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ABSTRACT
An operating system is a set of manual and automatic procedures that enable a group 

of people to share a computer installation efficiently. The key word in this definition 

is sharing: it means that people will compete for the use of physical resources such as 

processor time, storage space, and peripheral devices; but it also means that people 

can cooperate by exchanging programs and data on the same installation. The sharing 

of a computer installation is an economic necessity, and the purpose of an operating 

system is to make the sharing allowable. 

It may be useful to distinguish between operating systems and user computations 

because the former can enforce certain rules of behavior on the latter. However, it is 

important to understand that each level of programming solves some aspects of 

resource allocation. Selecting a thread to be executed is called thread scheduling. The 

most important aspect of thread scheduling is the ability to multiprogramming. A 

single user cannot, in general, keep either the CPU or the Input/Output devices busy at 

all times. Multiprogramming increases CPU utilization by organizing processes such 

that the CPU always has one to execute.  

The operating system keeps several processes in memory at a time. This set of 

processes is a subset of the processes kept in the process pool (since the number of 

processes that can be kept simultaneously in memory is usually much smaller than the 

number of processes that can be in the process pool). The operating system picks and 

begins to execute one of the processes in the memory. Eventually, the process may 

have to wait for some processes, such as an Input/Output operation to complete. In a 

non-multi programmed system, the CPU would sit idle. In a multiprogramming 

system, the operating system simply switches to and executes another process. When 

that process needs to wait, the CPU is switched to another process, and so on. 

Eventually, the first process finishes waiting and gets the CPU back. As long as there 

are always some processes to execute, the CPU will never be idle.  

The timeslice is the numeric value that represents how long a process can run until it 

is preempted. The scheduler policy must dictate a default timeslice, which is not a 

trivial exercise. The scheduling problem can be stated shortly as: deciding on which 

process should be executed and moved to where, when and for how long according to 
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the timeslice, to optimize some system performance criteria. Linux scheduler, 

Completely Fair Scheduler, assigns processes a proportion of the processor. 

Scheduling problems are known to be NP-Complete (i.e., it is believed that there is no 

optimal polynomial-time algorithm for them) except under a few special situations. 

The existing heuristics for scheduling processes works either statically or 

dynamically. This distinction is based on the time at which the scheduling decisions 

are made. In contrast to static techniques where the complete set of processes to be 

scheduled is known a priori and the scheduling is done off-line, in dynamic schedul-

ing methods, the timeslice at each round is calculated at run time. Although the 

principal advantage of the static scheduling is its simplicity, it fails to adjust to 

changes in the system state. A dynamic scheme is needed because the arrival times of 

the processes may be random and some processes may go off-line and new processes 

may come on-line. 

The general principle of the scheduler is to provide maximum fairness to each process 

in the system in terms of the computational power it is given. Or, put differently, it 

tries to ensure that no process is treated unfairly. Weights of threads and load 

balancing between processors/cores are the most influential factors on the fairness. 

The main goals of this work are divided into three parts: firstly; is improving the 

treatment of execution of running processes, this can be done by adjusting weights of 

running threads, it is called as local fairness, secondly; is achieving load balancing 

between cores, this can be done by migrating thread between cores, it is called as 

global fairness, and thirdly; is enabling the user to adjust Virtual Machine’s (VM) 

weights, this can be done by adding system call, it is called as VM fairness. In 

addition to achieving these goals, it is important to achieve the scheduling criteria (i.e., 

minimizing waiting time and turnaround time) without causing defects in fairness and 

performance. 

This research proposes, describes, compares, and discusses an algorithm that can be 

used for assigning processes to a machine. The processes are assumed to be 

independent (i.e., no communications between the processes are needed). This 

scenario is likely to be present, for instance, when many independent users submit 

their processes to a machine. Furthermore, the algorithm investigated in this study is 
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preemptive, and assume that the processes have no deadlines or priorities associated 

with them. 

Experimental test studies were performed to compare the scheduling criteria and 

performance of the proposed scheduler versus default Linux scheduler. The 

experimental results provide a significant improvement in both waiting time, 

turnaround time and slightly higher performance. 
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CHAPTER 1:
Introduction

This chapter summarizes the definition and importance of scheduling when designing 

OS, the general problem statement of the scheduling, and the most important 

scheduling criteria which will be stated throughout the thesis. Then, it discusses the 

underlying OS platform which will be used in the experiments throughout this work, 

some of its important features, its importance in the society, and the expected 

problems related to such OS in the future. 

Chapter organization: Section 1.1 describes the motivation. In Section 1.2, the 

research objectives is discussed. Thesis overview is discussed in Section 1.3. 

1.1 Motivation 

Scheduling is considered as one of the most widely researched topics in the 

literature of Computer Science and Engineering. It is also a well-structured and 

conceptually-demanding problem. The need of efficient CPU scheduling techniques 

in the area of computer system performance cannot be overstated. Improper or 

inefficient scheduling may corrupt system performance. One of the main goals for OS 

design is a highly efficient process scheduler where CPU time is managed so that 

processes meet their criteria. 

Fairness [14, 31, 41] measure is used in designing OS schedulers to determine 

whether users or applications are receiving a fair share of system resources. In 

scheduling processes, algorithms attempt to ensure fairness among processes, in addi-

tion to fulfillment of the desired criteria. Scheduling algorithms have been found to be 

NP-complete in general form [37, 49]. 

Modern OSs nowadays have become more complex than ever before. They have 

evolved from a single process, single user architecture to a multitasking environment 

in which processes run in a concurrent manner. Allocating CPU to a process requires 

careful attention to assure fairness and avoid process starvation for CPU. Scheduling 

decision try to minimize the scheduling criteria (i.e., average turnaround time, and 

average waiting time) [45]. Scheduling algorithms are the mechanism by which a 
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resource is allocated to a client. In this research, the concept of a resource is restricted

to CPU usage and clients to processes. A scheduling decision refers to the concept of 

selecting the next process for execution.

One of the oldest, simplest and most widely used scheduling algorithms is RR [2, 

10, 11, 45]. RR is also one of the oldest, simplest and most widely used PSS

algorithms, and because of its usefulness, many PSS mechanisms have been 

developed [8, 18, 19, 21, 25, 33, 35, 43]. In the RR algorithm a small unit of time, 

called a time quantum or timeslice, is defined and fixed.

As machine architectures become more advanced, many commerce and scientific 

fields are demanding complex and computationally intensive applications. Usually 

these applications consist of various components that have different computational 

requirements. In fact, the applicability and strength of scheduling algorithms are 

derived from their ability to match computing needs to appropriate resources. Many 

algorithms profited from the benefits of the RR and tried to improve the performance 

of the system such as CPU utilization, waiting time, fairness, fair sharing [5, 6, 7], etc.  

GPOS, as name implies can be used for various application such as banking, 

commerce, academic and scientific research, instrumentation, industrial automation 

and control. Some of the important features of GPOS are, IPC, Multitasking and 

Multithreading.

IPC: Within the development environment, users often work with many software 

simultaneously with data common to some or all software. The IPC capabilities of the 

OS enables to share data with each other. This feature thus facilitates the integration 

of data sharing and hence interoperability.

Multitasking: Multitasking is the ability to execute more than one application 

software at the same time. Advanced GPOS have the performance and capability of 

doing multitasking operations. A switching mechanism forms the basis of 

multitasking operation. Switching from one program to another is very quick. It gives 

the appearance of executing all of the programs at the same time although the OS 

executes them in some order. The OS takes responsibility for managing the CPU so 

that each application thinks it owns the entire system.
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Multithreading: Numerous techniques exist to achieve performance improvements. 

Multithreading is the ability of an OS to execute different parts of a program, called 

threads, simultaneously. Multithreading architecture has emerged as one of the most 

promising technique for exploitation of parallelism. It exhibits a powerful form of 

concurrency. The technique can be exploited in a system that run on both 

uniprocessor and multiprocessor. The main difference between the concept of 

multitasking and multithreading is that in former case the notion of simultaneous 

operation is in between the application software, whereas in latter case the 

simultaneity is within the application software itself.

GPOS was developed as a desktop, servers, mainframes, and supercomputers OSs.

It is a widely used OS both in research and business and will still be used in the future. 

No doubt, processes with enormous numbers of threads will be inevitable to execute 

in such kind of OS. In the same time, single-thread process will still run concurrently 

with multithreaded processes. Therefore, such simultaneous execution will cause: – 1)

single-thread process suffers from starvation, where, multithreaded process will 

dominate CPU time by spawning more threads and captures CPU time which was 

supposed to be assigned to single-thread process, – 2) load balance between cores will 

be worse, where, with the growing number of running threads, some cores will be 

more loaded than others, and therefore, some processes in the less loaded cores will 

receive more CPU time than they should be assigned compared to other processes, 

and – 3) VMs will not be running flexibly, where it is supposed that user can get the 

services (CPU usage in this context) s/he desires, the VM provider should provide 

these services to the user, but, the VM provider assigns the same CPU usage for all 

VMs regardless the number of running threads. Scheduling in such kind of OS must 

be improved to confront these problems. Although, CPU schedulers fall into two 

broad categories: real-time and best-effort [4], real-time ones do not work for GPOS,

therefore, the remainder of this work will focus on best-effort scheduler, this will be 

discussed in the next chapter. 

1.2 Research Objectives

Changing the behaviour of the current scheduler: By: – 1) adjusting the 

weights of threads running in the same core for the purpose of improving the 

treatment of execution of running processes, this will help in preventing both of the 
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greedy behavior of multithreaded process and the starvation of single-thread process, 

– 2) modifying the thread migration for the purpose of improving the load balancing

mechanism of the current scheduler, this will help in giving each process CPU time 

closer to the time assigned by the ideal scheduler, and – 3) adding new system call for 

the purpose of allowing the user to flexibly control the weight of each VM, this will 

help in providing services the user would like to obtain.

Formulating equations: Determining how to change the behaviour of the

scheduler is based upon the equations that were formulated in this work. By using 

these equations, it will be easy to specify the new weights for running threads and 

decide which thread and when it should be moved.

Achieving desired scheduling criteria: Achieving better scheduling criteria, 

improving performance and preserving fairness between running processes must be 

taken into consideration when changing the behaviour of the current scheduler.

Targeting various platforms: Enhancing the scalability of the proposed work

can be done by considering various types of platforms; single core, multicore, and 

VM environments.

Comparing with current scheduler: Comparing the proposed scheduler with 

another legacy scheduler from the literature (i.e., CFS) from the point of view of 

scheduler’s behavior, scheduling criteria, and performance.

Overcoming the previous disadvantages: Overcoming disadvantages (i.e.,

greedy behaviour of multithreaded processes, and load imbalance between cores) of 

related approaches to enhance the preference of the proposed scheduler.

Developing new features: Developing some specifications of current scheduler 

(i.e., pricing framework in VM environment) can be done by allowing the user to get 

new services (i.e., CPU usage), and on the other hand, allowing the provider to 

determine the pricing calculations.
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1.3 Thesis Overview

This thesis is organized in six chapters including this one. Their contents are de-

scribed briefly in the following lines:

Chapter 2- Background Overview: In this chapter, a general description of what 

OSs do is offered. This chapter provides a more closely overview at processes. It

discusses the process concept and goes on to describe various features of processes, 

including process scheduling algorithms,  scheduling criteria, and load balancing. 

Chapter 3- Local Fairness: In this chapter, TWRS is proposed, in which the 

weights of threads are adjusted in every round. 

Chapter 4- Global Fairness: In this chapter, a modification of the CFS migration 

scheme is proposed to enable most threads to attain CPU time proportional to their 

weights and the weights of all running threads in all cores. 

Chapter 5- VM Fairness: This chapter proposes a modification to the current 

scheduler to allow the user to flexibly control the weight of the running VM by setting 

it to any arbitrary value. This can be done by adding a system call.

Chapter 6- Conclusion and Future Works: This chapter discusses the concluding 

remarks and future research directions. 
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CHAPTER 2:
Background Overview

This chapter states the definition and importance of OS and summarizes the OS's role 

in the overall computer system, looks more closely at process and the concept of 

context-switches. The chapter discusses the thread; its benefits and models. Then it 

discusses the categories of CPU schedulers. It describes the definitions the scheduling 

criteria which have been suggested for comparing CPU scheduling algorithms, and 

illustrates several of scheduling algorithms; their pros and cons. The importance of 

load balancing in multicore system, and its two general approaches are also discussed 

in this chapter. 

Chapter organization: Section 2.1 defines the OS. In Section 2.2, components of 

computer system and system goals are defined. Process concept is discussed in 

Section 2.3. Process scheduling is discussed in Section 2.4. Section 2.5 states 

categories of CPU schedulers. Definitions of CPU usage and capacity are discussed in 

Section 2.6. Section 2.7 discusses the scheduling criteria and algorithms. Load 

balancing is illustrated in Section 2.8.

