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Abstract

The ability to express intention and emotion are fundamental to human communication,

and these skills are usually learnt during early childhood. This can be seen not only

in a child using their first words, but also in an adult who is using their limited known

vocabulary of a foreign language that they have just started to learn. A fundamental

problem in language learning is the difficulty of expressing intention and emotion in a

coherent sentence regardless of whether the language being learnt is a foreign or native

language. Unintended syntactic errors can alter the intention of an expression, making

the meaning of an expression different from the intended meaning, such as the word order

error in the following sentence: “Here are new my temple pictures” where the error makes

the intended meaning of the sentence unclear. Expressing emotion in a foreign language

can be a daunting task for learners, and has parallels with other circumstances where

a set of special emotion expressions that are not used in everyday communication, such

as: the expression of complex aromas, flavors, and many other characteristics used in

wine tasting notes. In this work, we investigate text mining techniques to support foreign

language learners from the perspective of intention and emotion.

The first half of this thesis focuses on the expression of intention, starting with the

automatic classification of 15 writing error categories by SVM analysis of data collected

from a language learning SNS. This initial analysis serves as the basis for investigation

into the characteristic differences between learner native language groups from the per-

spective of their writing errors. In particular, we examine the error co-occurrence profiles

and the distance between 5 native languages, and how a learners’ native language can be

predicted from automatic writing error analysis. We also examine the classification of a

learners’ proficiency based on their usage of words. The contribution of these researches

is the ability to automatically profile learner characteristics that affect the expression of

intention, and predict other characteristics based on common trait association. Also, we

address the problem of insufficient sample data, which is often faced when analyzing auto-
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ii ABSTRACT

matic writing error detection as it is costly and time consuming to create learner writing

corpora. To overcome this problem, we propose a method for extracting word order errors,

which are a known problem for Japanese learners of English, and automatically compile

a balanced corpus from the logs of a language learning SNS.

The second half of this thesis focuses on the expression of complex emotion, starting

with the analysis of wine tasting notes by SVM models from 4 sensory viewpoints. These

models are then used to extract characteristic words that can be used in emotive sensory

expression, and to visualize the characteristics of collections of wine reviews from regions.

We then examine the change in the use of emotional expression by analyzing differences

in wine tasting notes over a period of 14 years. This research looks in particular at

the changes of expression from the perspective of adjective antonym pairs that represent

opposites of emotional meaning attributes by visualization. Finally, we examine in detail

the complex adjective antonym meaning dimension of thick and thin, where the optimal

quality is not found at the polar opposites of the dimension. The contribution of these

researches is the ability to automatically analyze expressions of emotion, and provide

methods to understand complex emotive expressions through visualization.
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Chapter 1

Introduction

A fundamental problem in language learning is the difficulty of expressing intention and

emotion in a coherent sentence regardless of whether the language being learnt is a foreign

or native language. In its most elementary form, an expression can be thought of as a

simple combination of words that are just enough to communicate needs or desires. This

can be seen in a child using their first words, or an adult who is using their limited known

vocabulary of a language that they have just started to learn. According to Tomasello

et al. [62], the human ability of expression is divided into two categories: (1) goal-

oriented intention, (2) emotion, experience, and activity, both of which are acquired in

early childhood. Unintended errors can alter the intention of an expression, making the

meaning of an expression different from the intended meaning, such as the word order error

in the following sentence: “Here are new my temple pictures”. The aim of this thesis is to

investigate the support of language learners, and in particular foreign language learners,

from the perspective of intention and emotion, which will be introduce in the following

sections of this chapter. An overview of the problems examined in this thesis is shown in

Figure 1.1 with concentric circles representing the hierarchy of concepts.

The rest of this thesis is organized as follows. In chapter 2, the categories of foreign

language learner error that are the basis of intention analysis are introduced. We also

detail the four sensory viewpoints that are the foundation of emotion analysis. The

chapters following chapter 2 are related to two main topics: intention in chapters 3 to 7,

and emotion in chapters 8 to 10.

In their analytic framework for intentions, Xue et al [72] look at an individuals conno-

tative intentions. They breakdown an act of correcting an error into two intentions: the

syntactic intention that is the act of correcting a syntactic error that changes sentence

1
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Figure 1.1: An overview of concepts investigated in this thesis.

A to B, which then invokes a change in semantic intention that changes the meaning of

sentence A to the intended meaning contained in sentence B. Language learners are often

prone to making errors during the learning process which changes the syntactic intention

of their expressions, which also changes their externally perceived semantic intention.

One of the aims of this thesis is to investigate the support of foreign language learners

in the expression of syntactic intention by focusing on the characteristics of learners and its

influence on writing errors. It should be noted that the investigation of errors in semantic

intention, such as: where the sentence is syntactically correct but the intended meaning is

incorrect, are beyond the scope of this thesis. We start by examining fundamental causes

of errors in syntactic intention by investigating a method of classifying 15 categories of

learner writing errors by Support Vector Machine (SVM) in chapter 3. The classification

performance is further improved by applying a technique of optimal feature selection,

which is also used to extract and rank the characteristic features of writing errors. The

data for the experiments were collected from a leading language learning social network

service (SNS), Lang-81. This has significant importance to this area of research as previous

work has focused on the analysis of traditional learner corpora that are costly and time

consuming to create [42]. As foreign language learners who are studying the same target

language come from a range of different native language backgrounds, it is important

to investigate the possible effects that their native language might have on syntactic

intention expression errors in the language they are learning. To realize this investigation,

1http://www.lang-8.com
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in chapters 4 and 5, the predicted score from the 15 error category classifiers is analyzed as

a predicted error vector representation of learner writing. Chapter 4 investigates the co-

occurrence of errors and the difference between five native language groups. We propose

a scoring method that represents the distance between native language groups based

on the characteristics of co-occurring errors. In chapter 5, we propose and evaluate a

method of classifying the native language of a learner based on the predicted error vector

representation of there writing. A problem that is often faced in the analysis of automatic

writing error detection is the shortage of data available for training, testing and evaluating

systems. In chapter 6, to overcome this problem we introduced a method for extracting

word order errors and automatically compiling a balanced corpus from the logs of a

language learning SNS. SVM classifiers were trained on the corpus and tested. In chapter

7, a method of automatically predicting the proficiency of a language learner based on

the transcripts of speaking exams is proposed.

Expressing emotion in a foreign language can be a daunting task for learners, and

has parallels with other circumstances where a set of special emotion expressions that

are not used in everyday communication. A good example of this can be seen in the

description of food and beverages that consist of complex aromas, flavors, and many

other characteristics as they usually are expressed using specialist terminology used in a

subjective manner. Within this area, the descriptions of wine are notorious for the use

of specialist terminology and the expression of commonly used words in an uncommon

manner. We propose that the process of a person learning these specialist terminology

emotion expressions is similar to that of a foreign language learner learning to express

emotion in the language they are learning.

The investigation of emotion expression is an ongoing research topic in text mining

commonly referred to as sentiment analysis, where the emotional content of writing is

predicted. Common subjects ranging from movie review analysis to the analysis of po-

litical views on SNS. In a recent survey of the field, Medhat et al. [45] identified that

sentiment analysis research often falls into two categories of polarity emotion relations:

positive/negative, or generalized analysis of text. While these techniques are applicable

to a range of sentiment analysis problems, complex emotion expression relations, such as

those found in wine tasting reviews have received little attention. The aim of the emo-

tion expression analysis in this thesis is to identify methods of extracting characteristic

features of not only positive/negative polarity relations, but also complex relations, such

3



as the double negative antonymic adjective pair of thick and thin found in wine tasting

notes, where the optimal property is found in the middle of the extremes of the poles. The

proposed methods could be applied to the extraction of emotion expression characteristic

features to support foreign language learners in the expression of emotion. In chapter 8,

we investigate the emotional sensory expressions in wine tasting notes. Firstly, we present

a method of classifying by SVM the four types sensory expressions that are commonly

used in tasting notes. The models are then applied to a large corpus of wine tasting notes

to predict the characteristics of wine regions and provide visualization of the degree of

sensory expression used in the review of wines in the region. In chapter 9, we examine

changes in emotional sensory expressions in wine over the span of 14 years from the per-

spectives adjective antonym pairs that represent opposites of expressing attributes. A

visualization system is proposed for analyzing differing properties, and examples where

the change in use are examined in detail. Chapter 10 presents a detailed analysis of the

adjective antonym meaning dimension of thick and thin.
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Chapter 2

Preliminaries

This chapter provides a preliminary explanation of: the writing error categories that are

used in the analysis of the expression of intention in chapters 3 to 7, and the sensory

expression viewpoints of wine tasting notes that are used in the analysis of the expression

of emotion in chapters 8 to 10.

2.1 Writing Error Categories

Foreign language writing experiments are often conducted in controlled environments as

outside influences can have an impact on the performance of works produced by learners.

Most of the previous research in this field has aimed to control these factors by undertaking

experiments in academic settings. This has enabled researchers to control the subject of

the works produced by the learners, and other factors such as time limits and environment.

Kroll [41] investigated the difference between writings that were produced in the highly

controlled environment of a classroom and those that were produced at home where time

was not limited and the learner could have more time to think about their composition.

Kroll hypothesised that students might be able to produce better writing in an environ-

ment in which they have less pressure and more time to think about the task at hand. An

experiment was conducted and the essays of foreign language writings were graded by the

frequencies of errors categories that occurred. These frequencies were then compared and

it was found that there was not a statistically significant difference between the writings

produced in the different environments.

Polio and Fleck [54] examined whether additional revisions of essays influenced the

linguistic accuracy of the content as it is theoretically interesting to researchers in the

areas of second language acquisition and second language writing pedagogy. Polio and
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Fleck [54] built on the error categories used in previous research reported by Kroll [41].

However Polio and Fleck [54] concluded that the practical implications in the context of

writing assessment might be too small.

Weltig [71] investigated the influence of writing error categories on the scores of essays

by foreign language writing learners. This research built on the error categories that were

used in the two previously introduced works by Kroll [41] and Polio and Fleck [54]. A

combination of their defined error categories was used. Weltig [71] introduced additional

error categories as it was thought they could have an influence on the scoring of writings,

such as spelling errors and punctuation errors. The results of the investigation revealed

that certain errors do have a greater influence on the overall score attributed to the

writings. As the error categories of these researches utilize a different set of error number

lists for their analysis, a merged error number list was created as seen in Table 2.1. This

merged list was used as a basis for the error categories analyzed in this thesis.

A main source of data that is analyzed to investigate the expression of Intention

in this thesis is a set of writings that were collected from a leading SNS-based mutual

correction website, Lang-81. For initial analysis, we collected 500 corrected sentences at

random that were written in English from the diaries of language learners on Lang-8.

These were then filtered for inconsistencies, such as: containing multiple languages, or

large corrections and rewrites which are not effective for machine learning, leaving 399

candidate sentences. The sentences were then manually checked for errors and tagged in

the corpus accordingly. The feedback provided by native speakers often contained several

different error pattern corrections within a single response. Taking this into consideration,

sentences that contain more than one error type were categorized as having multiple error

patterns accordingly. Some feedback contained comments about the correction and/or

multiple suggestions for a single word or phrase that were mostly to do with lexical or

phrase choices and categorized as such.

Linear regression analysis was used to establish whether a correlation exists between

the frequency of errors in the common categories of previous studies [41, 71] and that of

the manually tagged Lang-8 corpus. As shown in Figure 2.1 and Table 2.2, the results

of the analysis show that there is a significant correlation, with a critical alpha level of

p < 0.05, and t = 4.3509, 4.4179, and 3.8011 for Kroll Class, Kroll Home, and Weltig,

respectively.

1http://www.lang-8.com
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Table 2.1: Merged error number list used for analysis.
Error # Kroll # Weltig # Error Category

Sentence
structure
errors

1 1 1 Whole sentence or clause aberrant
2 2 2 Subject formation
3 3 3 Verb missing
4 4 4 Verb complement/object complement
5 5 Prep. Phrase/infinitive mixup
6 6 5 Dangling modifier
7 7 6 Sentence fragment
8 8 7 Run-on sentence
9 9 8 Parallel structure
10 10 9 Relative clause formation
11 11 10 Word order
12 12 11 Gapping error
13 13 12 Extraneous words
14 14 Awkward phrasing
15 13 Missing word

Verb-
centered
errors

16 14 Wrong modal
17 15 15 Tense
18 16 16 Voice
19 17 17 Verb formation
20 18 18 Subject-verb agreement
21 19 19 Two-word verb

Reference
errors

22 20 20 Noun-pronoun agreement
23 21 21 Quantifier-noun agreement
24 22 22 Epenthetic pronoun
25 23 23 Ambiguous/unlocatable referent
26 24 Voice shift
27 24 Wrong case

Word-level
choice

28 25 25 Lexical/phrase choice
29 26 26 Idiom
30 27 27 Word form
31 28 Noun phrase morph
32 29 Comparative formation
33 28 30 Singular for plural (except verbs)
34 29 31 Plural for singular (except verbs)
35 30 32 Quantity words
36 31 33 Preposition
37 34 Genitive
38 32 35 Article errors
39 36 Deixis problem
40 33 37 Punctuation
41 38 Negation
42 39 Spelling

43 40 Possessive
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Table 2.2: Linear regression analysis results.
Kroll (Class) Kroll (Home) Weltig

r2 0.6351 0.6409 0.5834
t 4.3509 4.4179 3.8011
p 0.0002 0.0001 0.0007
y 2.9376 + 4.2918x 4.9722 + 3.6384x 7.2613 + 21.1171x
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Table 2.3: Outlier error categories and relation to Lang-8 error frequency.
More frequent in Lang-8 Less frequent in Lang-8
# Error Cat. # Error Cat.
3 Verb missing 7 Sentence fragment
11 Word order 8 Run-on sentence
19 Verb formation 20 Subject-verb agreement
25 Ambiguous/Unlocatable reference 40 Punctuation
28 Lexical/phrase choice
36 Preposition
38 Article errors

These correlations were then used to identify possible outlier errors not residing within

the 95% confidence interval. A total of 22 different error categories were found outside

the 95% confidence interval, with 11 of these errors being common across all three re-

gression analyses. These common outlier errors suggest a characteristic difference in the

error frequency of writings and corrections on Lang-8 when compared to those from an

academic setting, such as: Kroll and Weltig. This may be a result of the differences in

influencing factors, such as: motivation, the subject of the writing, and personal factors

(age, socioeconomic background, etc).

As seen in Table 2.3, seven error categories occur more frequently on Lang-8 when

compared to results from previous work by Kroll and Weltig. Of these, the error categories

“Word order”, “Verb formation”, “Preposition” and “Article errors” are considerably

outside the 95% coincidence interval, and therefore could be seen as a characteristic of

the types of errors that occur in writings on Lang-8. In Chapter 3, we examine the

classification of 15 frequently occurring error categories, of which the seven characteristic

Lang-8 error categories are also included.

2.2 Sensory Viewpoint Expressions of Winespeak

Wine tasting notes contain expressions that are not used in common English, and therefore

represent a special purpose use of language. There is a growing body of cognitive linguis-

tic research into expressions that are used to describe the intricate emotional sensory

responses to wines. From this body of research, we selected the four sensory modalities

that were defined by Paradis and Eeg-Olofsson [51] as the basis of the sentimental anal-

ysis presented in chapters 8 to 10 of this thesis that investigate the complex emotional
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Table 2.4: 17 Example words that describe sensory modalities as defined by Paradis and
Eeg-Olofsson [51]

Modality Example keywords words
Vision purple, ruby, straw, gold, light, dark
Smell fruity, floral, spicy, smoky, weak
Taste & Touch flabby, soft, heavy, thin, long, crisp

expression. The four sensory modalities and example keyword words that were defined

are shown in Table 2.4, and consists of 17 different sensory modalities descriptors that are

divided into four main viewpoints. Taste and Touch are reportedly difficult to sepa-

rate, and therefore are assigned the same descriptor keywords. In the research presented

in this thesis, all four sensory viewpoints are analyzed independently, with both Taste

and Touch qualities being assigned in the case where the differentiation between the two

viewpoints is ambiguous.
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Chapter 3

Classification of English Language
Learner Writing Errors

In order to overcome mistakes, learners need feedback to prompt reflection on their errors

[44]. This is a particularly important issue in education systems, as the system effective-

ness in finding errors or mistakes could have an impact on learning. Finding errors is

essential to providing appropriate guidance in order for learners to overcome their flaws.

Traditional classroom-based language study has offered interaction with other learners

and feedback from teachers and peers.

