2,220 47%

that only 33% of contributions are eventually integrated into the Linux kernel (one of the

largest OSS projects, which mainly developed by outside of GitHub), Gousios et al. [32] find

that 84% of contributions are eventually integrated into GitHub projects.

5.4.3 The Impact of Thresholds

In this study, we filter projects to remove immature software projects by using some thresh-

olds, i.e., the total authors and LOC (cf. Section 5.2.3). As such, our results may be sensitive

to these thresholds. To check for threshold sensitivity, we re-apply our analysis using other

threshold values (total authors = 5, 20 and LOC = 500, 2,000) and discuss changes to our

results below.

Table 5.6 shows the proportion of projects that are Pareto compliant when we vary the

thresholds. Irrespective of the threshold, similar to our results in Section 5.3, we observe

that more than half of projects are not Pareto compliant. These results suggest that while

our results slightly vary when the thresholds change, the main conclusions are not heavily

impacted.

5.5 Threats to Validity

5.5.1 Construct Validity

In this chapter, we adopt three heuristics to identify core developers. The commit-based and

LOC-based heuristics are based on the amount of contribution to the product. Even though

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 82

there are a lot of metrics that can capture contribution units, the amount of contribution is

one of the most basic metrics that is used to identify core developers. Moreover, previous

studies that focus on core contributors [19, 28, 30, 52, 64, 83] also conduct their analysis from

the perspective of the amount of contribution. Therefore, we feel that these heuristics are

appropriate for our context.

On the other hand, the access-based heuristic does not depend on the amount of contri-

bution. However, the access-based definition is also one of the most basic indicators of core

developers. Indeed, the developers who have write access to the main repository have enough

knowledge about the product to manage other developers’ contributions.

5.5.2 Internal Validity

Our results for RQ1 are dependent on our heuristics for identifying core developers. In this

study, we used 80% of the total contributions as our threshold for identifying core developers,

since this threshold was also used by previous studies [19, 28, 30, 52, 64, 83]. While we begin

a threshold sensitivity analysis in Section 5.4, we plan to perform a carefully controlled

sensitivity analysis in future work.

Furthermore, our analysis is time-agnostic. Since development teams are changing over

time, the number of core developers may vary as well. We plan to conduct a temporal analysis

of core teams in future work.

5.5.3 External Validity

In this study, we filter away projects that have less than 10 developers or less than 1,000

LOC to remove projects that are immature [4, 48]. Therefore, our results may not generalize

to legitimate software projects with a small number of contributors.

Kyushu University Graduate School of Information Science and Electrical Engineering

5 Revisiting the Proportion of Core Developers for OSS Sustainability 83

5.6 Summary

Open Source Software (OSS) projects depend heavily on core developers, i.e., team members

that produce 80% of the contributions to a project. Prior studies have found that core

development teams tend to follow the Pareto principle (a.k.a., the 80-20 rule), i.e., 80% of

the contributions are produced by roughly 20% of the contributors. However, these prior

studies were performed on small samples of systems. With the recent growth in popularity

of the social coding paradigm, a plethora of data is becoming available for researchers to

explore core team dynamics within. Therefore, we revisit the analyses of previous work on a

large sample of GitHub projects.

To that end, in this chapter, we study core development teams on GitHub. Through a

case study of 2,496 GitHub projects, we observe that:

• The core teams of many GitHub projects are not compliant with the Pareto principle.

• While some GitHub projects have core teams that are too large to be Pareto compliant,

many more have very small core teams, consisting of fewer than 10% of the pool of

contributors.

• From the perspective of number of core developers, more than 88% of projects have

less than 15 core developers.

• Core and non-core developers participate in maintenance and future development ac-

tivities in similar proportions.

These observations suggest that it is difficult to infer the sustainability of the projects

based on whether or not the proportion of core developers follows the Pareto principle. On

the other hand, the number of core developers might be an indicator of sustainable OSS

projects as we discussed in Section 5.4.

Kyushu University Graduate School of Information Science and Electrical Engineering

6 Discussion 84

Chapter 6

Discussion

6.1 Introduction

In this chapter, we summarize our findings, discuss the results of this dissertation, and provide

implications for researchers, OSS developers, users, and enterprises.

6.1.1 Summary of findings

In Chapters 3 and 4, we introduced magnet and sticky metrics and demonstrated their

applicability. We not only provided the distribution of these metrics, but also classified

projects into four categories (i.e., attractive, fluctuating, stagnant and terminal) by comparing

the metrics values of projects and the transitions between the categories.

From the study, we found that

• Larger project attract and retain more developers

• 53% of terminal projects eventually decay into a state of fewer than ten developers

• 55% of attractive projects remain in the attractive quadrant

• Only 13% of projects that are in the first period (first 6 months) become projects that

have more than ten developers

Kyushu University Graduate School of Information Science and Electrical Engineering

6 Discussion 85

These findings suggest that it is possible to capture features of sustainability of OSS projects

by using both evolvability and stability measures. Moreover, it is possible to infer the sus-

tainability of OSS projects by comparing the metrics values of OSS projects.

