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Abstract

In recent years, computer technologies has been developed rapidly. In particular, devel-

opment of storage devices enables us to store large-scale data, and it has become popular

to discover new knowledge by processing text data, which is called text data mining.

However, mining from large-scale text data with realistic running time and working space

requires to perform basic string processing operations (e.g., reporting all occurrences of

a given pattern in a text) in efficient running time and working space. For this purpose,

studies of string processing algorithms has been developed in recent years. In this thesis,

we focus on data structures for string processing in compressed space for the following

basic string processing operations.

(1) A signature encoding [Mehlhorn et al., Algorithmica 17(2):183-198, 1997] of a

string T is an extended context free grammar representing the single T , which is deter-

mined by locally consistent parsing [Mehlhorn et al., Algorithmica 17(2):183-198, 1997].

Since it has many applications, it is important to update and construct efficiently signa-

ture encodings. We show that signature encodings can be updated in compressed space,

and also, let T be a dynamic string of current length N and maximal length Nmax (i.e,

N ≤ Nmax always holds), LZ77wo(T ) be the Lempel-Ziv77 (LZ77) factorization with-

out self reference of size z = |LZ77wo(T )| representing T , and S be an SLP of size n

generating T . Then, we show that the signature encoding G of size w for T can be con-

structed (i) in O(NfA) time and O(w) working space from T , (ii) in O(N) time and

working space from T , (iii) in O(zfA logN log∗Nmax) time and O(w) working space from

LZ77wo(T ), (iv) in O(nfA logN log∗Nmax) time and O(w) working space from S, and (v)

in O(n log log(n log∗Nmax) logN log∗Nmax) time and O(n log∗Nmax + w) working space

from S, where fA = O(min{ log logNmax log logw
log log logNmax

,
√

logw
log logw

}).
(2) A Longest Common Extension (LCE) query on a text T of length N asks for the

length of the longest common prefix of suffixes starting at given two positions. We show
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that the signature encoding G of a dynamic string T has a capability to support LCE

queries in O(logN + log ` log∗Nmax) time, where ` is the answer to the query, Nmax is

the maximal length of T . Since signature encodings can support update T and the size

w = O(min(z logN log∗Nmax, N) holds, This data structure is the first fully dynamic

LCE data structure working in compressed space, where z = |LZ77wo(T )|. On top of the

above contributions, we show several applications of our data structures which improve

previous best known results on grammar-compressed string processing.

(3) A find query on a text T asks for all occurrences positions of a given pattern P in

T . A data structure supporting find queries for T is called index for T . In this thesis, we

propose a new dynamic compressed index of O(w) space for a dynamic text T of current

length N and maximal length Nmax, where w = O(min(z logN log∗Nmax, N)) is the size

of the signature encoding of T and z = |LZ77wo(T )|. Our index supports find queries in T

in O(|P |fA+logw log |P | log∗Nmax(logN +log |P | log∗Nmax)+occ logN) time and inser-

tion/deletion of a substring of length y in O((y + logN log∗Nmax) logw logN log∗Nmax)

time, where occ is the number of occurrences of P in T . We also propose a new space-

efficient LZ77 factorization algorithm for a given text of length N , which runs in O(NfA+

z logw log3N(log∗N)2) time with O(w) working space.

(4) A dictionary matching query on a set of patterns (dictionary) Π asks for all oc-

currences positions of patterns in Π in a text T given in a streaming fashion. We address

a variant of the dictionary matching problem where the dictionary is represented by an

SLP. For a given SLP-compressed dictionary Π of size n and height h representing m

patterns of total length N , we present an O(n2 logN)-size representation of Aho-Corasick

automaton which recognizes all occurrences of the patterns in Π in amortized O(h + m)

running time per character, where m = |Π| and h is the height of the derivation tree

of the SLP representing Π. We also propose an algorithm to construct this compressed

Aho-Corasick automaton in O(n3 log n logN) time and O(n2 logN) space. In a spacial

case where Π represents only a single pattern, we present an O(n logN)-size represen-

tation of the Morris-Pratt automaton which permits us to find all occurrences of the

pattern in amortized O(h) running time per character, and we show how to construct this

representation in O(n3 log n logN) time with O(n2 logN) working space.
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Chapter 1

Introduction

In recent years, computer technologies has been developed rapidly. In particular, devel-

opment of storage devices enables us to store large-scale data, and it has become popular

to discover new knowledge by processing text data, which is called text data mining.

However, mining from large-scale text data with realistic running time and working space

requires to perform basic string processing operations (e.g., reporting all occurrences of

a given pattern in a text) in efficient running time and working space. For this purpose,

studies of string processing algorithms has been developed in recent years.

In this thesis, we focus on data structures for string processing in compressed space.

The ‘compressed space’ means that the size of data structure for a text T can be small

if we can represent T in small space. For example, Bille et al. proposed a data structure

of O(n) space for a straight line program (SLP in short) of size n which supports random

access queries [12], where an SLP is a context-free grammar in the Chomsky normal form

which generates a single string. This means that the size of the data structure is small

when the grammar size n is small compared to the original text length N It is well known

that outputs of various grammar-based compression algorithms (e.g., [49, 38]), as well as

those of dictionary-based compression algorithms (e.g., [66, 64, 65, 59]), can be regarded

as, or be quickly transformed to, SLPs [54]. This means that if we can efficiently compress

T by such grammar-based compression algorithms, we can construct the data structure

for T in small space. Hence this data structure is in compressed space.

A data structure for a text supporting pattern search queries, is called the text index.

For another example, Gagie et al. [23] proposed an index of O(z log logN) space for T of

length N which supports the searching for a given pattern in T , where z is the number

of factors in the LZ77 factorization [65] of T (we formally define LZ77 factorization later

1



CHAPTER 1. INTRODUCTION 2

in Definition 1). This means that the size of the index is small when z is small. Note

that the LZ77 factorization can represent T in O(z) space and z is very small when T is

a highly repetitive text. Hence this text index is in compressed space. In addition, there

exist many studies of compressed data structures for a text (e.g. [9, 32] for recent work).

Also, we consider dynamic data structures for string processing. The ‘dynamic data

structure’ means the data structure for a data supporting the update of the data. For

example, a dynamic index for a text T supports pattern search queries for T and up-

dating T . Note that such text(string), which allows to be updated, is called a dynamic

text(string).

In this thesis, a dynamic string T allows the following two update operations.

• INSERT (Y, i) : update T ← T [1..i−1]Y T [i..|T |] for a given string Y and an integer

i.

• DELETE (j, y) : update T ← T [1..j− 1]T [j + y..|T |] for two given integers j and y.

A static data structure for T can be the dynamic data structure by reconstructing

the data structure every time T is updated. However, the update of such data structure

is clearly inefficient when T is a large-scale text. Hence, it is important to develop an

efficient update algorithm for the data structure. There exist some studies on dynamic

data structures for dynamic text (or dynamic set of strings) (e.g. [4, 19, 48, 47] for recent

work).

In this thesis, we address some basic string processing problems and present a static

or dynamic data structures for these problems.

1.1 Signature Encoding

A signature encoding of a string T is an extended context free grammar generating T ,

which is determined by locally consistent parsing [44]. We formally define the signature

encoding later in Chapter 2.

The signature encoding is first proposed by Mehlhorn et al. [44] for equality testing

on a dynamic set of strings [44]. They also showed that signature encodings for strings

can be updated under concatenate/split update operations.

Signature encodings have many applications. Alstrup et al. used signature encodings

to present a pattern matching algorithm on a dynamic set of strings [4, 3]. In their papers,
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they also showed that signature encodings can support the longest common prefix (LCP)

and the longest common suffix (LCS) queries on a dynamic set of strings. We describe

the detail later in Chapter 5.

Sahinalp and Vishkin showed that the upper bound of the size of signature encodings

of a text T of length N is O(z logN log∗N) space, where z is the number of factors in the

LZ77 factorization of T [55]. This means that signature encodings can be used as data

compression.

Cormode and Muthukrishnan proposed a new data structure called the edit sensitive

parsing(ESP), which is an another version of signature encodings, and they showed it can

efficiently solve a special edit distance problem [16], and also, there exists a compressed

index called ESP-Index which uses ESP [60, 61]. We describe the detail of ESP-Index in

Chapter 5.

To use these applications of signature encodings efficiently, it is important to con-

sider efficient algorithms of construction of signature encodings. Hence we consider the

following construction problem for various inputs representing a text.

Problem 1 Construct the signature encoding of an input string T of length N represented

by a plain text T , an SLP S of size n, or the LZ77 factorization of size z.

Next, if we can update the signature encoding of a dynamic text efficiently, then we can

use these applications for dynamic texts. Hence it is also important to consider dynamic

data structures maintaining a signature encoding. We consider the following problem.

Problem 2 Construct a data structure supporting Expr(e) queries for a dynamic string

T of current length N and maximal length Nmax(i.e, N ≤ Nmax always holds), where

Expr(e) returns expr for a given variable e in the signature encoding G of T such that

e→ expr is in G.

Related work

We describe related work about the update problem of signature encodings. Mehlhorn

et al. [44] proposed the first data structure maintaining signature encodings on dynamic

strings. A dynamic strings Π ⊂ Σ∗ allows the following update operations.

• CONCAT (s1, s2) : update Π← Π ∪ {s1s2} for two given strings s1, s2 ∈ Π.
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• SPLIT (s, i) : update Π ← Π ∪ {s[1..i − 1], s[i..|s|]} for a given string s ∈ Π and a

given integer i.

• CHAR(c) : update Π← Π ∪ {c} for a given character c ∈ Σ.

Let NΠ
max be the maximal length of sum of string length in Π, i.e.

∑
s∈Π |s| ≤ NΠ

max

always holds. Alstrup et al. improved the data structure and update algorithms of

Mehlhorn et al. [4, 3]. Their data structure supports CONCAT and SPLIT operations

in O(µ(w,NΠ
max) logN ′ log∗NΠ

max) time, where N ′ is the maximal length in input strings

and created strings, w is the size of the signature encoding, and µ(a, b) is the time for

membership queries on a set of a integers from an b-element universe. Note that they did

not consider an update operation which removes a string from Π. Hence the size of their

data structure depends on the number of update operations.

Next we describe related work about the construction problem of signature encodings.

As already mentioned, Mehlhorn et al. proposed concatenation and split algorithms. We

can construct signature encodings by these algorithms. In addition to this, there exists a

few work of construction algorithms of ESP.

Cormode and Muthukrishnan proposed a construction algorihtm which outputs an

ESP of a single text T of length N for T in O(N log∗N) running time and O(N) space [16].

Goto et al. proposed a construction algorithm which outputs an ESP of T for a run-length

encoding text R representing T in O(N log∗N) running time [26]. They also proposed a

construction algorithm which outputs an ESP of T for an SLP of size n representing T in

O(n log2N +m) running time, where m is the size of the output ESP.

1.2 Dynamic Longest Common Extension Problem

A Longest Common Extension (LCE) query on a text T of length N asks to compute

the length of the longest common prefix of suffixes starting at given two positions. This

fundamental query appears at the heart of many string processing problems (see text

book [28] for example), and hence, efficient data structures to answer LCE queries gain a

great attention.

We consider a Dynamic LCE problem in the following description.

Problem 3 (Dynamic LCE) For a dynamic string T of current length N and maximal

length Nmax, construct a data structure which supports LCE queries on T .
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The above problem is called Static LCE problem if the data structure does not support

update operations of T .

We describe research history of the static LCE problem. A classic solution is to use a

data structure for lowest common ancestor queries [8] on the suffix tree of T . Although

this achieves constant query time, the Θ(|T |) space needed for the data structure is too

large to apply it to large scale data. Hence, recent work focuses on reducing space usage

at the expense of query time. For example, time-space trade-offs of LCE data structure

have been extensively studied [11, 62]. In [21], LCE data structures on edit sensitive

parsing, a variant of signature encoding, was used for sparse suffix sorting, but again,

they did not focus on working in compressed space.

Another direction to reduce space is to utilize a compressed structure of T , which

is advantageous when T is highly compressible. There are several LCE data structures

working on grammar-compressed string T represented by an SLP of size n. The best

known deterministic LCE data structure is due to I et al. [32], which supports LCE queries

in O(h logN) time, and occupies O(n2) space, where h is the height of the derivation tree

of a given SLP. Their data structure can be built in O(hn2) time directly from the SLP.