In the last decade or so with the global spread of the Internet, the number of people

studying languages on the web has increased. Of particular interest are sites that offer a

social or collaborative approach to study languages, and are often based on a SNS (Social

Networking Service) platform. To some extent these SNS-based websites offer feedback

and interaction that might otherwise be absent in autonomous learners studies. Language

learning SNS sites work on the language exchange function, where native speakers of the

target language offer corrections and feedback to the language learners. In principal,

these learners would then correct the writings of a learner studying their native language.

For example, person A is a native Japanese speaker who is learning English as a foreign

language and posts an English sentence on the website. Person B who is a native English

speaker corrects the sentence. Person B is also learning Japanese as a foreign language

and posts a sentence on the website in Japanese which is then corrected by person A.

This mutually beneficial environment helps learners to achieve their respective goals of

learning a foreign language, which in turn is another foreign language learner’s mother

tongue.

These websites contain numerous foreign language writings that have been created by
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learners and corrected by speakers of the target language. It could be thought of as a

crude crowd-sourced foreign language writing parallel corpus. Taking advantage of this

data can help to further enhance the effectiveness of language learning through providing

automated feedback and guidance. In this chapter we use machine learning to analyze

the writings collected from a leading SNS-based mutual correction website, Lang-81.

As there have been remarkable advances in machine learning research recently, we

propose that machine learning techniques could be used to automatically detect and

classify the errors in foreign language writing sentences. A machine learning classifier

model for error detection could be created and used to determine the characteristics of

the learners’ errors. To prepare data for machine learning, 500 corrected sentence pairs

by learners of English foreign writing on the Lang-8 website were chosen at random. The

corrected sentence pairs were then manually classified into error categories. These error

categories were based on the previous research investigated by Kroll [41], Polio and Fleck

[54], and Weltig [71] to examine the characteristics of foreign language writings. Using

these error categories, we manually detected and classified the sample sentence pairs into

error categories.

The raw sentence pairs from the Lang-8 website were marked up with tags that are

supposed to represent the changes that have been made by English speakers providing

feedback. These tags are applied by users and are not methodically implemented to

indicate the inserted, deleted, or edited text. On further investigation we found that

the tags did not accurately indicate the changes and therefore could not be used for the

purpose of our intended research. To overcome this problem we processed the sentence

pairs using an alignment algorithm [43] to extract the actual edits provided in the feedback

by the English speaker. The results of this process were then used to retag the edits

accurately. This data in conjunction with the words of the sentence pairs was analyzed for

machine learning. The purpose of this chapter is to evaluate the prediction performance of

using an SVM classifier to detect errors in English foreign language writing. The technique

of searching for an optimal feature selection from Sakai and Hirokawa [55] is applied to the

machine learning problem to enhance the classification performance of predicting errors

that occur in language learner writings.

1http://www.lang-8.com
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3.1 Related Work

Various different methods have been proposed for the automatic analysis of foreign learner

writing errors. Previous research into this problem has focused on the use of the following

methods: analyzing the output of tools such as search engine hits and word processor

grammar/spelling checkers, and the application of statistical and machine learning tech-

niques.

Early research into the analysis of the output of tools was conducted by Koppel et al.

[40], who applied the MS Word spell checker with a sentence tagger and an n-gram corpus

to detect errors. The native language of ESL (English as a second language) learners was

determined by stylistic text feature (function word selection, errors and syntax) analysis of

their writings. Hirano et al. [26] used the frequency of results from a web search engine to

check if a sentence from a technical paper contains an article error. It was stipulated that

as the language used in technical papers is more complex than simple phrases, it is difficult

to use a search engine to determine if there is an error or not as the number of search

results is often too small to have any significance. It was proposed that using queries built

based on the results of POS (parts-of-speech) tagging would better serve as a determiner

if the sentence contains an error. More recently, Tanimoto and Ohta [61] examined using

the number of search results as an indicator in an attempt to identify erroneous words

in English sentences. NICE (Nagoya Interlanguage Corpus of English) was used in tri-

grams and 4-grams as training data for SVM machine learning to create a model that can

determine if an English sentence contains an error. There are some notable disadvantages

of analyzing the output of tools that are not created specifically for the analysis of foreign

learner writing errors: word processing tools that were created for native writing fail to

detect errors unique to foreign language learners, and the results of search engines can be

affected by indexed data from automated and low quality translations. In consideration

of these limitations, the work presented in this thesis focuses on analyzing learner writing

errors without relying on the output of the above mentioned tools.

Research into the application of statistical and machine learning techniques to learner

writing error analysis has gained a lot of attention in recent years. Bailey and Meurers [2]

examined the use of machine learning methods to augment feedback from computer-aided

language learning systems by using the shallow matching features to detect meaning er-

rors. They focused on the analysis of short answers to reading comprehension problems.
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They achieved an accuracy of almost 90% for learner response content error detection

on a learner corpus collected from real-life ESL learners completing assigned exercises.

Brockett et al. [4] approached the problem by using techniques that are usually synony-

mous with phrasal statistical machine translation. They used a parallel corpus of texts

that were made up of ESL learner writings with both pre and post-editing correction

similar to that found on Lang-8. Some previous researches [24, 25, 8] have used maximum

entropy classifiers to detect article errors (incorrect use of: A, an, the...). Parts of speech

tags and local context words were used to determine the probability of noun phrases.

This technique was found to be superior than past techniques, however it was noted that

the classifier lacked the ability to determine the context of previously mentioned entities.

Tetreault and Chodorow [63] also used a maximum entropy classifier augmented with

combination features and a series of thresholds to detect preposition errors (incorrect use

of a word expressing the relation between a noun/pronoun and another word or element

in the phrase). It was found that the system could detect up to 84% of preposition errors.

A disadvantage of using this approach is that it cannot automatically model the interac-

tions among features. Tsur and Rappoport [70] applied machine learning techniques to

study the effect of language transfer, which is a major topic in second language acquisition

(SLA). Language transfer studies the effect that a learner’s native language has on foreign

language study. They hypothesized that language transfer affects the level of basic sounds

and short sound sequences, manifested by the words that people choose when writing in a

second language. Thus, foreign language words are strongly influenced by native language

sounds and sound patterns. They applied SVM machine learning to train a classifier using

the International Corpus of Learner English (ICLE) in an effort to realize the hypothe-

sis. The use of n-grams for the classification of texts has featured numerous times in the

previous research for both the general classification of texts and also detection of errors.

Schwarm and and Ostendorf [57] and Petersen and Ostendorf [53] used n-grams combined

with support vector machine classifiers to find appropriate reading material for students

according to their reading level. Gamon et al. [23] used decision trees to perform error

detection and correction for prepositions and definite/indefinite determiners on a reduced

feature set using an n-gram corpus. Overall evaluation of the system was positive in

providing error detection and also suggesting a correction. It was noted that the biggest

challenge was solving false positives as it can confuse non-native speakers. Other research

has focused on the development of corpora to overcome the limitations of past resources.
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Sugiura et al. [58], discuss corpus design and reviewed the International Corpus of Learner

English (ICLE). Based on the corpus weaknesses identified, they set about compiling a

new English learner corpus and a parallel corpus of native English speakers, called NICE

(Nagoya Interlanguage Corpus of English). They performed analysis on the NICE corpus

using mechanical text features, such as: type, token, number of sentences, and average

word length to compare the language learners performance with native speakers. Miki

[46] looks at the use of a parallel corpus that is constructed using the essay writings of

foreign language learners and exact forms of the sentences that are provided by native

English language speakers. NICE was used as a dataset to examine how Japanese English

language learner’s use “I think” in comparison with native speakers. Unlike other studies

on the over usage of expressions which focus on quantifying the errors, by using a parallel

corpus they were able to determine how the expression was being inappropriately used

to augment the language learners writing. Miyake et al. [47] also used the same method

and NICE parallel corpus to examined the use of “there” with the long-term intention of

identifying the “Japaneseness” and “nativeness” relating to the use of constructions.

Previous work has mainly focused on the analysis of professionally curated corpora

that were created in a controlled academic setting. In this chapter, we analyze foreign

learner writing errors by SVM analysis of a parallel corpus that was created with corrected

writing collected from a language learning SNS. The main contribution of this work is

the use of feature selection to not only improve the classification performance, but also

identify a smaller optimal subset of characteristic error features that can be extracted

from SNS learner writing. The work presented in this chapter also serves as the basis

for subsequent contributions presented in Chapter 4 where we examine the relation of

native language and error co-occurrence by clustering analysis, and Chapter 5 in which

we propose a unique technique of predicting a learners native language by analyzing the

output of learner writing error detection.

3.2 Vectorization of Error Sentences for Categoriza-

tion

In order to evaluate the classification of errors in English sentences, the following process

was undertaken to construct basic data. Firstly, 500 corrected sentences written in English

were chosen at random from diaries written by language learners on the Lang-8 website.
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Table 3.1: An example of an original and corrected sentence pair.
Original
Sentence

I woke up alone, with lose memory, lying on the white beach, not knowing
where I was.

Corrected
Sentence

I woke up alone, with no memory, lying on a white beach, not knowing
where I was.

However, in some cases large portions of the sample sentences were rewritten or contained

comments that would reduce the effectiveness of machine learning and were removed,

leaving 399 candidate sentences.

Analysis was performed not on just the sentences, but on pairs of sentences: the

original sentence that contains errors, and the corrected sentence that contains tagged

edited words. These sentence pairs are a result of mutual corrections that have occurred

on the Lang-8 website. In this chapter, the GETA search engine2 was used to index

the original and corrected sentence pairs. Word is usually stemmed when building an

index, however it was decided that the indexed words should not be stemmed as analysis

was performed at the word level. In Lang-8, the edits made by English speakers on

the sentences are marked up using span tags, such as <span class=“xxx”>. The class

attribute of these span tags changes depending on action of the English speaker. If a word

is removed then the sline class is applied. Classes that describe the font colour and weight

are also used, such as f bold, f red, and f blue. However the intention with which these

classes are assigned is unregulated and not uniformly applied across the all sentences. In

this chapter, it was decided that because of the inconsistency of tag use that better results

would be achieved by using an alignment algorithm to programmatically detect and tag

changes in sentence pairs. Table 3.1 shows an example untagged sentence.

As seen in this example, “lose” and “the” are corrected with “no” and “a”. These

corrections are identified using the alignment algorithm and the results are tagged as:

delete:lose, delete:the, insert:no, and insert:a. In the search engine that was used in this

chapter the corrections are expressed as d:lose, d:the, i:no, and i:a along with the other

words in the sentence. The corrections were also added without distinguishing whether

the edit is an insertion or deletion, and were indexed as: e:lose, e:the, e:no, and e:a.

These sentences were classified into 42 error categories by the author of this thesis

whose language is English. It was determined that the above example contains errors

of two categories: Error number 38, which is an article error, and error number 41,

2http://geta.ex.nii.ac.jp
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Table 3.2: Indexed example sentence.
c:38/ c:41
d:lose/ d:the i:no/ i:a
e:the /e:lose/ e:a /e:no
the/ a/ woke/ no/ not/ on/ white/ memory/ with/ lying/
beach/ up/ i/ knowing/ where/ alone/ was/ lose/

which is a negation error. These errors are indexed in the search engine as c:38 and c:41

respectively. The three indexes for error category, edited words and non-edited word are

then vectorised. Using this it is then possible to determine if a sentence has an article

error by examining if it contains “i:a, d:the, e:a, and e:the”. It also makes it possible to

determine if the sentence contains a negation error by checking if it contains “i:no, and

e:no”. Simple classification would analyze just the words of the sentence. However we

analyse the information about the corrections along with the words of the sentence to

determine the error categories with the sentence.

A special use search engine was built using indexes as shown in Table 3.2. The

information about the error categories, c:38, c:41, was not used in the classification of

error categories.

3.3 Evaluation of error categorisation using SVM

An evaluation of error categorisation using SVM to classify the errors of 399 sentences

with all the data as training data is shown below in Table 3.3. It should be noted that the

columns in this table are sorted by F-measure in descending order. The prediction perfor-

mance of the classification of errors 36 (preposition), 42 (spelling), 2 (subject formation)

and 28 (lexical/phrase choice) is more than 90%. However, as this evaluation analyses

all the data as training data it cannot be used as a general evaluation of the prediction

performance.

We then used ten-fold cross-validation to evaluate the prediction performance of the

classifier. All 399 sentences were then randomly divided into 10 even groups. In each

group 90% of the data was used for SVM training to generate a model. The prediction

performance of the classifier was then tested using the remaining 10% of the data from the

same group. The average of ten test results for each error category is used as a measure

of the prediction performance of each classifier respectively. These results are displayed
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Table 3.3: Evaluation of the classification of error categories.
Error Category Precision Recall F Accuracy

36 0.9310 0.9643 0.9474 0.9850
42 0.9773 0.8958 0.9348 0.9850
2 1.0000 0.8571 0.9231 0.9950
28 0.8696 0.9677 0.9160 0.9724
38 0.2698 1.0000 0.4250 0.5388
19 0.1845 1.0000 0.3116 0.5238
11 0.1201 1.0000 0.2145 0.3208
33 0.0955 1.0000 0.1743 0.5013
25 0.0806 1.0000 0.1493 0.4286
3 0.0599 1.0000 0.1131 0.2531
17 0.0521 1.0000 0.0990 0.5439
13 0.0492 1.0000 0.0939 0.3709
6 0.0488 1.0000 0.0930 0.5113
37 0.0478 1.0000 0.0913 0.5013
30 0.0461 1.0000 0.0881 0.4812

in Table 3.4, Figure 3.1, and Figure 3.2.

Table 3.4 shows the overall results of the tests along with the number of sentence

samples for each error category. The table is sorted by the F-measure of each of the

models in descending order.

The F-measure performance of each model is displayed in Figure 3.1. As you see,

the F-measure of all the models is less than 40%, with error category 42 (spelling), 28

(lexical/phrase choice) and 38 (article errors) being the more effective models with an

F-measure of only 38.07%, 36.72%, and 36.52%, respectively. On the lower end of the

scale the model for error category 6 (dangling/misplaced modifier) has an F-measure of

1.05%.

The accuracy of the generated models also varies for each error category. As shown

in Figure 3.2, the model for error category 42 (spelling) has the greatest in all the models

with an accuracy of 77.80%. Error category 3 (verb missing) has the lowest accuracy in

all the models at 26.47%.

Overall, the prediction performance of the classifier as seen above cannot be considered

effective enough for practical use. Figures 3.3 and 3.4 are plots of correlations between

the number of samples, F-measure, and accuracy for each of the error category models.

A positive correlation can be seen in both plots, indicating that as the number of samples

increases so does the F-measure and accuracy of the evaluation. This suggests that if the
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Figure 3.1: Error classification evaluation for each category (F-measure, 10-fold cross-
validation).
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Table 3.4: Evaluation of the classification of errors into categories by 10-fold cross-
validation.

Error Type
Number of
Samples

Precession Recall F Accuracy

42 Spelling 48 0.4153 0.3906 0.3807 0.7780
28 Lexical/phrase choice 62 0.3109 0.5206 0.3672 0.7218
38 Article errors 68 0.2265 0.9857 0.3652 0.4023
36 Preposition 56 0.2049 0.5742 0.2948 0.6288
19 Verb formation 43 0.1865 0.6881 0.2828 0.6547
11 Word order 37 0.1472 0.6514 0.2248 0.5999
33 Singular for plural 21 0.1129 0.8000 0.1910 0.5796
2 Subject formation 14 0.0758 0.3333 0.1169 0.5217

25
Ambiguous/unlocatable
refer

20 0.0687 0.2833 0.1087 0.4843

3 Verb missing 19 0.0585 0.8250 0.1077 0.2647
37 Genitive 10 0.0539 0.4667 0.0957 0.4941
17 Tense 10 0.0588 0.4167 0.0917 0.3633
30 Word form 10 0.0418 0.3833 0.0750 0.4491
13 Extraneous words 12 0.0385 0.6500 0.0718 0.4516

6
Dangling/misplaced
modifier

10 0.0063 0.0333 0.0105 0.5078
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Figure 3.2: Error classification evaluation for each category (10-fold cross-validation, Ac-
curacy).
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Figure 3.3: Correlation between the number of data samples and the F-measure of the
evaluation.

samples for each error category were increased to an adequate number then the prediction

performance of the classifier would also increase accordingly.

Looking at the results in Figure 3.3, the error category models that were trained using

a small number of samples generally have a smaller F-measure than those with a greater

number of samples. Therefore one can expect if 100 manually categorised samples were

used to train each error category it would result in an F-measure of around 80%.

A similar correlation can also be seen in Figure 3.4 with the accuracy of models

increasing along with the number of samples.