In Chapter 5, we focused on core developers and revisited the results of prior studies on

the Pareto principle. From the study, we found that

• The proportions of core developers in OSS projects do not follow the Pareto principle

• More than 88% of projects have less than 15 core developers

With regard to the proportions of core developers, the finding is different from prior find-

ings [30, 52, 83]. Prior studies had claimed that the proportion of core developers in successful

projects follow the Pareto principle [30, 52, 83]. As most OSS projects have a small number

of core developers, we suppose that losing core developers would have a large impact to the

sustainability of the OSS projects.

6.2 Implication and Future Research Direction

6.2.1 Researchers

The results discussed in Chapter 5 that the proportions of core developers do not follow the

Pareto principle, in contrast to prior studies. Hence, it is difficult to identify the sustainability

of OSS projects from the Pareto principle. As further research, studying the impact of core

developer retention might be interesting (i.e., combination of sticky and core developers).

Since core developers are more active than other developers, their knowledge about the

project might be greater. When core developers leave the project, the project suffers more

compared with when other developers leave. Therefore, it is important to investigate the

effects of core developer retention.

As discussed in Chapter 5, investigating the impact of the number of core developers in

the project is another research direction. Because of the similarity of concepts between bus

Kyushu University Graduate School of Information Science and Electrical Engineering

6 Discussion 86

factor [2, 12, 77, 93] and core developers, a small core team means that the project has a low

bus factor, i.e., it faces the risk of key personnel leaving the project. Hence, we assume that

the number of core developers becomes an indicator of sustainability.

Furthermore, applying the concept of relationship between projects for understanding

the sustainability of OSS projects would be important. In this dissertation, we introduced

the magnet and sticky metrics from social sciences [70] and demonstrated their applicability.

Since resources that developers can devote to OSS projects are limited, we assumed that

the relationship between OSS projects is important for understanding their sustainability.

Therefore, we classified OSS projects into four categories by comparing values of these metrics

in addition to just measuring them. From the results of a case study, these metrics successfully

measure the sustainability of OSS projects. We believe that considering the relationship

between OSS projects is important for understanding their sustainability.

As mentioned in Chapter 2, most prior studies did not consider relationships between

projects. Therefore, applying relationships between OSS projects to indicators that were

proposed and evaluated in prior studies is another future research direction.

6.2.2 OSS Developers

OSS developers can be classified into two types: those who manage OSS projects, such as

project leaders and core developers, and those who are just participants.

Our approach would be helpful for OSS developers who manage OSS projects to under-

stand current situations of their projects. By understanding the current situation, they can

respond to their problems. If the magnet value of the project is low, they need to attract

new developers [53, 62, 85]. If the sticky value of the project is low, they need to remove

social barriers for new developers to retain new developers [90] and operate the project to

increase the number of long-term contributors [24, 63, 73, 86, 111].

In addition to the magnet and sticky metrics, it is important to consider the number of

core developers, especially OSS developers who lead the project, such as a project leader.

Kyushu University Graduate School of Information Science and Electrical Engineering

6 Discussion 87

If the number of core developers in a OSS project is low, the OSS project faces the risk of

abandonment because the number of core developer is a similar concept to the bus factor

(also known as truck factor) [2, 12, 77, 93, 110], as mentioned in Chapter 5. Although the

relationship between the bus factor and sustainability of an OSS project is not empirically

evaluated, the importance of the bus factor has been pointed out in the agile field anecdotally.1

Hence, in such situation, OSS developers should operate the project to increase the number

of core developers or retain the core developers.

For OSS developers who are just participants, the magnet and sticky metrics could be

an indicator to select the OSS projects suitable for their goals. One of the goals of an OSS

developer is learning [40]. For developers with such a goal, projects with high magnet and

high sticky values may be able to provide greater learning opportunities because as that

the projects become larger, there are more opportunities for developers to learn from one

another [9]. Another point for such developers is the experiences of developers. A high

sticky value indicates the presence of experienced developers in the project. Therefore, OSS

developers can learn about the project from the current developers.

A high magnet value indicates the presence of new developers in the project. Since there

are new developers, the project may have influx of new ideas from the new developers and

therefore the project might be active. Hence, the OSS developers can learn about new ideas

and submit new ideas easily in such a project.

6.2.3 Users and Enterprises

End-users and enterprises want to avoid selecting OSS projects that will be abandoned in

near future or have low quality. Therefore, it is important to assess OSS projects before

applying them to their systems.