Bille et al. [10] showed a Monte Carlo randomized data structure which supports

LCE queries in O(logN log `) time, where ` is the output of the LCE query. Their data

structure requires only O(n) space, but requires O(N) time to construct. Very recently,

Bille et al. [9] showed a faster Monte Carlo randomized data structure of O(n) space which

supports LCE queries in O(logN + log2 `) time. The preprocessing time of this new data

structure is not given in [9]. Note that, given the LZ77-compression of size z of T , we can

convert it into an SLP of size n = O(z log N
z

) [54] and then apply the above results.

Very recently, a more faster LCE data structure is proposed by I [31]. His data

structure uses O(z log(N/z)) space and supports LCE queries in O(logN) deterministic

time, where z is the number of factors in LZ77 factorization of T . Note that z ≤ n holds

for an SLP of size n representing T [54].

Next, we describe research history of the dynamic LCE problem. To our knowl-

edge, data structures based on signature encodings (see Section 1.1) for a dynamic set

of strings proposed by Alstrup et al. is the first data structures which can answer effi-

ciently LCE queries on dynamic strings [4, 3]. Note that their data structures do not

support LCE queries directly, however, they support LCP queries and concatenate/split

update operations for dynamic strings. This means that they can answer LCE queries on
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a string T ∈ Π for dynamic strings Π using constant LCP queries and split operations

in O(µ(w,NΠ
max) logN log∗NΠ

max) deterministic time, where N = |T |, w is the size of the

signature encodings.

Very recently, Gawrychowski et al. improved the results by pursuing advantages of ran-

domized approach other than the hash table [25]. It should be noted that the algorithms

in [4, 3, 25] can support LCE queries in O(logN) time by combining split operations and

LCP queries although it also is not explicitly mentioned, where N is the length of the

handled dynamic string. However, [4, 3] and [25] do not focus on the fact that signature

encodings can work in compressed space, and also, their data structures do not consider

an update operation which removes a string from the dynamic strings. These mean that

the size of their data structures depends on the number of update operations.

1.3 Dynamic Index Problem

The dynamic text indexing problem is defined formally in the following description.

Problem 4 (Dynamic Text Indexing Problem) For a dynamic string T of current

length N and maximal length Nmax, construct an index which supports FIND(P ) queries,

where FIND(P ) returns all occurrences of a given pattern P in T .

The above problem is called the static text index problem if the index is not required to

support update operations of T.

We describe the research history of the text indexing problem. The static text index

problem is a classical problem in computer science and there exists some indexes in linear

space, i.e., suffix array [40], suffix tree [43], etc. However, these many classical indexes

are not compressed.

As the size of data is growing rapidly in the last decade, many recent studies have

focused on indexes working in compressed text space (see e.g. [22, 23, 15, 14]). However

they are static, i.e., they have to be reconstructed from scratch when the text is modified,

which makes difficult to apply them to a dynamic text.

The dynamic text index problem is also a classical problem. In 1994, the first dy-

namic index was proposed by Gu et al. [27]. Afterwards, many dynamic indexes was

proposed (see e.g. [56, 4, 19, 25] for recent work). Note that these dynamic indexes are

not compressed.
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There also exists a compressed version of dynamic text index as the static text index.

In 2004, Hon et al. [30] proposed the first dynamic compressed index of O(1
ε
(NH0 +N))

bits of space which supports FIND(P ) in O(|P | log2N(logεN + log |Σ|) + occ log1+εN)

time and INSERT (Y, i) and DELETE (j, y) in O((y +
√
N) log2+εN) amortized time,

where 0 < ε ≤ 1 and H0 ≤ log |Σ| denotes the zeroth order empirical entropy of the text

of length N [30]. Salson et al. [58] also proposed a dynamic compressed index, called

the dynamic FM-Index. Although their approach works well in practice, updates require

O(N logN) time in the worst case. To our knowledge, these are the only existing dynamic

compressed indexes to date.

In relation to the dynamic index problem, there exists the library management problem

of maintaining a text collection (a set of text strings) allowing for insertion/deletion of

texts (see [47] for recent work). While in the dynamic index problem a single text is edited

by insertion/deletion of substrings, in the library management problem a text can be

inserted to or deleted from the collection. Hence, algorithms for the library management

problem cannot be directly applied to the dynamic index problem.

1.4 LZ77 Factorization Problem

A string sequence f1, . . . , fk is called a factorization of a string s if f1 · · · fk = s holds.

The LZ77 factorization without self-reference LZ77wo(T ) [65] of T is formally defined as

follows.

Definition 1 For a string s, let LZ77wo(s) denote the factorization f1, . . . , fz of s such

that for 1 ≤ i ≤ z, if s[|f1 · · · fi−1| + 1] is a character not occurring f0 · · · fi−1 then

fi = s[|f1 · · · fi−1| + 1], otherwise fi is the longest prefix of fi · · · fz such that fi is a

substring of f1 · · · fi−1, where f0 = ε.

Since each fi can be represented by an integer pair (xi, |fi|), we can represent a string T

in 2z log |T | bits of space by the LZ77 factorization, where xi is an occurrence position of

fi in f1 · · · fi−1. Hence the LZ77 factorization is used as data compression.

Although the primary use of the LZ77 factorization is data compression, it has been

shown that it is a powerful tool for many string processing problems [24, 23]. Hence the

importance of algorithms to compute the LZ77 factorization is growing. Particularly, in

order to apply algorithms to large scale data, reducing the working space is an important
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matter.

In this thesis, we focus on the LZ77 factorization algorithms working in compressed

space. Goto et al. [26] showed how, given the grammar-like representation for string

T generated by the LCA algorithm [57], to compute the LZ77 factorization of T in

O(z log2m log3N + m logm log3N) time and O(m log2m) space, where m is the size

of the given representation. Sakamoto et al. [57] claimed that m = O(z logN log∗N),

however, it seems that in this bound they do not consider the production rules to rep-

resent maximal runs of non-terminals in the derivation tree. The bound we were able

to obtain with the best of our knowledge and understanding is m = O(z log2N log∗N),

and hence our algorithm seems to use less space than the algorithm of Goto et al. [26].

Recently, Fischer et al. [20] showed a Monte-Carlo randomized algorithms to compute an

approximation of the LZ77 factorization with at most 2z factors in O(N logN) time, and

another approximation with at most (i+ ε)z factors in O(N log2N) time for any constant

ε > 0, using O(z) space each.

Another line of research is the LZ77 factorization working in compressed space in

terms of Burrows-Wheeler transform (BWT) based methods. Policriti and Prezza re-

cently proposed algorithms running in NH0 + o(N log |Σ|) + O(|Σ| logN) bits of space

and O(N logN) time [52], or O(R logN) bits of space and O(N logR) time [53], where

R is the number of runs in the BWT of the reversed string of T .

1.5 Grammar Compressed Dictionary Matching Prob-

lem

A dictionary matching query on a set of patterns Π (called the dictionary) asks for all

occurrences positions of patterns in Π within a text T given in a streaming fashion. A

dictionary pattern matching problem is, for a given dictionary Π, to construct a data

structure which answer dictionary matching queries for Π. This is a classical pattern

matching problem and we can efficiently answer these queries by constructing an Aho-

Corasick (AC) automaton [2] for Π.

In this thesis, we introduce a new, yet another variant of the problem, where the

dictionary is given in compressed form. In particular, we are interested in a setting where

a dictionary is given in compressed form in advance, and the text is given in a streaming

fashion. A typical application would be an SDI (Selective Dissemination of Information)
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Figure 1.1: Let SLP S = (Σ,V ,D, S), where D = {X1 → a, X2 → b, X3 →
X1X2, X4 → X1X3, X5 → X3X4, X6 → X4X5, X7 → X6X5},
V = {X1, . . . , X7}, Σ = {a, b} and S = X7. Then S represents the
string aababaababaab and Figure 1.1 is the derivation tree of S.

service.

As already mentioned, SLP can be used as a compressed representation of a text. In

this thesis, we consider representing a dictionary by an SLP. Specifically, we use an SLP

to represent a dictionary consisting of m patterns, by designating m variables in the SLP

as the start symbols.

More formally, we extend SLPs so as to represent dictionaries as follows:

Definition 2 A dictionary SLP (DSLP) is an ordered pair 〈S,m〉 of an SLP of size n and

a positive integer m ∈ [1..n]. The last m variables Xn−m+1, . . . , Xn of S are designated

as the start variables.

Let Π〈S,m〉 denote the dictionary consisting of the strings derived from the start variables.

We note that DSLP 〈S, 1〉 is equivalent to SLP S. We are now ready to give a formal

definition of our problem.

Problem 5 (Grammar Compressed Dictionary Matching Problem) For a given

DSLP 〈S,m〉, construct a data structure supporting dictionary matching queries for Π〈S,m〉.

See also Figure 1.1 and Example 1.

Example 1 Consider DSLP 〈S, 3〉 with S that is shown in Figure 1.1, i.e., Π〈S,3〉 =

{val(X5), val(X6), val(X7)} = {abaab, aababaab, aababaababaab}, where val(X) repre-

sents the derived string by X. Given text “T = abaababaab”, the dictionary matching
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query for Π〈S,3〉 answers (1, X5), (3, X6) and (6, X5).

Related Work

As already mentioned, we can efficiently solve the dictionary matching problem by con-

structing an Aho-Corasick (AC) automaton for Π. A succinct representation of AC au-

tomaton has been proposed [7], which requires k(log σ + 3.443 + o(1)) +m(3 log(N/m) +

O(1)) bits of space, where k is the number of states in the AC automaton, σ is the al-

phabet size, and N is the total length of patterns in Π Using this succinct AC automaton

one can conduct dictionary matching for a given text t in O(|t|+ occ) time, where occ is

the output size. Recently an LZ78 based compressed string dictionary was considered [5],

which stores a set of strings and identifies each string with unique identifier in a com-

pressed space. Using the data structure one can retrieve the string of a given ID and

reversely lookup the ID of a given string.

To the best of our knowledge, there do not exist studies which directly solves the

grammar compressed dictionary matching problem. Note that we can solve this problem

by decompressing S and constructing AC automaton for Π〈S,m〉, however, the total length

N can be as large as Θ(2n). This means that a näıve method which decompresses S takes

exponential time and space in the worst case.

1.6 Our Contributions

Our contributions are as follows.

Signature Encoding

Our main contribution is the following theorems.

Theorem 1 For Problem 2, there exists a data structure of O(w) space which supports

Expr(e) queries in O(1) time, INSERT (Y, i) and DELETE (j, y) operations in O(fA(y +

logN log∗Nmax)) time, and INSERT ′(j, y, i) in O(fA logN log∗Nmax) time, where f(a, b)

denotes the time for predecessor/successor queries on a set of a integers from an b-element

universe, fA = f(w, 4Nmax), and INSERT ′(j, y, i) updates T ← T [..i−1]T [j..j+y−1]T [i..]

for given integers i, j and y.
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If we use the best known deterministic and dynamic predecessor/successor data structure

of linear space, then f(a, b) = O(min{ log log b log log a
log log log b

,
√

log a
log log a

}).
Mehlhorn et al. [44] and Alstrup et al. [4, 3] showed signature encodings can be updated

under concatenate/split operations. However, they did not explicitly show that the update

algorithm maintains O(w) space because they did not focus on the working space. Our

update algorithm of Theorem 1 clearly runs in O(w) space. Hence this result is significant.

Theorem 2 For Problem 1, we can construct the signature encoding G of size w for T

(1a) in O(NfA) time and O(w) working space from T ,

(1b) in O(N) time and working space from T ,

(2) in O(zfA logN log∗Nmax) time and O(w) working space from LZ77wo(T ),

(3a) in O(nfA logN log∗Nmax) time and O(w) working space from S, and

(3b) in O(n log log(n log∗Nmax) logN log∗Nmax) time and O(n log∗Nmax + w) working

space from S.

Note thatNmax = N holds if we handle T of G as a static text. This is the first construction

algorithms from LZ77 factorization and SLPs, however, proofs of the results (2) and (3a)

are straightforward from the previous work [4, 3]. (1a) and (1b) are also trivial results

but to our knowledge, nobody explicitly showed these. (3b) is clearly a new result and

this is more efficient than (3a) when n = O(z logN). Hence this result is also significant.

Furthermore, we give a new application of signature encodings. See Section 3.3. These

results were published in [51]

Dynamic LCE Problem

Our main contribution is the following theorem.

Theorem 3 (LCE queries) Let G denote the signature encoding for a dynamic string

T of current length N and maximal length Nmax. Then G supports LCE queries on T in

O(logN + log ` log∗Nmax) time, where ` is the answer to the query.