3.4 Optimal Feature Selection

We applied SVM light using all of 399 data as training and test data to construct 15

models with respect to each error category. Then each model was applied to an imaginary
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Figure 3.4: Correlation between the number of data samples and the Accuracy of the
evaluation.
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Figure 3.5: Effect of Feature Selection for Error Category 2.

sentence that consists of a single word. The score is used as the predicted score of the

word with respect to the error category. The feature words with respect a category

c is determined using the formula in Equation 3.1, where Positive(c,N) is the set of

words whose score for category c is positive and ranked with in the top N features, and

Negative(c,N) is the set of words whose score for category c is negative and ranked with

in the bottom N features. The sentences are vectorized to include only word features

within the selected set, and the classification performance is evaluated by F-measure

with 10-fold cross validation. Then the optimal F-measure is evaluated among N =

{1, 2, 3, · · · , 10, 20, 30, · · · , 100, 200, 300, · · · , 900, 1000}. Figure 3.5 and 3.6 are plots of

F-measures for error categories 2 and 42, where the optimal choice is N = 900, and

N = 800 respectively. We also investigated the existence of an optimal N for the other

error categories.

FeatureWords(c,N) = Positive(c,N) ∪Negative(c,N) (3.1)
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Figure 3.6: Effect of Feature Selection for Error Category 42.
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Table 3.5: The words and tags from the model created using SVM.
Err Feature words

42 Spelling shopping e went e:e i:e phrase china day friend what
28 Lexical/phrase choice which m it am would student in d:in here girl
38 Article errors e:the i:the e:a the i:a a man e:A university e:This
36 Preposition i:in e:in d:at at e:for e:at e:on on i:on two
19 Verb formation i:ing e:ing ing didn e:to entrance d e:eat d:eating collage

3.4.1 Detailed Analysis

A score for each word or tag can be extracted from the model created by applying SVM

to the training data. As shown in Table 3.5, error category 38 (article) has the features

that consist of tags, such as “e:the, i:the, e:a, and i:a”. Error category 36 (preposition)

has the following tags as the features of the error “i:in, e:in, d:at, e:for, e:at, e:on, and

i:on”. The ability to extract such information from the model enables the confirmation of

the features associated with the error types in the corrections. The feature “ing” can be

expected for error category 19 (verb formation). The error features associated with error

category 42 (spelling) are “e”, “e:e”, and “i:e” can be seen as common spelling errors in

words such as conv-a-rsation, and ev[e]ryone.

3.4.2 Improvement of Prediction Performance by Optimal Fea-
ture Selection

Table 3.6 and Fig. 3.7 shows the F-measures by baseline and the proposed method with

respect to the 15 error categories. The F-measures is greater than 0.4 in the five categories

(19 Verb formation, 28 Lexical/phrase choice, 36 Singular for plural, 38 Article errors, 42

Spelling). In all cases, the prediction performance is improved.

3.5 Discussion

In this chapter, we manually classified the errors contained in sample sentences from

diaries written in the mutual correction language-learning site Lang-8. The errors were

classified into categories based on previous research [41, 71]. The sample sentence pairs

had tags indicating the edits in the corrections, however it was determined that these

did not always correctly reflect the true corrections, and were removed. An alignment

algorithm was then used to programmatically identify the corrections that had been made,
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Table 3.6: Prediction Performance Compared by F-measure
Category Optimal N Description Feature Selection Baseline

2 900 Subject formation 0.1695 0.1169
3 200 Verb missing 0.1490 0.1077
6 20 Dangling/misplaced modifier 0.0403 0.0105
11 500 Word order 0.2843 0.2248
13 300 Extraneous words 0.1552 0.0718
17 500 Tense 0.1040 0.0917
19 800 Verb formation 0.4508 0.2828
25 700 Ambiguous/unlocatable refer 0.1746 0.1087
28 200 Lexical/phrase choice 0.5001 0.3672
30 500 Word form 0.1172 0.0750
33 300 Singular for plural 0.3100 0.1910
36 700 Preposition 0.4688 0.2948
37 700 Genitive 0.2115 0.0957
38 500 Article errors 0.5264 0.3652
42 800 Spelling 0.5452 0.3807
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Figure 3.7: Comparison of Prediction Performance
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and the edited words were then tagged as ’inserted’ or ’deleted’ accordingly. These tags,

along with the manually classified error categories and the other words in the original

sentence, were then indexed to build a special use search engine. This search engine index

was then used as training data for SVM machine learning to create a model for error

category classification.

This model was then evaluated using ten-fold cross-validation. 399 sentences used as

sample data were divided randomly into ten even groups, with 90% of the sample data

used for training and the remaining 10% used for model verification. The F-measure

for each error category was less than 40%. However, the results did show a significant

positive correlation between the number of data samples, F-measure and accuracy of the

model. Thus it can be expected that if the number of samples is increased to 100 manually

identified samples, then it is expected that the model will produce an F-measure of roughly

80%. Therefore by increasing the training data it is expected to produce a reasonable level

of performance for error category classification. A method of optimal feature selection

was examined to improve the classification performance. This improved the classification

performance of all of the error categories. An F-measures performance of greater than

40% was achieved in the following five categories: 19 Verb formation, 28 Lexical/phrase

choice, 36 Singular for plural, 38 Article errors, 42 Spelling.
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Chapter 4

Clustering and Co-occurrence
Analysis of English Writing Errors
Based on Native Language

In this chapter, we examine the error characteristics of language learner writing from the

perspective of their native language. Previous research into the analysis of learner writing

errors based on native language, most notably the seminal work by Swan and Smith

[60], have examined an error as a singular problem within a sentence. This analysis has

uncovered the tendencies of different native language groups to make certain errors, and is

based on the theory of language transfer where some expression is not present in the native

language but used in the target language and vice versa. In comparison, the interaction

between two or more errors that co-occur within the same sentence has received little

attention. The aim of this chapter is to investigate the differences in the co-occurrence of

errors of language learner writing between native language groups and propose a distance

to measure the differences between the groups.

The 15 SVM error category models that were trained in chapter 3 are applied to predict

the errors scores in 142,465 corrected sentences that were collected from the language

learning SNS website, Lang-81. These scores are used as a vector representation of the

sentences and divided into data subsets by native language of the learner as reported on

Lang-8. The subsets are then clustered to analyze the co-occurrence and independence of

foreign writing errors based on the native language of the learner.

1http://www.lang-8.com
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Figure 4.1: Number of sentences grouped by native language.

4.1 Clustering based on Error Category Prediction

4.1.1 Data Collection

Two sets of data were collected for analysis: a set of 142,465 sentences, posted on Lang-8

from October 9, 2011 to January 6, 2012, which are written in English and are corrected

in some way. Each sentence is tagged to identify the native language of the author. Figure

4.1 shows the major groups within the collected data set, and it can be seen that Japanese

users wrote roughly 100,000 sentences, which is the largest subset in the collected data.

Other main subsets include: Korean, Chinese, Taiwanese and Spanish. The analysis

in this chapter will focus on these five major native language subsets within the collected

data.

The second set consists of 399 corrected sentence pairs that have been manually clas-

sified into error categories. We analyzed the data to train and test SVM classifiers for

15 error categories in previous research [10, 14, 11]. The error category numbers and

descriptions that were used are shown in Table 4.1. 10 models constructed for each error
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Table 4.1: Error Category Numbers and Descriptions.
Category Description

2 Subject formation
3 Verb missing
6 Dangling/misplaced modifier
11 Word order
13 Extraneous words
17 Tense
19 Verb formation
25 Ambiguous/unlocatable referent
28 Lexical/phrase choice
30 Word form
33 Singular for plural
36 Preposition
37 Genitive
38 Article
42 Spelling

category. Each sentence from the first set of data was scored with respect an error cat-

egory is calculated as the average of the score of the result obtained by applying the 10

models. 15 scores corresponding to 15 error categories form a vector representation of a

sentence.

4.1.2 Error Co-occurrence Analysis by Clustering

We have previously investigated the co-occurrence of errors from an overall perspective

[11], and did not take into account other factors, such as the learners’ native language,

etc. The score vector representations of the sentences were analyzed by clustering into 20

clusters using the high-dimension clustering tool CLUTO [37]. This research identified co-

occurring and non-co-occurring errors, an overview of which can be seen in the dendrogram

(clustering tree) in Figure 4.2. The darker colored squares represent clusters of sentences

with high averages in parts of the score vector. For example, cluster 0 has a high average

score for error category 38 (Article errors), and cluster 3 has a high average score for

error category 36 (preposition errors). On the vertical axis is a cluster hierarchy tree

of the 20 resulting clusters. The clusters are leaf nodes of the tree where the number

of sentences in the cluster is represented in the brackets next to the cluster ID. The

error categories are represented on the horizontal axes at a cluster hierarchy tree. This

visualization is very helpful to understand the huge amount of target data. We can see
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Figure 4.2: Clustering of all writing error data.

that the lower branch of the tree contains 1/3 of all the data and corresponds mainly to

error category 38 (article errors). Cluster 0 is a core part of this branch whose sentences

contain mainly article errors. Cluster 17 contains lexical or phrase choice errors (category

28). The cluster 16 contains preposition errors (category 36). Thus, the tree represents

not only the clustering of sentences but also the clustering of error categories. Indeed,

we can interpret that article errors (category 38) are the largest errors and occur with

preposition error (category 36) and lexical/phrase choice error (category 28). For further

details please refer to [11].

While presenting this previous research, it was recommended by an attendee that it

is important to perform the analysis of error characteristics with regard to the native

language of the learner. Therefore this chapter investigates co-occurring error categories

by native language.
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4.2 Co-occurrence Analysis By Native Language

4.2.1 Principal Component Analysis (PCA)

To investigate if there are any underlying correlations between native languages and the

predicted error category scores, we analyzed the score vector and the native language of

the learners using Principal Component Analysis (PCA).

The results of the PCA are shown in Figure 4.3, where there is a slight association

between error category 36 (preposition) and Japanese when compared to other languages:

Korean, Chinese, Taiwanese and Spanish. However other than this observation there are

no significant correlations between error categories and native languages.

4.2.2 Error Co-occurrence Analysis of Native Languages by Clus-
tering

The dataset of predicted error category score vectors was divided into subsets based on

the native language of the learner. The top five native languages by number of sentences

were then clustered into 20 clusters to analyze possible differences in error co-occurrence.

Figure 4.4 shows the clustering results for sentences written by Japanese natives.

Clusters 15 and 16 are both made up of sentences that contain error categories 36

(preposition) and 28 (lexical/phrase choice) respectively that co-occur with error category

38 (article). Clusters 12 and 18 are also both made up of sentences that contain error

category 36 (preposition) that co-occur with 19 (Verb formation) and 28 (Lexical/phrase

choice). Other notable co-occurrences are seen in cluster 1 which contains error category

6 (Dangling/misplaced modifier) and 38 (article), and cluster 17 which contains error

category 42 (spelling) and 30 (word form).

The results of the clustering analysis of Korean natives, as shown in Figure 4.5, share

some similarities with Japanese natives. It contains the same co-occurring errors as

Japanese, except instead of error categories 19 (Verb formation) and 36 (preposition) co-

occurring, Korean has a more prominent co-occurrence between error category 11 (word

order) and 36 (preposition).

For Chinese natives the results displayed in Figure 4.6 have some similarities to the

results for Korean and Japanese as error category 38 (article) co-occurs with 6 (Dan-

gling/misplaced modifier), 28 (Lexical/phrase choice), and 36 (preposition), and also error

category 28 (Lexical/phrase choice) with 36 (preposition).
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Figure 4.3: Principal Component Analysis of all writing error data.
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Figure 4.4: Clustering of writing errors by Japanese natives.
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Figure 4.5: Clustering of writing errors by Korean natives.
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Figure 4.6: Clustering of writing errors by Chinese natives.
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Figure 4.7: Clustering of writing errors by Taiwanese natives.
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Figure 4.8: Clustering of writing errors by Spanish natives.

As with all the preceding results, sentences written by Taiwanese natives, as seen

in Figure 4.7, have error category 38 (article) co-occurring with 6 (Dangling/misplaced

modifier), 28 (Lexical/phrase choice), and 36 (preposition), and also error category 28

(Lexical/phrase choice) with 36 (preposition). In addition it can be seen that error cate-

gories 3 (Verb missing), 13 (extraneous words), and 25 (ambiguous/unlocatable referent)

co-occur in the same sentences.

In contrast with the previous results, sentences by Spanish natives that contain error

category 38 (article) co-occur only with 36 (preposition) as displayed in Figure 4.8. An-

other similarity is the co-occurrence of error category 28 (Lexical/phrase choice) and 36

(preposition). There are some similarities with Taiwanese in that they share the same

error co-occurrence between error categories 3 (Verb missing), 13 (extraneous words), and

25 (ambiguous/unlocatable referent). A co-occurrence that is unique to Spanish is that
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Table 4.2: Characteristic co-occurring errors for each of the 5 main native languages.
Co-occurring Errors J K C T S

3, 13, 25 ⃝ ⃝
3, 17 ⃝
6, 38 ⃝ ⃝ ⃝ ⃝
11, 36 ⃝
19, 28 ⃝
19, 36 ⃝ ⃝
28, 38 ⃝ ⃝ ⃝ ⃝
28, 36 ⃝ ⃝ ⃝ ⃝
30, 42 ⃝ ⃝
36, 38 ⃝ ⃝ ⃝ ⃝ ⃝

between 19 (Verb formation) and 28 (Lexical/phrase choice), and 3 (Verb missing) and

17 (Tense).

The results of the error co-occurrence clustering analysis for the 5 main native lan-

guages are shown in 4.2. All of the native languages have 36 (Preposition) and 38 (Arti-

cle) as characteristic co-occurring errors. Asian native languages also share 38 (Article)

co-occurring with 6 (Dangling/misplaced modifier) and 36 (Preposition), and 28 (Lexi-

cal/phrase choice) co-occurring with 36 (Preposition). Chinese and Taiwanese have some

similarities with the only difference being that Taiwanese natives have 3 (Verb miss-

ing), 13 (Extraneous words), and 25 (Ambiguous/unlocatable referent) as characteristic

co-occurring errors. Korean contains the same co-occurring errors as Japanese, except

instead of error categories 19 (Verb formation) and 36 (Preposition) co-occurring, Ko-

rean has a more prominent co-occurrence between error category 11 (Word order) and 36

(Preposition).

In contrast with the results from other native languages, sentences by Spanish natives

contain 19 (Verb formation) and 28 (Lexical/phrase choice), and 3 (Verb missing) and

17 (Tense) as characteristic error categories. There is also a similarity with Taiwanese in

that they share the same error co-occurrence between error categories 3 (Verb missing),

13 (Extraneous words), and 25 (Ambiguous/unlocatable referent).

4.2.3 Analysis by Tree Distance

This analysis aims to identify differences in error categories between native languages.

Initial analysis was conducted for similar and different category distances, however it was
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found that a large number of error categories shared similar tree distances across most

of the native languages. Therefore we will focus on the difference of error category tree

distances in this analysis.

argmax{|d(Ci, Cj, Np)− d(Ci, Cj, Nq)|} (4.1)

The tree distance between two leaves of the error category cluster tree was calculated

to investigate the difference in error category tree distances. Equation 4.1 was used to

search for the errors with the greatest difference between languages, where Np ̸= Nq and

Ci ̸= Cj, and d(Ci, Cj, Np) is the distance between the nodes of error category Ci and Cj

for the native language Np.

The results of this analysis are shown in Table 4.3 as a distance matrix. It can be seen

that there are no discernable differences in the distances of error category nodes between

Japanese and Korean. This would suggest that the errors of Japanese and Korean learners

have similar characteristics. The difference between Taiwanese and Spanish is also low,

only differing in the distance between errors 17 (tense) and 19 (verb formation). These

two similar groups seem to be at extremes as they have the greatest number of differences.

Chinese has two distances that are different when compared to all the other languages.

The differences between Chinese and the Taiwanese/Spanish group are error categories

19 (verb formation) and 36 (preposition), along with 36 (preposition) and 38 (article).

The Japanese/Korean group has different distances to Chinese in error categories 3 (verb

missing) and 37 (genitive), and 17 (tense) and 37 (genitive).