2.1 Operating Systems 
An OS is a system program that control the hardware and other software of the 

computer and when it is opened it brings the computer system into a mode from 

where it is easier to run other applications. OS provides an ‘abstraction layer’ between 

the application software and the low level hardware by freeing the user from any 

concern about the details of the underlying hardware of the computer. In summary, 

the OS manages the resources. The resources are application software, data, files, 

information and peripheral hardware.

An amazing aspect of OSs is how varied they are in accomplishing some tasks. 

Mainframe OSs are designed primarily to optimize utilization of hardware. PC OSs 

support complex games, business applications, and everything in between. OSs for 

handheld computers are designed to provide an environment in which a user can 

easily interface with the computer to execute programs. Thus, some OSs are designed 

to be convenient, others to be efficient, and others some combination of the two.
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2.2 What Operating Systems Do
This section first summarizes the OS's role in the overall computer system. A 

computer system can be divided roughly into four components: the hardware, the OS, 

the application programs, and the users (Figure 2.1) [44].  

The hardware, the CPU, the memory, and the I/O devices, provides the basic 

computing resources for the system.

Figure 2.1. Abstract view of the components of a computer system.

The application programs, such as word processors, spreadsheets, compilers, and 

web browsers, define the ways in which these resources are used to solve users' 

computing problems. The OS controls and coordinates the use of the hardware among 

the various application programs for the various users.

A computer system can be viewed as consisting of hardware, software, and data. 

The OS provides the means for proper use of these resources in the operation of the 

computer system. 

2.2.1 Defining Operating Systems
In general, there is no completely clear definition of an OS. OSs exist because 

they offer a reasonable way to solve the problem of creating a usable computing 

system. The fundamental goal of computer systems is to execute user programs and to 

make solving user problems easier. Toward this goal, computer hardware is 

constructed. Since bare hardware alone is not particularly easy to use, application 
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programs are developed. These programs require certain common operations, such as 

those controlling the I/O devices. The common functions of controlling and allocating 

resources are then brought together into one piece of software: the OS.

In addition, there is no universally accepted definition of what must be included in 

the OS. A simple viewpoint is that it includes everything a vendor ships when you 

order "the OS". The features included, however, vary greatly across systems. Some 

systems take up less than 1 megabyte of space and lack even a full-screen editor, 

whereas others require gigabytes of space and are entirely based on graphical window

systems. A more common definition is that the OS is the one program running at all 

times on the computer (usually called the kernel), with all else being systems 

programs and application programs. This last definition is the one that this thesis 

generally follows. The matter of what constitutes an OS has become increasingly 

important.

2.2.2 System Goals
It is easier to define an OS by what it does than by what it is, but even this can be 

tricky. The primary goal of some OSs is convenience for the user. OSs exist because

computing with them is supposedly easier than computing without them. As discussed 

in the previous subsection, this view is particularly clear when you look at OSs for 

small PCs. The primary goal of other OSs is efficient operation of the computer 

system. This is the case for large, shared, multiuser systems. These systems are 

expensive, so it is desirable to make them as efficient as possible. These two goals, 

convenience and efficiency, are sometimes contradictory. In the past, efficiency was 

often more important than convenience. Thus, much of OS theory concentrates on 

optimal use of computing resources. 

OSs have also evolved over time in ways that have affected system goals. For 

example, UNIX started with a keyboard and printer as its interface, limiting its 

convenience for users. Over time, hardware changed, and UNIX was ported to new 

hardware with more user-friendly interfaces. Many GUIs were added, allowing UNIX 

to be more convenient to use while still concentrating on efficiency.

Designing any OS is a complex task. Designers face many tradeoffs, and many 

people are involved not only in implementing the OS but also in constantly revising 
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and updating it. How well any given OS meets its design goals is open to debate and 

involves subjective judgments on the part of different users.  

OSs and computer architecture have influenced each other a great deal. To 

facilitate the use of the hardware, researchers developed OSs. Users of the OSs then 

proposed changes in hardware design to simplify them. 

2.2.3 System Calls 
System calls as the interface between the operating system and the process. 

System calls provide an interface to the services made available by an operating

system. These calls are generally available as routines written in C and C++, although 

certain low-level tasks (for example, tasks where hardware must be accessed directly) 

may have to be written using assembly-language instructions. 

The usage of system call can be explained by considering an example. Let us 

consider writing a program to read data from one file and to copy them to another file. 

The program will need the naming of two files: the input file and the output file. 

These names can be specified in many ways, depending on OS-design. The system 

asks the user to input the two files names, one for input and the other for output. This

will now require a sequence of system calls. Firstly, to write a prompting message on 

the screen, and then to read the data from the keyboard. The characters which are 

input, defines the two files. 

Once the two file names are provided, the program opens the input file and create 

the output file. Each of these operations requires the set of system calls to execute 

each step of the program. Sometimes, there may be error condition encountered for 

each operation. For example if a program tries to open a file, it may find that there is 

no filename exist or that file may be protected against access. In this case, the 

program should print the message on console (another set of system calls) and may be 

terminated abnormally (another set of system calls). If the input file exists, then a new 

output file is created.

Sometimes, an output file with the same name may be found. When this situation 

occurs, the old output file with the same filename is deleted (another system call). 
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Another way is that user prompts the message on the display unit whether to delete 

the existing file (another system call) or to abort the program (another system call). 

Now both the files are present: the input file and the output file, so we can now 

read the data from input system (a system call) and write it to output file (another 

system call).

Each read-write operation provides the information regarding various possible 

error conditions. Finally after entire file is copied, the program closes both file 

(another system call) and writes a message to the console (another system call) and 

then terminates normally (last system call) [45].

2.3 Process Concept 
Early computer systems allowed only one program to be executed at a time. This 

program had complete control of the system and had access to all the system's re-

sources. In contrast, current-day computer systems allow multiple programs to be 

loaded into memory and executed concurrently. This evolution required more control 

and compartmentalization of the various programs; and these needs resulted in the 

notion of a process, which is a program in execution. A process is the unit of work in 

a modern time-sharing system.

The more complex the OS is, the more it is expected to do on behalf of its users. 

Although its main concern is the execution of user programs, it also needs to take care 

of various system tasks that are better left outside the kernel itself. A system therefore 

consists of a collection of processes: operating-system processes executing system 

code and user processes executing user code. Potentially, all these processes can 

execute concurrently, with the CPU (or CPUs) shared among them. By switching the 

CPU between processes, the OS can make the computer more productive.

This section looks more closely at processes. It first discusses the process concept 

and goes on to describe various features of processes, including behavior and 

scheduling.

A question that arises in discussing OSs involves what to call all the CPU 

activities. A batch system executes jobs, whereas a time-shared system has user 
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programs, or tasks. Even on a single-user system such as Microsoft Windows, a user 

may be able to run several programs at one time: a word processor, a web browser, 

and an e-mail package. Even if the user can execute only one program at a time, the 

OS may need to support its own internal programmed activities, such as memory 

management. In many respects, all these activities are similar, so all of them are called 

processes. The terms task and process are used almost interchangeably in this thesis. 

2.3.1 Process Control Block
Each process is represented in the OS by a PCB, also called a task control block. 

A PCB is shown in Figure 2.2. It contains many pieces of information associated with 

a specific process, including:

Process state: The state may be new, ready, running, waiting, halted, and so 

on.

Program counter: The counter indicates the address of the next instruction to 

be executed for this process. 

CPU registers: The registers vary in number and type, depending on the com-

puter architecture. They include accumulators, index registers, stack pointers,

and general purpose registers, plus any condition-code information. Along 

with the program counter, this state information must be saved when an inter-

rupt occurs, to allow the process to be continued correctly afterward. 

 
Figure 2.2. Process control block. 

CPU-scheduling information: This information includes a process priority, 

pointers to scheduling queues, and any other scheduling parameters. (Section

2.4 describes process scheduling.) 
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Memory-management information: This information may include such in-

formation as the value of the base and limit registers, the page tables, or the

segment tables, depending on the memory system used by the OS.

Accounting information: This information includes the amount of CPU and 

real time used, time limits, account numbers or process numbers, and so on. 

I/O status information: This information includes the list of I/O devices allo-

cated to the process, a list of open files, and so on.

In brief, the PCB simply serves as the repository for any information that may 

vary from process to process.

2.3.2 Threads

The process model discussed so far has implied that a process is a program that 

performs a single thread of execution. For example, when a process is running a word 

processor program, a single thread of instructions is being executed. This single 

thread of control allows the process to perform only one function at one time. The 

user cannot simultaneously type in characters and run the spell checker within the 

same process, for example. Many modern OSs have extended the process concept to 

allow a process to have multiple threads of execution and thus to perform more than 

one function at a time.

A thread is a basic unit of CPU utilization, consisting of a program counter, a

stack, and a set of registers, (and a thread ID). Traditional (heavy weight) processes 

have a single thread of control. There is one program counter, and one sequence of 

instructions that can be carried out at any given time.

As shown in Figure 2.3, multithreaded processes have multiple threads within a 

single process, each having their own program counter, stack and set of registers, but 

sharing common code, data, and certain structures such as open files.
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Figure 2.3. Single-thread and multithreaded processes.

I. Benefits
There are four major categories of benefits to multithreading:

1. Responsiveness: One thread may provide rapid response while other 

threads are blocked or slowed down doing intensive calculations. 

2. Resource sharing: By default threads share common code, data, and other 

resources, which allows multiple tasks to be performed simultaneously in a 

single address space.

3. Economy: Creating and managing threads (and context-switches between 

them) is much faster than performing the same functions for processes. 

4. Scalability, i.e. Utilization of multiprocessor architectures: A single-thread

process can only run on one CPU, no matter how many may be available, 

whereas the execution of a multithreaded application may be split amongst 

available processors. (Note that single-thread processes can still benefit 

from multiprocessor architectures when there are multiple processes 

contending for the CPU, i.e. when the load average is above some certain

threshold).

II. Threads Types 
There are two types of threads to be managed in a modern system: user threads

and kernel threads. User threads are supported above the kernel, without kernel 

support. These are the threads that application programmers would put into their 
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programs. Kernel threads are supported within the kernel of the OS itself. All modern 

OSs support kernel level threads, allowing the kernel to perform multiple 

simultaneous processes and/or to service multiple kernel system calls simultaneously. 

The user threads must be mapped to kernel threads. 

2.4 Process Scheduling 
The objective of multiprogramming is to have some processes running at all times, 

to maximize CPU utilization. The objective of time-sharing is to switch the CPU 

among processes so frequently that users can interact with each program while it is 

running. To meet these objectives, the process scheduler selects an available process 

(possibly from a set of several available processes) for program execution on the 

CPU. For a uniprocessor system, there will never be more than one running process. If 

there are more processes, the rest will have to wait until the CPU is free and can be 

rescheduled. 

2.4.1 Schedulers 

A process migrates among the various scheduling queues throughout its lifetime. 

The OS must select, for scheduling purposes, processes from these queues in some 

fashion. The selection is carried out by the appropriate scheduler. 

Often, in a batch system, more processes are submitted than can be executed im-

mediately. These processes are spooled to a mass-storage device (typically a disk), 

where they are kept for later execution. The long-term scheduler, or job scheduler, 

selects processes from this pool and loads them into memory for execution. The short-

term scheduler, or CPU scheduler, selects from among the processes that are ready to 

execute and allocates the CPU to one of them. 

The primary distinction between these two schedulers lies in frequency of execu-

tion. The short-term scheduler must select a new process for the CPU frequently. A 

process may execute for only a few milliseconds before waiting for an I/O request. 

Often, the short-term scheduler executes at least once every 100 milliseconds. Be-

cause of the short time between executions, the short-term scheduler must be fast. If it 

takes 10 milliseconds to decide to execute a process for 100 milliseconds, then 10/ 

(100 + 10) = 9 percent of the CPU is being used (wasted) simply for scheduling the 

work. 
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The long-term scheduler executes much less frequently; minutes may separate the 

creation of one new process and the next. The long-term scheduler controls the degree 

of multiprogramming (the number of processes in memory). If the degree of 

multiprogramming is stable, then the average rate of process creation must be equal to 

the average departure rate of processes leaving the system. Because of the longer 

interval between executions, the long-term scheduler can afford to take more time to 

decide which process should be selected for execution.

It is important that the long-term scheduler make a careful selection. In general, 

most processes can be described as either I/O-bound or CPU-bound. An I/O-bound 

process is one that spends more of its time doing I/O than it spends doing computa-

tions. A CPU-bound process, in contrast, generates I/O requests infrequently, using 

more of its time doing computations. It is important that the long-term scheduler se-

lects a good process mix of I/O-bound and CPU-bound processes. If all processes are 

I/O-bound, the ready queue will almost always be empty, and the short-term scheduler 

will have little to do. If all processes are CPU-bound, the I/O waiting queue will al-

most always be empty, devices will go unused, and again the system will be unbal-

anced. The system with the best performance will thus have a combination of CPU-

bound and I/O-bound processes.

On some systems, the long-term scheduler may be absent or minimal. For exam-

ple, time-sharing systems such as UNIX and Microsoft Windows systems often have 

no long-term scheduler but simply put every new process in memory for the short-

term scheduler.  