Theorem 2 shows that the signature encoding G can be updated efficiently, and also that

the size of G of T is O(z logN log∗Nmax) space [55] where z = |LZ77wo(T )|. Hence a
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signature encoding of T works in compressed space as a dynamic LCE data structures for

T .

The remarks on our contributions are listed in the following:

• We present the first fully dynamic LCE data structure working in compressed space.

The size of our data structure does not depend on the number of update operations.

This is different from dynamic LCE data structures proposed by [4, 3] and [25].

• This is the first compressed LCE data structure which can be constructed efficiently

by a given SLP. This result is important for applications in compressed string pro-

cessing, where the task is to process a given compressed representation of string(s)

without explicit decompression. In particular, we use the result (3b) of Theorem 2

to show several applications which improve previous best known results. See Sec-

tion 3.3. Note that the static LCE data structure proposed by I can be constructed

faster than our data structure by a given SLP and his data structure is more space

efficient. Hence his result can improve all theorems in Section 3.3.

These results were originally published in [51]

Dynamic Index Problem

We propose a new dynamic index in compressed space, as follows:

Theorem 4 For Problem 4, there exists a dynamic index of size w = O(min(z logN

log∗Nmax, N)) supports INSERT (Y, i) and DELETE (j, y) in amortized O((|Y |+ logN

log∗Nmax) logw logN log∗Nmax) time, INSERT ′(j, y, i) in amortized O(logw(logN log∗

Nmax)
2) time, and FIND(P ) in O(|P |fA+logw log |P | log∗Nmax(logN+log |P | log∗Nmax)+

occ logN) time, where z = |LZ77wo(T )| and occ = |FIND(P )|.

Since z ≥ logN , logw = max{log z, log(log∗Nmax)}. Hence, our index is able to find

pattern occurrences faster than the index of Hon et al. [30], and also, our index allows

faster substring insertion/deletion on the text.

LZ77 Factorization Problem

We present a new LZ77 factorization algorithm working in compressed space for a given

signature encoding.
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Theorem 5 Given a signature encoding G of a string T , we can compute LZ77wo(T ) in

O(z logw log3N(log∗N)2) time and O(w) working space where z = |LZ77wo(T )|, N = |T |,
and w is the size of G.

Theorem 2 shows that the signature encoding G can be constructed efficiently from various

types of inputs, in particular, in O(NfA) time and O(w) working space from uncompressed

string T . Therefore we can compute LZ77 factorization of a given T of length N in

O(NfA + z logw log3N(log∗N)2) time and O(w) working space.

These results were originally published in [50].

Grammar Compressed Dictionary Matching Problem

Our main contribution is the following theorem.

Theorem 6 Given any DSLP 〈S,m〉 of size n that represents dictionary Π〈S,m〉 of to-

tal length N , it is possible to build, in O(n3 log n logN) time and O(n2 logN) space,

an O(n2 logN)-size compressed automaton that recognizes all occurrences of patterns in

Π〈S,m〉 within an arbitrary string with O(h + m) amortized running time per character,

where h is the height of the derivation tree of S.

Note that our proposed data structure emulate AC automata in compressed space. To

the best of our knowledge, our data structure is the first which uses grammar-based string

compression to reduce space requirement of AC automata.

We also present a more space-efficient solution to the case of a single pattern, namely,

a compressed representation of Morris-Pratt (MP) automaton [46] as follows.

Theorem 7 For an SLP S of size n representing string T of length N , it is possible

to build, in O(n3 logN log n) time and O(n2 logN) space, an O(n logN)-size compressed

MP automaton that recognizes all occurrences of T within an arbitrary string with O(h)

amortized running time per character, where h is the height of the derivation tree of S.

Theorem 7 is the first grammar-compressed MP-automaton. Note that since MP automa-

ton is identical to an uncompressed AC-automaton for a single pattern, we can construct

a compressed MP automaton of O(n2 logN) space by Theorem 6. Hence the compressed

MP automaton is more space efficient than Theorem 6.

This result was originally published in [35, 34].
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1.7 Organization

The rest of this thesis is organized as follows. In Chapter 2, we set our model, define

some notations, and introduce some known properties on strings and useful known data

structures. In Chapter 3, we show Theorems 1 and 2. In Chapter 4, we show Theorem 3

and describe some applications of our LCE data structures. In Chapter 5, we describe

our dynamic index in compressed space and LZ77 factorization algorithm working space.

Namely, we show Theorems 4 and 5. In Chapter 6, we show Theorems 6 and 7



Chapter 2

Preliminaries

2.1 Strings

Let Σ be an ordered alphabet. An element of Σ∗ is called a string. A dictionary is a non-

empty, finite subset of Σ+. For string s = xyz, x, y and z are called a prefix, substring,

and suffix of s, respectively. The length of string s is denoted by |s|. The empty string

ε is a string of length 0. Let Σ+ = Σ∗ − {ε}. For any 1 ≤ i ≤ |s|, s[i] denotes the i-th

character of s. For any 1 ≤ i ≤ j ≤ |s|, s[i..j] denotes the substring of s that begins at

position i and ends at position j. Let s[i..] = s[i..|s|] and s[..i] = s[1..i] for any 1 ≤ i ≤ |s|.
For any string s, let sR denote the reversed string of s, that is, sR = s[|w|] · · · s[2]s[1].

For any strings s1 and s2, let LCP(s1, s2) (resp. LCS(s1, s2)) denote the length of the

longest common prefix (resp. suffix) of s1 and s2, and also, for two integers i, j, let

LCE(s1, s2, i, j) = LCP(s1[i..|s1|], s2[j..|s2|]). For any strings p and s, let Occ(p, s) denote

all occurrence positions of p in s, namely, Occ(p, s) = {i | p = s[i..i + |p| − 1], 1 ≤ i ≤
|s| − |p| + 1}. A dynamic string s of maximal length Nmax is a string allowing to be

updated and |s| ≤ Nmax always holds.

2.1.1 Our Model

Our model of computation is the unit-cost word RAM with machine word size of B bits,

and space complexities will be evaluated by the number of machine words. Bit-oriented

evaluation of space complexities can be obtained with a log2B multiplicative factor. The

value B is set in each problem. When the input of a problem represents a static text of

length N , we set B = N . When the represented text is dynamic and the maximal length

15
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is Nmax, we set B = Nmax.

2.1.2 Periods and Runs of Strings

A period of a string s is a positive integer p such that s[i] = s[i+p] for every i ∈ [1..|s|−p].
A run in a string s is an interval [i..j] with 1 ≤ i ≤ j ≤ |s| such that:

• the smallest period p of s[i..j] satisfies 2p ≤ j − i+ 1.

• the interval can be extended neither to the left nor the right, without violating the

above condition, that is, s[i− 1] 6= s[i+ p− 1] and s[j − p+ 1] 6= s[j + 1], provided

that respective symbols exist.

Lemma 1 (Periodicity Lemma (see [17])) Let p and q be two periods of a string x.

If p+ q − gcd(p, q) ≤ |x|, then gcd(p, q) is also a period of x.

Lemma 2 ([17]) The periods of any x ∈ Σ+ are partitioned into O(log |x|)-arithmetic

progressions.

2.1.3 Factorization

A string sequence Fac(s) = f1, . . . , fk is called a factorization of a string s if f1 · · · fk = s

holds. Each string of a factorization is called a factor. Let |Fac(s)| be the size of the

factorization of s and Fac(s)[i] = fi for 1 ≤ i ≤ k.

LZ77 Factorization

We already described the definition of the LZ77 Factorization without self-reference in

Definition 1. We also define the LZ77 with self-reference as follows [65].

Definition 3 For a string s, LZ77w(s) represents the factorization f1, . . . , fz of s such

that for 1 ≤ i ≤ z, if s[|f1 · · · fi−1| + 1] is a character not occurring f0 · · · fi−1 then

fi = s[|f1 · · · fi−1| + 1], otherwise fi is the longest prefix of fi · · · fz such that fi is a

substring of f1 · · · fi, where f0 = ε.

Example 2 (LZ77 Factorization) Let s = abababcabababcabababcd. Then LZ77wo(s) =

a, b, ab, ab, c, abababc, abababc, d and LZ77w(s) = a, b, abab, c, abababcabababc, d.
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Run Length Encoding

For a string s, let RLE (s) denote the factorization of s such that each factor is a maximal

run of same characters a as ak, where k is the length of the run. RLE (s) can be computed

in O(|s|) time.

For a string p, let L̂(p) (resp. R̂(p)) denote the first (resp. last) maximal run of p.

Then following observation holds.

Observation 1 Let s and p denote two strings. For every occurrence p in s, the factoriza-

tion of p[|L̂(p)|+1..|p|−|R̂(p)|] is same in RLE (s), and also, p[|L̂(p)|+1..|p|−|R̂(p)|] 6= ε

when |RLE (p)| ≥ 3.

See also Example 3.

Example 3 (RLE (s)) Let s = aabbbbbabb. Then RLE (s) = a2, b5, a1, b2, |RLE (s)| = 4,

RLE (s)[2] = b5 L̂(s) = a2 and R̂(s) = b2

Locally Consistent Factorization (Parsing)

For integer sequence p of length at least 2, we say that p is an M-colored sequence if

(1)p[i] 6= p[i+ 1] holds for any 1 ≤ i < |p|, (2)0 ≤ p[j] ≤M holds for any 1 ≤ j ≤ |p|, and

(3)let p[i] = 0 for i < 1 or i > n. Let Γ : [0..M ]∆L+∆R+1 → {0, 1} be a function, where

M is a positive integer, ∆L = log∗M + 6 and ∆R = 4. Locally consistent factorization

LC Γ(p) is a factorization of p using an M -function Γ, which is defined as follows.

Definition 4 ([44]) We say that Γ is an M-function if dΓ(p)[1] = 1, dΓ(p)[|p|] = 0

and Occ(11, dΓ(p)) = Occ(0000, dΓ(p)) = φ hold for any M-colored sequence p, where

dΓ(p) = Γ(p[1−∆L], . . . , p[1 + ∆R]), . . . ,Γ(p[|p| −∆L], . . . , p[|p|+ ∆R]).

Lemma 3 ([3]) By computing a table of o(logM) space in o(logM) preprocessing time

for an M-function Γ, we can compute dΓ(p) in O(|p|) time using the table for a given

M-colored sequence p.

Proof. Here we give only an intuitive description of a proof of Lemma 3. More detailed

proofs can be found at [44] and [3].

Mehlhorn et al. [44] showed that there exists a function Γ′ which returns a (logM)-

colored sequence p′ for a given M -colored sequence p in O(|p|) time, where p′[i] is deter-

mined only by p[i− 1] and p[i] for 1 ≤ i ≤ |p|. Let p〈k〉 denote the outputs after applying
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Γ′ to p by k times. They also showed that there exists a function Γ′′ which returns a bit

sequence d satisfying the conditions of Lemma 3 for a 6-colored sequence p in O(|p|) time,

where dΓ(p)[i] is determined only by p[i− 3..i+ 3] for 1 ≤ i ≤ |p|. Hence we can compute

dΓ(p) for an M -colored sequence p in O(|p| log∗M) time by applying Γ′′ to p〈log∗M+2〉

after computing p〈log∗M+2〉. Furthermore, Alstrup et al. [3] showed that dΓ(p) can be

computed in O(|p|) time using a precomputed table of size o(logM). The idea is that p〈3〉

is a log log logM -colored sequence and the number of all combinations of a log log logM -

colored sequence of length log∗M + 11 is 2(log∗M+11) log log logM = o(logM). Hence we can

compute dΓ(p) for an M -colored sequence in linear time using a precomputed table of size

o(logM). �

For an M -colored sequence p and M -function Γ, we define LC Γ(p) = f1, . . . , fk such that

fx = p[1i..1i+1 − 1] for 1 ≤ x ≤ k, where 1i is i-th occurrence position of 1 in dΓ(p) for

1 ≤ i ≤ k and 1k+1 = |dΓ(p)|+ 1, and k is the number of 1 in dΓ(p). See also Example 4.

Each of f1, . . . , fk is called block (or factor) of p. Note that the length of each block

is from two to four by the property of dΓ(p), i.e., 2 ≤ |fx| ≤ 4 for any 1 ≤ x ≤ k. In this

thesis, we omit Γ and write LC (p) when it is clear from the context.

Next, we describe the locally consistent factorization version of Observation 1. For

an M -colored sequence p and M -function Γ, Let CΓ(p) is the longest substring fi · · · fj
of p such that factors fi, . . . , fj are determined only by a substring of p, where LC Γ(p) =

f1, . . . , fk. Namely, CΓ(p) does not depend on p[x] for any integer x < 1 or x > |p|, and

also, LΓ(p) = f1 · · · fi−1 and RΓ(p) = fj+1 · · · fk. Then following observation holds.