Prior studies have proposed OSS quality assessment models, which provide a set of indica-

tors for the quality of OSS [1, 21, 66, 68, 69, 99]. Similar to quality assessment, sustainability

1http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/

Kyushu University Graduate School of Information Science and Electrical Engineering

http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/

6 Discussion 88

assessment is important for industrial developers to avoid additional costs. By using the

magnet and sticky (i.e., evolvability and stability) measures, industrial developers can assess

the sustainability of OSS projects. For example, we found that 53% of terminal projects

eventually decay into a state of a small number of developers. End-users and enterprises

should avoid such terminal OSS projects.

On the other hand, 55% of attractive projects remain attractive. Furthermore, only 3% of

attractive projects decay into the state of a small number of developers. Therefore, end-users

and enterprises can consider such attractive projects as safer projects (i.e., they might not

be abandoned).

Moreover, if the target projects are in the first period, end-users and enterprises should

not consider applying them because only 13% of new projects attract large communities.

In addition to the current situation of OSS projects that is measured in the latest period,

industrial developers can know the transitions of states. Such information would be helpful

for selecting OSS projects.

Kyushu University Graduate School of Information Science and Electrical Engineering

7 Conclusion 89

Chapter 7

Conclusion

7.1 Contributions

In this dissertation, we studied sustainability of OSS projects from the perspectives of evolv-

ability and stability.

In summary, the contributions are as follows:

• We introduced the magnet and sticky metrics to quantitatively evaluate project sus-

tainability. For evolvability, we study the magnet metric, which is calculated as the

proportion of new developers who participate in a target project among all new devel-

opers. For stability, we study the sticky metric, which is calculated as the proportion

of developers who are retained in the same project. (Chapter-3, 4)

• We empirically demonstrated the applicability of the magnet and sticky measures with

a large set of GitHub projects. We find that 53% of the projects with smaller smaller

magnet and sticky values than the median values of those metrics eventually decay

into a state of less than ten developers. On the other hand, 55% of the projects with

larger values than median values maintain their popularity. These findings suggest that

by using both evolvability and stability measures, it is possible to capture features of

sustainability of OSS projects. Moreover, it is possible to quantitatively measure the

Kyushu University Graduate School of Information Science and Electrical Engineering

7 Conclusion 90

evolvability and stability of OSS projects by using these metrics. (Chapter-4)

• We empirically studied the impact of structural ratio of core developers on sustainability

of OSS projects. In contrast to prior findings, we find that core team proportions do

not follow the Pareto principle. Moreover, we find that the core team of most projects

has 15 or fewer members. (Chapter-5)

In addition to the above-mentioned contributions, we also provided implications and

future research directions for each of stakeholders (i.e., researchers, OSS developers, users,

and enterprises) in Chapter 6.

Kyushu University Graduate School of Information Science and Electrical Engineering

BIBLIOGRAPHY 91

Bibliography

[1] Atos. Qualification and selection of open source software (QSOS), version 2.0. 2013.

http://backend.qsos.org/download/qsos-2.0_en.pdf.

[2] G. Avelino, M. T. Valente, and A. Hora. What is the truck factor of popular github ap-

plications? a first assessment, 2015. https://doi.org/10.7287/peerj.preprints.

1233v2.

[3] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu. Open borders? immi-

gration in open source projects. In Proceedings of the Fourth International Workshop

on Mining Software Repositories (MSR), pages 6–13, 2007.

[4] T. Bissyande, D. Lo, L. Jiang, L. Reveillere, J. Klein, and Y. le Traon. Got issues? who

cares about it? a large scale investigation of issue trackers from github. In Proceed-

ings of the 24th IEEE International Symposium on Software Reliability Engineering

(ISSRE), pages 188–197, Nov 2013.

[5] A. Bonaccorsi and C. Rossi. Why open source software can succeed. Research Policy,

32(7):1243–1258, 2003.

[6] A. Bonaccorsi and C. Rossi. Comparing motivations of individual programmers and

firms to take part in the open source movement: From community to business. Knowl-

edge, Technology & Policy, 18(4):40–64, 2006.

[7] B. S. Butler. Membership size, communication activity, and sustainability: A resource-

Kyushu University Graduate School of Information Science and Electrical Engineering

http://backend.qsos.org/download/qsos-2.0_en.pdf
https://doi.org/10.7287/peerj.preprints.1233v2
https://doi.org/10.7287/peerj.preprints.1233v2

BIBLIOGRAPHY 92

based model of online social structures. Information Systems Research, 12(4):346–362,

2001.

[8] S. Chengalur-Smith and A. Sidorova. Survival of open-source projects: A popula-

tion ecology perspective. In Proceedings of International Conference on Information

Systems, 2003.

[9] S. Chengalur-Smith, A. Sidorova, and S. L. Daniel. Sustainability of free/libre open

source projects: A longitudinal study. Journal of the Association for Information

Systems, 11(11), 2010.