Some OSs, such as time-sharing systems, may introduce an additional, 

intermediate level of scheduling. This medium-term scheduler is diagrammed in 

Figure 2.4. The key idea behind a medium-term scheduler is that sometimes it can be 

advantageous to remove processes from memory (and from active contention for the 

CPU) and thus reduce the degree of multiprogramming. Later, the process can be 

reintroduced into memory, and its execution can be continued where it left off. This 

scheme is called swapping. The process is swapped out, and is later swapped in, by 

the medium-term scheduler. Swapping may be necessary to improve the process mix 

or because a change in memory requirements has overcommitted available memory, 

requiring memory to be freed up [45].  
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Figure 2.4. Addition of medium-term scheduling to the queueing diagram.

2.4.2 Context-Switch

Switching the CPU to another process requires saving the state of the old process 

and loading the saved state of the new process. This task is known as a context-

switch. The context of a process is represented in the PCB of the process; it includes 

the value of the CPU registers, the process state, and memory management 

information. When a context-switch occurs, the kernel saves the context of the old 

process in its PCB and loads the saved context of the new process scheduled to run

(see Figure 2.5). Context-switch time is pure overhead, because the system does no 

useful work while switching. Its speed varies from machine to machine, depending on 

the memory speed, the number of registers that must be loaded, and the existence of 

special instructions (such as a single instruction to load or store all registers). Typical 

speeds are less than 10 milliseconds.

 
Figure 2.5. Diagram showing CPU switch from process to process.
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Context-switch times are highly dependent on hardware support. For instance, 

some processors (such as the Sun ultraSPARC) provide multiple sets of registers. A 

context-switch simply requires changing the pointer to the current register set. Of 

course, if there are more active processes than available register sets, the system 

resorts to copying register data to and from memory, as before. Also, the more 

complex the OS is, the more work must be done during a context-switch. Advanced 

memory-management techniques may require extra data to be switched with each 

context. For instance, the address space of the current process must be preserved as 

the space of the next task is prepared for use. How the address space is preserved, and 

what amount of work is needed to preserve it, depend on the memory-management 

method of the OS. Context-switching has become such a performance bottleneck that 

programmers are using alternative structures (threads) to speed it up and possibly 

even avoid it whenever possible [45].

2.5 CPU Scheduling 
CPU schedulers provide the illusion of multiple VCPUs to processes; each process

appears to have its own CPU. The primary job of a CPU scheduler, then, is to safely 

and optimally divide CPU resources amongst competing processes. Safety is provided 

by the kernel’s context-switching mechanism and the division of kernel code into 

portions that allow or disallow context-switching. Optimality is more difficult because 

the best way to divide CPU resources can vary between processes. Therefore, each 

CPU scheduler needs a system specific policy that defines how to share the processor. 

This policy encapsulates the broad scheduling goals of the system, and reflects the 

system’s expectations regarding its workloads.

Scheduling policy is a balancing act between competing goals. Modern scheduling 

policies make tradeoffs between some primary goals: fairness, utilization, and 

performance. Other goals exist, but these three are often the most important. The 

general definition of fairness is, each running process should be assigned a fair share 

of processing time [47]. Utilization criterion dictates us to keep the CPU as busy as 

possible. Performance measures the amount of work accomplished by the system.

CPU schedulers fall into two broad categories: real-time and best-effort.

Schedulers in the real-time category provide guarantees about how long it will take to 
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respond to an event; these schedulers ensure the process-defined deadlines are always 

met. Real-time schedulers are typically found in environments requiring deadline time

guarantees, like robotics and embedded systems. To provide these guarantees, real-

time schedulers need to know the CPU allocation and time requirements of all 

processes. If the scheduler cannot provide the deadline time guarantees an process 

requires, the process is not run.

Best-effort schedulers, in contrast, provide no guarantees; their primary goal is 

ease-of-use. Because they provide only best-effort service, they require no a priori 

knowledge of process deadlines or allocation requirements. These schedulers are 

found in all commodity OSs and used by both desktop and server-class machines [4,

45].

Best-effort schedulers are commonly divided into two groups: time-sharing, and 

proportional-share. The following sections discuss time-sharing and proportional-

share in detail. 

2.5.1 Time-Sharing Schedulers

The primary goal of time-sharing schedulers is to provide low latency for 

processes. This is accomplished by automatically dividing processes into classes

according to the characteristics of their CPU bursts (the amount of time required by 

the process to finish). Time-sharing schedulers are often implemented using multiple 

run queues (Multilevel Feedback Queue). for example: Three queues: – 1) RR with 

time quantum of 4 milliseconds – 2) RR time quantum of 8 milliseconds – 3) FCFS

(e.g., processes are dispatched according to their arrival times on the ready queue. 

Being a nonpreemptive discipline, once a process has a CPU, it runs to completion). If 

a process uses too much CPU time, it will be moved to a lower-priority queue. This 

scheme leaves I/O-bound and interactive processes in the higher-priority queues. In 

addition, a process that waits too long in a lower-priority queue may be moved to a 

higher-priority queue. Processes are initially assigned a queue and quantum matching 

their CPU bursts. If the process consumes its quantum without yielding the CPU, it is 

moved to a worse priority and assigned a large quantum. In this way, each process is 

assigned a scheduling priority based on its CPU burst behavior and user-assigned 

priority. Processes can move between queues, this form prevents starvation. Each 
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queue has its own scheduling algorithm, queues require monitoring, which is a costly 

activity [44, 45].

2.5.2 Proportional-Share Schedulers 
The fundamental goal of proportional-share schedulers is to provide fair 

allocations. Fairness in proportional-share schedulers is defined by the GPS model 

[35]. Intuitively, the GPS model attempts to provide the illusion that each process has 

its own CPU. These virtual, per-process CPUs run slower in direct proportion to the 

number of processes in the system. For example, in a system with three processes and 

a 3GHz processor, each process would make progress as though it had its own 1GHz 

processor. This model is, of course, impossible to achieve in the real-world where the 

processor can only be assigned to a single process at a time and very small scheduling 

quanta result in poor cache performance. Therefore, this model is interpreted as 

defining the relative CPU allocations given to processes. If all processes are equal, 

then all processes should receive the same CPU allocation over a given period of time.

For example, one process can be given 70% of the CPU, another 20%, and a third 

10%. These schedulers often interpret the GPS model to mean that in the long run all 

processes should receive their GPS share. Because this is the target environment, the 

remainder of this work will focus on proportional-share schedulers.

2.6 CPU Usage 

CPU time (or process time) is the amount of time for which a CPU was used for 

processing instructions of a computer program or OS. The CPU time is measured in 

clock ticks or seconds. Often, it is useful to measure CPU time as a percentage of the 

CPU's capacity, which is called the CPU usage [29]. CPU usage is a term used to 

describe how much the processor is working at any given time. Capacity is defined as 

how many bits of information the CPU can process in one cycle. The more bits the 

CPU can process, the more processes it handles at one time. Rather than using strict 

rules that associate a relative priority value with the length of a time quantum, the

CFS assigns a proportion of CPU processing time to each process. CPU time and CPU 

usage have two main uses: 

 The first use is to quantify the overall busyness of the system.

 The second use, with the advent of multitasking, is to quantify how the 

processor is shared between computer programs.
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2.7 Scheduling Criteria 
Different CPU scheduling algorithms have different properties and may favor one 

class of processes over another. In choosing which algorithm to use in a particular 

situation, the properties of the various algorithms must be considered.

Many criteria have been suggested for comparing CPU scheduling algorithms. 

Which characteristics are used for comparison can make a substantial difference in 

which algorithm is judged to be best. The criteria include the following:

CPU utilization: This criterion dictates us to keep the CPU as busy as 

possible. Conceptually, CPU utilization can range from 0 to 100 percent. In a 

real system, it should range from 40 percent (for a lightly loaded system) to 90 

percent (for a heavily used system).

Throughput: One measure of work is the number of processes that are 

completed per time unit, called throughput. 

Turnaround time: From the point of view of a particular process, the impor-

tant criterion is how long it takes to complete that process. The interval from 

the time of submission of a process to the time of completion is the turnaround 

time. Turnaround time is the sum of the periods spent waiting to get into 

memory, waiting in the ready queue, executing on the CPU, and doing I/O.

Waiting time: The CPU scheduling algorithm does not affect the amount of 

time during which a process executes or does I/O; it affects only the amount of 

time that a process spends waiting in the ready queue. Waiting time is the sum 

of the periods spent waiting in the ready queue. 

 Response time: Often, a process can produce some output fairly early and can 

continue computing new results while previous results are being output to the 

user. Thus, another measure is the time from the submission of a request until 

the first response is produced. This measure, called response time, is the time 

it takes to start responding, not the time it takes to output the response. 

It is desirable to maximize CPU utilization and throughput and to minimize turn-

around time, waiting time, and response time. In most cases, the average values of 

these measures among processes are optimized. However, under some circumstances, 

it is desirable to optimize the minimum or maximum values rather than the average. 

For example, to guarantee that all users get good service, we may want to minimize 
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the maximum response time. Investigators have suggested that, for interactive systems 

(such as time-sharing systems), it is more important to minimize the variance in the 

response time than it is to minimize the average response time. A system with rea-

sonable and predictable response time may be considered more desirable than a 

system that is faster on the average but is highly variable. However, little work has 

been done on CPU-scheduling algorithms that minimize variance [45].

2.7.1 When to Schedule 
A key issue related to scheduling is when to make scheduling decisions. It turns 

out that there are a variety of situations in which scheduling is needed. 

First, when a new process is created, a decision needs to be made whether to run 

the parent process or the child process. Since both processes are in ready state, it is a 

normal scheduling decision and it can go either way, that is, the scheduler can legiti-

mately choose to run either the parent or the child next.

Second, a scheduling decision must be made when a process is submitted. That 

process can no longer run (since it no longer exists), so some other processes must be 

chosen from the set of ready processes. If no process is ready, a system-supplied idle 

process is normally run. 

Third, when a process blocks on I/O, on a semaphore, or for some other reason, 

another process must be selected to run. Sometimes the reason for blocking may play 

a role in the choice. For example, if A is an important process and it is waiting for B 

to exit its critical region, letting B run next will allow it to exit its critical region and 

thus let A continue.

Fourth, when an I/O interrupt occurs, a scheduling decision may be made. If the 

interrupt came from an I/O device that has now completed its work, some process that 

was blocked waiting for the I/O may now be ready to run. It is up to the scheduler to 

decide if the newly ready process should be run, if the process that was running at the 

time of the interrupt should continue running, or if some third process should run.
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2.7.2 Scheduling Algorithms
CPU scheduling deals with the problem of deciding which of the processes in the 

ready queue is to be allocated the CPU. There are many different CPU scheduling al-

gorithms. This subsection describes their categories. 

Scheduling algorithms can be divided into two categories with respect to how they 

deal with clock interrupts. A nonpreemptive scheduling algorithm picks a process to 

run and then just lets it run until it blocks (either on I/O or waiting for another proc-

ess) or until it voluntarily releases the CPU. Even if it runs for hours, it will not be 

forcibly suspended. In effect, no scheduling decisions are made during clock inter-

rupts. After clock interrupt processing has been completed, the process that was run-

ning before the interrupt is always resumed.

In contrast, a preemptive scheduling algorithm picks a process and lets it run for a 

maximum of some fixed time. If it is still running at the end of the time interval, it is 

suspended and the scheduler picks another process to run (if one is available). Doing 

preemptive scheduling requires having a clock interrupt occur at the end of the time 

interval to give control of the CPU back to the scheduler. If no clock is available, 

nonpreemptive scheduling is the only option. There are many different CPU-

scheduling algorithms. This section describes several of them.

I. First-Come, First-Served Scheduling  
FCFS [45] is the simplest CPU-scheduling algorithm. With this scheme, the 

process that requests the CPU first is allocated the CPU first. The implementation of 

the FCFS policy is easily managed with a FIFO queue. When a process enters the 

ready queue, its PCB is linked onto the tail of the queue. When the CPU is free, it is 

allocated to the process at the head of the queue. The running process is then removed 

from the queue. Consider the following set of processes that arrive at time 0, with the 

length of the CPU burst given in milliseconds:

Table 2.1. Set of processes running under FCFS sheduler. 

Process Arrival Time Burst Time
P1 0 8

P2 0 4

P3 0 9

P4 0 5
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If the processes arrive in the order P1, P2, P3, P4 and are served in FCFS order,

we get the result shown in the following Gantt chart, which is a bar chart that

illustrates a particular schedule, including the start and finish times of each of the 

participating processes: 

P1 P2 P3 P4 
0  8  12 21  26 

The waiting time is 0 milliseconds for process P1, 8 milliseconds for process P2, 12

milliseconds for process P3, and 21 milliseconds for process P4. Thus, the average 

waiting time is (0 + 8 + 12 + 21) / 4 = 10.5 milliseconds. The average waiting time 

depend on the arrival order of the processing. 