Observation 2 Let s and p denote two M-colored sequences, and let Γ denote an M-

function. For every occurrence p in s, the factorization of CΓ(p) is same in LC Γ(s), and

also CΓ(p) 6= ε when |p| ≥ δC, where δC = ∆L + ∆R + 8.

Proof. We show that CΓ(p) 6= ε when |p| ≥ δC . Consider a case such that CΓ(p) 6= ε.

Then we can represent CΓ(p) by p[1i′ ..1j′ − 1], where i′ is the minimal integer such that

1i′ −∆L ≥ 1 and j′ is the maximal integer such that 1j′ + ∆R ≤ |p|. Hence |LΓ(p)| ≥ ∆L

and |RΓ(p)| ≥ ∆R + 1 hold. Next, |LΓ(p)| ≤ ∆L + |000| and |RΓ(p)| ≤ ∆R + 1 + |000|
holds by Occ(0000, dΓ(p)) = φ. Hence CΓ(p) = ε may hold when |p| ≤ ∆L + ∆R + 7.

Therefore CΓ(p) 6= ε always holds when |p| ≥ ∆L + ∆R + 8. See also Figure 2.1. �
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Example 4 (LC ) Let log∗M = 2, p = 1, 2, 3, 2, 5, 7, 6, 4, 3, 4, 3, 4, 1, 2, 3, 4, 5 and dΓ(p) =

1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0. Then LC Γ(p) = (1, 2, 3), (2, 5), (7, 6, 4), (3, 4, 3, 4),

(1, 2), (3, 4, 5), |LC Γ(p)| = 6, LC Γ(p)[2] = (2, 5), LΓ(p) = 1, 2, 3, 2, 5, 7, 6, 4, CΓ(p) =

3, 4, 3, 4 and RΓ(p) = 1, 2, 3, 4, 5. Note that ∆L = 8,∆R = 4.

10100100010100010100101 10001010010100010100010

10010101010100010101010

dΓ(s) =
s =

dΓ(p) =

CΓ(p) RΓ(p)LΓ(p)

ΔRΔL

p =

p p

Figure 2.1: Let ∆L = 8 and ∆R = 4. This illustrates dΓ(p), dΓ(s), s and p.
Occ(p, s) = {5, 31}. dΓ(p)[1+∆L..|p|−∆R] = dΓ(s)[5+∆L..5+ |p|−
∆R] = dΓ(s)[23+∆L..23+ |p|−∆R] by Γ because dΓ(p)[1+∆L..|p|−
∆R] is determined by p[1..|p|].

2.2 Order Sets

2.2.1 Predecessor/Successor

Let S be an integer set whose integer has an integer as value. We consider the following

operations for S :

• pred(S, a) : return apred = max{x ∈ S | x < v} and apred’s value.

• succ(S, a) : return asucc = min{x ∈ S | v < x} and asucc’s value.

• insert(S, a, b) : set S ← S
⋃
{a} and b as a’s value.

• delete(S, a) : set S ← S \ {a}.

• member(S, a) : return a’s value if a ∈ S.

We say that a data structure is a dynamic predecessor/successor data structure if the

data structure supports all above operations. If a data structure supports insert , delete
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and member , we say that the data structure is a dynamic membership data structure. Let

f(n,N) be the time for computing all operations for S, where n = |S| and S ⊆ [0..N−1].

Similarly, µ(n,N) be the time for computing insert , delete and member operations for

S. Beame and Fichs dynamic predecessor/successor data structure [6] of O(n) space for

S can support all operations in f(n,N) = O(min{ log logN log logn
log log logN

,
√

logn
log logn

}) time. This is

the best known dynamic predecessor/successor data structure.

2.2.2 Order Maintenance

We consider the following operations for a list L.

• insert(x, y) : insert an element y after x in L.

• delete(x) : delete x from L.

• order(x, y) : check if x is before y in L.

We say that a data structure is an order maintenance data structure if the data structure

supports all above operations. Diez and Sleators order maintenance data structure [18]

can support every operation in constant time and use O(|L|) space.

2.2.3 Tools on Grids

Range Reporting Query

Let X and Y denote subsets of two ordered sets, and let p ∈ X × Y be a point on the

two-dimensional plane. Sometimes we abbreviate it as 2D point p. We consider following

operations for a set of 2D points R ∈ X × Y , where |X |, |Y| ∈ O(|R|).

• insertR(p, xpred , ypred): given a point p = (x, y), xpred = max{x′ ∈ X | x′ ≤ x} and

ypred = max{y′ ∈ Y | y′ ≤ y}, insert p to R and update X and Y accordingly.

• deleteR(p): given a point p = (x, y) ∈ R, delete p from R and update X and Y
accordingly.

• reportR(x1, x2, y1, y2) : given a rectangle (x1, x2, y1, y2) with x1, x2 ∈ X and y1, y2 ∈
Y , returns {(x, y) ∈ R | x1 ≤ x ≤ x2, y1 ≤ y ≤ y2}.
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Then, we say that a data structure is a static 2D range reporting data structure if the

data structure supports reportR query for R, and also, we say that the data structure is

a dynamic 2D range reporting data structure if the data structure also supports insertR

and deleteR. Static or dynamic 2D range reporting data structures are widely studied in

computational geometry. In this thesis, we use the following dynamic 2D range reporting

data structure.

Lemma 4 ([13]) There exists a dynamic 2D range reporting data structure which sup-

ports reportR(x1, x2, y1, y2) in O(log |R|+occ(log |R|/ log log |R|)) time, and insertR(p, i, j),

deleteR(p) in amortized O(log |R|) time, where occ is the number of the elements to out-

put. This structure uses O(|R|) space. 1

Range Minimum Query

We say that a 2D point p is a weighed 2D point if p is labeled for an integer, namely

p ∈ X × Y × N . Let R ∈ X × Y × N be a set of weighted 2D points, where |X |, |Y| ∈
O(|R|). A rmqR(x1, x2, y1, y2) query returns min{d | (x, y, d) ∈ reportR(x1, x2, y1, y2)}.
The following lemma supports rmq queries.

Lemma 5 ([1]) Consider n weighted 2D points R on a two-dimensional plane. There

exists a data structure which supports a rmqR queries in O(log2 n) time, occupies O(n)

space, and requires O(n log n) time to construct.

2.3 Automata

2.3.1 Aho-Corasick(AC) Automata

The Aho-Corasick automaton (AC automaton for short) [2] is a finite state machine which

simultaneously recognizes all occurrences of multiple patterns in a single pass through a

text. The AC automaton for a dictionary Π consists of three functions: goto, failure, and

output. Figure 2.2 displays an example of the AC automata.

1The original problem considers a real plane in the paper [13], however, his solution only need to

compare any two elements in R in constant time. Hence his solution can apply to our range reporting

problem by maintains X and Y using the data structure of order maintenance problem proposed by Dietz

and Sleator [18], which enables us to compare any two elements in a list L and insert/delete an element

to/from L in constant time.
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Figure 2.2: On the left the Aho-Corasick automaton for Π =
{aba, ababb, abca, bb} is displayed, where the circles denote
states, the solid and the broken arrows represent the goto and the
failure functions, respectively, and the underlined strings adjacent
to states mean the outputs from them. On the right the g-trie for Π
is shown.

The g-trie for a dictionary Π is a trie representing Π. There is a natural one-to-one

correspondence between the states (nodes) of the g-trie and the pattern prefixes. State

q is said to represent string u if the path from the initial state 0 to q spells out u. For

example, the initial state 0 represents the empty string ε and the state 4 represents the

string abab in Figure 2.2. Let Q denote the set of states of the g-trie, and let ⊥ be an

auxiliary state not in Q. The g-trie defines the goto function g so that every edge q to r

labeled c implies g(q, c) = r. In addition, we set g(⊥, a) = 0 for all a ∈ Σ.

The output function λ and the failure function f are defined as follows.

Definition 5 Let q be any state. Suppose q represents string u. Then λ(q) is the set of

patterns in Π that are suffixes of u.

Definition 6 Let q be any state with q 6= 0. Suppose q represents string u. Then state

f(q) represents the longest proper suffix of u that is also a prefix of some pattern.

Let δ : Q× Σ→ Q be the state-transition function defined by:

δ(q, a) =

g(q, a), if g(q, a) is defined;

δ(f(q), a), otherwise.

We extend δ to the domain Q× Σ∗ in the standard way. Then we have:

Lemma 6 ([2]) For any string w ∈ Σ∗, δ(0, w) is the state that represents the longest

suffix of w that is also a prefix of some pattern. The number of goto and failure transitions

required in computing δ(0, w) is at most 2|w|.
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We say that a state is branching if it is of out-degree ≥ 2, and terminating if it

represents some pattern. We say that a state is explicit if it is branching or terminating,

and implicit otherwise.

Lemma 7 The number of explicit states is at most 2|Π|.

2.3.2 Morris-Pratt(MP) Automata

The Morris-Pratt Automaton(MP automaton for short) [46] for a string T is a finite state

machine which recognizes all occurrences of T in a single pass through a text.

The set of states is Q = {0, 1, . . . , N} and N is the (unique) accepting state. The MP

automaton for T consists of two functions: goto, failure.

The goto function g : Q× Σ→ Q ∪ {fail} is defined by:

g(q, a) =

q + 1, if q 6= N and T [q + 1] = a;

fail , otherwise.

For the sake of convenience, an auxiliary state ⊥ is also introduced such that g(⊥, a) = 0

for any a ∈ Σ. The failure function f : Q→ Q ∪ {⊥} is then defined by:

f(0) = ⊥ and for any q ∈ Q with q 6= 0, T [1..f(q)] is the longest prefix of T

that is also a proper suffix of T [1..q].

Note that the MP Automaton for a pattern T ∈ Σ∗ is identical to the AC automaton for

a dictionary Π = {T}.

2.4 Context Free Grammars

2.4.1 Straight-Line Programs

A straight-line program (SLP) is a context free grammar in the Chomsky normal form

that generates a single string. Formally, an SLP that generates T is a quadruple S =

(Σ,V ,D, S), such that Σ is an ordered alphabet of terminal characters; V = {X1, . . . , Xn}
is a set of positive integers, called variables ; D = {Xi → expr i}ni=1 is a set of deterministic

productions (or assignments) with each expr i being either of form X`Xr (1 ≤ `, r < i), or

a single character a ∈ Σ; and S = Xn ∈ V is the start symbol which derives the string

T . We also assume that the grammar neither contains redundant variables (i.e., there is
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at most one assignment whose righthand side is expr) nor useless variables (i.e., every

variable appears at least once in the derivation tree of S). The size of S is the number n

of productions in D. In the extreme cases the length N of the string T can be as large as

2n−1, however, it is always the case that n ≥ log2N . See also Example 5.

Notation for SLPs

For an X ∈ V , val(X) represents the derived string by X, height(X) represents the height

of the derivation tree of X, |X| represents |val(X)|, and X[i] = val(X)[i] for 1 ≤ i ≤ |X|.
For any variable sequence y ∈ V+, let val+(y) = val(y[1]) · · · val(y[|y|]). For any variable

Xi with Xi → X`Xr ∈ D, let Xi.left = val(X`) and Xi.right = val(Xr), which are called

the left string and the right string of Xi, respectively. For two variables Xi, Xj ∈ V , we

say that Xi occurs at position c in Xj if there is a node labeled with Xi in the derivation

tree of Xj and the leftmost leaf of the subtree rooted at that node labeled with Xi is the

c-th leaf in the derivation tree of Xj. We define the function vOcc(Xi, Xj) which returns

all positions of Xi in the derivation tree of Xj.

Let AssgnS be the function such that AssgnS(expri) = Xi if Xi → expri ∈ D,

otherwise it returns NIL. When clear from the context, we write AssgnS as Assgn.

For any variable sequence x ∈ V+, let Pair(x) = x if |x| = 1, otherwise Pair(x) =

Pair(Assgn(x[1]x[2])x[3..]). Let Assgn+(f1, . . . , fk) = Assgn(f1), . . . ,Assgn(fk), and

Pair+(f1, . . . , fk) = Pair(f1), . . . ,Pair(fk) for a sequence f1, . . . , fk.