[10] W. W. Chin and P. R. Newsted. Structural equation modeling analysis with small

samples using partial least squares. Statistical strategies for small sample research,

2:307–342, 1999.

[11] J. Colazo and Y. Fang. Impact of license choice on open source software development

activity. Journal of the American Society for Information Science and Technology,

60(5):997–1011, 2009.

[12] V. Cosentino, J. L. C. Izquierdo, and J. Cabot. Assessing the bus factor of git repos-

itories. In Proceedings of International Conference on Software Analysis, Evolution,

and Reengineering (SANER), pages 499–503, 2015.

[13] K. Crowston, J. Howison, and H. Annabi. Information systems success in free and open

source software development: Theory and measures. Software Process–Improvement

and Practice, 11(2):123–148, 2006.

[14] K. Crowston, K. Wei, Q. Li, and J. Howison. Core and periphery in free/libre and

open source software team communications. In Proceedings of Hawai’i International

Conference on System Science (HICSS), 2006.

[15] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in github: Transparency

Kyushu University Graduate School of Information Science and Electrical Engineering

BIBLIOGRAPHY 93

and collaboration in an open software repository. In Proceedings of Conference on

Computer Supported Cooperative Work (CSCW), pages 1277–1286, 2012.

[16] P. A. David and J. S. Shapiro. Community-based production of open-source software:

What do we know about the developers who participate? Information Economics and

Policy, 20(4):364 – 398, 2008. Empirical Issues in Open Source Software.

[17] P. A. David, J. S. Shapiro, and S. Arora. FLOSS-US: the free/libre/open source soft-

ware survey for 2003. http://www-siepr.stanford.edu/programs/OpenSoftware_

David/FLOSS-US-Report.pdf.

[18] L. W. P. David Krackhardt. When friends leave: A structural analysis of the rela-

tionship between turnover and stayers’ attitudes. Administrative Science Quarterly,

30(2):242–261, 1985.

[19] T. Dinh-Trong and J. Bieman. The freebsd project: a replication case study of open

source development. IEEE Transactions on Software Engineering, 31(6):481–494, June

2005.

[20] N. Ducheneaut. Socialization in an open source software community: A socio-technical

analysis. Comput. Supported Coop. Work, 14(4):323–368, 2005.

[21] F.-W. Duijnhouwer and C. Widdows. Open source maturity model. In Capgem-

ini Expert Letter. 2003. https://jose-manuel.me/thesis/references/GB_Expert_

Letter_Open_Source_Maturity_Model_1.5.3.pdf.

[22] J. Edwards. Person-job fit: A conceptual integration, literature review, and method-

ological critique. International Review of Industrial and Organizational Psychology,

1991.

[23] R. English and C. M. Schweik. Identifying success and tragedy of floss commons: A

preliminary classification of sourceforge.net projects. In Proceedings of International

Kyushu University Graduate School of Information Science and Electrical Engineering

http://www-siepr.stanford.edu/programs/OpenSoftware_David/FLOSS-US-Report.pdf
http://www-siepr.stanford.edu/programs/OpenSoftware_David/FLOSS-US-Report.pdf
https://jose-manuel.me/thesis/references/GB_Expert_Letter_Open_Source_Maturity_Model_1.5.3.pdf
https://jose-manuel.me/thesis/references/GB_Expert_Letter_Open_Source_Maturity_Model_1.5.3.pdf

BIBLIOGRAPHY 94

Workshop on Emerging Trends in FLOSS Research and Development (FLOSS), pages

54–59, 2007.

[24] Y. Fang and D. Neufeld. Understanding sustained participation in open source soft-

ware projects. Journal of Management Information Systems, 25(4):9–50, Apr. 2009.

[25] J. Feller and B. Fitzgerald. Understanding Open Source Software Development.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[26] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-R. Falleri. Impact of

developer turnover on quality in open-source software. In Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering (ESEC/FSE), pages 829–841,

New York, NY, USA, 2015. ACM.

[27] M. J. Gallivan. Striking a balance between trust and control in a virtual organization:

a content analysis of open source software case studies. Information Systems Journal,

11(4):277–304, 2001.

[28] J. Geldenhuys. Finding the core developers. In Proc. of the 36th Euromicro Conference

on Software Engineering and Advanced Applications, pages 447–450. IEEE Computer

Society, Sept. 2010.

[29] D. M. German. A study of the contributors of postgresql. In Proceedings of Interna-

tional Workshop on Mining Software Repositories (MSR), pages 163–164, 2006.

[30] M. Goeminne and T. Mens. Evidence for the pareto principle in open source soft-

ware activity. In Joint Porceedings of the 1st International Workshop on Model Driven

Software Maintenance and 5th International Workshop on Software Quality and Main-

tainability, pages 74–82, 2011.