Pros and Cons: The implementation of the FCFS policy is easily managed with a 

FIFO queue. The code for FCFS scheduling is simple to write and understand.

However, it is not suitable for time sharing systems where it is important that each 

user should get the CPU for an equal amount of time interval and poor in performance, 

as average wait time is high if short requests wait behind the long ones.

II. Shortest-Job-First Scheduling 
SJF [45] associates with each process the length of the process’s next CPU burst. 

When the CPU is available, it is assigned to the process that has the smallest next 

CPU burst. If the next CPU bursts of two processes are the same, FCFS scheduling is 

used to break the tie. 

As an example of SJF scheduling, consider the following set of processes that 

arrive at time 0, with the length of the CPU burst given in milliseconds: 

Table 2.2. Set of processes running under SJF scheduler.

Process Arrival Time Burst Time

P1 0 8

P2 0 4

P3 0 9

P4 0 5

Using SJF scheduling, we would schedule these processes according to the

following Gantt chart: 
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P2 P4 P1 P3 
0  4  9 17  26 

The waiting time is 9 milliseconds for process P1, 0 milliseconds for process P2, 17

milliseconds for process P3, and 4 milliseconds for process P4. Thus, the average 

waiting time is (9 + 0 + 17 + 4) / 4 = 7.5 milliseconds. 

Pros and Cons: The SJF scheduling algorithm is provably optimal, in that it gives the

minimum average waiting time for a given set of processes. Moving a short process 

before a long one decreases the waiting time of the short process more than it 

increases the waiting time of the long process. Consequently, the average waiting time 

decreases. The real difficulty with the SJF algorithm is knowing the length of the next

CPU request, and can lead to unfairness or starvation (processes with large service 

times tend to be left in the ready list while small processes receive service).

III. Shortest Remaining-Time First Scheduling 
Preemptive SJF scheduling is sometimes called shortest-remaining-time-first

scheduling [45]. As an example, consider the following four processes, with the 

length of the CPU burst given in milliseconds:

Table 2.3. Set of processes running under SRTF scheduler.

Process Arrival Time Burst Time
P1 0 8

P2 1 4

P3 2 9

P4 3 5

 
If the processes arrive at the ready queue at the times shown and need the

indicated burst times, then the resulting SRTF schedule is as depicted in the following 

Gantt chart: 

P1 P2 P4 P1 P3 
0 1  5 10  17  26 

Process P1 is started at time 0, since it is the only process in the queue. Process P2 

arrives at time 1. The remaining time for process P1 (7 milliseconds) is larger than the 

time required by process P2 (4 milliseconds), so process P1 is preempted, and process 
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P2 is scheduled. The average waiting time for this example is [(10 1) + (1 1) + (17

 2) + (5 3)]/4 = 26/4 = 6.5 milliseconds.

Pros and Cons: short processes returns quickly and it has high yield (processes done 

per minutes). The real difficulty with the SRTF algorithm is knowing the length a 

process's remaining time, and the length of the next CPU request.

IV. Round Robin Scheduling  
The RR scheduling algorithm [45] is designed especially for time sharing systems. 

It is similar to FCFS scheduling, but preemption is added to enable the system to 

switch between processes. A small unit of time, called a time quantum or time slice, is 

defined. A time quantum is generally from 10 to 100 milliseconds in length. The 

ready queue is treated as a circular queue. The CPU scheduler goes around the ready 

queue, allocating the CPU to each process for a time interval of up to 1 time quantum.

One of two things will then happen. The process may have a CPU burst of less 

than 1 time quantum. In this case, the process itself will release the CPU voluntarily. 

The scheduler will then proceed to the next process in the ready queue. If the CPU 

burst of the currently running process is longer than 1 time quantum, the timer will go 

off and will cause an interrupt to the OS. A context-switch will be executed, and the 

process will be put at the tail of the ready queue. The CPU scheduler will then select 

the next process in the ready queue. 

Consider the following set of processes that arrive at time 0, with the length of the 

CPU burst given in milliseconds:

Table 2.4. Set of processes running under RR scheduler. 

Process Arrival Time Burst Time
P1 0 8

P2 0 4

P3 0 9

P4 0 5

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4

milliseconds. Since it requires another 4 milliseconds, it is preempted after the first 

time quantum, and the CPU is given to the next process in the queue, process P2. 
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Process P2 needs 4 milliseconds, so it quits after its time quantum expires. The CPU 

is then given to the next processes, process P3 and then process P4. Once each process 

has received 1 time quantum, the CPU is returned to process P1 for an additional time 

quantum. Then, the CPU is returned to processes P3, P4 and P3 for additional time 

quantum. The resulting RR schedule is as follows: 

P1 P2 P3 P4 P1 P3 P4 P3 
0 4 8 12 16 20 24 25 26

P1 waits for 12 milliseconds (16 - 4), P2 waits for 4 milliseconds, P3 waits for 17

milliseconds (25 – 8), and P4 waits for 20 milliseconds (24 – 4). Thus, the average 

waiting time is (12 + 4 + 17 + 20) / 4 = 13.25 milliseconds.

Pros and Cons: RR is easy to implement, and guarantees fairness since every process 

gets equal share of CPU. However, important processes may wait in line, average

waiting time can be bad. The performance of the RR algorithm depends heavily on the 

size of the time quantum. if the time quantum is extremely large, the RR policy is the 

same as the FCFS policy. In contrast, if the time quantum is extremely small (say, 1 

millisecond), the RR approach can result in a large number of context-switches.

V. Lottery Scheduling
With lottery scheduling [45], the goal is to allow a process to be granted a 

proportional share of the CPU (i.e., a specific percentage). Conceptually, lottery 

scheduling works by allocating a specific number of “tickets” to each process. The 

more tickets a process has, the higher its chance of being scheduled. 

Consider the following set of processes that arrive at time 0, each with the number 

of tickets:

Table 2.5. Set of processes running under Lottery Scheduler. 

Process Arrival Time Tickets
P1 0 8

P2 0 4

P3 0 9

P4 0 5
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The fractions of processor time given to each should be: P1: 8/26 = 30.76%, P2: 4/26

= 15.38% , P3: 9/26 = 34.61%, and P4: 5/26 = 19.23%. 

Pros and Cons: each process is given a proportional share of the CPU. The difficulty 

is determining ticket distribution, particularly in an environment where processes 

come and go and get blocked. This is not a useful algorithm for general-purpose 

scheduling.

2.7.3 Scheduling Algorithm Goals

In order to design a scheduling algorithm, it is necessary to have some idea of 

what a good algorithm should do. Some goals depend on the environment (batch, in-

teractive, or real time), but there are also some that are desirable in all cases. Some 

goals are listed as follows: 

I. All systems: 
Fairness - give each process a fair share of the CPU.

Policy enforcement - see that stated policy is carried out.

Balance - keep all parts of the system busy. 

II. Batch systems: 
Throughput - maximize jobs per hour. 

Turnaround time - minimize time between submission and termination. 

CPU utilization - keep the CPU busy all the time.

III. Interactive systems
Response time - respond to requests quickly.

Proportionality- meet users' expectations. 

IV. Real-time systems
Meeting deadlines - avoid losing data. 

Predictability - avoid quality degradation in multimedia systems. 

2.8 Load Balancing
On multicoreprocessor/multiprocessor systems, it is important to keep the 

workload balanced among all cores to fully utilize the benefits of having more than 

one core. Otherwise, one or more cores may sit idle while other cores have high 

workloads, along with lists of processes awaiting the CPU. Load balancing attempts 

to keep the workload evenly distributed across all cores. It is important to note that 
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load balancing is typically necessary only on systems where each core has its own 

private queue of eligible processes to execute. On systems with a common run queue, 

load balancing is often unnecessary, because once a core becomes idle, it immediately

extracts a runnable process from the common run queue. 

There are two general approaches to load balancing: push migration and pull

migration. With push migration, the kernel periodically checks the load on each core

and, if it finds an imbalance, evenly distributes the load by moving (or pushing) 

processes from overloaded to idle or less-busy cores. Pull migration occurs when an 

idle core pulls a waiting process from a busy core. Push and pull migration need not 

be mutually exclusive and are in fact often implemented in parallel on load-balancing 

systems.

2.8.1 Load Balancing Categories 

The redistribution of processes among the cores during execution time is called 

load balancing. The load balancing is performed by transferring processes from the 

heavily loaded cores to the lightly loaded cores. The load balancing technique is 

designed specifically for parallel processes running on multicore environment in order 

to achieve good performance. Load balancing methods are classified into two major 

groups: dynamic load balancing (the redistribution of processes among the cores 

during execution time) and static load balancing (assignment of processes to cores is 

done before program execution begins). This thesis focuses on dynamic load 

balancing because current GPOS (i.e., Linux) uses this mechanism such that the 

system need not be aware of the run-time behavior of the applications before 

execution, and some processes may go off-line and new processes may come on-line. 

Load balancing can be decomposed into three inherent phases:

o condition phase, which determines the conditions under which a process

should be transferred; 

o decision phase, which specifies the amount of load information made 

available to process  positioning decision-makers; and 

o positioning phase, which identifies the core to which a process should be 

transferred. 
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From a system’s point of view, the processes distribution choice is considered as a 

resource management issue and should be considered as an important factor during 

the design phases of multicore systems [42].
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CHAPTER 3:
Local Fairness

This chapter summarizes the shortcoming of current Linux scheduler. Current Linux 

scheduler does not control the greedy behavior of multithreaded process, and 

therefore, single-thread process suffers from starvation. In this chapter, this

shortcoming is illustrated through experimental evaluation thus exposing its weakness. 

The chapter discusses the advantages and disadvantages of related researches. Then, it

proposes a modification of current Linux scheduler, describing its features and 

mechanism. The chapter compares the proposed scheduler versus current Linux 

scheduler from the point of view of greedy evaluation, scheduling criteria, and 

performance evaluation. 

Chapter organization: Section 3.1 describes the motivation. In Section 3.2, the 

problem statement is defined. Related research is discussed in Section 3.3. In Section 

3.4, the proposed scheduler is presented. Experimental setup is discussed in Section 

3.5. Evaluation and analysis are discussed in Section 3.6. Discussion is stated in 

Section 3.7. 

3.1 Motivation
The need for a scheduling algorithm arises from the requirement for most modern 

systems to perform multitasking. Scheduling is a key concept in computer 

multitasking and multiprocessing OS designs. Due to the growing availability of 

multicoreprocessor, processes are encouraged to be designed using multiple threads so 

that the benefit of TLP can be exploited [36, 51]. The OS scheduler is designed to 

allocate system resources, CPU time, proportionally to all processes. 

Scheduling algorithms have been found to be NP-complete in general form. The 

trade-off situation comes from the many definitions of good scheduling performance, 

such that improving performance in one sense hurts performance in another. Some 

improvements to the Linux scheduler help performance all-around, but such 

improvements are getting harder to come [1].
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The lack of accurate fairness can cause poor support for processes, also the 

shortage of precise fairness leads to inadequate support for the system.

Assigning appropriate timeslice enables the scheduler to make scheduling 

decisions for the system and prevents any process from monopolizing the processor. 

On many modern OSs, the timeslice is dynamically calculated as a function of process 

behavior and configurable system policy. This chapter shows that kernel performance 

can be improved significantly by modifying just few key parameters. It investigates

the effect of changing weights of sibling threads (threads created in the same process)

and evaluates this modification in terms of treating the execution of running processes, 

scheduling criteria and performance.

3.1.1 Relationship between sharing and scheduling criteria

From the user point of view, it is important to maximize CPU utilization. CPU 

utilization depends on scheduling criteria (i.e., turnaround time and waiting time). 

Sharing contributes in maximizing CPU utilization. The relation between scheduling 

criteria and sharing can be described as follows. 

 Definition 1. Turnaround Time: total time from submission of a process to its 

completion.

     –   Turnaround Time Completion Time Arrival Time

 Definition 2. Waiting Time: total time a process has spent in the ready queue.

     –  Waiting Time Turnaround Time Execution Time

 The share in a time interval [t , t ] of a running process i is a ratio of its 

weight to the sum of weights of all active processes in the run queue. This is 

computed as: 

share (t , t ) =
w

w (t t ) 

where R is the set of all running processes that are currently in run queue of a core.

w is the weight of the process, it is mapped from its nice value in 

prio_to_weight[] [30], (defined as a variable in kernel/sched.c file),

and each nice value has its respective weight.

 The timeslice that a process i should receive in a period of time is given by: 
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slice = share × period 

therefore, 

share
1

w

and, 

slice share 

then,

slice
1

w

It is known that, 

waiting time
1

slice
therefore, 

waiting time
1

share
also,

waiting time turnaround time

therefore,

turnaround time
1

share	

3.2 Problem Statement 
This section discusses the problem statement illustrating it with examples.

3.2.1 Overview 

Each process and thread is a task in the eyes of the Linux scheduler. Forked 

process is assigned a PID and TGID. CFS uses thread fair scheduling algorithm, 

which allocates CPU resources between running threads in the system not between the 

running processes. In the current scheduler, CFS, when a new process is created, both 

PID and TGID are the same (new) number, although when a thread starts another 

thread, that new thread gets its own PID, so the scheduler can schedule it 

independently, and inherits its TGID from its parent as shown in Figure 3.1. 