4.3 Conclusion

The present chapter clustered the predicted scores of the writing error categories of 142,465

sentences by English learners’ writing from the language learning SNS web site Lang-8. To

investigate the differences in error characteristics of native languages, the data was divided

into subsets based on the native language of the learner. These subsets were then each

clustered based on the predicted error category score vectors. The clustering results of five

major subsets: Japanese, Korean, Chinese, Taiwanese and Spanish were then analyzed

and compared to determine the error characteristics of the native languages. All of the

native languages have two co-occurring errors in common (28 and 36, 36 and 38). Asian

languages have the co-occurring errors 6 and 38, and 28 and 38 in common. Japanese
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Table 4.3: Error category difference of native languages based on tree distance.
J K C T S

J NA
3,37;
17,37;

3,37;
17,19;
19,36;

19,28;
19,36;
28,38;
36,38;

K NA
3,37;
17,37;

3,37;
17,19;
19,36;

19,28;
19,36;
28,38;
36,38;

C
3,37;
17,37;

3,37;
17,37;

19,36;
36,38;

19,28;
36,38;

T
3,37;
17,19;
19,36;

3,37;
17,19;
19,36;

19,36;
36,38;

17,19;

S

19,28;
19,36;
28,38;
36,38;

19,28;
19,36;
28,38;
36,38;

19,28;
36,38;

17,19;
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and Korean also have co-occurring errors 30 and 42 in common. Taiwanese and Spanish

have three error categories 3, 13, and 25 that co-occur. The error categories of each of

the results was clustered and analyzed by the tree distance between nodes. There were no

observed differences between Japanese and Korean. For Taiwanese and Spanish, only the

distance between errors 17 and 19 is different, suggesting a degree of similarity. Chinese

has two different error pairs difference when compared with all other languages. These

results suggest that the error characteristics of Japanese and Korean learners are quite

similar, as are those of Taiwanese and Spanish learners to a lesser degree. These differences

in co-occurring errors are characteristic of the learner’s native language. This could be

used in teaching and learning to focus on co-occurring errors that are characteristic of

their native language.
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Chapter 5

Classification of Native Language by
Writing Error Analysis and
Characteristic Feature Extraction

Native language identification (NLI) is a process of determining the native language of a

foreign language learner by analyzing a piece of their writing. Fundamentally, this problem

can be thought of as the process of identifying characteristic features that represent the

application of a learner’s native language knowledge in the use of the language that they

are learning. Previous research has shown that learners from different native language

backgrounds have different characteristics in their use of foreign language [60]. Recently,

research into the automation of NLI has been gaining in popularity and there are several

practical applications to which the process could be applied, such as: providing targeted

feedback on detected and potential errors in learner writing based on known problems for

native language groups, and forensic linguistic author profiling where the native language

of the author can be an important feature for investigation [64].

In this chapter, we approach the problem of identifying characteristic differences and

the classification of learner native languages from the perspective of writing errors. The

basis for this is that learner writing can contain words, in particular nouns, that have a

strong relationship with the learner’s native language. While these words can be a good

indicator of the learner’s native language, the use is highly dependent on the subject or

theme of the writing and less to do with the language learning process. An example this

might be the differences in the nouns used by a learner writing a personal diary versus

those used in a essay on a subject that requires specialist nouns, such as computer science.

Analysis on learner writing errors is less dependent on the subject of the writing as the
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target of analysis is based on writing error concepts rather than the actual words of the

learners’ writing.

A set of 15 predicted writing error scores made from the normalized output of 15

different support vector machine (SVM) classifiers trained in chapter 3 are used as the

basis of this analysis. We refer to these predicted writing error scores as a 15 dimen-

sion error prediction vector. Preliminary investigation by clustering will be used to show

the differences of co-occurring writing errors between native language groups. The error

prediction vector will then be analyzed by SVM machine learning to classify a learner’s

native language. As a näıve baseline for comparison we will classify the native language

using all words to compare the effectiveness of the proposed method. In the final sec-

tion of this chapter, we will examine the influence of words that have strong cultural or

nationalistic relations, such as nouns representing: people, places, food, religion, etc. A

method of removing words that are characteristic to a native language will be proposed.

This method will then be applied to filter out cultural or nationalistic words from the cor-

pus to provide an alternative “non-biased” baseline for critical evaluation of the proposed

error prediction vector method.

5.1 Related Work

5.1.1 Native Language Identification

As explained in the introduction, the NLI process aims to ascertain the native language of

a language learner by analyzing their writing in a foreign language. Most of the research

to date has focused on the prediction of the native language of a English learners. This

task was examined in early work by Tomokiyo and Jones [66] that investigated the use

of native/non-native detection based on text features. The aim was to classify speakers

based on the content of their utterances and then switch acoustic models to improve the

accuracy of automatic speech recognition. A Näıve Bayes classifier was used to analyze

the words and parts of speech in the utterance transcripts in 2 and 3 native language class

classification tasks. Jarvis et al. [32], used discriminant analysis classifiers to predict the

native language of 500 English learners from different backgrounds. Javis and Crossley

[33] published the first book on NLI which investigated various features and methods for

identifying a learner’s native language using text classification techniques. It also covers

the automated analysis of the language transfer hypothesis, which is a linguistic theory
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about the interaction of languages in the learners mind. Brooke et al. Brooke [5] suggested

that the International Corpus of Learner English (ICLE) corpus, which is commonly used

in NLI research, has problems that can lead to misleading performance evaluation due to

the differences in topic bias across the corpus. It was argued that the problem stems from

the way the corpus was built, and proposed other methods and sources to collect data that

might be useful in the task of native language prediction. An evaluation was undertaken

on data collected from a language learning SNS, Lang-8.com, and it was shown to be useful

for the task. In this chapter, we analyze data collected from Lang-8.com for the purpose

of native language prediction by writing error prediction vector. In 2013, Tetreault et

al. [64] organized the first shared task on native language identification. A new corpus

called TOEFL11 was proposed for the task, which contains essays in English by learners

from 11 different native languages and was provided as the shared data set on which

the participants conducted analysis. Jarvis et al. [34] was a participating group with a

high identification performance. A variety of features were analyzed in the identification

task, such as: word n-grams, parts-of-speech n-grams, character n-grams, and lemma

n-grams. An SVM classifier was trained and the prediction performance was evaluated

of several different models with varying combinations of features. Bykh and Meurers [6]

examined an ensemble method based on non-lexicalized and lexicalized CFG (Context

Free Grammar) production rules (CFGR) features, which outperformed all submissions

to the previous shared task in 2013. Ionescu et al [28], further improved classification

performance on the same task by analyzing character n-grams using string kernels for

Kernel Ridge Regression and Kernel Discriminant Analysis.

5.1.2 Native Language Prediction by Error Analysis

Koppel et al. [40], investigated predicting a learner’s native language by analyzing writing

errors detected with MS Word and a Brill based parts-of-speech tagger in addition to

other features, such as: function words, letter n-grams, and rare part-of-speech bigrams.

They analyzed a sub-corpus of ICLE containing learner writings by learners with native

languages from: Russia, Czech Republic, Bulgaria, France and Spain. It was found that

most classification errors occurred between writings from Slavic languages. An overall

accuracy of 80% was achieved using all features.

Kochmar [39], predicted the native languages of Indo-European learners through bi-

nary classification tasks preformed with linear kernel SVM. Compare to previous studies a
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larger set of learner native languages were examined. These native languages were divided

into two main groups: Germanic and Romance, with intergroup prediction performance

accuracy ranging from 68.4% to 100%. The features analyzed for prediction ranged from

general words and n-grams, to different error types that had been manually tagged within

the corpus.

Bestgen et al [3], investigated the used of error patterns in NLI. The occurrence of

46 error categories that had been manually tagged within the ICLE corpus were used to

predict the native language of 223 learner writings. Three groups of native languages were

chosen: French, German, and Spanish. They identified that using just errors as a predictor

of native language, an accuracy of 65% could be achieved. Discriminative error types

for the three native languages were identified by comparing the mean relative frequency

significance difference of each error category. The impact of proficiency on the results was

also examined and lead to an improvement in predictive discrimination between French

and German learners. In concluding it is mentioned that it still remains to be seen if

the same prediction performance can be achieved through the automatic detection of

writing errors, instead of relying on manual classification by hand. In this chapter, we

investigate the prediction performance of automatic error detection as a predictor of the

native language of learners. This is then compared to the prediction performance of an

SVM classifier trained with basic word features.

5.2 Data Collection

The data analyzed in this chapter is based on a corpus of foreign language writing that

was collected from the language learning SNS (social networking service) Lang-81 during

the period from October 9 2011 to January 6 2012. The data consists of journals that

have been written by an English language learner and then corrected by an English native

speaker at the sentence level. All samples that were collected were tagged with the native

language of the learner based on there personal profile on the website. The raw data

consists of a pair of sentences: the original sentence that the learner has written, and

a version of the same sentence that has been corrected by an English native speaker.

The corrected sentence also contained markup identifying the edits that had been made.

However the markup is input by users without rules or constrains. Because of these

1http://www.lang-8.com
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Table 5.1: Error Category Numbers and Descriptions.
Category Description

2 Subject formation
3 Verb missing
6 Dangling/misplaced modifier
11 Word order
13 Extraneous words
17 Tense
19 Verb formation
25 Ambiguous/unlocatable referent
28 Lexical/phrase choice
30 Word form
33 Singular for plural
36 Preposition
37 Genitive
38 Article
42 Spelling

inconsistencies the markup was cleaned from the data and a simple alignment algorithm

was used to extract the positions of insertions and deletions made during the editing [43].

These features were tagged with the prefix “i:”, “d:”, and “e” for insertion, deletion, and

general edit (both insertion and deletion) respectively.

5.2.1 Writing Error Tagged Corpus

In previous work [10], a sample of 399 sentences were randomly selected from the corpus

and each original/corrected sentence pair was manually tagged into 15 error categories

which are shown in 5.1. It should be noted that the set of error categories is a subset of

42 error categories that had been originally defined by Kroll [41] and Weltig [71] in their

previous research into the performance of student writing in academic settings. The 15

error categories were chosen because of the availability of sentences containing examples of

those error types. The error tagging process involved examining the types of writing errors

that were corrected by the English native speaker on Lang-8. Sentences that contained

multiple languages, comments, or different character encodings were removed from the

corpus to reduce possible noise that might affect the training of machine classifiers.
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Table 5.2: Distribution of sentences grouped by native language.
Native Language Number of Sentences

Japanese 100,432
Chinese 14,526
Korean 13,402

Taiwanese 3,298
Spanish 2,912

5.2.2 Native Language Tagged Corpus

A corpus of 142,465 sentences were selected that had been corrected by native English

speakers on lang-8. The native and target languages of the learner were also collected

and each corrected sentence was annotated with this information accordingly. 5.2 shows

the sentence distribution of the five main learner native languages who’s English journals

were corrected by a native English speaker. A large majority are Japanese natives who

have written 100,432 corrected sentences. The other main learner native languages are

in descending order: Chinese, Korean, Taiwanese, and Spanish, with each language being

greater than 2% of the total corpus sentence count.

In this chapter, we predict the errors of sentences by SVM models that were trained

and evaluated using 10-fold cross validation. As a result of this evaluation there are 10

models for each writing error type. The prediction for each error type is made up of the

average of the 10 scores from the models. The predictions are then combined to form an

error vector representation for each sentence as seen in 5.1. 15 scores corresponding to 15

error categories form a vector representation of a sentence. The distribution of predicted

errors for each of the five main learner native languages is displayed in 5.2.

5.3 Error Vector Analysis to Prediction of Learn Na-

tive Language

5.3.1 Biased Words

Initially an SVM model was trained to predict the native language of learners just by

analyzing the words in their writings, however the prediction performance was unexpect-

edly high, so we investigated the characteristic feature words for each language. An SVM

model was trained for each learner native language by analyzing all of the data. These

models were analyzed to calculate and rank all of the feature words by weight.
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Figure 5.1: The process of creating error vector representations of each sentence.

Figure 5.2: Distribution of predicted errors for each language
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Table 5.3: Top 10 positive and negative feature words by weight for native Japanese
learners of English.

Top Positive
Words

Weight
Top Negative

Words
Weight

north 1.0305 taiwan -1.2025
japan 1.0073 campus -1.2510
tokyo 0.6735 soju -1.2600

japanese 0.5720 beijing -1.3393
peninsula 0.5502 pepero -1.3534

jong 0.5223 korean -1.5220
kara 0.5032 kimchi -1.5315
kyoto 0.4653 l -1.7565

thailand 0.4447 korea -1.7737
algerian 0.4447 seoul -1.8214

Table 5.4: Biased words in the model for Japanese native language learners.
Rank Weight word

13 0.3602 earthquake
... ... ...
24 0.3093 radiation
... ... ...
42 0.2943 nuclear

Feature words with a high positive weight are characteristic of that particular learner

group. In Table 5.3, the top 10 positive and negative weight feature words for native

Japanese learners of English are shown. Many high positive words are directly related

to Japan, were as low negative words are related to other countries. Therefore, these

words have a strong bias that is influenced by the nation or culture of the learner. The

characteristic feature words for each learner native language group also contained similar

influences.

Other sources of biased words included events that had occurred just before the col-

lection of data from the lang-8.com website (October 2011 – January 2012). Table 5.4

contains feature words that we believe are related to the 2011 Tohoku Earthquake and

Tsunami that occurred in Japan.

To reduce the influence of trivial biased words and provide a fare comparison between

the proposed method of language prediction by error vector and the baseline method of

prediction by words, feature words with a high frequency distribution difference between

the native language groups were removed. The relative standard deviation for each word
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was calculated as follows:

TDR(w, l) =
TF (w, l)

DF (l)
(5.1)

µ(w) =

∑
l∈L TDR(w, l)

|L|
(5.2)

σ(w) =

√∑
l∈L TDR(w, l)2

|L|
− µ(w)2 (5.3)

RSD(w) =
σ(w)

µ(w)
(5.4)

Where Equation 5.1 is the term document ratio for the word w in language set l, and

TF (w, l) is the term frequency andDF (l) with the document frequency. The standard de-

viation and mean of the term documents ratio between languages is calculated in Equation

5.3 and 5.2 respectively. Then finally the relative standard deviation is shown in Equation

5.4.

A list of words ranked by RSD was manually checked for words that might identify

the culture or nation of the five main groups of native languages. Through these manual

checks it was estimated that words with an RSD of greater than 1.25 were trivially biased

towards one or more of the native languages. 5.3 shows a plot of all words ranked by RSD

in descending order, with the horizontal line at 1.25 RSD representing the maximum

threshold for non-biased words used in the analysis of this chapter.

5.3.2 Method and Results

To provide a fare evaluation of the two feature sets, the same method was used for

training and evaluating prediction performance of error prediction vectors and word vector

features. For additional comparison, we also include the classification performance for

word vectors that contain all the words of the original learner writing, including those

that were identified as trivially biased in the previous section. For the word vectors, the

words of each sentence were vectorized as a bag-of-words model. The error prediction

vector consists of the values of 15 error prediction scores.

Separate SVM classifiers were trained for five different native languages across all three

data sets. The native language classification performance of each of these classifiers was

evaluated by randomly sampled 10-fold cross validation, with 9:1 training to test data

ratio for each of the data sets.
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A comparison of the classification performance evaluation on all three data sets for

each of the five native languages is shown in 5.4. The classification performance of the

word vectors that include biased words is high, especially for writings by native Korean

learners. This would suggest that there are biased words that are highly characteristic

of native Korean learners. The word vectors that do not contain biased words have a

classification performance ranging from 36% lower in the case of Korean, to 13% lower

for Spanish. The native language classification performance by error prediction vector

is higher than the performance of the unbiased word vector. However the classification

performance for two out of the five native languages is lower than that of the word vectors

that contain all the words of the original learner writings, which we argue is influenced

by biased words.

5.4 Discussion

In this chapter, we approach the problem of identifying characteristic differences and the

classification of learner native languages from the perspective of writing errors. A set

of 15 predicted writing error scores were used as the basis of this analysis. The error

prediction vector made up of the 15 predicted writing error scores was analyzed by SVM

machine learning to classify a learner’s native language. The effectiveness of this method

was compared to two baseline evaluations: a näıve baseline using all words, and a baseline

trained only on words that do not have a strong bias. In the final section of this chapter,

we proposed a technique used to filter words that have strong cultural or nationalistic

relations based on the relative standard deviation of occurrence across native languages

in the corpus. The classification performance for models trained on error prediction

vectors were superior to the unbiased word vectors for all native languages. However,

models trained on all words including biased words performed better in three out of five

native languages.
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Chapter 6

Automatic Extraction and
Prediction of Word Order Errors
From Language Learning SNS

In recent years, research into writing tools to support foreign language learners of En-

glish has been growing. However, most research to date has focused on the predic-

tion/correction of prevalent errors in learner writing, such as: preposition and article

errors[65]. While the prediction/correction of these errors would have a great impact on

learner writing, other less prevalent errors, such as word order errors, have received little

attention. Word order differs significantly across languages[49], which poses a particular

problem for learners from L1 languages that have a fairly different word order to the L2

language. In this chapter, we examine the prediction of word order errors in foreign lan-

guage writing of learners from a Japanese L1 background learning English. In chapter 3,

we examined automated error prediction of 15 different error categories in learner writing

on the language learning SNS, Lang-8.com. However the samples of manually tagged

sentences available for some error categories was minimal, such as word order errors, and

was problematic when training error models and resulted in low prediction performance.