Example 5 (SLP) Let S = (Σ,V ,D, S) be the SLP such that Σ = {A,B,C}, V =

{X1, · · · , X11}, D = {X1 → A,X2 → B,X3 → C,X4 → X3X1, X5 → X4X2, X6 →
X5X5, X7 → X2X3, X8 → X1X2, X9 → X7X8, X10 → X6X9, X11 → X10X6}, S = X11,

the derivation tree of S represents CABCABBCABCABCAB.

Properties and Tools

Lemma 8 ([45]) We can pre-process an SLP S of size n in O(n3) time and O(n2) space

to answer the following query in O(n2) time: given two variables Xi and Xj (1 ≤ i, j ≤ n),

compute the length of the longest common prefix of val(Xi) and val(Xj).

For each variable Xi we store the length |Xi| of the string derived by Xi, which can

be computed in a total of O(n) time using O(n) space by a simple dynamic programming

algorithm.
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The sorted index of an SLP S of size n is the permutation σ of [1..n] such that the

strings val(Xσ(1)), . . . , val(Xσ(n)) are arranged in the lexicographical order.

Lemma 9 The sorted index σ of an SLP of size n can be computed in O(n3 log n) time

using O(n2) space.

Proof. We compute the length ` of the longest common prefix of two variables Xi and Xj

using Lemma 8. Then, comparing val(Xi) and val(Xj) reduces to comparing the (`+1)-th

leaves of the derivation trees ofXi andXj, which can be done inO(n) time using the length

of the string that each variable derives (note that the case where ` = min{|Xi|, |Xj|} is

easier). Hence the sorted index σ can be computed in O(n3 +n3 log n) = O(n3 log n) time

using any O(n log n)-time comparison sort. �

Lemma 10 ([12]) Given an SLP S of size n that represents a string T of length N , it is

possible to pre-process S in O(n) time using O(n) space, so that any substring T [i..i+m−1]

of length m of T can be computed in O(logN +m) time.

Stabbing Variables

An interval pair ([x..y], [y + 1..z]) is said to stab an interval [b..e] ⊆ [x..z] if b ∈ [x..y]

and e ∈ [y + 1..z]. A variable X ∈ V is said to stab an interval [b..e] ⊆ [1..|X|] if

([1..|X.left|], [|X.left|+ 1..|X|]) stabs [b..e]. For any string P ∈ Σ+, let Occ(P,X) denote

Occ(P, val(X)), and let Occξ(P,X) be the set of positions α ∈ Occ(P,X) such that the

interval [α..α + |P | − 1] is stabbed by X.

Lemma 11 ([45]) Occξ(P,X) forms an arithmetic progression.

We say that X is j-stabbing variable of P if |X.left| − j + 1 ∈ Occξ(P,X) holds. Let

pOccS(P, j) be the set of j-stabbing variables of P in S. Since an occurrence of P (of

length at least 2) is stabbed by a variable in the derivation tree of S, the following

observation holds.

Observation 3 (e.g. [14]) For an SLP S of size n which represents a string T and a

string P of length at least 2, Occ(P, T ) ⇔
⋃

1≤j<|P |{j + k − 1 | X ∈ pOccS(P, j), k ∈
vOcc(X,S)} holds, where S is the start variable of S.

See also Example 6.
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Example 6 (Stabbing Variables) Let S be the SLP of Example 5. Given a pattern

P = BCAB, then P occurs at 3, 7, 10 and 13 in the string T represented by SLP S.

Hence Occ(P, T ) = {3, 7, 10, 13}. On the other hand, P occurs at 3 in val(X6) and

P is divided by X5 and X5, where X6 → X5X5. Similarly, divided P occurs at 1 in

val(X9), at 10 in val(X11). Hence pOccS(P ) = {(X6, 3), (X11, 10), (X9, 1)}. Specifically

pOccS(P, 1) = {(X6, 3), (X11, 10)}, pOccS(P, 2) = {(X9, 1)} and pOccS(P, 3) = φ. Hence

we can also compute Occ(P, T ) = {3, 7, 10, 13} by vOcc(X6, S) = {1, 11}, vOcc(X9, S) =

{7}, and vOcc(X11, S) = {1}. See also Fig. 2.3.

Range Reporting and Stabbing Variables

For an SLP S, let RS = {(X.leftR, X.right) | X ∈ V}. Then, we can regard each variable

of S as a 2D point on the two-dimensional plane defined by XS = {X.leftR | X ∈ V} and

YS = {X.right | X ∈ V}, where elements in XS and YS are sorted by lexicographic order.

For a string P , let yPprec (resp. yPsucc) denote the lexicographically smallest (resp.

largest) element in YS that has P as a prefix. Similarly, let xPprev (resp. xPsucc) denote the

lexicographically smallest (resp. largest) element in XS that has PR as a prefix. Then

the following observation holds.

Observation 4 (e.g. [14]) For any string P ∈ Σ∗ of length at least 2 and an integer

1 ≤ i < |P |, the following equation holds.

pOccS(P, i)⇔ reportRS (xP [..i]
prec , x

P [..i]
succ , y

P [i+1..]
prec , yP [i+1..]

succ )

See also Example 7.

Example 7 (SLP) Let S be the SLP of Example 5. Then,

XS = {x1, x4, x2, x8, x5, x9, x6, x10, x11, x3, x7},

YS = {y1, y8, y2, y7, y9, y3, y4, y5, y6, y10, y11},

xi = val(Xi)
R, yi = val(Xi) for any Xi ∈ V. See also Fig. 2.3.

2.4.2 Dictionary SLP(DSLP)

We already defined the DSLP in Definition 2.
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Figure 2.3: The left figure is the derivation tree of SLP S of Example 5, which
derives the string T . The red rectangles on T represent all occur-
rences of P = BCAB in T . The right grid represents the relation
between XS , YS and RS of Example 7. The red rectangle on the

grid is a query rectangle (x
P [..i]
prec , x

P [..i]
succ , y

P [i+1..]
prec , y

P [i+1..]
succ ), where i = 1,

x
P [..i]
prec = x2, x

P [..i]
succ = x11, y

P [i+1..]
prec = y5 and y

P [i+1..]
succ = y11. Therefore,

reportRS (x
P [..i]
prec , x

P [..i]
succ , y

P [i+1..]
prec , y

P [i+1..]
succ ) = {X6, X11}.

2.4.3 Repetitive Straight-Line Programs

We define repetitive SLPs (RSLPs), as an extension to SLPs, which allow run-length

encodings in the righthand sides of productions, i.e., D might contain a production X →
X̂k ∈ V × N . The size of the RSLP is still the number of productions in D as each

production can be encoded in constant space.

We define the left and right strings for any variable Xi → X`Xr ∈ D in a similar way to

SLPs. Furthermore, for any X → X̂k ∈ D, let X.left = val(X̂) and X.right = val(X̂)k−1,

and also, X is (j, x)-stabbing variable of P if p ∈ Occ(P,X) holds and [p..p + |P | − 1] is

stabbed by ([1..|X̂x|], [X̂x + 1..|X̂k|]), where p = |X̂x| − j − 1. Note that X is j-stabbing

variable of P if and only if X is (j, 1)-stabbing variable of P . Since X → X̂k is a run of

X̂, the following observation holds.

Observation 5 For a production X → X̂k in D, if there exists a string P and two

integers j, x such that X is a (j, x)-stabbing variable of P and x > 1, then X is a (j, x−1)-

stabbing variable of P .

We can show the RSLP version of Observation 3 by Observations 5 and 6.
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Observation 6 For a string P of length at least 2, an occurrence P is j or (j, x)-stabbed

by a variable in the derivation tree of S, where j and x > 1 are positive integers.

Example 8 (RSLP) Let G = (Σ,V ,D, S) be an RSLP, where Σ = {A,B}, V = {1, . . . ,
24}, D = {1 → A, 2 → B, 3 → 11, 4 → 21, 5 → 22, 6 → 12, 7 → (3, 4), 8 → (3, 5), 9 →
(8, 3), 10→ (4, 3), 11→ (10, 4), 12→ (11, 6), 13→ 73, 14→ 91, 15→ 101, 16→ 121, 17→
103, 18 → (13, 14), 19 → (18, 15), 20 → (16, 17), 21 → 191, 22 → 201, 23 → (21, 22), 24 →
231}, and S = 24. The derivation tree of the start symbol S represents a single string

T = ABABABABBABABABAABABABA.

Representation of RSLPs

For an RSLP G of size w, we can consider a DAG of size w as a compact representation

of the derivation trees of variables in G. Each node represents a variable X in V and

store |val(X)| and out-going edges represent the assignments in D: For an assignment

Xi → X`Xr ∈ D, there exist two out-going edges from Xi to its ordered children X` and

Xr; and for X → X̂k ∈ D, there is a single edge from X to X̂ with the multiplicative

factor k.

2.5 Signature Encoding

A signature encoding [44] of a string T of length N is a RSLP determined by recursively

applying LC and RLE to T until a start symbol S is obtained. Formally, we say that a

RSLP G = (Σ,V ,D, S) representing T is a signature encoding of T if S = id(T ) holds,

where id(T ) = PowT
h , h is the minimum integer satisfying |PowT

h | = 1, Γ is an M -function,

and

ShrinkTt =

Assgn+(T ) for t = 0,

Pair+(LC Γ(PowT
t−1)) for 0 < t ≤ h,

PowT
t = Assgn+(RLE (ShrinkTt )) for 0 ≤ t < h.

We call each variable of the signature encoding a signature, and use e (for example,

ei → e`er ∈ D) instead of X to distinguish from general RSLPs. We say that a node is

in level t in the derivation tree of S if the node is produced by ShrinkTt or PowT
t . In this

thesis, we implement signature encodings by the DAG of RSLP introduced in Chapter 2,
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and also, a signature encoding for a dynamic string is called dynamic signature encoding.

See also Example 9.

Example 9 (Signature encoding) Let G = (Σ,V ,D, S) be an RSLP of Example 8. As-

suming LC (PowT
0 ) = (3, 4)3, (3, 5, 3), (4, 3), (4, 3, 4, 6), (4, 3)3, LC (PowT

2 ) = (13, 14, 15),

(16, 17) and LC (PowT
3 ) = (21, 22) hold, G is the signature encoding of T and id(T ) = 24.

Here, Pair((13, 14)) = 18, Pair((4, 3, 4, 6)) = 12, Pair((4, 5)) = NIL. See Fig. 2.4 for an

illustration of the derivation tree of G and the corresponding DAG.
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Figure 2.4: The derivation tree of S (left) and the DAG for G (right) of Exam-
ple 8. In the DAG, the black and red arrows represent e → e`er
and e → êk respectively. In Example 9, T is encoded by signature
encoding.
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2.5.1 Properties

In this section, we describe some properties of signature encodings.

Random access under the signature encoding. We show that a signature encoding

G for a string T supports a random access in T .

Lemma 12 Using a signature encoding G for a string T , We can compute T [i..i+ `− 1]

for a given integers i and ` in O(`+ log |T |) time.

Proof. (1) By the property of locally consistent parsing, a signature in ShrinkTt derive

signatures of at least 2 in ShrinkTt−1 for 1 ≤ t ≤ h. (2) The height of the derivation tree of

the signature encoding of T is O(log |T |) by the fact (1). Hence Lemma 12 clearly holds

by the facts (1) and (2). �

Space requirement of the signature encoding. It is clear from the definition of the

signature encoding G of T that the size of G is less than 4N , all signatures are in [0..M ],

PowT
t is M -colored sequence for all 0 ≤ t < h, and ∆L = log∗M + 6 and ∆R = 4 in Γ.

Moreover, the next lemma shows that G requires only compressed space:

Lemma 13 ([55]) The size w of the signature encoding of T of length N is O(min(z logN

log∗M,N)), where z = |LZ77wo(T )|.

Proof. See the proof of Theorem 1(2).

Common sequences of signatures to all occurrences of same substrings. Here,

we explain the most important property of the signature encoding, which ensures the

existence of common signatures to all occurrences of same substrings(Lemma 14).

Consider a pattern P which occurs in T . Since each ShrinkTt and PowT
t is factorized

by RLE and LC respectively, we can apply Observations 1 and 2 to P recursively. This

means that, for every occurrence of P in T , an internal substring of P is represented by

a common signature sequence in ShrinkTt /PowT
t . See also Figure 2.5(1). Formally, we

define such a sequence by XShrPt and XPowP
t , which are defined as follows :
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Definition 7 For a string P , let

XShrPt =

Assgn+(P ) for t = 0,

Pair+(LC Γ(XPowP
t−1)[|LPt |..|XPowP

t−1| − |RP
t |]) for 0 < t ≤ hP ,

XPowP
t = Assgn+(RLE (XShrPt [|L̂Pt |+ 1..|XShrPt | − |R̂P

t ])|) for 0 ≤ t < hP , where

LPt = LΓ(XPowP
t−1), RP

t = RΓ(XPowP
t−1), L̂Pt = L̂(XShrPt ), R̂P

t = R̂(XShrPt ), and hP is

the minimum integer such that |RLE (XShrPhP )| ≤ δC.