Local	Fairness	 Chapter	3

51

Figure 3.1. Identifications of process and thread created from parent process.

Therefore, CFS scheduler does not distinguish between threads and processes, and

that way, the kernel can happily schedule threads independent of which process they 

belong to. Each forked thread is assigned a weight which determines the share of CPU 

time that thread will receive. Greedy users could take advantage by spawning more 

additional threads in order to obtain larger CPU resources. 

The situation can be summarized as: the default Linux scheduler is process-

agnostic1 and allows for greedy behavior, where processes consisting of more threads 

may receive more aggregate CPU time from the scheduler relative to processes with 

fewer threads. That is, the scheduler does not take process membership into account, 

or inter-process fairness.

From another view, this has a negative effect on running processes with fewer 

number of threads, for example, single-thread process will suffer from starvation. 

3.2.2 Greedy Behavior 

To elaborate the problem statement, the following test was done to show the 

greedy behavior of multithreaded processes. The problem statement is shown by 

testing how processes with more threads affect other processes with fewer threads and 

lead to dominating CPU resources. This test, in Figure 3.2, shows two cases: the first 

case where all running processes possess the same number of threads, and the second 

case where the running processes have different number of threads, this is done by 

running three processes (--test=threads) concurrently in SysBench benchmark [48] 

using shell script. Three processes were executed concurrently with six groups of 

different numbers of threads. In group 1 (first case), all processes have the same 

    
1 The word agnostic comes from the Greek a-, meaning without and  meaning knowledge. 
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number of threads, 8 threads for each. In the other groups (second case), processes A 

and B with a fixed number of threads, one thread (single-thread process) and eight 

threads respectively, and the third process, C, has different number of threads, (10, 20, 

30, 40, 50). Figure 3.2 shows that processes with the same number of threads in group 

1 receive approximately same amount of CPU usage, and in the other groups, as the 

increasing the threads number of a process is, the CPU usage is increasing. These tests 

were carried out on Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz.

 
Figure 3.2. Six groups of three processes with different numbers of threads ((8,8,8), (1,8,10), (1,8,20),

(1,8,30), (1,8,40), (1,8,50)) run concurrently. 

Figure 3.2 plots the CPU usage consumed by three processes running on CFS with 

varying number of threads in process C. This figure reflects an evident relation of the 

greedy behavior of multithreaded process. This greedy behavior comes from:

o The continuous increase of the gaps of CPU usage between processes in each 

group (e.g. between process C and process A, and between process C and 

process B), represented by the vertical arrows in Figure 3.2. 

o The continuous increase (of process with more threads, C) and decrease (of 

processes with fewer threads, A and B) ratios of the CPU usages through all 

groups, represented by the sloped arrows.

Based on what has been mentioned, the main problem the current scheduler faces 

is that the process with more threads acquires its CPU usage by deducting from the 
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CPU usage of processes with fewer threads, therefore, as the number of threads of 

greedy process increases, the deduction increases. This work contributes in reducing

this deduction.

3.3 Related Research
PSS has long been studied in OSs. The important property of PSS techniques is

that they characterize threads with a single parameter, a share, and consequently, PSSs

are often primarily evaluated based on the level of fairness that they can provide [39]. 

Other evaluation criteria depend on for what the scheduler is designed.

3.3.1 Surplus Fair Scheduling
Chandra et al. [12] presented proportional share CPU scheduler, SFS, designed for 

symmetric multiprocessors. The authors first showed that the infeasibility of certain 

weight assignments in multiprocessor environments results in starvation or unfairness 

in many existing PSSs. They presented a novel weight readjustment algorithm to 

translate infeasible weight assignments to a set of feasible weights. They showed that 

weight readjustment enables existing PSSs to significantly reduce, but not eliminate, 

the unfairness in their allocations. 

The authors introduced the following definition: In any given interval [t , t ], the 

weight w  of thread i is infeasible if
w

w >
1
P

where is the set of runnable threads that remain unchanged in [t , t ] and P is the 

number of CPUs. 

An infeasible weight represents a resource demand that exceeds the system 

capability. The authors showed that, in a P-CPU system, no more than P 1 threads 

can have infeasible weights. They proposed converting infeasible weights into their 

closest feasible ones. 

3.3.2 Process Fair Scheduler
Wong et al. [51] proposed an algorithm based on weight readjustment of the 

threads created in the same process. This algorithm, PFS, is proposed to reduce the 

unfair allocation of CPU resources in multithreaded environment. The authors 
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assumed that the optimal number of threads, best number a process should be given in 

order to achieve the best performance in a muti-processing environment, equals to the 

number of available cores. PFS changes the weight of thread according to the 

equation:

( )( ) weight processweight thread

where is the number of threads created in the process.

In PFS, all processes will be assigned the same amount of timeslices regardless

the number of threads, therefore, multithreaded processes will not be rewarded which

is considered as a defect in this algorithm.

3.3.3 Thread Fair Preferential Scheduler  
TFPS [52] is a modification of PFS algorithm to overcome the shortcoming of 

PFS. TFPS shall give the greedy threaded process the same amount of CPU time as 

optimally threaded process, and both of their timeslices are larger than the timeslice of 

single-thread process. The new revised weight is given by:

'
'

op
i i

c

n
w w

n  

where w  and n  are the updated weight and total number of threads respectively. n

equals to the total number of online processors.

In this algorithm, the multithreaded processes are not rewarded because the 

timeslice of greedy process is restricted by the amount of timeslice assigned to the 

process with the optimal number of threads.

3.4 Proposed Scheduler 
This section proposes a new approach, TWRS, and discusses thread allocation of 

CPU time, experimental setup, and evaluation from the point of view of scheduling 

criteria and performance. 

3.4.1 Overview 
TWRS is a kernel-level thread scheduler to improve the treatment of execution of 

running processes, scheduling criteria, and enhance system’s performance by 
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readjusting the weights of threads forked from the same process and in the same time 

preserving fairness. TWRS has been integrated with an existing scheduler that uses 

one run queue for one CPU, such as Linux 2.6. As its name suggests, TWRS depends 

on proportionally distributed CPU time between threads by changing their weights. 

The following sections explain the policy for allocating CPU time to running threads.

3.4.2 TWRS’s Features 
The fundamental difference of TWRS lies in the method used for readjusting the 

weights of the running threads. TWRS tries to reduce the gap of CPU usage between 

running processes. The main features of TWRS are:

Reducing greedy behavior of processes:

o TWRS reduces greedy behavior of processes by adjusting the weights of 

sibling threads, and

o gives the processes with fewer threads more chance of getting CPU usage by 

reducing the deduction of CPU usage from the processes with fewer threads in 

favor of process with more threads. 

Improving scheduling criteria:

o TWRS improves scheduling criteria (i.e., waiting time and turnaround time)

by assigning new timeslices to running threads. 

Preserving performance:

o TWRS works in concert with existing scheduler taking into account other 

system criteria, such as execution time, operations per second and others. 

3.4.3 TWRS and Thread Allocation of CPU Time

Each thread i is assigned a weight w . The share of the thread in time interval

[t , t ] is a ratio of its weight to the sum of weights of all active threads in the run 

queue. This is denoted as: 

1 2 2 1( , ) ( ). (3.1)i
i

jj R

wShare t t t t
w

where R is the set of all threads that are currently in run queue of a core. w is the 

weight of the thread. 

The timeslice that a thread i should receive in a period of time is given by: 
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(3.2)i islice share period
where period is the time quantum the scheduler tries to execute all threads.

If the number of threads does not exceed 

_ _
_

sched latency ns
sched_min_granularity ns

then

_ _period sched latency ns
otherwise,

_ _ _
_

period number of running tasks
sched_min_granularity ns  

where sched_min_granularity_ns is a scheduler tuneable, this tuneable decides the 

minimum time a thread will be allowed to run on CPU before being preempted out. 

sched_latency_ns is a scheduler tuneable. sched_latency_ns and 

sched_min_granularity_ns decide the scheduler period. 

TWRS counts the number of total threads in the CPU and the number of sibling 

threads. Weights of the threads will be changed according to the next equation:

, , ,

,

( ) ( )
( ( _ ) ( _ )) (3.3)

i j k j k

k j k

weight thread weight process
processor No threads process No threads  

where weight(thread , , ) is the weight of thread i which forked from process j in 

processor k , weight(process , ) is the weight of process j in processor k ,  

processor (No_threads) is the number of all threads in processor k , and

process , (No_threads) is the number of threads of process j in processor k  

3.4.4 The TWRS’s Consideration

TWRS scheduling algorithm can be briefly described in the following steps: 
1. Keep the order of processes according to CFS Red-Black tree.

2. If the ready queue is not empty, implement the equations to determine 

the weights.

3. Run each process for the calculated timeslice in one period.

4. In next period, calculate new weights and timeslices. 
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5. Repeat the step 3 till there are no processes waiting in the ready queue.

3.5 Experimental Setup
This section presents the underlying platform, software, and scheduling modes 

used in the experiments.

3.5.1 Underlying Platform
TWRS can be easily integrated with an existing scheduler based on per-CPU run 

queues. A TWRS prototype was implemented in Linux version 2.6.24 which based on 

CFS. The specification of the experimental platform is shown in Table 3.1.

Table 3.1. Specification of the experimental platform.

H/W
Processor Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz 
CPU cores 1
Memory 8186756 kb 

S/W 
Kernel name Linux

Kernel version 
number 

2.6.24

Machine 
hardware name 

x86_64 (64 bit)

version of 
Linux 

CentOS release 5.10 (Final) 

3.5.2 Software for Test 
Three types of software were used in the experimental test: 

I. OpenMP API
o OpenMP is an implementation of multithreading, a method of parallelizing 

whereby a master thread forks a specified number of slave threads and a task 

is divided among them. The threads then run concurrently, with the runtime 

environment allocating threads to different processors. Each thread has 

an ID attached to it which can be obtained using a function 

called omp_get_thread_num().

o The (#pragma omp parallel) is used to fork additional threads to carry out the 

work enclosed in the construct in parallel [13].

II. Scientific Benchmark
o This is a multithreaded scientific benchmark, Pi program to calculate 

50,000,000 decimal digits using Chudnovsky Formula [17].
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III. SysBench Benchmark
o SysBench [48] provides benchmarking capabilities towards Linux. It supports

testing CPU, memory, file I/O, mutex performance and even MySQL. 

o The idea of this benchmark suite is to quickly get an impression about system 

performance. Current features allow testing the following system parameters:

Memory allocation and transfer speed 

Mutex performance 

Scheduler performance 

CPU performance 

File I/O performance 

Database server performance

3.5.3 Scheduling Modes 
To assess the performance of the modified kernel, the experiment was employed

with three multithreaded processes (Pi) and SysBench benchmark. Forking threads is 

implemented by using OpenMP. The processes run under two distinct scheduling 

modes: (1) The default scheduling in the Linux kernel, the proportional thread-fair 

scheduler chosen in the evaluations is the default Linux scheduler (CFS), and (2) The 

TWRS-augmented kernel.  

In the default scheduling mode, the processes run on the original OS where the 

scheduler is allowed to make scheduling decisions. No extra parameter is given to the 

scheduler to change its native scheduling algorithm. The second mode is 

accomplished in the new modified kernel, where the scheduler operates on the new 

scheduling policy to give new timeslices to running threads.

3.6 Evaluation
As a proof of concept, two tests were carried out. The first test is to evaluate 

greedy behavior, it is used to quantitatively measure the usage of CPU received by 

concurrently running processes, and to evaluate scheduling criteria. The second test is 

used to evaluate the performance of TWRS.

TWRS was evaluated in two major scenarios, S0 for evaluating reducing greedy

behavior of running processes, and scheduling criteria (i.e., waiting time and 
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turnaround time), and S1 for evaluating performance in each mode. The following 

tests were conducted with no other computation intensive applications running.

3.6.1 Greedy Evaluation 
In greedy test, three instances of the same Pi program were executed concurrently 

to calculate 50,000,000 decimal digits using Chudnovsky Formula. To demonstrate 

the effectiveness of TWRS, some experimental data is presented for quantitatively 

comparing TWRS performance against CFS considered on different combinations of

number of threads as explained in Table 3.2.

Table 3.2. Scenario S0 for greedy evaluation. 

S0 No. of threads
in process (A)

“Pi”

No. of threads
in process (B)

“Pi”

No. of threads
in process (C)

“Pi”
1 8 10

20
30
40
50

o In S0, three executing instances (A, B, and C) of the same program Pi were 

executed concurrently. Two processes, A and B, with fixed numbers of 

threads, 1 and 8 respectively, and process C varies from 10 to 50 threads. All

processes were initiated at the same time through a shell script where these 

processes were executed with the same nice value 0. This test was repeated 

fifty times and the average values were taken.

o When comparing the results represented in each group by the graphs in figures

3.3 and 3.4, it is observed that process C with more threads under CFS 

receives more CPU usage compared to TWRS, and processes A and B with 

fewer threads under TWRS receive more CPU usage compared to CFS.
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Figure 3.3. Five groups of three processes with different numbers of threads ((1,8,10), 

(1,8,20),….,(1,8,50)) run concurrently under CFS. 