To overcome this problem, we propose that a large amount of word order error samples

can be automatically extracted from a corpus of corrected learner writing by comparing

the edit distance between original and corrected sentences. We then train and evaluate

the prediction performance of a Support Vector Machine (SVM) classifier by analyzing a

corpus constructed using the proposed method.

The method of analyzing the edit distance between original and corrected learner

writing sentences has been examined in previous work to automatically identify errors[67]
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and extract L2 criterial lexicogrammatical features from learner corpora[68]. We extend

the use of this method to data that has been collected from an language learning SNS to

automatically predict word order errors by machine learning.

6.1 Automatic Word Order Error Sample Extraction

by Edit Distance

In this section, we will introduce a method of automatically extracting sentences written

by foreign language learners that contain word order errors from a corrected language

learning writing corpus. An edit distance of the difference between the original and

corrected sentence can be analyzed to identify the corrections that have been made. In

particular, we analyzed the Levenshtein distance[43] to find insertions and deletions in

corrected sentence pairs.

A word order error can be thought of as a sentence pair that contains the same

frequency of insertions and deletions identified by the edit distance for each corrected

word. Conversely, a sentence pair that only contains either insertions or deletions for

each corrected word can be thought as not containing a word order error. In Equation

6.1, we define the conditions used to select a set of sentence pairs that contains word order

errors.

WO(S) = {si|wj ∈ si; ins(wj) = del(wj), ins(wj) > 0} (6.1)

Where S is the set of all sentence pairs, wj is the j
th word in sentence si, and ins(wj) and

del(wj) are the number of insertions and deletions of the word wj identified in sentence si

by the edit distance. Equation 6.2 defines the conditions to select a set of sentence pairs

that does not contain word order errors.

NotWO(S) = {si|wj ∈ si; ins(wj)⊕ del(wj)} (6.2)

6.2 Data Collection

In this section we will analyze the raw data from the Lang-8 Learner Corpora[48] to extract

word order errors by the edit distance method described in the previous section. The

corpus contains both the original sentences written by learners and sentences corrected

by other users of Lang-8 that are proficient in the target language. The learners’ L1 and

L2 are tagged for each document made up of a number of sentences. Firstly, we extracted
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Table 6.1: Number of corrected sentence samples extracted.
Error Type # Sentences Pairs
Word order error only 7043
Other error only 742064
Word order and other error 122325

sentences from the corpus that were written by Japanese L1 learners learning English that

had been corrected one or more times. After removing comments and styling tags from the

corrections, we then filtered to remove invalid corrections containing multiple languages

which resulted in 871,432 original/corrected sentence pairs. The edit distance between the

original and corrected sentence was then calculated for each of the sentence pairs. This

was then analyzed to extract sentence pairs that contain word order errors, sentences that

do not contain word order errors, and sentence pairs that contain a combination of errors,

and therefore do not fall into either of the defined sets. The size of the extracted sets is

shown in Table 6.1.

As shown in Figure 6.1, a majority of corrected word order error sentence samples have

been corrected by only moving the position of one word in the sentence. The number of

samples by edit distance decreases at an almost exponential rate as the edit distance

length increases along the x axis of the plot.

We created a corpus for machine learning by selecting all of the sentences in the word

order error set as the positive class, and then selected at random using the GNU shuf

utility1 an equal amount of sentences (7043 sentence pairs) from the other error only set

as the negative class. All of the original and corrected sentences were then processed

using TreeTagger[56] for Parts of Speech (POS) tagging. Words in the corrected sentence

that were identified by the edit distance analysis to be either an insertion or deletion were

included as both untagged and tagged words as follows: insertions were prefix tagged

with “i:”, deletions with“d:”, and all edited words were prefix tagged with“e:”. N-grams

of lengths ranging from 2 to 4 Words/POS tags were also used for analysis and will be

referred to as n-gram features. This corpus contains features from both the original and

corrected sentences and we will refer to it as the Parallel corpus. An additional corpus

containing features only from the original learner written sentences, that we will refer

to as Single corpus, was created for the prediction of word order errors in non-corrected

1http://www.gnu.org/software/coreutils/shuf
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Table 6.2: Parallel corpus baseline prediction performance.
Features F Accuracy
Word 0.8745 0.8777
Word, N-gram 0.6184 0.7178
Word, POS 0.9037 0.9043
Word, N-gram, POS 0.3305 0.5981

learner writing.

6.3 Word Order Error Prediction by SVM and Fea-

ture Selection

The Parallel and Single corpora were indexed using GETAssoc2 to create a search engine

for the retrieval of features and vectorization of sentence data.

6.3.1 Method

The SVMlight[36] linear kernel classifier was used for model training and evaluation. Ini-

tially an SVM model was trained on all of the corpus data only for the purpose of feature

scoring. The feature score was extracted by analyzing the weights of features in the SVM

model trained on all the data. The corpora were then split into train and test sets at a

ratio of 9:1 for evaluation by 10-fold cross validation. The prediction performance of an

SVM model trained on all of the features was evaluated as a baseline. Feature selection

was then performed by selecting increasingly larger sets of N top positive and N top

negative score features and evaluating the prediction performance of each set. The set

with the best prediction performance is therefore the optimal feature selection.

6.3.2 Baseline Prediction Performance Evaluation

An SVM model trained on all features was evaluated as the baseline of prediction per-

formance. The baseline prediction performance results are shown in Table 6.2 for SVM

models trained by analyzing all of the features in sub-feature set of the Parallel corpus.

The best performing SVM model by Accuracy and F-measure was trained and tested on

word and POS tag features of the Parallel corpus. The prediction performance is high,

2http://getassoc.cs.nii.ac.jp/
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Table 6.3: Single corpus baseline prediction performance.
Features F Accuracy
Word 0.6750 0.5979
Word, N-gram 0.6813 0.5997
Word, POS 0.6839 0.6074
Word, N-gram, POS 0.6942 0.6207

Table 6.4: Optimal feature selection prediction performance for the Parallel corpus.
Features N F Accuracy
Word 1000 0.9234 0.9250
Word, N-gram 40000 0.8905 0.8950
Word, POS 20000 0.9049 0.9056
Word, N-gram, POS 100000 0.8553 0.8705

however this is to be expected as the corpus contains features from both the original and

corrected sentences along with tags indicating edits in the corrected sentence. The base-

line prediction performance results for SVM models trained and tested on features from

the Single corpus are worse as only the original learner writing features are analyzed, and

lacks any information on corrections made. The baseline prediction performance results

are shown in Table 6.3, with word, N-gram, and POS tags producing the best prediction

performance.

6.3.3 The Effect of Feature Selection on Prediction Performance

In this section, we will examine the effectiveness of feature selection on the prediction

performance of SVM models on different sub-feature sets of the corpora.

The evaluation of the optimal feature selection prediction performance on the Parallel

corpus is shown in Table 6.4. Interestingly the top performing sub-feature set was that

made up of words. The optimal N shows that a feature set of 1000 top positive and

negative word features produces optimal prediction performance. Feature selection did

not have much of an effect on the best performing baseline feature set of words and POS

tags.

The optimal prediction performance for the Single corpus is shown in Table 6.5. As

with the baseline prediction performance, the best prediction performance was by the sub-

feature set made up of word, n-gram, and POS tag features. Optimal feature selection
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Table 6.5: Optimal feature selection prediction performance for the Single corpus.
Features N F Accuracy
Word 800 0.7115 0.6414
Word, N-gram 4000 0.7494 0.7107
Word, POS 700 0.7116 0.6625
Word, N-gram, POS 8000 0.7509 0.7154

Table 6.6: Single corpus top 10 positive and negative features.
Score Feature Score Feature
0.5827 rb -0.2664 2:jj nn
0.3514 only -0.2130 rb so
0.2950 2:jj pp$ -0.2129 2:vb dt
0.2753 2:nn rb -0.1950 rb very
0.2726 more -0.1689 very
0.2682 3:jj pp$ nn -0.1558 2:vbp nn
0.2668 wrb -0.1503 3:nn vbz nn
0.2666 2:jj dt -0.1485 never
0.2546 in up -0.1485 rb never
0.2525 2:i and -0.1390 any

was achieved at an N of 8000 top positive and negative features, resulting in a gain of

0.0947 by Accuracy.

A plot of the effect of feature selection relative to the baseline prediction performance

is shown in Figure 6.2. The performance of the SVM model is greater than the baseline at

N = 200 when measured by Accuracy. As N increases and more top positive and negative

features are used for training the prediction performance by Accuracy increases until it

reaches optimal feature selection at N = 8000. After this point, overfitting reduces the

prediction performance of the SVM model as more features are added for training.

The top 10 positive and negative scoring features from the SVM model for the Single

corpus is shown in Table 6.6. Positive scoring features are indicative of word order errors.

The top scoring feature “rb” is the adverb POS tag which suggests that sentences that

contain word order errors would also contain an adverb, but it doesn’t explain how the

adverb interacts with other features in the same sentence. The POS tag bi-gram in the

positive column “2:jj pp$” and “2:nn rb” are combinations of adjectives with possessive

pronoun and noun, singular or mass with adverb respectively. This suggests that word

order errors usually occur in sentences written by Japanese learning English where an
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Table 6.7: Trigram word order error characteristic feature examples.
Original
“Here are <jj>new</jj> <pp$>my<pp> <nn>temple</nn> pictures.”
Corrected:
“Here are <pp$>my</pp$> <jj>new</jj> <nn>temple</nn> pictures”

Original:
“The <jj>next</jj> <pp$>her</pp$> <nn>show</nn> will be held on
5th and 6th of December in Tokyo”
Corrected:
“<pp$>Her</pp$> <jj>next</jj> <nn>show</nn> will be held on the
5th and 6th of December in Tokyo”

adjective is followed by a possessive pronoun, or a noun (singular/mass) is followed by

an adverb. The trigram “3:jj pp$ nn” is an extended form of the bigram described above

and ends with a noun (singular/mass) which suggests that this particular combination in

a sentence is characteristic of word order errors. In Table 6.7 are two example corrected

sentences from the corpus that contain the trigram “3:jj pp$ nn” characteristic feature.

POS tags have been inserted around the words to indicate where the feature occurs.

Words that have been corrected are displayed in italic text.

In both of these examples, the order of the adjectives and possessive pronouns are

inverted, with the corrected sentence placing the possessive pronoun before the adjective.

6.4 Discussion

In this chapter, we examined the use of edit distance analysis in the automatic extraction

and prediction of word order errors from a Language Learning SNS. We extracted 7043

word order corrected learner writing sentence pairs from a raw corpus and combined it

with 7043 randomly selected sentence pairs that do not contain word order errors to create

a balanced word order error corpus for machine learning.

We then evaluated the prediction performance of an SVM model and feature selec-

tion in classifying word order errors on a Single and Parallel corpus. As expected, the

results were high for the Parallel corpus as it contains information from the corrected

sentence. The prediction performance on the Single corpus was improved by optimal

feature selection.
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Chapter 7

Classification of Speaking
Proficiency Level by Machine
Learning and Feature Selection

At present there are many machine readable data that are publicly available, and this has

increased the application of machine learning to the task of supporting language learning.

In this chapter, we analyze the NICT-JLE corpus1 to investigate which words describe

and discriminate different speaking proficiency levels by applying a method of machine

learning called SVM (Support Vector Machine) to the classification task. The corpus

consists of 1280 transcribed recordings of the Standard Speaking Test[29, 30, 31] (herein

referred to as SST) English language learner exam. Each exam contains 3 different tasks

and the transcriptions are made up of the dialogue between the examiner and examinee.

The proficiency level for each examinee was determined by an expert examiner and ranked

on a scale from 1 to 9, from beginner to advanced respectively. In this chapter, the focus

of the classification analysis will be on the Common European Framework of Reference for

Languages: Learning, teaching, assessment (CEFR) (Council of Europe, 2001)[9] which

is utilized internationally, rather than the SST proficiency levels that are applicable only

within Japan. The equivalent proficiency levels of SST, CEFR, and CEFR-J (a version

of the CEFR that has been tailored to the needs of Japanese learning English) as defined

by Tono et al. [69] are shown in Table 7.1. It should be noted that SST level 4 can be

assigned to either CEFR level A1 and A2, and we will refer to these as CEFR1 and CEFR2

respectively. In this chapter, the evaluation of the classification method was performed

with SST level 4 included in the CEFR level A2. The classification of SST level 4 included

1http://alaginrc.nict.go.jp/nict jle/index E.html

67



Table 7.1: Equivalent levels of CEFR, CEFR-J, and SST
CEFR - A1 A2 B1 B2 C1 C2
CEFR-J Pre A1 A1.1 A1.2 A1.3 A2.1 A2.2 B1.1 B1.2 B2.1 B2.2 C1 C2
SST 1 2/3 3 4 4 5 6/7 8 9 9 9 9

in the CEFR level A1 should be investigated in future work. SST level 9 is included only

in CEFR level B2.

For each of the 1280 examinee’s in the SST data there are 5 stages of the interview that

have been transcribed. In this chapter, the results for each examinee were represented

as one document, and there were 1280 sample documents for which the proficiency level

classification problem was analyzed. Examinees who have an SST proficiency level of 1

were excluded as it would be equivalent to Pre A1 CEFR level. A total of 9,626 words

were analyzed along with 11 parts of speech (POS) from Lancaster University’s CLAWS5

and CLAWS7 tag sets2.

Automated language scoring using a computer was first proposed by Page in 1968 [50].

Since then research into the prediction of foreign language proficiency has focused on a

number of different approaches. Supnithi et al. [59], analyzed the vocabulary, grammatical

accuracy and fluency features of the NICT-JLE corpus. SVM and Maximum Entropy

classifiers were trained to automatically predict the proficiency level of the learner, with

SVM achieving the best prediction accuracy of 65.57%. There has also been research into

extracting features that can be useful in classifying proficiency levels in the NICT-JLE

corpus [1, 18]. In this chapter, analysis by SVM and feature selection is used to not

only improve the accuracy of proficiency classification, but also identify optimal sets of

characteristic features that can describe learners from different proficiency levels.

7.1 Proficiency Level Classification by SVM and Fea-

ture Selection

The occurrence frequency (tf) of each word was used to vectorize each of the transcripts.

This was realized by creating a term document matrix of the exam transcripts using

GETA3.

To evaluate the performance of classifying documents into two classes of proficiency

2http://ucrel.lancs.ac.uk/claws5tags.html, http://ucrel.lancs.ac.uk/claws7tags.html
3http://geta.ex.nii.ac.jp
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Table 7.2: Measures used for Feature Selection.
Symbol Measure Symbol Measure
w.o weight(wi) w.a abs(weight(wi))
d.o weight(wi) ∗ df(wi) d.a abs(weight(wi) ∗ df(wi))
l.o weight(wi) ∗ log(df(wi)) l.a abs(weight(wi) ∗ log(df(wi)))

levels, the documents of level X were represented as positive examples, while the doc-

uments of level Y were represented as negative examples to train a machine learning

model. SVMperf [35] was use to train and test models on the data of the corpus. The

experiment process can be broken down into 3 main steps. All features (words, POS

tags) are used to train a model in step 1. The ranking weight(wi) scores for each feature

are then extracted from the model in step 2. These feature weights are then ranked in

step 3 were the classification performance of models trained and evaluated using feature

selections of increasingly larger sets of N = 1, 2, ...10, 20, .., 100 is analyzed. The optimal

feature selection is the best performing model trained on N features. The classification

performance of each model was evaluated using 5-fold cross validation.

The feature weight(wi) score extracted in Step 2 represents the distance from the

SVM hyperplane that separates the positive and negative classes on which the model was

trained. Models were trained with the upper proficiency level learner data as the positive

class, and the lower level learner data as the negative class. Features that have positive

weight(wi) are characteristic of upper level learners, and a negative feature weight(wi)

are characteristic of lower level learners.

7.1.1 Feature Selection Measures

The classification performance of a model trained using all features for A1 and A2 were:

Precision 0.8923, Recall 0.8117, F-measure 0.8491, and Accuracy 0.7830. Although the

classification performance is quite high, we do not know which grammar items are effective

for discriminating between different proficiency levels. In this chapter, we apply the

method from Sakai and Hirokawa [55] to the problem of feature selection to find a set of

optimal discriminating features.