[31] G. Gousios. The ghtorrent dataset and tool suite. In Proceedings of International

Working Conference on Mining Software Repositories (MSR), pages 233–236, 2013.

Kyushu University Graduate School of Information Science and Electrical Engineering

BIBLIOGRAPHY 95

[32] G. Gousios, M. Pinzger, and A. v. Deursen. An exploratory study of the pull-based

software development model. In Proceedings of International Conference on Software

Engineering (ICSE), pages 345–355, 2014.

[33] R. Grewal, G. L. Lilien, and G. Mallapragada. Location, location, location: How

network embeddedness affects project success in open source systems. Management

Science, 52(7):1043–1056, 2006.

[34] L. Hattori and M. Lanza. On the nature of commits. In Proceedings of International

Conference on Automated Software Engineering (ASE) - Workshops, pages 63–71,

Sept 2008.

[35] J. D. Herbsleb and A. Mockus. An empirical study of speed and communication in

globally distributed software development. IEEE Transactions on Software Engineer-

ing, 29(6):481–494, June 2003.

[36] I. Herraiz, G. Robles, J. J. Amor, T. Romera, and J. M. González Barahona. The

processes of joining in global distributed software projects. In Proceedings of Int’l

Workshop on Global Software Development for the Practitioner (GSD), pages 27–33,

2006.

[37] K. Herzig and A. Zeller. The impact of tangled code changes. In Proceedings of the

10th Working Conference on Mining Software Repositories, pages 121–130, 2013.

[38] A. Hindle, D. M. German, and R. Holt. What do large commits tell us?: A taxonomical

study of large commits. In Proceedings of the 2008 International Working Conference

on Mining Software Repositories, pages 99–108, 2008.

[39] A. Hindle, M. Godfrey, and R. Holt. Release pattern discovery via partitioning:

Methodology and case study. In Proceedings of International Workshop on Mining

Software Repositories (MSR), pages 19–19, 2007.

Kyushu University Graduate School of Information Science and Electrical Engineering

BIBLIOGRAPHY 96

[40] E. v. Hippel and G. v. Krogh. Open source software and the “private-collective”

innovation model: Issues for organization science. Organization science, 14(2):209–

223, 2003.

[41] B. Hosack and G. Sagers. Participation in oss projects: Does it support release early

release often? In MWAIS 2011 Proceedings, 2011.

[42] M. A. Huselid. The impact of human resource management practices on turnover,

productivity, and corporate financial performance. Academy of management journal,

38(3):635–672, 1995.

[43] Information-technology Promotion Agency, Japan. A field survey on businesses adopt-

ing open source software, 2010. (in Japanese).

[44] A. Iqbal. Understanding contributor to developer turnover patterns in oss projects:

A case study of apache projects. ISRN Software Engineering, 2014:1–10, 2014.

[45] J. E. D. Jason D. Shaw, Nina Gupta. Alternative conceptualizations of the relation-

ship between voluntary turnover and organizational performance. The Academy of

Management Journal, 48(1):50–68, 2005.

[46] C. Jensen and W. Scacchi. Role migration and advancement processes in ossd projects:

A comparative case study. In Proc. Int’l Conf. on Software Engineering (ICSE), pages

364–374, 2007.

[47] Y. Jiang, B. Adams, and D. German. Will my patch make it? and how fast? case

study on the linux kernel. In Proceedings of the 10th IEEE Working Conference on

Mining Software Repositories (MSR), pages 101–110, May 2013.

[48] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian.

The promises and perils of mining github. In Proceedings of Working Conference on

Mining Software Repositories (MSR), pages 92–101, 2014.

Kyushu University Graduate School of Information Science and Electrical Engineering

BIBLIOGRAPHY 97

[49] Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto, B. Adams, and A. E. Hassan.

Revisiting common bug prediction findings using effort aware models. In Proceedings

of International Conference on Software Maintenance (ICSM), pages 1–10, 2010.

[50] F. Khomh, B. Adams, T. Dhaliwal, and Y. Zou. Understanding the impact of rapid

releases on software quality. Empirical Software Engineering, 20(2):336–373, 2015.

[51] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan. An entropy evaluation approach for

triaging field crashes: A case study of mozilla firefox. In Proceedings of International

Working Conference on Reverse Engineering (WCRE), pages 261–270, 2011.

[52] S. Koch and G. Schneider. Effort, cooperation and coordination in an open source

software project: Gnome. Information Systems Journal, 12(1):27–42, 2002.

[53] R. Kraut, M. Burke, J. Riedl, and P. Resnick. The challenges of dealing with new-

comers. MIT Press, pages 179–230, 2012.

[54] S. Krishnamurthy. Cave or community? an empirical examination of 100 mature

open source projects (originally published in volume 7, number 6, june 2002). First

Monday, 0(0), 2005.