Figure 3.4. Five groups of three processes with different numbers of threads ((1,8,10), 
(1,8,20),….,(1,8,50)) run concurrently under TWRS.

In what follows, the following terminology list was used to measure greedy: 

o CPUU (X) is the CPU usage of process X in group 1. 

o G (Z, Y) is the gap of CPU usage in group 1 between process Z  and Y ,

G (Z, Y) = CPUU (Z) CPUU (Y).

The difference of CPU usage between running processes in every group were 

calculated under each scheduling mode, the default scheduling and the modified one. 

Figure 3.5 shows that TWRS reduces the CPU usage gap between multithreaded 

processes in each group. 
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Figure 3.5. CPU usage gap comparison between processes in each group under TWRS and CFS.

3.6.2 Scheduling Criteria Evaluation
This subsection shows the contribution of adjusting the weights in maximizing the 

CPU utilization by minimizing waiting time and turnaround time. The average 

waiting time and turnaround time were analyzed when running the processes in S0. 

Figures 3.6  and 3.7 show that TWRS reduces the average waiting time and average 

turnaround time respectively. 

Figure 3.6. Average waiting time comparison of running processes in each group under TWRS and 
CFS. 
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Figure 3.7. Average turnaround time comparison of running processes in each group under TWRS and 
CFS. 

3.6.3 Performance Evaluation 
This subsection evaluates TWRS’s performance by showing that it enables 

slightly higher performance, or at least similar to that of unmodified Linux 2.6.24. 

Table 3.3 describes the benchmarks used in evaluating the performance.

Table 3.3. Benchmarks.

memory This test was written to emulate memory allocation and transfer speed. This 
benchmark application will allocate a memory buffer and then read or write 
from it.

mutex This test mode was written to emulate a situation when all threads run 
concurrently most of the time, acquiring the mutex lock only for a short 
period of time. The purpose of this benchmarks is to examine the 
performance of mutex 

threads This test mode was written to benchmark scheduler performance, more 
specifically the cases when a scheduler has a large number of threads 
competing for some set of mutexes. 

cpu In this mode, each request performs calculation of prime numbers up to a 
value specified by the --cpu-max-primes option. 

fileio This test mode can be used to produce various kinds of file I/O workloads. At 
the prepare stage SysBench creates a specified number of files with a 
specified total size, then at the run stage, each thread performs specified I/O 
operations on this set of files. 

oltp This test mode was written to benchmark a real database performance. At the 
prepare stage a table is created in the specified database. 

Table 3.4 describes the second scenario used in the second test. This test ran 

single-thread process, process with 8 threads, and process with more number of 

threads (e.g. 20 threads), and each test in SysBench run with an arbitrary number of 

threads (e.g. 100 threads). 
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Table 3.4. Scenario S1 for performance evaluation. 

S1 No. of threads 
in fixed 
program

“Pi”

No. of threads 
in fixed 
program

“Pi”

No. of threads 
in fixed 
program

“Pi”

6 Benchmark
programs:

memory, mutex, threads, cpu, fileio 
and oltp

1 8 20 100 threads for each

o In S1, three instances of the same program Pi were executed concurrently, 

each instance has a fixed number of threads. Moreover, six benchmarks were 

executed to measure the TWRS’s performance. All processes were initiated at 

the same time through a shell script where these processes were executed with 

the same nice value 0. Table 3.5 shows the results of CFS and TWRS. All the 

benchmarks achieve nearly identical performance under unmodified Linux and 

TWRS, demonstrating that TWRS achieves slightly higher performance.

Table 3.5. TWRS vs. CFS performance result.

Performance Metric CFS TWRS Improvement
Memory allocation
and transfer speed

operations per second 
(ops/sec)
(greater value is better)

399412.78 399495.34 0.02%

Mutex 
performance 

time (sec)
(smaller value is better) 

1.8899 1.8889 0.05%

Scheduler 
performance 

time per request (sec)
(smaller value is better) 

29.4553 28.59 2.94%

CPU performance total time (sec) 
(smaller value is better) 

29.5 28 5.08%

file I/O 
performance 

transferred data per 
second (kb/sec)
(greater value is better)

7.5 7.9 5.33%

Database server 
performance 

transactions per second
(trs/sec)
(greater value is better)

680.41 700 2.88%

3.7 Discussion
CFS does not control greedy behavior of multithreaded processes, and all threads 

receive same amount of CPU time. PFS, TFPS and TWRS solve the greedy issue. PFS 

assigns the same amount of CPU time to all processes regardless the number of 

threads, and considers the number of threads in each process not in all processes. On 

the other hand, TFPS assigns CPU time slice to processes depending on the number of 

cores not all running threads in all processes. The main advantages of TWRS are: It 

gives single-thread process a chance to get more CPU usage, reduces the gap of CPU 
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usage between running processes, and considers the number of all running threads in 

the processor. 
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CHAPTER 4:
Global Fairness

This chapter summarizes the shortcoming of current Linux scheduler. Current Linux 

scheduler can not solve load imbalance in some cases, and therefore, processes

running in the less loaded core run more than expected relatively to other running 

processes in the more loaded core. This shortcoming is illustrated through an

illustrative example. The chapter discusses some of related researches. Then, it 

proposes a modified thread migration to overcome this shortage, describing the 

mechanism of the proposed scheduler. The chapter compares the CPU time assigned 

to the running processes, average waiting time, average turnaround time, and 

performance of the proposed scheduler versus current Linux scheduler. 

Chapter organization: Section 4.1 describes the motivation. In Section 4.2, the 

problem statement is defined. Related research is discussed in Section 4.3. In Section 

4.4, the proposed scheduler is presented. Experimental setup is discussed in Section 

4.5. Section 4.6 evaluates the proposed scheduler. Discussion is stated in Section 4.7.

4.1 Motivation
Multicore commodity processors have emerged and are currently the mainstream 

of general purpose computing [40]. CMPs have emerged as the widespread 

architecture choice for modern computing platforms [54]. It is expected that the 

degree of on-chip parallelism will significantly increase and processors will contain 

tens and even hundreds of cores [9, 22]. CMP executes multiple threads in parallel 

across the multiple cores [15, 46]. The scheduling criteria must be considered when 

designing OS scheduler for the purpose of achieving some performance goal(s), such 

as achieving better fairness, maximizing throughput, minimizing communication 

delays, minimizing execution time, maximizing resource utilization, and/or others, 

depending on the purpose of designing the OS [31, 32, 45]. Fairness acquired the 

maximum importance when designing the scheduler, and many of scheduling 

algorithms have been studied in order to attain accurate fairness. This can be done by 

minimizing the gap between their proposed one and the ideal algorithm (i.e., GPS) 

[28, 35]. Linux 2.6.23 kernel release introduced the first fair scheduler implemented 

in GPOS to replace earlier RR mechanism. The key idea behind CFS is to assign a 
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specific weight to a process and provide it with a CPU time proportionally to its 

weight [23]. CFS does not ensure accurate global fairness for multicore system. CFS 

endeavors to alleviate this problem by balancing the load among cores, but load 

imbalance is not avoidable in real world applications. From the view of global 

fairness between cores, CFS fails to devote CPU time to processes proportionally to 

their weights [24].

4.2 Problem Statement
This section discusses the problem statement. Subsection 4.2.1 elaborates the 

migration mechanism of the current scheduler. Subsection 4.2.2 illustrates the 

problem with example.

4.2.1 CFS Migration Mechanism

The migration in CFS is handled across cores via its load balancing mechanism 

[24]. Unfortunately, when migration is triggered in multicore system, fairness is not 

guaranteed. The following discussion summarizes the most important aspects of this 

scheme. The CFS defines the load of a core’s run queue, Q , as:

( ) (4.1)
i k

k i
S

Load W  

where S  is the set of processes in Q , and W( ) is the weight of process . There 

are two cases to trigger load balancing, when a run queue becomes empty or at 

predefined time intervals. The key idea of the load balancing is moving processes 

from the busiest run queue (Q ) to Q , and the amount of load to be moved is 

defined as:

( ( , ); ) (4.2)imbal busiest avg avg kLoad min min Load Load Load Load

where Load is an average system load, and Load is the load of Q , the 

migration is only triggered if 

( ( )) / 2 (4.3)
i busiest

imbal iS
Load min W  

where S  is the set of processes in Q .

The time share S of a process i running on a certain core is calculated as: 
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where n is the nice value of process i and N is the total number of running processes

in the core. It is worth noting that the time share of a particular process is calculated 

relatively to the nice values of all processes currently assigned to execute at the same 

core [20].

4.2.2 Illustrative Example

It is observed from the motivating example shown in Figure 4.1 that CFS fails to 

achieve fairness in a multicore system. In this example, five processes are running on 

two cores. Their nice values and weights are specified on the top of the figure. By 

following CFS’s allocation mechanism, it allocates a process on the core with smallest 

weights. In this example, T1 which has a weight equals to 1024 is assigned on either 

one of the cores and the remaining processes are on the other, where the weight of 

each of them is 335.

 
Figure 4.1. Five CPU-intensive processes are running on two cores.

 
According to their weight difference, it is supposed that T1 should run for about

3.06 times longer. By considering the mentioned equations, the load imbalance in this

example is not large enough (the imbalance is 158 and it needs to be at least

335/2=167.5 to trigger the balancing), and therefore, all the processes remain running 
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on the same cores. Therefore, The weights of run queues of core1 and core2 are 1024 

and 1340 respectively, and remain constant during any time interval. This leads to that 

T1 will run for four times longer than processes T2 to T5. This is considered as an 

unfairness matter from the view of multicore system.

4.3 Related Research
PSS has its roots in OSs. This section discusses prior designs.

4.3.1 Generalized Processor Sharing  

GPS [28, 35] is an idealized scheduling algorithm that achieves perfect fairness, 

and all schedulers use it as a reference to measure fairness. Its model can be 

summarized as follows: consider a system with P CPUs and N threads. Each thread 

i, 1 i N, has a weight w . A scheduler is perfectly fair if it allocates CPU time 

to threads in exact proportion to their weights. Such a scheduler is commonly referred 

to as GPS. Let S (t , t ) be the amount of CPU time that thread i receives in interval 

[t , t ]. A GPS scheduler is defined as follows:

o If both threads i and j are continuously runnable with fixed weights in [t , t ], 

then GPS satisfies

1 2

1 2

( , )
( , )

i i

j j

S t t w
S t t w

 

o During the interval [t , t ], if the set of runnable threads, X, and their weights 

remain unchanged, then, for any thread i¸ GPS satisfies 

1 2 2 1( , ) ( , )i
i

j
j X

wS t t t t P
w

4.3.2 Lag-Based Algorithm
Ok et al. [34] proposed a lag-based load balancing scheme to guarantee global 

fairness in Linux-based multiprocessor systems. The fairness across multiple 

processors is provided through this approach and the notion of lag is introduced. 

When task  is not scheduled during time T , the lag of task will increase by the 

amount of lag .

i
i i

jj

Weightlag T N
Weight
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where Weight is the weight of task ,  is the set of all the runnable tasks in the 

entire system, and N is the number of CPUs. As the average load of the entire system 

is

,
jj

Weight
Average Load

N
 

lag can also be defined as below. 

i
i i

Weightlag T
Average Load

Let laxity denote the remaining time until task exceeds a certain specified lag 

bound without being scheduled. The laxity for any task is defined by

i
i

i

lag bound laglaxity
lag  

 
Whenever the Linux kernel makes a scheduling decision for each run queue, the 

proposed algorithm inspects if there exist more than one task that will have zero laxity

at some identical time point. If found, only one of those tasks remains in the original 

run queue and other tasks are moved to less loaded run queues. 

4.3.3 Progress Balancing Algorithm

Huh and Hong [23] proposed progress balancing algorithm for achieving 

multicore fairness. It works together with a per-core fair-share scheduling algorithm 

and runs periodically. Specifically, at every balancing period, it partitions tasks into 

the same number of task groups as the number of CPU cores in a system and shuffles 

the tasks to ensure that tasks with larger virtual run times run at a slower pace until the 

subsequent balancing period. Progress balancing periodically distributes tasks among 

cores to directly balance the progress of tasks by bounding their virtual run time 

differences. In doing so, it partitions runnable tasks into task groups and allocates 

them onto cores so that tasks with larger virtual runtimes run on a core with a larger 

load and thus proceed more slowly.