The feature score weight(wi) extracted in Step 2 was calculated using 6 different

evaluation measures as shown in Table 7.2. df(w) is the number of documents in which

the word w occurs, and abs returns the absolute value of the enclosed value.

In the case of measures that do not take the absolute value of the score: the top
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Table 7.3: Classification performance when using all feature words.
Acc A2 B1 B2

A1

all 0.8188 all 0.9675 all 0.9966
N = 20 0.7607 N = 20 0.8099 N = 20 0.7763
N = 50 0.7837 N = 50 0.8615 N = 50 0.9333
N = 100 0.8171 N = 100 0.9269 N = 100 0.9760

A2

all 0.8673 all 0.9879
N = 20 0.6292 N = 20 0.8774
N = 50 0.7750 N = 50 0.9657
N = 100 0.8393 N = 100 0.9846

B1

all 0.8512
N = 20 0.4493
N = 50 0.6809
N = 100 0.8405

N positive weight features are selected along with the top N negative weight features

for vectorization. For measures that do take the absolute value of the score the top 2N

positive weight features are selected for vectorization.

7.2 Proficiency Classification Performance

This section explains the results of the proficiency classification performance by accuracy

that are shown in Table 7.3, and plots of feature selection results for all measures shown

in Figure 7.1. The x-axis in these plots represents 2N number of features selected. The

results for A2 vs B1, on the right of Figure 7.1, show that as the number of selected

features increases, the accuracy increases following a curved line, suggesting that as the

number of features increases the accuracy will steadily get higher. In other words, it is

not possible to classify these classes with few features. Conversely, in the results of A1 vs

A2, on the left of Figure 7.1, the accuracy rises quickly at around N = 10. This indicates

that a decent level of classification performance can be achieved using a small number of

features.

The baseline classification performance of a model that was trained using all of the

features is shown in Table 7.3. It can be seen that the classification performance of

adjacent proficiency levels is low. The classification accuracy of feature selection is shown

in Figure 7.1, where for the plot on the left A1 is the positive class and A2 is the negative

class, and the x-axis is 2N top ranking features selected. When N = 200 of greater the
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Figure 7.1: Performance accuracy of feature selection

accuracy of the model is slightly better than a model trained using all features. The two

measures: l.o and d.o outperform the baseline at N = 9 which indicates that classification

can be achieved with a small number of features.

7.3 Characteristic Features of Level A1

The top 10 characteristic features of level A1 are compared to other levels in Table 7.4.

The feature ”jp” represents a Japanese word that was said in the exam and has been

replaced during transcription. Regardless of which level A1 is compared to, the nouns:

cat, theater, boy, zoo, lion, and monkey are frequent. This is most likely effected by

the contents of picture cards on which conversations are based in certain SST tasks.

On the other hand, other levels have higher numbers of verbs, adverbs, and adjectives.

However, more high level parts of speech features such as VERB and ADJ are not seen

as characteristic features. Therefore, discrimination between levels is not possible using

simple parts of speech. Even though the POS tag information was analyzed, looking

at the top ranking features when comparing A2 and B1, only 3 POS tags appear as

characteristic features: C7=RGQ (adverb expressing a degree) for A1, and C7=RRR

(comparative adverb) and C7=DA (adjective used as pronoun) for B1. Also in Table

7.4 is can be seen that different characteristic features are chosen when comparing A1 to

different levels. An unexpected result is that classification can be achieved with just 20

features.
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Table 7.4: Characteristic features of A1 and other comparative levels.
Characteristic Features of Level A1 Comparative level characteristics
look, please, jp, first, work, just, pic-
ture, what, friend, cat

(A2) home, find, when now, will, ask,
other eat, think, if

ten, c7=RGQ, story, speak, theater,
boy our, bring, anonym., favorite

(B1) really, also, ask call, actually, dif-
ferent c7=RRR, your, stay c7=DA

theater, pardon, cold color, zoo, lion,
monkey shinjuku, recently, tv

(B2) an, into, drive brother, anything,
club fun, once, teacher explain

7.4 Discussion

In this chapter, we analyzed the transcripts of a speaking test corpus by applying SVM

machine learning to the problem of classifying the differences between CEFR proficiency

levels. Feature selection was used to find an optimal feature set by evaluating the model

accuracy. It was found that a set of about 20 features produced the same performance as

a model trained using all words and an accuracy of greater than 90%. For adjacent levels

the classification accuracy was around 10% less. Classification of levels A1 vs B1 and

B1 vs B2 were difficult and decent accuracy could not be achieved using small numbers

of features. The characteristic features of level A1 contained numerous Japanese words,

proper nouns, and simple nouns. In this chapter, when assigning the equivalent levels of

SST and CEFR we made the assumption that SST level 4 was contained within CEFR

level A2.
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Chapter 8

Predicting and Visualizing Wine
Characteristics Through Analysis of
Tasting Notes From Viewpoints

Areas of specialty often require a set of expressions that are tailored to meet the need of a

specific genre. As these expressions are not used commonly in everyday communication,

for people that are not familiar with the specialty terminology or expressions it can be

quite baffling and difficult to understand. An area of particular interest to the authors is

the language that is used to describe and express complex emotions and senses. A good

example of this can be seen in the description of food and beverages that consist of com-

plex aromas, flavors, and many other characteristics as they usually are expressed using

specialist terminology used in a subjective manner. Within this area, the descriptions of

wine are notorious for the use of specialist terminology and the expression of commonly

used words in an uncommon manner. This is formally known as winespeak, and is used

by wine reviews/tasters and also in the descriptions on the back label of wine bottles. To

the uninitiated, it might be difficult to understand what a wine with “slightly pungent

notes of green tomato or crushed tomato leaf” might be like, as used by Joe Czerwinski

in his review of a Villa Maria 2009 Sauvignon Blanc1.

In this chapter, we propose a method for the automatic visualization of wine charac-

teristics form viewpoints based on the sense sentiment analysis of a corpus of wine tasting

notes. A subset corpus consisting of wine tasting notes that have been manually classified

into four sense sentiment viewpoints will be analyzed to train and evaluate Support Vec-

1http://buyingguide.winemag.com/catalog/villa-maria-2009-taylors-pass-vineyard-sauvignon-blanc-
marlborough
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tor Machine (SVM) classifiers for sentiment analysis. By analyzing target wine tasting

notes with these classifiers, a score will be predicted from each of the sense sentiment

viewpoints. These predicted scores will then be visualized in the form of Radar Charts

so that the characteristics of wines may be compared.

8.1 Related Work

There are many papers on research into the language that is used to describe wines,

called winespeak. Some of this research is dedicated to analyzing wine tasting notes

from different points of view. Paradis and Eeg-Olofsson [51] examined tasting notes to

identify expressions and words that are related to the viewpoints of vision, smell, taste,

and touch. 39 typical phrases of these sensory expressions were identified. Caballero [7]

focused on how manner-of-motion verbs are used from the point of view of describing a

wine’s intensity and persistence, and collected 56 typical sentences that contain such verbs.

In this chapter, wine sentiment analysis is conducted using the four sensory viewpoints

defined by Paradis and Eeg-Olofsson [51].

There is also related research into the visualization of wine tasting notes for linguistic

analysis. Kerren et al. [38] visualized wine tasting notes using word trees generated from

parts of speech and words. Their system enables the analysis of linguistic patterns within

single wine reviews or based on regions and varieties. However the system is highly spe-

cialized and not intended for general use. In previous research, we examined the relations

of Winespeak expressions and visualized these as mindmaps [27]. In this chapter, the lan-

guage used in tasting notes is automatically analyzed from different sensory viewpoints.

The results are then visualized as radar charts so that the sensory sentiment content of

the wine tasting note can be conveyed without having an understanding of winespeak.

8.2 Data Collection

In this chapter, we propose that tasting notes can be analyzed to predict the classification

of wines from various points of view. The target data for analysis is a corpus that consists

of 91,010 wine tasting notes, or 255,966 sentences, that were collected from the Wine

Enthusiast website2. The attributes of each wine, such as: winery, region, and grape

2http://buyingguide.winemag.com/
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Table 8.1: Top 10 positive and negative score words for the smell sense.
Positive Negative

Score Word Score Word
1.2935 aroma -0.4143 flavor
1.1981 note -0.3202 juice
0.9632 nose -0.3189 tannic
0.6752 smell -0.2660 finish
0.5676 accent -0.2503 chewy
0.4608 oak -0.2359 bitter
0.4601 scent -0.2298 card
0.4450 smoky -0.2235 richness
0.4381 spice -0.2218 sweet
0.4011 perfume -0.2166 acidity

variety were collected along with the text of the wine tasting notes. This data was then

indexed to construct a special use search engine using GETA3. A subset of the data

consisting of 992 sentences from wine tasting notes was randomly selected for use in the

training, testing and evaluation of sentiment models. This data subset was manually

classified by hand into four different sensory category viewpoints, as defined by Paradis

and Eeg-Olofsson [51].

8.3 Sensory Viewpoint Analysis and Prediction

An overview of the analysis in this chapter, which involves training SVM models to predict

four sense sentiments for visualization as radar charts, is shown on the left in Figure 8.1.

Firstly, a data subset of 992 manually classified sentences was vectorized, with each feature

vector consisting of the words contained within a wine tasting note. The feature weights

were normalized at the feature vector for each sentence to ensure that the number of

features does not have an influence on model training. An SVM classifier for each sense

was initially trained using all the data in the subset. The weights from these models was

then extracted and used to score feature words for feature selection. An example of the

top 10 positive and negative score feature words for the sense smell are shown in Table

8.1.

The words are ranked by the absolute value of the weight score, with the top N ranked

words selected for training and testing. For each set of N top words, 5 SVM classifiers

3http://geta.ex.nii.ac.jp/
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Figure 8.1: An overview of the automatic prediction and visualization of wines from
multiple viewpoints.
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Table 8.2: Feature selection: Optimal N and evaluation for each of the sensory viewpoints.
Sense Optimal N Precision Recall F Baseline Accuracy
Smell 500 0.4726 0.9788 0.6356 0.5960 0.6438
Taste 600 0.6503 0.9889 0.7839 0.7397 0.7071
Touch 200 0.4754 0.9728 0.6370 0.5646 0.6426
Vision 700 0.2488 0.8942 0.3872 0.2986 0.5755

were trained and tested using 5-fold cross validation with a training/test data ratio of

4:1. Evaluation of the prediction performance for increasingly larger N was calculated,

which can be seen in Figure 8.2 for the smell sense. The N with the greatest average

prediction performance from the 5 SVM models by F-measure is selected as the optimum

model. For the smell sense, the baseline prediction performance is an F-measure of 0.59

for a model created by analyzing all feature words. Prediction performance peeked at an

F-measure of 0.63 for a model created by analyzing 500 of the top ranking words. This

indicates that the top 500 words are representative features for the smell viewpoint.

The feature selection process was applied to all four sense sentiment models. The

optimal N for each of the sensory viewpoint model, the evaluation of the model, and the

baseline F-measure are shown in Table 8.2. Models trained on optimal feature selection

are used to predict the sense sentiment of wine tasting note visualization.

8.4 Visualization of Sensory Sentiment as Radar Charts

By reading the descriptions on a wine bottle, or a tasting note for a single wine, we might

be able to roughly understand some of the wines characteristics without having a mastery

of winespeak. However, it is much harder to grasp the characteristics of a wine region

without reading about all the different wines produced. Sensory sentiment analysis from

different viewpoints can provide an overview of the characteristics of a wine region, and

then be plotted as a Radar Chart for easy comparison with other regions.

8.4.1 Model Normalization For Characteristic Prediction and
Visualization

If a feature vector of a wine tasting note contains many feature words, then the sum of

the predicted scores of these feature words would be greater than the sum of the predicted

scores of a wine tasting note that only contains a subset of the same feature words. Also,
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because each of the SVM classifiers for each sensory viewpoint were trained by 5-fold cross

validation, the feature weights and therefore the prediction score range is different for each

model. As the size of the feature vector and the SVM models that classify the sensory

sentiments of wine tasting notes can influence the final score given, both the feature vector

and SVM model prediction scores need to be normalized before visualization of the results.

When vectorizing the tasting notes of a region, the weight of each word in the feature

vector was determined by Equation 8.1,

weight(wi) =
DF (wi)√∑

wj∈W DF (wj)2
(8.1)

where DF (wi) is the document frequency of the word wi from the search query. This

normalization ensures that a feature vector with many terms is not of greater weight that

a feature vector that contains only a few terms. Thus, the number of terms does not

influence the analysis of the characteristic features. Also the prediction score from each

SVM classifier can be over a different range, and therefore the prediction score needs to be

normalized so that a fare comparison can be made. Equation 8.2 was used to normalize

the prediction scores for each feature vector from each SVM model,

norm(vi,mj) =
score(vi,mj)−min(mj)

max(mj)−min(mj)
(8.2)

where score(vi,mj) is the predicted score for the feature vector vi from the SVM model

mj, and the maximum and minimum model feature weights are represented by max(mj)

and min(mj) for the model mj.

8.4.2 Visualization of Sensory Sentiment by Region

In the data that was collected for analysis there are 4,675 regions, including major and

sub-region combinations. The characteristics were calculated based on the wine tasting

notes for each region as an example of sensory sentiment analysis. The chart with the

largest summed score was from the Pelješac region in Croatia, as seen in Figure 8.3.

The chart shows three large positive scores, with the vision sense not scoring highly.

The region with the smallest summed score was from the Primorska region in Slovenia as

shown in Figure 8.4. The chart for this region shows that few sense descriptive feature

words were used in the wine tasting notes, with only a slight emphasis on the taste and

touch senses.
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Figure 8.3: Example radar chart of the region Pelješac which has the largest graph area.

Figure 8.4: Example radar chart of the region Primorska which has the smallest graph
area.
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Figure 8.5: Strongest taste sentiment: Sonoma County, Santa Barbara County.

Figure 8.6: Strongest vision sentiment: Alto Adige Valle Isarco.
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Figure 8.7: Strongest smell sentiment: Ioannina.

Figure 8.8: Strongest touch sentiment: Barossa Valley, Clare Valley.
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Extreme sense sentiments can be seen in the charts of Figures 8.5, 8.6, 8.7, 8.8. These

charts represent the highest score values for each of the four sense sentiment viewpoints.

The chart for the Sonoma County, Santa Barbara County region in the USA shows a large

number of features representing taste were used to describe the wines. This could suggest

that the wines from that region have more taste qualities than smell, vision, and touch.

In the chart for Alto Adige Valle Isarco region in Italy is the highest scoring region for

the vision sense, but it would seem that negative scoring features for the vision sense are

also prominent in the wine tasting notes. This would explain why the score is less than

seen in other charts. The chart for the Ioannina in Greece scores highly on the smell sense

viewpoint. This suggests that aromas play an important point in the description of the

wines from that region. Lastly the chart for the Barossa Valley, Clare Valley region in

Australia scores highly in sense sentiment for touch, suggesting feature words to do with

the texture of the wine are often used.

8.5 Discussion

In this chapter, we analyzed 992 manually classified sentences of wine tasting notes to

create SVM models from four sense sentiment viewpoints: vision, smell, taste, and touch.

The models were evaluated and a search was performed to find the optimal feature se-

lection for each model. The optimal models were then used to analyze the four sense

sentiment viewpoints of 4,675 regions in a corpus consisting of 91,010 wine tasting notes.