[55] K. Lakhani and R. Wolf. Why Hackers Do What They Do: Understanding Motivation

and Effort in Free/Open Source Software Projects. MIT Press, Cambridge, 2005.

[56] A. M. S. Laurent. Understanding Open Source and Free Software Licensing. O’Reilly

Media, Inc., 2004.

[57] J. Lerner and J. Tirole. Some simple economics of open source. Journal of Industrial

Economics, 50:197–234, 2002.

[58] G. Madey and S. Christley. F/OSS research repositories & research infrastructures.

NSF Workshop on Free/Open Source Software Repositories and Research Infrastruc-

tures (FOSSRRI), 2008.

Kyushu University Graduate School of Information Science and Electrical Engineering

BIBLIOGRAPHY 98

[59] A. A. Mary and S. K. Prasanth. Open source software survivability analysis using

communication pattern validation. IOSR Journal of Computer Engineering, 12:114–

118, 2013.

[60] S. Matsumoto, Y. Kamei, M. Ohira, and K. Matsumoto. Understanding open col-

labolation in OSS communities. Journal of The Infosocionomics Society, 3(2):29–42,

3 2009. (in Japanese).

[61] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The impact of code review

coverage and code review participation on software quality: A case study of the qt,

vtk, and itk projects. In Proceedings of Working Conference on Mining Software

Repositories (MSR), pages 192–201, 2014.

[62] P. Meirelles, C. Santos Jr., J. Miranda, F. Kon, A. Terceiro, and C. Chavez. A study

of the relationships between source code metrics and attractiveness in free software

projects. In Proceedings of the 2010 Brazilian Symposium on Software Engineering,

SBES ’10, pages 11–20, Washington, DC, USA, 2010. IEEE Computer Society.

[63] V. Midha and P. Palvia. Retention and quality in open source software projects.

AMCIS 2007 Proceedings, page 25, 2007.

[64] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open source

software development: Apache and mozilla. ACM Trans. on Software Engineering

and Methodology, 11(3):309–346, 2002.

[65] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye. Evolution patterns

of open-source software systems and communities. In Proceedings of International

Workshop on Principles of Software Evolution (IWPSE), pages 76–85, 2002.

[66] O. Northeast Asia. RepOSS: A flexible OSS assessment repository. 2012.

[67] M. Ohira, N. Ohsugi, T. Ohoka, and K.-i. Matsumoto. Accelerating cross-project

knowledge collaboration using collaborative filtering and social networks. In Proceed-

Kyushu University Graduate School of Information Science and Electrical Engineering

BIBLIOGRAPHY 99

ings of the 2005 International Workshop on Mining Software Repositories (MSR),

pages 1–5, 2005.

[68] E. Petrinja, R. Nambakam, and A. Sillitti. Introducing the opensource ma-

turity model. In Proc. of the International Workshop on Emerging Trends in

Free/Libre/Open Source Software Research and Development, pages 37–41, 2009.

[69] E. Petrinja, A. Sillitti, and G. Succi. Comparing OpenBRR, QSOS, and OMM assess-

ment models. In Proc. of the IFIP International Conference on Open Source Systems

(OSS), pages 224–238. 2010.

[70] Pew Research Social & Demographic Trends. Magnet or sticky?: A state-by-state ty-

pology. http://www.pewsocialtrends.org/2009/03/11/magnet-or-sticky/ (Ac-

cessed 2015-06-15).

[71] T. Preston-Werner. Semantic versioning 2.0.0. http://semver.org (Accessed 2015-

06-15).

[72] R. Purushothaman and D. Perry. Toward understanding the rhetoric of small source

code changes. IEEE Transactions on Software Engineering, 31(6):511–526, 2005.

[73] I. Qureshi and Y. Fang. Socialization in open source software projects: A growth

mixture modeling approach. Organizational Research Methods, 14(1):208–238, 2011.

[74] U. Raja and M. Tretter. Defining and evaluating a measure of open source project

survivability. IEEE Transactions on Software Engineering, 38(1):163–174, Jan 2012.

[75] A. Rastogi and A. Sureka. What community contribution pattern says about stability

of software project? In 2014 21st Asia-Pacific Software Engineering Conference,

volume 2, pages 31–34, Dec 2014.

[76] E. S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open Source

Kyushu University Graduate School of Information Science and Electrical Engineering

http://www.pewsocialtrends.org/2009/03/11/magnet-or-sticky/
http://semver.org

BIBLIOGRAPHY 100

by an Accidental Revolutionary. O’Reilly & Associates, Inc., Sebastopol, CA, USA,

1st edition, 1999.

[77] F. Ricca, A. Marchetto, and M. Torchiano. On the difficulty of computing the truck

factor. In Product-Focused Software Process Improvement, volume 6759 of Lecture

Notes in Computer Science, pages 337–351. 2011.