Then Observation 1 clearly holds when p = XShrPt and s = ShrinkTt . This means

that fi, . . . , fj are encoded to XPowP
t . Similarly Observation 2 clearly holds when p =

XPowP
t and s = PowT

t . This means that fi, . . . , fj are encoded to XShrPt+1. By applying

these observations to P recursively, we can represent every occurrence of P in T by

Uniq(P ) = L̂P0 L
P
0 · · · L̂PhPL

P
hP XShrPhPR

P
hP R̂

P
hP · · ·R

P
0 R̂

P
0 . Namely, val+(Uniq(P )) = P . See

also Figure 2.5(2). Hence the following lemma holds by |LPt |, |RP
t |, |RLE (L̂Pt )|, |RLE (R̂P

t )|
and |RLE (XShrPhP )| = O(log∗M).

Lemma 14 (common sequences [55]) For a string P , every substring P in T is rep-

resented by a signature sequence Uniq(P ) of run-length O(log |P | log∗M) in the derivation

tree of id(T ) 2.

Hence we call Uniq(P ) the common sequence of P .

The number of ancestors of nodes corresponding to Uniq(P ) is upper bounded by:

Lemma 15 Let P be a string and T be the derivation tree of a signature e ∈ V. Consider

an occurrence of P in val(e), and the induced subtree X of T whose root is the root of

T and whose leaves are the parents of the nodes representing Uniq(P ). Then X contains

O(log∗M) nodes for every level and O(log |e|+ log |P | log∗M) nodes in total.

Proof. By Definition 7, for every level, X contains O(log∗M) nodes that are parents

of the nodes representing Uniq(P ). Lemma 15 holds because the number of nodes at

some level is halved when Shrink is applied. More precisely, considering the x nodes

of X at some level to which Shrink is applied, the number of their parents is at most

(x+ 2)/2. Here the ‘+2’ term reflects the fact that both ends of x nodes may be coupled

2The common sequences are conceptually equivalent to the cores [41] which are defined for the edit

sensitive parsing of a text, a kind of locally consistent parsing of the text.
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with nodes outside X, and also, since |RLE (L̂Pt )| = |RLE (R̂P
t )| = 1 for 0 ≤ t < hP and

|RLE (XShrPhP )| = O(| log∗M |), each nodes representing L̂Pt and R̂P
t has a common parent

for every level, and the number of parents of nodes representing XShrPhP is O(log∗M).

Note that h = O(log |e|) holds for e ∈ V by the signature encoding, where h is the height

of derivation tree of e. �

XShr2P
XPow1P
XShr1P
XPow0P

S

XShr0P

(1)

L P RT = 

XShr%&

𝑃 𝑅

𝐿*+&
𝐿+&

𝐿*,&
𝐿,&

𝑅+&
𝑅*+&

𝑅,&
𝑅*,&

shrink%-=
pow+-=

shrink+-=
pow,-=

shrink,-=
𝐿𝑇=

(2)

S

L P RPC

(3)

Figure 2.5: Abstract images of consistent signatures of substring P of text T , on
the derivation trees of the signature encoding of T . Gray rectangles
in Figures (1)-(3) represent common signatures for occurrences of P .
(1) Each XShrPt and XPowP

t occur on substring P in ShrinkTt and
PowT

t , respectively, where T = LPR. (2) The substring P can be

represented by L̂P0 L
P
0 L̂

P
1 L

P
1 XShrinkP2 R

P
1 R̂

P
1 R

P
0 R̂

P
0 . (3) There exist

common signatures on every substring P in the derivation tree.

Lemma 16 shows that we can efficiently compute Uniq(P ) for a substring P of T .



CHAPTER 2. PRELIMINARIES 33

Lemma 16 Using the DAG of G, given a signature e ∈ V (and its corresponding node

in the DAG) and two integers j and y, we can compute RLE (Uniq(e[j..j + y − 1])) in

O(log |e|+ log y log∗M) time.

Proof. Let T be the derivation tree of e and consider the induced subtree X of T
whose root is the root of T and whose leaves are the parents of the nodes representing

Uniq(e[j..j+y−1]). Then the size of X is O(log |e|+log y log∗M) by Lemma 15. Starting

at the given node in the DAG which corresponds to e, we compute X using Definition 7

and the properties described in the proof of Lemma 15 in O(log |e| + log y log∗M) time.

Hence Lemma 16 holds. �

Lemma 17 ([3]) Let Vs be the set of signatures which occur in the derivation tree of

id(s) ∈ V for a string s. Then |(Vs1 ∪Vs2) \ Vs1s2|, |Vs1s2 \ (Vs1 ∪Vs2)| = O(logN ′ log∗M)

holds for two strings s1 and s2 such that id(s1), id(s2), id(s1s2) ∈ V, where N ′ = |s1s2|.

Proof. By Lemma 14, the derivation tree of id(s1s2) is created over Uniq(s1)

Uniq(s2), and hence, O(logN ′ log∗M) signatures can be added by Lemma 15. Similarly,

O(logN ′ log∗M) signatures, which were created over Uniq(T [..i − 1])Uniq(T [i..]), are

removed. �



Chapter 3

Construction and Update of

Signature Encoding

As described in Chapter 1, signature encodings are used by many applications. In this

chapter, we show Theorems 1 and 2, and present a new application of signature encodings.

3.1 Updates

In this section, we show Theorem 1.

Consider the update of a signature encoding G = (Σ,V ,D, S) of a text T . During

updates we recompute ShrinkTt and PowT
t for some part of new T . When we need a

signature for expr , we look up the signature assigned to expr (i.e., compute Assgn(expr))

and use it if such exists. If Assgn(expr) is NIL, we create a new signature enew , which

is an integer that is currently not used as signatures, and add enew → expr to D. Sim-

ilarly, updates produce an useless signature, which does not occur in the derivation tree

representing new T , i.e., the parents in the DAG are all removed. We remove all useless

signatures from D during updates.

3.1.1 Update Algorithms and Data Structures

Note that we do not need to recompute id(T ) from scratch for updating G. Lemma 17

implies that INSERT and DELETE need to add/remove only O(logN log∗M + y) sig-

natures to/from G, because T ′ ← T [..i− 1]Y T [i..] is a concatenation of T [..i− 1], Y and

T [i..]. We can show that these update operations can be computed efficiently using this

fact.

34
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We support DELETE (j, y) as follows: (1) Compute the new start variable S ′ =

id(T [..j − 1]T [j + y..]) by recomputing the new signature encoding from Uniq(T [..j −
1]) and Uniq(T [j + y..]). Although we need a part of dΓ(Pow

T [..j−1]T [j+y..]
t ) to recom-

pute LC Γ(Pow
T [..j−1]T [j+y..]
t ) for every level t, the input size to compute the part of

dΓ(Pow
T [..j−1]T [j+y..]
t ) is O(log∗M) by Lemma 3. Hence these can be done in O((qAssgn +

qAdd/Remove+qnew) logN log∗M) time by Lemmas 16 and 17, where qAssgn , qAdd/Remove and

qnew are the times for computing Assgn(expr) for a given expr , for adding/removing an

assignment to/from D and for computing enew. (2) Remove all useless signatures Z from

G, where |Z| = O(y + logN log∗M) by Lemma 15. If a signature is useless, then all the

signatures along the path from S to it are also useless. Hence, we can remove all useless

signatures efficiently by depth-first search starting from S, which takes O(qAdd/Remove|Z|)
time.

Similarly, we can support INSERT (Y, i) in O((qAssgn + qAdd/Remove + qnew)(y + logN

log∗M)) time. Note that we can naively compute Uniq(Y ) in O(y(qAssgn + qAdd/Remove +

qnew)) time. For INSERT ′(j, y, i), we can avoid O(y(qAssgn + qAdd/Remove + qnew)) time by

computing Uniq(T [j..j + y − 1]) using Lemma 16.

Next, we describe data structures for updating G. In addition to the DAG for G,

we need additional data structures which supports Assgn(·) and enew for dynamic G. For

computing Assgn(·), we use a dynamic membership data structure using linear space. For

computing enew , we have an integer i = maxV+1. When we need enew , this data structure

returns i as enew and update i ← i + 1. Hence we get qAssgn , qAdd/Remove = O(µ(w,M))

and qnew = O(1).

Therefore, there exists a data structure of O(w) space which supports INSERT and

DELETE in O(µ(w,M)(y + logN log∗M)) time and INSERT ′ in O(µ(w,M)y) time.

3.1.2 The Data Structure for Bounding New Signatures

In the above update algorithm, the value of enew depends on the number of update

operations. This implies that enew will be larger than M . To prevent this, we use the

following lemma.

Lemma 18 Let G be the signature encoding of size w for a dynamic string of maximal

length Nmax. Using additional O(w) space, we can compute enew such that enew ≤ 4Nmax

holds in O(f(w, 4Nmax)) time.
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Proof. Note that w ≤ 4Nmax holds by the definition of signature encodings. Let V be

the set of unused signatures in [1..4Nmax] and we choose minV as enew. Since V can be

represented by O(w) intervals, we can maintain V by a dynamic predecessor/successor

data structures of O(w) size. Hence we can compute minV in O(fA) time. �

Hence qnew = O(f(w,M)) by Lemma 18 and set M = 4Nmax if we want to always bound

enew ≤ M . Therefore Theorem 1 holds. Note that Expr(e) can be computed in constant

time using the DAG of G.

3.2 Construction

In this section, we give proofs of Theorem 2. Note that we set M = 4N in following

proofs, and also, we can replace fA with µ(w, cM) in following proofs because the output

of Theorem 2 is the static signature encoding of T , where c is a constant positive value

such that c ≥ 1.

3.2.1 Proof of Theorem 2 (2)

Proof. Consider a dynamic signature encoding G for an empty string. Then Theo-

rem 2 (2) immediately holds by computing INSERT ′(ci, |fi|, |f1 · · · fi−1|+1) for all 1 ≤ i ≤
z incrementally, where ci ≤ |f1 · · · fi−1|− |fi| is a position such that T [ci..ci+ |fi|−1] = fi

holds. Note that when fi is a character which does not occur in f1, . . . fi−1 for 1 ≤ i ≤ z,

we compute INSERT (fi, |f1 · · · fi−1|+ 1) in O(f(w,M) logN log∗M) time instead of the

above INSERT ′ operation. �

Note that we can directly show Lemma 13 from the above proof because the size of G
increases O(logN log∗M) by Lemma 15, every time we do INSERT ′(ci, |fi|, |f1 · · · fi−1|+
1) for 1 ≤ i ≤ z.

3.2.2 Proof of Theorem 2 (3a)

Proof. We use the G-factorization proposed in [54]. By the G-factorization of T with

respect to S, T is partitioned into O(n) strings, each of which, corresponding to T [i..j],

is derived by a variable X of S such that X appears in the derivation tree of S to derive

a substring of T [1..i− 1], or otherwise X derives a single character that does not appear
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in T [1..i − 1]. Note that we can compute a sequence of variables of S corresponding to

the G-factorization of T with respect to S in O(n) time by the depth-first traversal of the

DAG of S. Since the G-factorization resembles the LZ77 factorization, we can construct

the dynamic signature encoding G for T by O(n) INSERT ′ and INSERT operations as

the proof of Theorem 2 (2). �

3.2.3 Proof of Theorem 2 (1a)

Proof. Note that we can naively compute id(T ) for a given string T in O(NfA) time

and O(N) working space. In order to reduce the working space, we consider factorizing T

into blocks of size b and processing them incrementally: Starting with the empty signature

encoding G, we can compute id(T ) in O(N
b
fA(logN log∗M+b)) time and O(w+b) working

space by using INSERT (T [(i−1)b+1..ib], (i−1)b+1) for i = 1, . . . , N
b

in increasing order.

Hence our proof is finished by choosing b = logN log∗M . �

3.2.4 Proof of Theorem 2 (1b)

We compute signatures level by level, i.e., construct ShrinkT0 ,PowT
0 , . . . , ShrinkTh ,PowT

h

incrementally. For each level, we create signatures by sorting signature blocks (or run-

length encoded signatures) to which we give signatures, as shown by the next two lemmas.