The results of the analysis were then normalized for fare comparison between models

and sense sentiment viewpoints. Six examples of visualizations by Radar Chart were

given representing the largest, smallest, and strongest sentiment for all four of the sense

viewpoints.
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Chapter 9

Analysis of The Diachronic Relations
of Adjective Antonym Pairs in Wine
Tasting Notes

Adjectives play the role of expressing attributes and are frequently used in wine tasting

notes to describe opposite sensory properties of the wines along various different mean-

ing dimensions, often concatenated in sentences to describe complex characteristics, as

seen in the following example from Paul Gregutt’s tasting note of the Waterbrook 2002

Syrah1:“This hits the palate with a crisp, clean, thin seam of flavor, balanced but quite

light”. In this chapter, we investigate the change in antonym use in wine tasting notes

over time. The diachronic analysis presented in this chapter, targets the antonyms thick

and thin which were also part of a study investigating the use of antonymic adjectives in

the BNC in Paradis et al. [52]. It was reported that use patterns relating to the width

dimension suggested a positive negative antonym relation, expressing opposing poles of

the dimension. However, in the case of wine tasting notes, polar opposites of the width

dimension express negative qualities of wines. Therefore, it can be thought of as a double

negative relation, with the middle of the dimension representing the optimal character-

istic of the attribute. An example of this double negative relation can be seen in Steve

Heimoff’s tasting note of the Woodbridge 2000 Merlot2 expressing negative characteristics

with the opposing poles of the width dimension: “Feels dry and thin on the palate, with

a thick, unnaturally oaky taste”. Firstly, we will investigate the changes in use of thick

and thin by the number of documents relating to the antonym pair by year. As words

1http://www.winemag.com/buying-guide/waterbrook-2002-shiraz-syrah-syrah-columbia-valley-wa
2http://www.winemag.com/buying-guide/woodbridge-2000-merlot-other
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surrounding a word indicate how and what context a word is used in, we will analyzed

changes in the frequency and the dissimilarity of adjectives that co-occur with thick or

thin in the same tasting note. Secondly, we make use of visualizations of thick and thin

to aid the analysis usage patterns and changes of closely related adjectives over time.

9.1 Data Collection

The target of the analysis is a corpus that consists of 91,010 wine tasting notes, or 255,966

sentences, that were collected from the Wine Enthusiast website3. The attributes of each

wine, i.e. the date when the note was published or uploaded to the website, winery, region,

and grape variety were collected along with the text of the wine tasting notes. The tasting

notes in the corpus were published from 1999 to 2014. As many wine tasting notes were

published in both the Wine Enthusiast magazine and on the website at different times,

the earliest publication date was selected for analysis. An overview of the non-uniform

distribution of publication dates by year can be seen in 9.1.

The corpus was indexed to construct a term document matrix based search engine

using GETA4. The words were stemmed and a list of 2,488 adjectives that frequently

occur in the wine tasting notes was used as a mask for word selection. The raw frequencies

of the top 10 frequent terms by year are shown in Table 9.1.

As seen in Figure 9.1, there is a non-uniform distribution in the published tasting notes

by year, which can cause bias when comparing the frequency of words from different years.

To avoid this bias, the term frequency ratio for each year as shown in Equation 9.1 will

be analyzed.

TR(wi, yk) =
TF (wi, yk)∑

j∈W TF (wj, yk)
(9.1)

The term frequency TR(wi, yk) of a word wi occurring in a specific year yk are divided

by the sum of all the frequencies of words occurring in the same year. The occurrence

percentage for each year of the top 10 frequent terms are shown in Figure 9.2.

3http://buyingguide.winemag.com/
4http://geta.ex.nii.ac.jp/
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Figure 9.1: Distribution of wine tasting notes published from 1999 to 2014.

Table 9.1: Occurrence frequency of top 10 terms.

year flavorful fruitful finishing acidity cherry tannins
sweet
-ness

dry palate ripeness

1999 397 559 356 121 160 143 120 124 144 131
2000 718 850 674 249 384 228 235 221 313 197
2001 1419 1236 1135 510 577 477 385 505 656 326
2002 2166 1904 1338 800 741 947 685 796 764 566
2003 2712 1728 1850 982 1024 1104 699 701 996 631
2004 3179 2253 1954 1129 1440 1266 1121 922 972 817
2005 3551 2321 2066 1246 1739 1255 1078 1371 1020 915
2006 4030 2846 2047 1662 1632 1303 1092 1410 1029 1214
2007 4172 2968 1868 1483 1874 1272 1241 1271 974 1084
2008 4634 3315 1731 1597 1862 1504 1411 1155 961 1188
2009 5242 3782 2130 1956 2406 1715 1962 1561 1321 1320
2010 4853 4312 2378 2409 2361 1966 1717 1788 1570 1318
2011 5550 4777 2850 2798 2593 2023 2611 1693 1742 1690
2012 4563 3714 2373 2166 1827 1682 1677 1166 834 1545
2013 4870 3823 2249 2556 1920 1960 1138 1233 1608 1794
2014 3029 2663 1704 2047 1109 1307 560 925 1493 1395
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Figure 9.2: Top 10 frequently occurring terms by year.
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Figure 9.3: Distribution of the term frequency ratio of the adjectives thick or thin by
year.

9.2 Diachronic Analysis of Antonyms by Frequency

In this section, we will examine the changes in the usage of the antonym pair thick and

thin by analyzing the occurrence frequency of each word over time. Figure 9.3 shows the

term frequency ratio of thick or thin in wine tasting notes from the year 1999 to 2014. It

should be noted that for most years, wine tasting notes contain either thick or thin, and

there are only a few exceptions that occur in the years 2000, 2002 and 2003 where both

thick and thin occur in the same wine tasting note.

As mentioned in the previous section, there is a non-uniform distribution in the number

of published wine tasting notes. To avoid bias, the term frequency ratio of the occurrence

of the words thick and thin for each year are shown in Figure 3. A rise in usage of

thin between 2000 and 2002 occurs before the increased usage of thick between 2001

and 2003, suggesting that thin seems to lead in usage or introduce thick to be used.
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Figure 9.4: Distribution of thick and thin by year from the viewpoints of smell, taste,
touch, and vision.

To further investigate the reason behind the changes in usage patterns, we can examine

the changes from different sensory viewpoints. In previous work, we have examined the

automatic prediction of sensory sentiment characteristics described in wine tasting notes

[17]. This method involved training and evaluating support vector machine (SVM) models

by analyzing wine tasting note data that has been manually classified into four previously

defined [51] sensory viewpoints: smell, taste, touch, and vision.

We predicted the sensory viewpoints by applying the SVM models to each wine tasting

note of the corpus. The distribution of thick and thin in relation to the sensory viewpoints

is shown in Figure 9.4. The viewpoint of taste has a strong relation to the usage of thick

and thin, with the usage of thin rising slightly before thick. It is interesting to see that

the usage of only thin from the viewpoint of smell increased from the year 2001 to 2003

which is around the same time as the leading increase in the overall use of thin. This
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Figure 9.5: Dissimilarity of the co-occurring adjectives of thick and thin by year.

suggests that the use of thin from the smell viewpoint was a contributor to the rise in

usage of thin before thick. Examining the relation of thick and thin with other adjectives

over time can provide insight into the changes in use patterns in wine tasting notes. By

measuring the co-occurring words between thick and thin by year we can show when the

antonym pair are being used in similar patterns, and when they are not.

Dissimilarity(a, b, y) = 1− |W (a, y) ∩W (b, y)|
|W (a, y) ∪W (b, y)|

(9.2)

Equation 9.2 is based on the Jaccard similarity distance and calculates the dissimilarity

distance between two words a and b in the year y, where W (a, y) represents the words of

the documents that contain the word a and were published in a wine tasting note in year

y.

The changes in the dissimilarity over the years of thick and thin are shown in Figure

9.5. In the year 1999 the dissimilarity between the pair is decreasing, until it reaches
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Figure 9.6: Dissimilarity of the co-occurring adjectives of thick and thin by year from the
viewpoints of smell, taste, touch, and vision.

the lowest point in 2003. After this point, there is a steady increase in the dissimilarity

distance. This could be interpreted as showing the increasing dissimilarity in use patterns

of thick and thin.

Analyzing the dissimilarity distance from four sensory viewpoints, we can see that the

dissimilarity between the co-occurring adjectives of thick and thin from the taste viewpoint

has remained highly dissimilar without much change over the years. This would suggest

that another viewpoint which was not the target of this analysis, and to a minor extent

the smell viewpoint, are influential in the change of dissimilarity from around the year

2008 to 2012 as seen in Figure 9.6.
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9.3 Diachronic Analysis of Antonyms by Mind Map

In this section we will investigate the differences in antonym use over time by observing

changes in related words by mind map visualization.

9.3.1 Mind Map Generation

The method presented in this chapter for generating mind maps is based on a system that

was proposed in [27, 12]. Firstly, a co-occurrence graph is generated of the words occurring

in the documents returned by searching for the query words. The nodes represent the

words within the documents, and the edges are weighted by the document frequency of

co-occurring words. A mind map is generated by finding the minimum spanning tree of

the co-occurrence graph. The root node of the mind map is specified as an initial search

query from which the child nodes expand. Map expansion is limited to a set number of

nodes or other features of the map. In this chapter, the number of related words (nodes)

in the graph was limited to the 10 top ranking words related to the root node. Firstly,

simple mind maps were generated for each year of wine tasting notes containing either of

the antonyms: thick or thin.

An example of the mind map of wine tasting notes from the year 1999 containing the

word thin is shown in Figure 9.7. The root node that contains the word thin and the

number of wine tasting notes (documents) in which the word occurs: 9. Strong related

word nodes expand out from the root node, in this case: short, flavorful, and fruitful are

closely related to the root node thin.

Some of the mind maps generated contained common nodes, suggesting that there are

common and distinct relations between antonym pairs. An example of this can be seen

by comparing the mind map for thin in Figure 9.7 with the mind map for thick from the

corresponding year in Figure 9.8. Both maps contain a fruitful node branching off from

the root node. Other common nodes occur further away from the root node.

To identify and visualize the distinct and common characteristics of the thick/thin

antonym pair, a merged mind map of the two single word root node maps can be generated

by combining common nodes of both the thick and thin mind maps from the same year.

The merging process consolidates nodes that represent the same word in two or more

different graphs, as seen in the example showing the merger of two sub maps in Figure

9.9. The consolidated node is connected by all the edges of the nodes it represents. The
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Figure 9.7: A mind map of thin from 1999.

consolidated nodes are represented by a dashed outline and no fill color. Edges connecting

consolidated nodes are also represented by dashed lines. In the example, the root node

of the merged map contains both of the words from the two sub maps, and they are

colored according to the representation of distinct nodes in the merged map, in this case:

thick is red, and thin is blue. The distinct nodes in the merged map are filled and

outlined accordingly: thick only nodes are pink filled and red outlined, thin only nodes

are cyan filled and blue outlined. In the example merged map the fruitful node is dashed

representing a common node, and tightness and palate are colored representing distinct

nodes from thick and thin maps respectively.

In the full merged mind map of thick and thin from 1999 shown in Figure 9.10, there

are 4 common nodes (flavorful, fruitful, oaked, and finishing), 5 distinct thick nodes, and

5 distinct thin nodes near the perimeter of the mind map. Two of the common node

words (flavorful, fruitful) are from the top 10 most frequent terms that are listed in Table

9.1.

The mind map of thick and thin from 2002 and 2004 as seen respectively in Figures

9.11 and 9.12 contain the highest ratio of common nodes out of all of the years, with only
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Figure 9.8: A mind map of thick from 1999.

95



Figure 9.9: Merging mind maps of thick and thin to show distinct and common nodes.
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Figure 9.10: The merged mind map of thick and thin from 1999.

2 distinct thick and thin nodes for each year: richness, blackness, dry, and very thick

nodes, and little, dry, acidity and lightness thin nodes. It is interesting to see that the dry

node which was associated with thin in 2002 has become associated with thick in 2004.

This suggests that dry is not affected by changes in the width meaning dimension.

The mind map with the highest ratio of distinct nodes is that from 2013 as seen in

Figure 9.13. Only the nodes finishing, flavorful, and fruitful are common between the

antonym pair. As with the map from 2002, richness and blackness are associated with the

word thick, and dry and little with the word thin. The dissimilarity of mind maps from

the same year can be analyzed to investigate how the relation between thick and thin has

changed over time.

In figure 9.14, the Jaccard dissimilarity (see Equation 9.2) between the nodes of the

mind maps of thick and thin are plotted over time to show the change in distinct and

common nodes. As the mind maps are limited to 10 nodes each, only words with high

relevance to thick and thin are analyzed. Compared with the dissimilarity analysis in the

previous section, the dip in dissimilarity occurs a year earlier in 2002 and later in 2004,

and then increases steadily with a pronounced trough in 2012.
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Figure 9.11: Mind map of thick and thin from 2002.
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Figure 9.12: Mind map of thick and thin from 2004.
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Figure 9.13: Mind map of thick and thin from 2013.
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9.4 Discussion

In this chapter, a diachronic analysis of the use patterns of the antonym pair thick and

thin in wine tasting notes from the year 1999 to 2014 were examined. In particular,

the following aspects were analyzed: the frequency of wine tasting notes in which the

antonym pair occurred, the dissimilarity of co-occurring adjectives, and visualization of

the dissimilarity by mind map. The analysis by co-occurring adjectives suggested an

increase in the similarity of use patterns from 1999 to 2003, and then a steady increase

in dissimilarity in the following year. The analysis by mind map also suggested a similar

trend, however dissimilarity reached its lowest point a year earlier in 2002 and then later

in 2004. Further analysis from sensory viewpoints revealed that there was a rise in the

use of thick and thin from the taste viewpoint, and only in thin from the smell viewpoint.

This suggests that the increased use of thin from the smell viewpoint was a contributor

to the rise in usage of thin before thick.
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Chapter 10

Analysis of Antonymic Adjective
Meaning Dimensions in Winespeak

10.1 Introduction

Adjectives play the role of expressing attributes and are frequently used in wine tasting

notes to describe opposite sensory properties of wines along various different meaning

dimensions. To describe complex characteristics adjectives are often concatenated in sen-

tences, as seen in the following example from Paul Gregutt’s tasting note of the Water-

brook 2002 Syrah1: “This hits the palate with a crisp, clean, thin seam of flavor, balanced

but quite light”. In this chapter, we examine the characteristics of adjective antonym

pair use in winespeak. The analysis presented in this chapter targets the antonyms thick

and thin which were also part of a study investigating the use of antonymic adjectives in

the BNC in Paradis et al. [52]. It was reported that use patterns relating to the width

dimension suggested a positive negative antonym relation, expressing opposing poles of

the dimension. However, in the case of wine tasting notes, polar opposites of the width

dimension express negative qualities of wines. The differences of the width dimension in

the BNC corpus and Winespeak are shown in Figure 10.1.

It can be thought of as a double negative relation, where the optimal characteristic can

be found in between the normal characteristic in the center and the outer extremes rep-

resented by thick and thin in the width dimension. An example of this double negative

relation can be seen in Steve Heimoff’s tasting note of the Woodbridge 2000 Merlot2 ex-

pressing negative characteristics with the opposing poles of the width dimension: “Feels

1http://www.winemag.com/buying-guide/waterbrook-2002-shiraz-syrah-syrah-columbia-valley-wa
2http://www.winemag.com/buying-guide/woodbridge-2000-merlot-other
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Figure 10.1: Relation of thick and thin: BNC corpus (left), Winespeak (right).

dry and thin on the palate, with a thick, unnatually oaky taste”. In this chapter, we in-

vestigate the double negative relation of thick and thin in the width meaning dimension

that is found in wine tasting notes. In particular, we extract the representative features

of thick and thin, and examine the feature space of the width dimension by analyzing

the feature weights of two SVM classifiers representing the two negative extremes thick

and thin.

10.1.1 Data Collection

The target of the analysis in this chapter is a corpus that consists of 91,010 wine tasting

notes, or 255,966 sentences, that were collected from the Wine Enthusiast website3. We

have analyzed this corpus in chapter 9 to investigate the changes of adjectives over time in

wine tasting notes. The attributes of each wine, i.e. the date when the note was published

or uploaded to the website, winery, region, and grape variety were collected along with the

text of the wine tasting notes. The tasting notes in the corpus were published from 1999 to

2014. The corpus was indexed to construct a term document matrix based search engine

3http://buyingguide.winemag.com/
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Table 10.1: Top 10 positive and negative features of thick and thin.

Positive (thick) Negative (thin)
# Score(wi)×DF (wi) Feature Score(wi)×DF (wi) Feature

1 11454.6068 tannin -9611.2260 c:red
2 7618.9810 rich -6231.9933 r:us
3 7004.5350 b:michael schachner -5465.6878 fruity
4 5906.1065 ripe -4685.4468 acid
5 4718.4240 black -4026.3960 b:s.h.
6 4440.8616 flavorful -2901.4713 light
7 4081.9250 c:white -2534.4176 dry
8 3901.5460 sweet -2242.2750 b:roger voss
9 3865.6640 full -2190.3577 fresh
10 3649.3768 dark -2039.0682 crisp

using GETA4. The words were stemmed and a list of 2,488 adjectives that frequently

occur in wine tasting notes was used as a mask for word selection.