[78] D. Riehle. The economic motivation of open source software: Stakeholder perspectives.

Computer, 40(4):25–32, 2007.

[79] D. Riehle, P. Riemer, C. Kolassa, and M. Schmidt. Paid vs. volunteer work in

open source. In Proceedings of Hawaii International Conference on System Sciences

(HICSS), pages 3286–3295, 2014.

[80] G. Robles, J. Gonzalez-Barahona, and I. Herraiz. Evolution of the core team of devel-

opers in libre software projects. In Proceedings of International Working Conference

on Mining Software Repositories (MSR), pages 167–170, May 2009.

[81] G. Robles and J. M. Gonzalez-Barahona. Contributor Turnover in Libre Software

Projects, pages 273–286. Springer US, Boston, MA, 2006.

[82] G. Robles, J. M. Gonzalez-Barahona, and J. J. Merelo. Beyond source code: The

importance of other artifacts in software development (a case study). Journal of

Systtem Software, 79(9):1233–1248, Sept. 2006.

[83] G. Robles, S. Koch, J. M. Gonzlez-Barahona, and J. Carlos. Remote analysis and

measurement of libre software systems by means of the cvsanaly tool. In Proceedings

of the 2nd ICSE Workshop on Remote Analysis and Measurement of Software Systems

(RAMSS), pages 51–55, 2004.

[84] I. Samoladas, L. Angelis, and I. Stamelos. Survival analysis on the duration of open

source projects. Infomation Software Technology, 52(9):902–922, Sept. 2010.

Kyushu University Graduate School of Information Science and Electrical Engineering

BIBLIOGRAPHY 101

[85] C. Santos, G. Kuk, F. Kon, and J. Pearson. The attraction of contributors in free and

open source software projects. J. Strateg. Inf. Syst., 22(1):26–45, Mar. 2013.

[86] A. Schilling, S. Laumer, and T. Weitzel. Who will remain? an evaluation of actual

person-job and person-team fit to predict developer retention in floss projects. In

Proceedings of Hawaii International Conference on System Science (HICSS), pages

3446–3455, Jan 2012.

[87] A. Senyard and M. Michlmayr. How to have a successful free software project. In

Proceeding of the 11th Asia-Pacific Software Engineering Conference, pages 84–91,

2004.

[88] P. N. Sharma, J. Hulland, and S. Daniel. Examining Turnover in Open Source Soft-

ware Projects Using Logistic Hierarchical Linear Modeling Approach, pages 331–337.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[89] B. Shibuya and T. Tamai. Understanding the process of participating in open source

communities. In Proc. Int’l Workshop on Emerging Trends in Free/Libre/Open Source

Software Research and Development (FLOSS), pages 1–6, 2009.

[90] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles. Social barriers faced by

newcomers placing their first contribution in open source software projects. In Proc.

Conf. on Computer Supported Cooperative Work and Social Computing (CSCW),

pages 1379–1392, 2015.

[91] I. Steinmacher, I. Wiese, A. Chaves, and M. Gerosa. Why do newcomers abandon open

source software projects? In Proceedings of International Workshop on Cooperative

and Human Aspects of Software Engineering (CHASE), pages 25–32, May 2013.

[92] K. Stewart, T. Ammeter, K. J. Stewart, and T. Ammeter. An exploratory study of

factors influencing the level of vitality and popularity of open source projects. In

Kyushu University Graduate School of Information Science and Electrical Engineering

BIBLIOGRAPHY 102

Proceedings of the Twenty-Third International Conference on Information Systems,

pages 14–17, 2002.

[93] M. Torchiano, F. Ricca, and A. Marchetto. Is my project’s truck factor low?: Theo-

retical and empirical considerations about the truck factor threshold. In Proceedings

of the 2Nd International Workshop on Emerging Trends in Software Metrics (WET-

SoM), pages 12–18, 2011.

[94] D. W. van Liere. How shallow is a bug? why open source communities shorten the

repair time of software defects. ICIS 2009 Proceedings, page 195, 2009.

[95] B. Vasilescu, K. Blincoe, Q. Xuan, C. Casalnuovo, D. Damian, P. Devanbu, and

V. Filkov. The sky is not the limit: Multitasking across github projects. In Proceedings

of the 38th International Conference on Software Engineering, ICSE ’16, pages 994–

1005, New York, NY, USA, 2016. ACM.

[96] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens. On the variation and spe-

cialisation of workload – a case study of the gnome ecosystem community. Empirical

Software Engineering, 19(4):955–1008, 2014.

[97] E. Ververs, R. van Bommel, and S. Jansen. Influences on developer participation

in the debian software ecosystem. In Proceedings of the International Conference on

Management of Emergent Digital EcoSystems, MEDES ’11, pages 89–93, New York,

NY, USA, 2011. ACM.