Lemma 19 Given LC (PowT
t−1) for 0 < t ≤ h, we can compute ShrinkTt in O((b −

a) + |PowT
t−1|) time and space, where b is the maximum integer in PowT

t−1 and a is the

minimum integer in PowT
t−1.

Proof. Since we assign signatures to signature blocks and run-length signatures in the

derivation tree of S in the order they appear in the signature encoding, PowT
t−1[i]− a fits

in an entry of a bucket of size b− a for each element of PowT
t−1[i] of PowT

t−1. Recall that

the length of each block is at most four. Hence we can sort all the blocks of LC (PowT
t−1)

by bucket sort in O((b− a) + |PowT
t−1|) time and space. Since Assgn is an injection and

since we process the levels in increasing order, for any two different levels 0 ≤ t′ < t ≤ h,

no elements of ShrinkTt−1 appear in ShrinkTt′−1, and hence no elements of PowT
t−1 appear in

PowT
t′−1. Thus, we can determine a new signature for each block in LC (PowT

t−1), without

searching existing signatures in the lower levels. This completes the proof. �
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Lemma 20 Given RLE (ShrinkTt ), we can compute PowT
t in O(x+(b−a)+|RLE (ShrinkTt )

|) time and space, where x is the maximum length of runs in RLE (ShrinkTt ), b is the max-

imum integer in PowT
t−1, and a is the minimum integer in PowT

t−1.

Proof. We first sort all the elements of RLE (ShrinkTt ) by bucket sort in O(b− a+

|RLE (ShrinkTt )|) time and space, ignoring the powers of runs. Then, for each integer

r appearing in ShrinkTt , we sort the runs of r’s by bucket sort with a bucket of size x.

This takes a total of O(x+ |RLE (ShrinkTt )|) time and space for all integers appearing in

ShrinkTt . The rest is the same as the proof of Lemma 19. �

Proof. [Proof of Theorem 2 (1b)] Since the size of the derivation tree of id(T ) is O(N),

by Lemmas 3, 19, and 20, we can compute a DAG of G for T in O(N) time and space. �

3.2.5 Proof of Theorem 2 (3b)

In this section, we sometimes abbreviate val(X) as X for X ∈ S. For example, ShrinkXt

and PowX
t represents Shrink

val(X)
t and Pow

val(X)
t respectively.

Our algorithm computes signatures level by level, i.e., constructs incrementally

ShrinkXn
0 , PowXn

0 , . . . , ShrinkXn
h ,PowXn

h . Like the algorithm described in Subsection 3.2.4,

we can create signatures by sorting blocks of signatures or run-length encoded signatures

in the same level. The main difference is that we now utilize the structure of the SLP,

which allows us to do the task efficiently in O(n log∗M + w) working space. In partic-

ular, although |ShrinkXn
t |, |PowXn

t | = O(N) for 0 ≤ t ≤ h, they can be represented in

O(n log∗M) space.

In so doing, we introduce some additional notations relating to XShrPt and XPowP
t

in Definition 7. By Lemma 14, there exist ẑ
(P1,P2)
t and z

(P1,P2)
t for any string P = P1P2

such that the following equation holds: XShrPt = ŷP1
t ẑ

(P1,P2)
t ŷP2

t for 0 < t ≤ hP , and

XPowP
t = yP1

t z
(P1,P2)
t yP2

t for 0 ≤ t < hP , where we define ŷPt and yPt for a string P as:

ŷPt =

XShrPt for 0 < t ≤ hP ,

ε for t > hP ,
yPt =

XPowP
t for 0 ≤ t < hP ,

ε for t ≥ hP .

For any variable Xi → X`Xr, we denote ẑXi
t = ẑ

(val(X`),val(Xr))
t (for 0 < t ≤ hval(Xi))

and zXi
t = z

(val(X`),val(Xr))
t (for 0 ≤ t < hval(Xi)). Note that |zXi

t |, |ẑXi
t | = O(log∗M)

because zXi
t is created on R̂X`

t ẑXi
t L̂Xr

t , similarly, ẑXi
t is created on RX`

t−1z
Xi
t−1L

Xr
t−1. We can
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ztXn
XPowtXn

XPowtXn-1
ztXn-1

ztXn-3

XPowtXn-2

ztXn-6

ztXn-2

XPowtXn-4XPowtXn-3

ztXn-5

ztXn-4
XPowtXn-7
ztXn-7

Figure 3.1: XPowXn
t can be represented by zX1

t , . . . , zXn
t . In this example,

XPowXn
t = z

Xn−5

t z
Xn−3

t z
Xn−6

t z
Xn−1

t z
Xn−4

t zXn
t z

Xn−7

t z
Xn−2

t .

use ẑX1
t , . . . , ẑXn

t (resp. zX1
t , . . . , zXn

t ) as a compressed representation of XShrXn
t (resp.

XPowXn
t ) based on the SLP: Intuitively, ẑXn

t (resp. zXn
t ) covers the middle part of XShrXn

t

(resp. XPowXn
t ) and the remaining part is recovered by investigating the left/right child

recursively (see also Fig. 3.1). Hence, with the DAG structure of the SLP, XShrXn
t and

XPowXn
t can be represented in O(n log∗M) space.

In addition, we define ÂPt , B̂P
t , APt and BP

t as follows: For 0 < t ≤ hP , ÂPt (resp.

B̂P
t ) is a prefix (resp. suffix) of ShrinkPt which consists of signatures of APt−1L

P
t−1 (resp.

RP
t−1B

P
t−1); and for 0 ≤ t < hP , APt (resp. BP

t ) is a prefix (resp. suffix) of PowP
t which

consists of signatures of ÂPt L̂
P
t (resp. R̂P

t B̂
P
t ). By the definition, ShrinkPt = ÂPt XShrPt B̂

P
t

for 0 ≤ t ≤ hP , and PowP
t = APt XPowP

t B
P
t for 0 ≤ t < hP . See Fig. 3.2 for the

illustration.

Since ShrinkXn
t = ÂXn

t XShrXn
t B̂Xn

t for 0 < t ≤ hXn , we use Λ̂t = (ẑX1
t , . . . , ẑXn

t , ÂXn
t ,

B̂Xn
t ) as a compressed representation of ShrinkXn

t of size O(n log∗M). Similarly, for

0 ≤ t < hXn , we use Λt = (zX1
t , . . . , zXn

t , AXn
t , BXn

t ) as a compressed representation of

PowXn
t of size O(n log∗M).

Our algorithm computes incrementally Λ0, Λ̂1, . . . , Λ̂hXn . Given Λ̂hXn , we can easily

get PowXn

hXn of size O(log∗M) in O(n log∗M) time, and then id(val(Xn)) in O(log∗M)

time from PowXn

hXn . Hence, in the following three lemmas, we show how to compute

Λ0, Λ̂1, . . . , Λ̂hXn .

Lemma 21 Given an SLP of size n, we can compute Λ0 in O(n log log(n log∗M) log∗M)
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Shrink2
𝑃= 𝐴$2𝑃 XShr2

𝑃 𝐵&2𝑃

Pow1
𝑃= 𝐴1𝑃 𝐿1𝑃 𝑅1𝑃 𝐵1𝑃

Shrink1
𝑃= 𝐴$1𝑃 𝐿&1𝑃 𝑅&1𝑃 𝐵&1𝑃

Pow0
𝑃=𝐴0𝑃 𝐿0𝑃 𝑅0𝑃 𝐵0𝑃

Shrink0
𝑃= 𝐿&0𝑃 𝑅&0𝑃

P

Figure 3.2: An abstract image of ShrinkPt and PowP
t for a string P . For 0 ≤

t < hP , APt L
P
t (resp. RP

t B
P
t ) is encoded into ÂPt+1 (resp. B̂P

t+1).

Similarly, for 0 < t < hP , ÂPt L̂
P
t (resp. R̂P

t B̂
P
t ) is encoded into APt

(resp. BP
t ).

time and O(n log∗M) space.

Proof. We first compute, for all variables Xi, RLE (XShrXi
0 ) if |RLE (XShrXi

0 )| ≤ δC ,

otherwise RLE (L̂Xi
0 ) and RLE (R̂Xi

0 ). The information can be computed in O(n log∗M)

time and space in a bottom-up manner, i.e., by processing variables in increasing order.

For Xi → X`Xr, if both |RLE (XShrX`
0 )| and |RLE (XShrXr

0 )| are no greater than δC , we

can compute RLE (XShrXi
0 ) in O(log∗M) time by naively concatenating RLE (XShrX`

0 )

and RLE (XShrXr
0 ). Otherwise |RLE (XShrXi

0 )| > δC must hold, and RLE (L̂Xi
0 ) and

RLE (R̂Xi
0 ) can be computed in O(1) time from the information for X` and Xr.

The run-length encoded signatures represented by zXi
0 can be obtained by using the

above information for X` and Xr in O(log∗M) time: zXi
0 is created over run-length en-

coded signatures RLE (XShrX`
0 ) (or RLE (R̂X`

0 )) followed by RLE (XShrXr
0 ) (or RLE (R̂Xr

0 )).

Also, by definition AXn
0 and BXn

0 represents RLE (L̂Xn
0 ) and RLE (R̂Xn

0 ), respectively.

Hence, we can compute in O(n log∗M) time O(n log∗M) run-length encoded signa-

tures to which we give signatures. We determine signatures by sorting the run-length

encoded signatures as Lemma 20. However, in contrast to Lemma 20, we do not use

bucket sort for sorting the powers of runs because the maximum length of runs could be

as large as N and we cannot afford O(N) space for buckets. Instead, we use the sorting

algorithm of Han [29] which sorts x integers in O(x log log x) time and O(x) space. Hence,

we can compute Λ0 in O(n log log(n log∗M) log∗M) time and O(n log∗M) space. �
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Lemma 22 Given Λ̂t, we can compute Λt in O(n log log(n log∗M) log∗M) time and

O(n log∗M) space.

Proof. The computation is similar to that of Lemma 21 except that we also use Λ̂t.

We first compute, for all variables Xi, RLE (XShrXi
t ) if |RLE (XShrXi

t )| ≤ δC , other-

wise RLE (L̂Xi
t ) and RLE (R̂Xi

t ). The information can be computed in O(n log∗M) time

and space in a bottom-up manner, i.e., by processing variables in increasing order. For

Xi → X`Xr, if both |RLE (XShrX`
t )| and |RLE (XShrXr

t )| are no greater than δC , we

can compute RLE (XShrXi
t ) in O(log∗M) time by naively concatenating RLE (XShrX`

t ),

RLE (ẑXi
t ) and RLE (XShrXr

t ). Otherwise |RLE (XShrXi
t )| > δC must hold, and RLE (L̂Xi

0 )

and RLE (R̂Xi
0 ) can be computed in O(1) time from RLE (ẑXi

t ) and the information for X`

and Xr.

The run-length encoded signatures represented by zXi
t can be obtained in O(log∗M)

time by using ẑXi
t and the above information for X` and Xr: z

Xi
t is created over run-length

encoded signatures that are obtained by concatenating RLE (XShrX`
0 ) (or RLE (R̂X`

0 )), zXi
t

and RLE (XShrXr
0 ) (or RLE (R̂Xr

0 )). Also, AXn
t and BXn

t represents ÂXn
t L̂Xn

t and R̂Xn
t B̂Xn

t ,

respectively.

Hence, we can compute in O(n log∗M) time O(n log∗M) run-length encoded signa-

tures to which we give signatures. We determine signatures in O(n log log(n log∗M) log∗

M) time by sorting the run-length encoded signatures as Lemma 22. �

Lemma 23 Given Λt, we can compute Λ̂t+1 in O(n log∗M) time and O(n log∗M) space.

Proof. In order to compute ẑXi
t+1 for a variable Xi → X`Xr, we need a signature sequence

on which ẑXi
t+1 is created, as well as its context, i.e., ∆L signatures to the left and ∆R to

the right. To be precise, the needed signature sequence is vX`
t zXi

t uXr
t , where u

Xj

t (resp.

v
Xj

t ) denotes a prefix (resp. suffix) of y
Xj

t of length ∆L + ∆R + 4 for any variable Xj (see

also Figure 3.3). Also, we need Atu
Xn
t and vXn

t Bt to create ÂXn
t+1 and B̂Xn

t+1, respectively.

Note that by Definition 7, |zXt | > δC if zXt 6= ε. Then, we can compute uXi
t for all

variables Xi in O(n log∗M) time and space by processing variables in increasing order on

the basis of the following fact: uXi
t = uX`

t if zX`
t 6= ε, otherwise uXi

t is the prefix of zXi
t of

length ∆L + ∆R + 4. Similarly vXi
t for all variables Xi can be computed in O(n log∗M)

time and space.