4.3.4 Virtual Runtime-Based Algorithm
Huh et al. [24] proposed a virtual runtime-based task migration algorithm that 

bounds the virtual runtime difference between any pair of tasks running on two cores. 
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The authors have also formally analyzed the behavior of the Linux CFS to precisely 

characterize the reason why it fails to achieve the fairness in a multicore system. Their 

algorithm consists of two sub-algorithms: (1) Partition, which partitions tasks into two 

groups depending on their virtual runtimes and (2) Migrate, which allocates the 

partitioned groups to dedicated cores while minimizing the number of task migrations. 

The authors also proved that their algorithm bounds the maximum virtual runtime 

difference between any pair of tasks.

4.4 Proposed Scheduler
To solve fairness issue, alternatives to the CFS migration scheme are proposed in 

this work to enable most processes to attain CPU time proportional to their weights 

and the weights of all running processes in all cores during time interval. 

It is noticed from equation 4.2 that Load depends on the load average,

Load , of all cores in the system, however, the CPU time assigned to each process, 

which calculated from equation 4.4, is considered per core and does not consider the 

total load of all cores. This leads to unfairness during time interval in a multicore 

system. 

This section proposes a modification of CFS’s migration mechanism to 

approximate GPS fairness. The proposed migration mechanism depends on the 

number of running processes on all cores. This algorithm classifies cores as light or 

heavy depending on the load of cores. The core with the more load is considered as 

heavy core and the core with less load is light. The proposed scheduler falls under the 

push migration approach to load balancing. The main features of the proposed 

scheduler are: 

o the proposed algorithm pursues CFS’s assignment of the processes in the first 

period;

o the difference between number of running processes in heavy and light cores 

must be greater than one ((nr_running[heavy] – nr_running[light]) > 1);

o the proposed algorithm prioritizes the CFS’s migration mechanism;
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o migrates the process with the smallest weight (it is called the shuttle process) 

from the heavy core to the light one in the second period and runs for one 

period; and

o the shuttle process is returned back to its original core (heavy) in the next 

period and run for one period, and so forth.

An additional flag is added to the process structure. The flag indicates whether the 

process is a shuttle and where it exists (e.g. in the light core or in the heavy core). 

When the processes are submitted for execution in the multicore environment, the 

flags are assigned to zero. The first assignment pursues the CFS’s assignment. The 

proposed mechanism starts after the first period, and determines the heavy and light 

cores. As mentioned in Subsection 2.8.1, the three phases of the mechanism is as 

follows.

1. Condition phase: 
o Number of processes running in the heavy core must be greater than the 

number in light one by at least two. 

o According to equations 4.1, 4.2 and 4.3, proposed algorithm determines 

whether the load imbalance found or not.

2. Decision phase:
o If a load to be transferred is found in the condition phase, the amount of the 

load to be transferred depends on CFS’s migration mechanism.

o Otherwise, the amount of load to be transferred is only one process with the 

least weight (shuttle process) in the heavy core. 

3. Positioning phase:
o The flag determines to which core the shuttle process should be moved. If it is 

0, then the shuttle process is in the heavy core and should be moved to the 

light one,

o and if it is one, the shuttle process is in the light and should be moved to heavy 

(original core). 

The previous phases still continue until the run queue becomes empty. Figure 4.2 

summarizes this algorithm in a flowchart.
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Figure 4.2. Flowchart of proposed scheduler.

4.5 Experimental Setup
This section presents the underlying platform, software, and scheduling modes 

used in the experiments. 

4.5.1 Underlying Platform
Proposed scheduler can be easily integrated with an existing scheduler based on 

per-CPU run queues. The algorithm was implemented in the Linux kernel 2.6.24 

which is based on CFS. The specification of our experimental platform is shown in 

Table 4.1. 



Global	Fairness Chapter	4

74

Table 4.1. Specification of the experimental platform.
H/W

Processor Intel(R) Core(TM)2 Duo CPU T7250 @ 2.00GHz 
CPU cores 2
Memory 2565424 kb 

S/W 
Kernel name Linux

Kernel version number 2.6.24 
Machine hardware name x86_64 (64 bit)

Version of Linux CentOS release 5.10 (Final)

4.5.2 Software for Test 
Five multithreaded scientific benchmark, Pi, were executed in two cores 

concurrently. T1 with weight 1024 in core 1, and four processes each of them with 

335 of weight in core 2.

4.5.3 Scheduling Modes 
The processes run under two distinct scheduling modes: (1) The default 

scheduling in the Linux kernel, and (2) The proposed scheduler. In the default 

scheduling mode, the processes run on the original OS where the scheduler is allowed 

to make scheduling decisions. No extra parameter is given to the scheduler to change 

its native scheduling algorithm. The second mode is accomplished in the new 

modified kernel, where the scheduler implements the modified migration mechanism.

4.6 Evaluation
This section presents evaluation result for the proposed scheduler to demonstrate 

its effectiveness. As a proof of concept, two tests were carried out. The first test is to 

evaluate closeness to the ideal scheduler. The second test is used to evaluate the

performance of the proposed scheduler.

4.6.1 Idealism Evaluation 
Two metrics are used in this work to evaluate the closeness to idealism; the actual

runtime assigned to each process after executing for a specific time (e.g. 200ms)

compared to the ideal runtime that would have been given to the process under GPS, 

and lag difference between the GPS and the compared algorithms (proposed and 

CFS). The experiments were repeated fifty times and show the results in terms of the 

average of CPU time, lag measurements, and percentage error. Figures 4.3, 4.4 and 

4.5 show that the proposed algorithm is closer to ideal one. 
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Figure 4.3. Comparing the CPU time when running five Pi processes relatively to GPS.

Figure 4.4. Lag differences between (CFS, GPS) vs. (proposed, GPS). 

Figure 4.5. Percentage error between (CFS, GPS) vs. (proposed, GPS).
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4.6.2 Scheduling Criteria Evaluation
This subsection shows the contribution of thread migration mechanism in 

maximizing the CPU utilization by minimizing waiting time and turnaround time.

Figures 4.6 and 4.7 shows that the proposed scheduler reduces average waiting time 

and average turnaround time respectively.

Figure 4.6. Average waiting time comparison of running processes under Proposed and CFS. 

Figure 4.7. Average turnaround time comparison of running under Proposed and CFS. 

4.6.3 Performance Evaluation 
This subsection evaluates the performance of the proposed scheduler by showing 

that it enables higher performance, or at least similar to that of unmodified Linux 

2.6.24. The benchmarks described in Table 3.3 were used in this test to evaluate the 

overall performance of the proposed scheduler.



Global	Fairness Chapter	4

77

Table 4.2. shows our results for CFS vs. the proposed scheduler. All the 

benchmarks achieve nearly identical performance under unmodified Linux and the 

proposed, demonstrating that our scheduler achieves slightly higher performance.

Table 4.2. Proposed vs. CFS performance result. 

Performance Metric CFS Proposed Improvement 
Memory 

allocation and 
transfer speed

operations per second
(ops/sec) 
(greater value is better)

399525.78 399608.34 0.021%

Mutex 
performance

time (sec)
(smaller value is better) 2.2909 2.2899 0.044%

Scheduler 
performance

time per request (sec)
(smaller value is better) 40.4553 39.59 2.139%

CPU 
performance

total time (sec)
(smaller value is better) 30.8 29.3 4.870%

file I/O 
performance

transferred data per 
second (kb/sec)
(greater value is better)

8.8 9.2 4.545%

Database 
server 

performance

transactions per second
(trs/sec) 
(greater value is better)

757.41 777 2.586%

4.6.4 Analytical Results 

This subsection analyzes formally the properties of our scheduler. As mentioned 

in the problem statement section, processes running in the light core run more than 

expected relatively to other running processes in the heavy core. The main idea to 

help solving this problem is increasing the CPU time for most processes running in 

heavy core, and decreasing it for processes in light core to be closer to GPS than CFS.

The notation is summarized in Table 4.3. 

Table 4.3. Notation summary.

Item Description
TS , [ ] The timeslice of process which running in heavy core 

under CFS
TS , [ ] The timeslice of process  in heavy core under proposed 

scheduler
TS , [ ] The timeslice of process running in light core under CFS
TS , [ ] The timeslice of process in light core under proposed 

scheduler
N Number of periods  
T The length of the period
w  The weight of the shuttle process (w > 0)

The set of running processes in the heavy core 
 The set of running processes in the light core
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Lemma: Under the proposed scheduler, for any set of running processes in the heavy 

and light cores, then

, [ ] , [ ]

, [ ] , [ ]

i i

l l

CFS heavy proposed heavy

CFS light proposed light

TS TS

and
TS TS

Proof. Induction is employed. Suppose that the processes are running for N periods. 

According to the proposed scheduler, the migration of shuttle process will occur N 2

times.

Under CFS: 
o In the heavy core, the CPU time of process  is defined as:

, [ ]

( ) ( )
2 2

i

i
C F S heavy

j
j

i i

j j
j j

wT S N T
w
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o In the light core, the CPU time of process is defined as:

, [ ]

( ) ( )
2 2

l

l
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Under proposed scheduler:
o In the heavy core: 

, [ ]

( ) ( )
2 2

i p ro p o sed hea vy

i i

j s h ut tle j
j j
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o In the light core: 

, [ ]

( ) ( )
2 2

l p r o p o s e d l ig h t

l l

k s h u t tle k
k k

T S
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o It is assumptive that: 

( ) ( )
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j j
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w w w

and
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( ) ( )
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j sh u tt le j
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From previous inequalities, the CPU time of processes in the heavy core under 

proposed scheduler is greater than CPU time of processes in the heavy core under 

CFS, and the CPU time of processes in the light core under proposed scheduler is less 

than CPU time of processes in the light core under CFS.

Therefore, the lemma holds. 

4.7 Discussion
The proposed scheduler in this chapter overcomes the disadvantages of previous 

algorithms. CFS assigns the CPU time to each process and does not consider the total 

load of all cores when assigning the CPU time to each process, however, the proposed 

scheduler does. The proposed scheduler takes into account the ratio of CPU times 

assigned to running processes proportional to their weight differences, however, Lag-

Based, Progress Balancing, and Virtual Runtime-Based Algorithms do not. 
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CHAPTER 5:
VM Fairness

This chapter summarizes the shortcoming of the current scheduler when running VMs. 

The problem statement is divided into two parts, fairness and pricing. The problem 

statement is illustrated through experimental tests thus exposing its drawbacks. Then, 

the chapter proposes a modified scheduler to overcome this shortage. The chapter

discusses the mechanism of the proposed scheduler. It compares the CPU usage 

assigned to the running VMs, and execution times of the running processes in the 

VMs when assigning different values of weights to VMs.

Chapter organization: Section 5.1 describes the motivation. In Section 5.2, the 

problem statement is defined. In Section 5.3, the proposed scheduler is presented. 

Experimental setup is discussed in Section 5.4. Section 5.5 evaluates the proposed 

scheduler. Discussion is stated in Section 5.6. 

5.1 Motivation
VMs are really host OS applications. Since each VM is a process in the host OS, it 

is subject to the host OS scheduling algorithm. Therefore, all VMs that are running 

will be scheduled like normal applications. The main benefit of VMM is normally 

allowing a system manager to configure the environment in which a VM will run [26, 

27, 53]. Therefore, VMs can have configurations different from those of the real 

machine. Sharing CPU resources between VMs is done by Time Multiplexing, as 

shown in Figure 5.1. VM is allowed direct access to resource (e.g., CPU resource) for 

a period of time before being context switched to another VM.

 
Figure 5.1. Sharing CPU resources between VMs. 

In VM environment, VMs are available for purchase, each with their own varying 

levels of services and fees [3]. Current VM schedulers should grant user who pays 

amount of fee the services s/he wants. One important concept found in most 
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virtualization options is the implementation of a VCPU. The VCPU does not execute 

code. Rather, it represents the state of the CPU as the guest machine believes it to be. 

For each guest, the VMM maintains a VCPU representing the guest’s current CPU 

state. When the guest is context switched onto a CPU, information from the VCPU is 

used to load the right context, much as a GPOS would use the PCB. 

For virtualized systems, such as a public cloud, fairness between tenants and the 

efficiency of running their applications are keys to success [38]. To enforce fairness 

between VMs, Linux scheduler assigns equal shares to individual VMs and the shares 

are further evenly distributed to running threads. Thus, VMs with a smaller number of 

threads will receive a larger per-thread share. When a thread finishes running, its 

share is updated based on how long it ran on the PCPU. 

Current Linux scheduler requires that the aggregate CPU allocation to all threads 

of a VM be proportional to its weight [16, 50] in competition with other VMs sharing 

the same set of pCPUs. If all VMs have the same weight, each VM should receive the 

same amount of CPU time no matter how many threads a VM has. This leads to that 

the existing virtualization platforms fail to enforce fairness between VMs with 

different number of running threads. The host scheduler’s unawareness about the 

attributes (e.g. weight and number of threads) of the running processes in VMs causes 

the unfairness.

5.2 Problem Statement 
The problem statement is divided into two parts, fairness and pricing.

5.2.1 Fairness
Current host scheduler does not guarantee fairness between VMs because: 

 It does not take into consideration the attributes of the running processes in the 

VM.