[98] G. von Krogh, S. Spaeth, and K. R. Lakhani. Community, joining, and specialization

in open source software innovation: a case study. Research Policy, 32(7):1217–1241,

2003.

[99] T. Wasserman and A. Das. Using flossmole data in determining business readiness

ratings. In Proc. of the Workshop on Public Data about Software Development (WoP-

DaSD), 2007.

Kyushu University Graduate School of Information Science and Electrical Engineering

BIBLIOGRAPHY 103

[100] D. Weiss. Measuring success of open source projects using web search engines. In

Proceedings of International Conference on Open Source Systems, pages 93–99, 2005.

[101] J. D. Werbel and D. J. Johnson. The use of persongroup fit for employment selection:

A missing link in personenvironment fit. Human Resource Management, 40(3):227–

240, 2001.

[102] J. West and S. O’mahony. The Role of Participation Architecture in Growing Spon-

sored Open Source Communities. Industry and Innovation, 15(2):145–168, 2008.

[103] J. Wu, K. Goh, and Q. C. Tang. Investigating success of open source software projects:

A social network perspective. In Proceedings of the International Conference on Infor-

mation Systems, ICIS 2007, Montreal, Quebec, Canada, December 9-12, 2007, page

105, 2007.

[104] J. Wu and Q. C. Tang. Analysis of survival of open source projects: a social net-

work perspective. In Pacific Asia Conference on Information Systems, PACIS 2007,

Auckland, New Zealand, July 4-6, 2007, page 19, 2007.

[105] K. Yamashita, Y. Kamei, S. McIntosh, A. E. Hassan, and N. Ubayashi. Magnet or

sticky? measuring project characteristics from the perspective of developer attraction

and retention. Journal of Information Processing, 24(2):339–348, 2016.

[106] K. Yamashita, S. McIntosh, Y. Kamei, A. E. Hassan, and N. Ubayashi. Revisiting

the applicability of the pareto principle to core development teams in open source

software projects. In Proceedings of International Workshop on Principles of Software

Evolution (IWPSE), pages 46–55, 2015.

[107] K. Yamashita, S. McIntosh, Y. Kamei, and N. Ubayashi. Magnet or sticky? an

oss project-by-project typology. In Proceedings of Working Conference on Mining

Software Repositories (MSR), pages 344–347, 2014.

Kyushu University Graduate School of Information Science and Electrical Engineering

BIBLIOGRAPHY 104

[108] Y. Yamauchi, M. Yokozawa, T. Shinohara, and T. Ishida. Collaboration with lean me-

dia: How open-source software succeeds. In Proceedings of the 2000 ACM Conference

on Computer Supported Cooperative Work, CSCW ’00, pages 329–338, 2000.

[109] Y. Ye and K. Kishida. Toward an understanding of the motivation open source soft-

ware developers. In Proceedings of International Conference on Software Engineering

(ICSE), pages 419–429, 2003.

[110] N. Zazworka, K. Stapel, E. Knauss, F. Shull, V. R. Basili, and K. Schneider. Are

developers complying with the process: An xp study. In Proc. Int’l Symposium on

Empirical Software Engineering and Measurement (ESEM), pages 14:1–14:10, 2010.

[111] M. Zhou and A. Mockus. What make long term contributors: Willingness and op-

portunity in OSS community. In Proceedings of International Conference on Software

Engineering (ICSE), pages 518–528, 2012.

Kyushu University Graduate School of Information Science and Electrical Engineering

	Acknowledgement
	Related Publications
	Introduction
	Background
	Overview of the Research
	Dissertation Contribution
	Dissertation Organization

	A Literature Survey on Sustainability of Open Source Software Projects
	Introduction
	Sustainability of OSS Projects
	Organization of Chapter

	Evolvability
	Stability
	Core Developers
	Summary

	Introduction of Magnet and Sticky For OSS Sustainability
	Introduction
	Organization of Chapter

	Study Design
	Definition of Magnet and Sticky
	Research Question
	Dataset

	Study Results
	Summary

	Studying the Applicability of Magnet and Sticky with Large Set of OSS
	Introduction
	Organization of Chapter

	Study Design
	Definition of Magnet and Sticky
	Research Questions — Motivation and Approach
	Dataset
	Developers
	Projects

	Pilot Study
	Study Results
	Discussion
	Discussion of RQ1
	Discussion of RQ2

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Summary

	Revisiting the Proportion of Core Developers for OSS Sustainability
	Introduction
	Organization of Chapter

	Study Design
	Definition of Core Developers
	Research Question
	Dataset

	Study Results
	Discussion
	The Bus Factor
	Core and Non-core Developer Activity
	The Impact of Thresholds

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Summary

	Discussion
	Introduction
	Summary of findings

	Implication and Future Research Direction
	Researchers
	OSS Developers
	Users and Enterprises

	Conclusion
	Contributions