10.1.2 Features of Thick and Thin

In this section, we will examine the extremities of the width dimension which are rep-

resented by the adjectives thick and thin. A dataset for analysis by SVM classifier was

created using 2,015 wine tasting notes that contain the word thick as the positive class,

and 1,915 wine tasting notes that contain the word thin as the negative class. The words

thick and thin were excluded from the feature set. The SVMlight[36] linear kernel classifier

was used for model training and evaluation. Initially an SVM model was trained on all of

the corpus data only for the purpose of feature scoring. The feature score was extracted

by analyzing the weights of features in the SVM model trained on all the data. Features

that have a high positive and negative score are representative of the thick class and thin

class respectively. However some features that only represent a small portion of wine tast-

ing notes are highly scored, such as wine or winery names. To overcome this, we analyze

the following score: Score(wi)×DF (wi), where DF (wi) is the document frequency of the

feature wi. The characteristic features of thick and thin that were extracted using this

method are shown in Table 10.1.

Features that are prefixed represent the following attributes of wine tasting notes: “b:”

is the author of the wine tasting note, “c:” is the category of the wine, and “r:” is the

4http://geta.ex.nii.ac.jp/

105



appellation region of the wine in either singular or hierarchical form. All other features are

words from wine tasting notes. These words are often used together in wine tasting notes.

Of the top representative features, three of them are authors which suggests that the use

of thick and thin is influenced by their writing style, or the regions that they are assigned

to cover: Michael Schachner (b:michael schachner) reviews wines from Argentina, Chile

and Spain5, Steve Heimoff (b:s.h.) reviewed wines from California6, and Roger Voss

(b:roger voss) reviews wines from Portugal and France7.

The data was split into training and testing sets at a ratio of 9:1 for evaluation by

10-fold cross validation. The classification performance of an SVM model trained on all of

the features was evaluated as a baseline. Feature selection was then performed by selecting

increasingly larger sets of N top positive and N top negative score features and evaluating

the prediction performance of each set as proposed in [55]. The set with the best prediction

performance is therefore the optimal feature selection. The classification performance of

each feature selection are shown in Figure 10.2. Feature selection performance peeks at an

F-measure of 0.8873, with the optimal set made up of the top 500 positive and negative

scored features.

10.2 The feature space of the width dimension

To investigate the complex relation between thick and thin in the width dimension, we

split the data into three subsets: 2,015 notes that contain the word thick, 1,925 notes that

contain the word thin, and 86,354 notes that do not contain either of the adjectives thick

or thin (which we will refer to as other). The words thick and thin were excluded from

the feature set. Two SVM classifiers were then trained: one with the thick note data as

the positive class, and another with the thin note data as the positive class. The other

note data was set as the negative class for both models. The weight score for each feature

was then extracted from the two models. These two scores represent the relevance of a

feature with in the width dimension. A plot visualizing the relation of the scores in two

dimensions is shown in Figure 10.3.

Feature scores that are around or on the origin have weak relevance to the weight

dimension. Features that have a high score in relation to both the thick and thin models

5http://www.winemag.com/taster/michael-schachner/
6https://en.wikipedia.org/wiki/Steve Heimoff
7http://www.winemag.com/taster/roger-voss/
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Figure 10.2: Feature selection performance of classifying thick and thin by SVM.
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Figure 10.3: Scatter plot of feature scores from the thick model and thin model.
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Figure 10.4: Interpolated feature density heat map.

are representative of the optimal characteristic within the width dimension. Conversely,

features that are negatively scored in relation to both the thick and thin models are

representative of the normal characteristic. The contour lines in the plot represent the

peeks of dense clusters of features around the following areas: a mid-density cluster of

features that have negative scores on both the thick and thin axis, a high density cluster

around the origin that expands out positively on both axes, and two localized high density

clusters of positive scored features on the thick and thin axis respectively. This suggests

that there are many features that describe the normal and negative characteristics of the

width dimension, but the cluster of features that represents the optimal characteristic is

not well defined.

A heat map of the interpolated feature density was plotted, as shown in Figure 10.4, to

examine the clusters in greater detail. The heat map confirms the presence of normal and

negative characteristic feature clusters. However the density of features that represent the

optimal characteristic of the width dimension decreases gradually away from the origin.
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10.3 Discussion

Adjectives play a key role in the description of attributes in wine tasting notes. In this

chapter, we analyzed the relation of the thick and thin adjective antonym pair in the

width dimension. Representative features were extracted by analyzing the weight scores

of a SVM model trained to classify wine tasting notes that contain the word thick or thin.

A majority of the top 10 positive and negative features were adjectives that co-occur

with thick and thin in wine tasting notes. To examine the feature space of the width

dimension, two SVM models were trained to classify wine tasting notes that contain

thick and thin respectively. Dense feature clusters were identified for the negative and

normal characteristic of thewidth dimension. However a cluster representing the optimal

characteristic was not well defined.
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Chapter 11

Conclusion

This work investigates text mining techniques to analyze the support of foreign language

learner expression from two perspectives: intention and emotion. The perspective of in-

tention focused on errors that foreign language learners make when expressing syntactic

intention. We proposed a method of analyzing foreign language learner writing errors in

Chapter 3 using a corpus that was created by collecting data from a language learning

SNS and manually tagging error occurrences. The significance of this method can be seen

when comparing it to costly traditional techniques that are used to create learner writing

corpus in controlled environments. The data was then analyzed by SVM to create 15

error category classification models. The performance of the models was then improved

through optimal feature selection and the characteristic error features for each category

were extracted. Previous work [60] had shown how learners from the same native lan-

guage background tend to make similar characteristic errors. Based on this assumption,

we investigate the interaction of co-occurring errors, and the differences of these error

occurrences between native language groups by clustering analysis. The predicted error

scores from the previous chapter were combined to form a 15 dimension vector representa-

tion of each corrected sentence of learner writing. These representations are then analyzed

to: extract characteristic co-occurring errors by clustering analysis and a method of mea-

suring the distance between different native language groups was proposed. In Chapter

5, we analyze the 15 dimension error vector representation to automatically predict the

learners native language based on their writing errors. To the best of our knowledge,

this is the first work that has proposed the automatic prediction of the learner’s native

language based on automatic error classification. In Chapter 7, we investigate the word

features that are characteristic of different levels of proficiency, which is also another
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learner characteristic that can influence errors in the expression of intention. The con-

tribution of these researches is the ability to automatically profile learner characteristics

that affect the expression of intention, and predict other characteristics based on common

trait association. In Chapter 6, we address a problem that plagues research into writing

error classification: the lack of data samples for training, testing and evaluating models

and systems. We examine the automatic extraction and creation of a corpus of word

order error samples from the logs of a language learning SNS. A large balanced corpus

is automatically compiled and the technique is evaluated through the training, testing,

evaluation of an SVM classification model. A sample corrected sentence from the corpus

is examined in detail to reveal the effectiveness of extracting word order errors using the

proposed technique.

A majority of research into sentiment analysis has focused on simple positive/negative

sentiment relations. For the analysis of emotion expression in this thesis, we examined

complex sentiment relations that are not usually the subject of research. These relations

are of emotional sensory expressions in wine tasting notes. The main contribution of

this work is that we examined beyond the usual sentiment analysis where there are just

positive/negative sentiment relations, onward to different dimensions and therefore can’t

be analyzed using the usual techniques, such as: the double negative antonym dimension

of thick and thin where the optimal characteristic resides in between the opposite poles. In

Chapter 8, we investigate the emotional sensory expressions in wine tasting notes. Firstly,

we present a method of classifying by SVM the four types sensory expressions that are

commonly used in tasting notes. The models are then applied to a large corpus of wine

tasting notes to predict the characteristics of wine regions and provide visualizations of

the degree of sensory expression used in the review of wines in the region. In chapter

9, we examine changes in emotional sensory expressions in wine over the span of 14

years from the perspectives adjective antonym pairs that represent opposites of expressing

attributes. A visualization system is proposed for analyzing differing properties, and

examples where the change in use are examined in detail. Chapter 10 presents a detailed

analysis of the adjective antonym meaning dimension of thick and thin. We proposed

techniques that were used to examine and extract features of complex emotion expressions.

The contribution of these researches is the ability to automatically analyze expressions

of emotion, and provide methods to understand complex emotive expressions through

visualization. These methods can be applied to a wide range of problems: from producing
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materials from which language learners can study what can be used to express their

emotion, to analyzing a range of complex emotions of products and services.

There still remains several topics to explore. We will leave the following questions

open to future work.

On the topic of expressing intention, some syntactic errors can change the intended

meaning of a sentence drastically, while other errors might have little effect. In this work,

we addressed all syntactic errors equally without differentiating between the severity of

errors. A method of estimating the amount of change in meaning could enable foreign

language learners to focus on the correction of errors that have greater severity.

On the topic of expressing emotion, in this work we extract and visualize the features of

specific sensory emotional expressions. This method could be applied to other emotional

expression viewpoints by generalizing the process of analysis, and detecting the shape of

the meaning dimensional to examine if it belongs to a general positive/negative relation,

or that which is more complex, such as the adjective antonym meaning dimension of

thick and thin which was analyzed in this work.

113





Bibliography

[1] Abe, M., Frequency Change Patterns across Proficiency Levels in Japanese EFL

Learner Speech, Apples: Journal of Applied Language Studies, Vol. 8, No. 3, pp.

85–96, 2014.

[2] Bailey, S., Meurers, D., Diagnosing Meaning Errors in Short Answers to Reading

Comprehension Questions, Proceedings of the 3rd Workshop on Innovative Use of

NLP for Building Educational Applications, pp. 107–115, 2008.

[3] Bestgen, Y., Granger, S., Thewissen, J., Error Patterns and Automatic L1 Identi-

fication, Approaching Language Transfer Through Text Classification, pp. 127–153,

2012.

[4] Brockett, C., Dolan, W.B., Gamon, M., Correcting ESL Errors Using Phrasal SMT

Techniques, Proceedings of the 21st International Conference on Computational Lin-

guistics and the 44th Annual Meeting of the Association for Computational Linguis-

tics (ACL-44), pp. 249–256, 2006.

[5] Brooke, J., Hirst, G., Native Language Detection with ‘cheap’ Learner Corpora,

In Twenty Years of Learner Corpus Research. Looking Back, Moving Ahead: Pro-

ceedings of the 1st Learner Corpus Research Conference. Presses universitaires de

Louvain, pp. 37–57, 2013.

[6] Bykh, S., Meurers, D., Exploring Syntactic Features for Native Language Identifica-

tion: A Variationist Perspective on Feature Encoding and Ensemble Optimization,

Proceedings of the International Conference on Computational Linguistics (COL-

ING2014), pp. 1962–1973, 2014.

[7] Caballero, R., Manner-of-motion Verbs in Wine Description, Journal of Pragmatics,

Vol. 39, No. 12, pp. 2095–2114, 2007.

115



[8] Chodorow, M., Tetreault, J.R., Na-Rae, H., Detection of Grammatical Errors Involv-

ing Prepositions, Proceedings of the 4th ACL-SIGSEM Workshop on Prepositions

(SigSem07), pp. 25–30, 2007.

[9] Council of Europe: Common European Framework of Reference for Languages:

Learning, Teaching, Assessment. Cambridge: Cambridge University Press, 2001.

[10] Flanagan, B., Yin, C., Suzuki, T., Hirokawa, S., Intelligent Computer Classification

of English Writing Errors, Intelligent Interactive Multimedia Systems and Services,

Vol. 254 , pp. 174–183, 2013.

[11] Flanagan, B., Yin, C., Hashimoto, K., Hirokawa, S., Clustering English Writing

Errors Based on Error Category Prediction, Proceedings of the 3rd International

Symposium on Engineering, Energy and Environments (ISEEE2013), pp. 733–738,

2013.

[12] Flanagan, B., Yin, C., Inokuchi, Y., Hirokawa, S., Supporting Foreign Language

Learning Using Mind-Maps, Information And Systems In Education (JSiSE), Vol.

12, No. 1, pp. 13–18, 2013.

[13] Flanagan, B., Yin, C., Hirokawa, S., Hashimoto, K., Tabata, Y., An Automated

Method to Generate e-Learning Quizzes from Online Language Learner Writing,

International Journal of Distance Education Technologies (IJDET), Vol. 11, No. 4,

pp. 63–80, 2013.

[14] Flanagan, B., Yin, C., Suzuki, T., Hirokawa, S., Classification of English Language

Learner Writing Errors Using a Parallel corpus with SVM, International Journal of

Knowledge and Web Intelligence (IJKWI), Vol. 5, No. 1, pp. 21–35, 2014.

[15] Flanagan, B., Yin, C., Suzuki, T., Hirokawa, S., Classification and Clustering English

Writing Errors Based on Native language, Proceedings of the 3rd IIAI International

Conference on Advanced Applied Informatics (LTLE2014), pp. 318–323, 2014.

[16] Flanagan, B., Yin, C., Suzuki, T., Hirokawa, S., Prediction of Learner Native Lan-

guage by Writing Error Pattern, Learning and Collaboration Technologies (Springer

LNCS 9192), pp. 87–96, 2015.

116



[17] Flanagan B., Wariishi N., Suzuki T., Hirokawa S., Predicting and Visualizing Wine

Characteristics Through Analysis of Tasting Notes From Viewpoints, HCI Interna-

tional 2015-Posters’ Extended Abstracts, pp. 613–619, 2015.

[18] Flanagan, B., Hirokawa, S., The Relationship of English Foreign Language Learner

Proficiency and an Entropy Based Measure, Information Engineering Express (IEE),

Vol. 1, No. 3, pp. 29–38, 2015.

[19] Flanagan, B., Paradis, C., Hashimoto, K., Hirokawa, S., Analysis of The Diachronic

Relations of Adjective Antonym Pairs in Wine Tasting Notes, Proceedings of the

21st International Symposium on Artificial Life and Robotics 2016 (AROB2016),

pp. 749–754, 2016.

[20] Flanagan, B., Hashimoto, K., Hirokawa, S., Analysis of Antonymic Adjective Mean-

ing Dimensions in Winespeak, Proceedings of the 11th International Symposium on

Natural Language Processing (SNLP2016), CD, 2016.

[21] Flanagan, B., Hirokawa, S., Automatic Extraction and Prediction of Word Order

Errors From Language Learning SNS, Proceedings of the 5th IIAI International

Congress on Advanced Applied Informatics (LTLE2016), pp. 292–295, 2016.

[22] Flanagan, B., Hirokawa, S., Kaneko, E., Izumi, E., Classification of Speaking Pro-

ficiency Level by Machine Learning and Feature Selection, Proceedings of the 1st

International Symposium on Emerging Technologies for Education, (CD), 2016.

[23] Gamon, M., Gao, J., Brockett, C., Klementiev, A., Dolan, W.B., Belenko, D., Van-

derwende, L., Using Contextual Speller Techniques and Language Modeling for ESL

Error Correction, Proceedings of the 3rd International Joint Conference on Natural

Language Processing, pp. 449–456, 2008.

[24] Han, N.R., Chodorow, M., Leacock, C., Detecting Errors in English Article Usage

with a Maximum Entropy Classifier Trained on a Large, Diverse Corpus, Proceed-

ings of the 4th International Conference on Language Resources and Evaluation

(LREC2004), pp. 1625–1628, 2004.

117



[25] Han, N.R., Chodorow, M., Leacock, C., Detecting Errors in English Article Usage

by Non-native Speakers, Natural Language Engineering, Vol. 12, No. 2, pp. 115–129,

2006.

[26] Hirano, T., Hirate, Y., Yamana, H., Detecting Article Errors in English using Search

Engines, DBSJ Letters 6, No. 3, pp. 13–16, 2007. (in Japanese)

[27] Hirokawa, S., Flanagan, B., Suzuki, T., Yin, C., Learning Winespeak from Mind

Map of Wine Blogs, In S. Yamamoto (Ed.): Human Interface and the Management

of Information Part II (Springer LNCS 8522), pp. 383–393, 2014.

[28] Ionescu, R., Popescu, M., Cahill, A., Can Characters Reveal your Native Lan-

guage? A Language-independent Approach to Native Language Identification, Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP2014), pp. 1363–1373, 2014.

[29] Izumi, E., Uchimoto, K., Isahara, H., The NICT JLE corpus, ACL Publishing, 2004.

(in Japanese)

[30] Izumi, E., Uchimoto, K., Isahara, H., The NICT JLE Corpus: Exploiting the Lan-

guage Learner’s Speech Database for Research and Education, International Journal

of the Computer, the Internet and Management, Vol. 12, No. 2, pp. 119–125, 2004.

[31] Izumi, E., Uchimoto, K., Isahara, H., The Overview of the SST Speech Corpus of

Japanese Learner English and Evaluation through the Experiment on Automatic

Detection of Learners’ Errors, Proceedings of the 4th International Conference on

Language Resources and Evaluation (LREC2004), pp. 1435–1438, 2004.
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