 Therefore, it gives all the running VMs the same amount of CPU usage 

regardless the attributes of the running processes in the VM.

To describe the problem statement, experiments were performed under two 

scenarios, S0 to run processes in one machine, and S1 to run in VM environment. In 

the experiments, two instances of the same program (i.e., –test=cpu) in SysBench 

benchmark were executed. Both programs were initiated at the same time through a 
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shell script, where these two programs were executed with the same nice value 0 in 

each scenario as described in Table 5.1.

Table 5.1. Two scenarios of problem statement.

S0: One Machine S1: VM Environment 
P_1 

(No. threads)
P_2 

(No. threads)
VM_1

(P_1, No. threads)
VM_2

(P_2, No. threads) 
S0.1 6 6 S1.1 6 6
S0.2 6 9 S1.2 6 9
 

S0 ran two concurrently executing instances of the same program, –test=cpu, in 
SysBench in the same machine under two sub scenarios as follows:

o In sub scenario S0.1, both programs have the same number of threads (i.e., 6 
threads). Program 1 (P_1) and program 2 (P_2) get same CPU usage. Figure
5.2 shows this result. The execution time of P_1 is similar to the execution 
time of P_2.

 

 
Figure 5.2. CPU usage when running two processes with same number of threads in one machine. 

o In sub scenario S0.2, P_1 has 6 threads, and P_2 has 9 threads. P_2 gets 
more CPU usage (i.e., 50%), and the program with 6 threads gets less CPU 
usage (i.e., 33%), as shown in Figure 5.3. The execution time of P_2 is less
than execution time of P_1. 

 
Figure 5.3. CPU usage when running two processes with different number of threads in one machine.
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 S1 ran two concurrently executing instances of the same program, –test=cpu, in 
VM environment under two sub scenarios as follows: 
o In sub scenario S1.1, program 1 runs in VM_1, and program 2 runs in 

VM_2, and both programs have the same number of threads (i.e., 6 threads). 
Each of VM_1 and VM_2 consumes the same amount of CPU usage, as 
shown in Figure 5.4. The time which VM_1 uses to execute its running 
program (P_1) is similar to the execution time of the running program (P_2) 
in VM_2.

Figure 5.4. CPU usage when running two processes with same number of threads in VMs
 

o In sub scenario S1.2,  program 1 has 6 threads and runs in VM_1, and 
program 2 has 9 threads and runs in VM_2. Each of VM_1 and VM_2 
consumes the same amount of CPU usage (i.e., 48%) as shown in Figure 5.5. 
The time which VM_1 uses to execute its running program (P_1) is less than 
the execution time of the running program (P_2) in VM_2.

 

Figure 5.5. CPU usage when running two processes with different number of threads in VMs.

Under the concept of multithreading, the derived results from previous 

experiments are well-known under the scheduling in the first scenario. The problem 

appears when running same experiments in VMs.
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5.2.2 Pricing
Creating a scheduling algorithm that captures the user's practical needs and 

requirements would be extremely useful in VM systems. The requirements vary from 

user to another, such that some users need to run their processes faster when 

submitting in VM environment to be executed. Unfortunately, current VM schedulers 

do not consider some demands (i.e., CPU usage) as services. Therefore, current 

pricing calculations do not consider CPU usage in their calculations. Integrating CPU 

usage in the pricing frame work serves both user and provider, user will benefit by 

receiving more CPU usage and therefore executes processes faster, and the provider 

will benefit by setting a new pricing rate which depends on the provided service.

5.3 Proposed Scheduler
Based on the discussion in the previous subsection, the host scheduler in the VM 

environment assigns the same CPU usage for all VMs regardless the number of 

running processes in each VM. To solve this problem, the current Linux scheduler

was augmented with an additional system call that allows the users to flexibly control 

the weight of each VM by setting it to any arbitrary value as described in Algorithm 1.

Algorithm 1 Customized Scheduler 
1.

 
Variables: the assigned weight of the ith VM is W ; the number of VMs is M; 
sched_min_granularity_ns is a scheduler tuneable, this tuneable decides the 
minimum time a thread will be allowed to run on CPU before being preempted 
out. sched_latency_ns is a scheduler tuneable. sched_latency_ns and
sched_min_granularity_ns decide the scheduler period. A period is the 
shortest time interval during which every VM in the system completes at least 
one of its CPU time. CPUT(VM ), CPU Time, is defined to be W. S, where W
is the VM’s weight and S is a timeslice, timeslice = period/M 

2. Procedure Customized(void) 
3.   For each period
4. If _ _

_ _ _
sched latency nsM

sched min granularity ns
5. Then 
6.  _ _sched latenp ceriod y ns
7. Else 
8.  _ _ _sched min granulaperiod ritM y ns
9. End if
10. For each VM
11. /*Use system call to assign weight of VMi (i.e., W )*/ 
12. 

( )i i
periodCPUT VM W

M
 

13. End for 
14. End for
15. End procedure 
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The user uses the system call to assign the weight’s value for the VM (line 11). 

The assigned CPU time for each VM is determined from the equation in line 12. This 

algorithm delegates the pricing calculations to the VM environment provider.

5.4 Experimental Setup
This section presents the underlying platform, environment, and scheduling modes 

used in the experiments.

5.4.1 Underlying Platform
Customized scheduler can be easily integrated with an existing scheduler based on 

per-CPU run queues. To demonstrate its efficacy, the customized scheduler was 

implemented in Linux version 2.6.24 which based on CFS. The specification of the

experimental platform is shown in Table 5.2.

Table 5.2. Specification of the experimental platform.

H/W 
Processor Intel(R) Core(TM)2 Duo CPU T7250 @ 2.00GHz
CPU cores 1
Memory 2565424 kb

S/W
Kernel name Linux 

Kernel version number 2.6.24
Machine hardware name x86_64 (64 bit)

version of Linux CentOS release 5.10 (Final)

5.4.2 Proposed Environment 

The host machine consists of VMs and the modified scheduler is integrated with 

the host kernel. Front End (client) accesses the host kernel in Back End (host 

machine) via SSH client software (e.g. MobaXterm). Figure 5.6 shows this 

environment.

Figure 5.6. The proposed environment 
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Client runs his VMs and has the ability to flexibly control the weights of these

VMs by setting them to any value.

5.4.3 Scheduling Modes 

As a proof of concept, an experiment was performed in one scenario, S1, because 

the problem appears in this scenario only. The weights of the VMs were changed and 

the test measured the CPU usage and execution time of running processes. Varied 

weights are assigned for VMs as shown in Table 5.3.

Table 5.3. S1 scenario under VM environment.

S1: VM Environment

VM_1 
(No. threads) Weight VM_2 

(No. threads) Weight  

6  1  6 1 
2 
3 
4 
5 

 In S1, process in VM_1 has 6 threads and its weight is 1, and process in VM_2
has 6 threads and its weight varies from 1 to 5. 

5.5 Evaluation
To demonstrate the effectiveness of the modification, some experimental data are

presented for quantitatively comparing its performance considered on different 

combinations of values of weights in scenario S1. This test was repeated fifty times 

and the results in terms of CPU usage and execution times are shown in figures 5.7

and 5.8. The two programs were run concurrently and the average values were taken

for 60 sec. 
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Figure 5.7. CPU usage in S1.

 
Figure 5.8. Execution time in S1. 

The results show a significant improvement in both execution time and allocating 

CPU sharing to VM proportional to its weight.

5.6 Discussion
Current scheduler in VM environment assigns the same amount of CPU time to all 

running VMs no matter how many threads a VM has. It is expected that some users 

need to execute their processes faster, this can be done by receiving more CPU usage. 

Unfortunately, Current VM schedulers do not consider some demands (i.e., CPU 

usage) as services. In this work, the current scheduler was augmented with an 

additional system call enabling the users to flexibly control the weight of each VM by 

setting it to any arbitrary value, and therefore receives more CPU usage. On the other 
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hand, the VM environment provider will benefit by setting a new pricing rate which 

depends on the provided service to the users. I did not find any research related to this 

matter, therefore, I claim that the proposed modification in this chapter is the first to 

promote this issue. 
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CHAPTER 6:
Conclusion and Future Works

The purpose of an OS is to share computational resources among competing users. 

Independent users submit processes with varying resource requirements. An OS is 

expected to schedule this unpredictable mixture of processes in such a manner that the 

resources are utilized efficiently.

OS provides an environment in which a user can execute programs in a convenient 

and efficient manner. The OS must ensure the correct operation of the computer 

system. I describe the basic computer architecture that makes it possible to write a 

correct OS. Task/process scheduling in OS acts the major factor in achieving desired 

criteria. In this research, I focused on changing the behavior of the current Linux 

scheduler by adjusting the weights of threads running in the same core for the purpose 

of improving the treatment of execution of running processes, modifying the thread 

migration for the purpose of improving the load balancing mechanism of CFS and in 

the same time preserving fairness and performance, and adding a new system call for 

the purpose of allowing the user to flexibly control the weight of the VM. 

Fairness acquired the maximum importance when designing the scheduler, and 

many of scheduling algorithms have been studied in order to attain accurate fairness.

Also, achieving scheduling criteria is an essential goal and important factor in 

designing scheduler. The definition of fairness depends on the environment in which 

the processes are running. Better treatment of running processes, scheduling criteria 

and fairness can be achieved via two approaches, adjusting weights of running 

processes and load balancing.

The experiments were carried out in general purpose platform because most 

computers in use today are general purpose computers and are designed to perform a 

wide variety of functions and operations. Simply by using a general purpose computer 

and different software, various tasks can be accomplished, including writing and 

editing (word processing), manipulating facts in a data base, making scientific 

calculations, and so on. Other types of computers (e.g. special purpose computer) are 

designed to be task specific and most of the times their job is to solve one particular 
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problem. They are also known as dedicated computers, because they are dedicated to 

perform a single task over and over again. I chose Linux as a test-bed OS because it is 

a widely used OS both in research and business uses. Although Linux was originally 

developed as a desktop OS experiment, it will be found on servers, mainframes, and 

supercomputers, and it is a free open source OS. It is possible to modify and create 

variations of the source code, known as distributions, for computers and other devices. 

The most common use is as a server, but Linux is also used in desktop computers, 

smartphones, e-book readers and gaming consoles, etc.

The work of this thesis is divided into three stages, the first stage is: Improving the 

treatment of the execution of running processes and achieving better scheduling 

criteria without causing defect on the performance and fairness. In some cases, the 

process will be executed only on a designated core/CPU rather than any core/CPU this 

is called Processor affinity, or CPU pinning. Therefore, the goal in the first stage can 

be done per core by adjusting the weights of running threads (called as local fairness).  

The second stage is: Improving load balancing between cores and achieving better 

scheduling criteria without causing defect on the performance and fairness. Multicore 

processors have emerged and are currently the mainstream of general purpose 

computing. Therefore, the goal in the second stage can be done between cores by

thread migration (called as global fairness). 

The last stage is: Enabling the user to flexibly control the weight of running VM.

VM has become a very promising paradigm for both consumers and providers in 

various fields of endeavor, such as business, science and others. Therefore, the goal in 

this stage can be done by adding system call to the scheduler (called as VM fairness). 

The goal in the first stage can be done for running processes by adjusting their

weights in each round. The proposed scheme adjusts the weights by implementing 

equations giving new weights and preventing any process from monopolizing the 

processor. This technique provided a significant improvement in the desired 

scheduling criteria and slightly higher performance, and it can be implemented in any 

OS.
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CFS does not ensure accurate global fairness for multicore system. From the view 

of global fairness between cores, CFS fails to devote CPU time to processes

proportionally to their weights. In the second stage, a novel load balancing 

mechanism is proposed to redistribute processes between cores in order to 

approximate accurate fairness presented by ideal scheduler, GPS. The proposed 

approach determines a specific process with the least weight in the heavy core (core 

with more load) to be transferred to the light core (core with less load), this process is 

called shuttle process and assigned a flag to enforce the transferring. The proposed 

scheduler was implemented under specific hardware platform. The derived results 

showed an improvement over current scheduler in terms of scheduling criteria and 

slightly higher performance.

The third stage showed that the current host scheduler assigns the same CPU 

usage for all VMs regardless the number of running processes in each VM. The

current Linux scheduler was augmented with an additional system call that enables

the user to flexibly control the weight of each VM by setting it to any arbitrary value. 

The results showed that allocating CPU sharing to VM proportion to its assigned 

weight serves the user to execute his submitted processes faster by controlling the 

weight of each VM by setting it to a desired value. The host provider will benefit by 

setting a new pricing rate. 

The future research directions includes the extension of the algorithm so that it 

can be applied to a general multicore environment with many cores, and modification 

of the algorithm so that it can reduce cache misses and number of context switches. 

Other criteria including energy consumption, carbon emissions, etc are also promising 

area of further improvements. Beside allowing the user to assign the weights to the 

running VM, it will be more useful if the kernel became able to change the weights of 

VMs dynamically according to their attributes. 
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