Using uXi
t and vXi

t for all variables Xi, we can obtain O(n log∗M) blocks of signatures

to which we give signatures. We determine signatures by sorting the blocks by bucket
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Figure 3.3: Abstract images of the needed signature sequence vX`
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sort as in Lemma 19 in O(n log∗M) time. Hence, we can get Λ̂t+1 in O(n log∗M) time

and space. �

Proof. [Proof of Theorem 2 (3b)] Using Lemmas 21, 22 and 23, we can get Λ̂hXn

in O(n log log(n log∗M) logN log∗M) time by computing Λ0, Λ̂1, . . . , Λ̂hXn incrementally.

Note that during the computation we only have to keep Λt (or Λ̂t) for the current t and

the assignments of G. Hence the working space is O(n log∗M + w). By processing Λ̂hXn

in O(n log∗M) time, we can get the DAG of G of size O(w). �

3.3 Application

Theorem 8 is an application to text compression.

Theorem 8 (1) Given a dynamic signature encoding G = (Σ,V ,D, S) of size w which

generates T , we can compute an SLP S of size O(w log |T |) generating T in O(w log |T |)
time. (2) Let us conduct a single INSERT or DELETE operation on the string T gen-

erated by the SLP of (1). Let y be the length of the substring to be inserted or deleted,
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and let T ′ be the resulting string. During the above operation on the string, we can up-

date, in O((y + log |T ′| log∗M)(fA + log |T ′|)) time, the SLP of (1) to an SLP S ′ of size

O(w′ log |T ′|) which generates T ′, where w′ is the size of updated G which generates T ′.

Proof. (1)For any signature e ∈ V such that e → e`er, we can easily translate e

to a production of SLPs because the assignment is a pair of signatures, like the right-

hand side of the production rules of SLPs. For any signature e ∈ V such that e → êk,

we can translate e to at most 2 log k production rules of SLPs: We create t = blog kc
variables which represent ê21 , ê22 , . . . , ê2t and concatenating them according to the binary

representation of k to make up k ê’s. Therefore we can compute S in O(w log |T |) time.

(2)Note that the number of created or removed signatures in V is bounded by O(y +

log |T ′| log∗M) by Lemma 15. For each of the removed signatures, we remove the corre-

sponding production from S. For each of created signatures, we create the corresponding

production and add it to S as in the proof of (1). Therefore Theorem 8 holds. �

3.4 Conclusions and Future Work

In this chapter, we showed Theorems 1 and 2, and present a new application of signature

encodings. We think that the algorithm of Theorem 2(3b) can speed up because the

bottle neck is the range of value of a run in signature encodings. Since the range is O(N),

we used Han’s sorting algorithm, however the case seem to be rare. If the range is O(w),

then we can use the bucket sorting in O(w) space. Otherwise, there are a few runs whose

the value range is O(N) and many runs whose the value range is O(w). Hence we may

remove the bottle neck by applying some technique to the few runs.



Chapter 4

Dynamic Longest Common

Extension

In this chapter, we present a compressed data structure which can solve the Dynamic

LCE problem(Problem 3). Technically speaking, we show that signature encodings of a

string T of length N and maximal length Nmax can support LCE queries in O(logN +

log ` log∗Nmax) time. Since the signature encoding of T is in compressed space and sup-

ports update operations of T , signature encodings can solve the Dynamic LCE problem.

4.1 LCE Algorithm

In this section we show the following lemma. Note that Theorem 3 immediately follows

from Lemma 24 by setting M = 4Nmax.

Lemma 24 Using a signature encoding G = (Σ,V ,D, S) for a string T with an M-

function, we can support queries LCE(s1, s2, i, j) and LCE(sR1 , s
R
2 , i, j) in O(log |s1|+log |s2|

+ log ` log∗M) time for given two signatures e1, e2 ∈ V and two integers 1 ≤ i ≤ |s1|,
1 ≤ j ≤ |s2|, where s1 = val(e1), s2 = val(e2) and ` is the answer to the LCE query.

Proof. We focus on LCE(s1, s2, i, j) as LCE(sR1 , s
R
2 , i, j) is supported similarly.

Let P denote the longest common prefix of s1[i..] and s2[j..]. Our algorithm simulta-

neously traverses two derivation trees rooted at e1 and e2 and computes P by matching

the common signatures greedily from left to right. Recall that s1 and s2 are substrings

of T . Since the both substrings P occurring at position i in val(e1) and at position j

in val(e2) are represented by Uniq(P ) in the signature encoding by Lemma 14, we can

44
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compute P by at least finding the common sequence of nodes which represents Uniq(P ),

and hence, we only have to traverse ancestors of such nodes. By Lemma 15, the num-

ber of nodes we traverse, which dominates the time complexity, is upper bounded by

O(log |s1|+ log |s2|+ RLE (Uniq(P ))) = O(log |s1|+ log |s2|+ log ` log∗M). �

4.2 Applications

In this section, we describe applications of our dynamic LCE data structures. Theorems 9-

13 are applications to compressed string processing, where the task is to process a given

compressed representation of string(s) without explicit decompression. We believe that

only a few applications are listed here, considering the importance of LCE queries. As one

example of unlisted applications, there is a paper [33] in which our LCE data structure

was used to improve an algorithm of computing the Lyndon factorization of a string

represented by a given SLP. Note that the time complexity of Theorem 2(3b) in Chapter 3

can be written as O(n log log n logN log∗M) when log∗M = O(n) which in many cases is

true, and always true in static case because log∗M = O(log∗N) = O(logN) = O(n).

We can get the next lemma using Theorem 2 (3b) and Theorem 1:

Lemma 25 Given an SLP of size n representing a string of length N , we can sort the

variables of the SLP in lexicographical order in O(n log n logN log∗N) time and O(n log∗N

+ w) working space.

Lemma 25 has an application to an SLP-based index of Claude and Navarro [14]. In

the paper, they showed how to construct their index in O(n log n) time if the lexicographic

order of variables of a given SLP is already computed. However, in order to sort variables

they almost decompressed the string, and hence, needs Ω(N) time and Ω(N log |Σ|) bits

of working space. Now, Lemma 25 improves the sorting part yielding the next theorem.

Theorem 9 Given an SLP of size n representing a string of length N , we can construct

the SLP-based index of [14] in O(n log n logN log∗N) time and O(n log∗N + w) working

space.

Theorem 10 Given an SLP S of size n generating a string T of length N , we can con-

struct, in O(n log log n logN log∗N) time, a data structure which occupies O(n logN log∗
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N) space and supports LCP(val(Xi), val(Xj)) and LCS(val(Xi), val(Xj)) queries for vari-

ables Xi, Xj in O(logN) time. The LCP(val(Xi), val(Xj)) and LCS(val(Xi), val(Xj))

query times can be improved to O(1) using O(n log n logN log∗N) preprocessing time.

We use the following known result to show Theorem 10.

Lemma 26 ([3]) Let T = {T1, . . . , Tk}. Using a signature encoding G = (Σ,V ,D, S)

such that id(T1), . . . , id(Tk) ∈ V, we can support following operations for two strings

Ti, Tj ∈ T :

• LCP(Ti, Tj) in O(log |Ti|+ log |Tj|) time,

• LCS (Ti, Tj) in O((log |Ti|+ log |Tj|) log∗M) time

Proof. We compute LCP(Ti, Tj) by LCE (Ti, Tj, 1, 1), namely, we use the algorithm of

Lemma 24. Let P denote the longest common prefix of Ti and Tj. We use the notation ÂP

defined in Subsection 3.2.5. Then the both substrings P occurring at position 1 in Ti and at

position 1 in Tj are represented as v = ÂPhP XShrPhPR
P
hP−1R̂

P
hP−1 · · ·R

P
0 R̂

P
0 in the signature

encoding by a similar argument of Lemma 14. Since |RLE (v)| = O(log |P | + log∗M),

we can compute LCP(Ti, Tj) in O(log |Ti| + log |Tj|) time. Similarly, we can compute

LCS (Ti, Tj) in O((log |Ti| + log |Tj|) log∗M) time. More detailed proofs can be found

in [3]. �

To use Lemma 26 for id(val(X1)), . . . , id(val(Xn)), we show the following lemma.

Lemma 27 Given an SLP S, we can compute id(val(X1)), . . . , id(val(Xn)) in

O(n log log n logN log∗M) time and O(n logN log∗M) space.

Proof. Recall that the algorithm of Theorem 2 (3) computes id(val(Xn)) in O(n log log n

logN log∗M) time. We can modify the algorithm to compute id(val(X1)), . . . , id(val(Xn))

without changing the time complexity: We just compute AXt , ÂXt , BX
t and B̂X

t for “all”

X ∈ S, not only for Xn. Since the total size is O(n logN log∗M), Lemma 27 holds. �

We are ready to prove Theorem 10.

Proof. The first result immediately follows from Lemma 26 and 27. To speed-up query

times for LCP and LCS, we sort variables in lexicographical order in O(n log n logN)
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time by LCP query and a standard comparison-based sorting. Constant-time LCP queries

are then possible by using a constant-time RMQ data structure [8] on the sequence of

the lcp values. Next we show that LCS queries can be supported similarly. Let SLP

S = (Σ,V ,D, S) and Yi → expr i for 1 ≤ i ≤ n, where expr i = YrY` for Xi → X`Xr ∈ D
and expr i = a for (Xi → a ∈ Σ) ∈ D. Then consider an SLP S ′ = (Σ,V ′,D, S ′) of size

n, where V ′ = {Y1, . . . , Yn}, D′ = {Y1 → expr i, . . . , Yn → exprn} and S ′ = Yn. Namely

S ′ represents TR. By supporting LCP queries on S ′, LCS queries on S can be supported.

Hence Theorem 10 holds. �

Theorem 11 Given an SLP S of size n generating a string T of length N , there is

a data structure of O(w + n) space which supports queries LCE(val(Xi), val(Xj), a, b) for

variables Xi, Xj, 1 ≤ a ≤ |Xi| and 1 ≤ b ≤ |Xj| in O(logN+log ` log∗N) time, where w =

O(z logN log∗N), z = |LZ77wo(T )| and ` is the answer of LCE query. The data structure

can be constructed in O(n log log n logN log∗N) preprocessing time and O(n log∗N + w)

working space.

Proof. We can compute a static signature encoding G = (Σ,V ,D, S) of size w repre-

senting T in O(n log log n logN log∗M) time and O(n log∗M + w) working space using

Theorem 2, where w = O(z logN log∗M). Notice that each variable of the SLP appears

at least once in the derivation tree of Tn of the last variable Xn representing the string T .

Hence, if we store an occurrence of each variable Xi in Tn and |val(Xi)|, we can reduce

any LCE query on two variables to an LCE query on two positions of val(Xn) = T . In so

doing, for all 1 ≤ i ≤ n we first compute |val(Xi)| and then compute the leftmost occur-

rence `i of Xi in Tn, spending O(n) total time and space. By Lemma 24, each LCE query

can be supported in O(logN+log ` log∗M) time. Since z ≤ n [54], the total preprocessing

time is O(n log log n logN log∗M) and working space is O(n log∗M + w). �

Let h be the height of the derivation tree of a given SLP S. Note that h ≥ logN .

Matsubara et al. [42] showed an O(nh(n+h logN))-time O(n(n+logN))-space algorithm

to compute an O(n logN)-size representation of all palindromes in the string. Their

algorithm uses a data structure which supports in O(h2) time, LCE queries of a special

form LCE(val(Xi), val(Xj), 1, pj) [42]. This data structure takes O(n2) space and can be

constructed in O(n2h) time [39]. Using Theorem 11, we obtain a faster algorithm, as

follows:
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Theorem 12 Given an SLP of size n generating a string of length N , we can compute

an O(n logN)-size representation of all palindromes in the string in O(n log2N log∗N)

time and O(n log∗N + w) space.

Proof. For a given SLP of size n representing a string of length N , let P (n,N), S(n,N),

and E(n,N) be the preprocessing time and space requirement for an LCE data structure

on SLP variables, and each LCE query time, respectively.

Matsubara et al. [42] showed that we can compute an O(n logN)-size representation

of all palindromes in the string in O(P (n,N) + E(n,N) · n logN) time and O(n logN +

S(n,N)) space. Hence, using Theorem 11, we can find all palindromes in the string in

O(n log log n logN log∗M+n log2N log∗M) = O(n log2N log∗M) time and O(n log∗M+

w) space. �

Our data structures also solve the grammar compressed dictionary matching problem.

Theorem 13 Given a DSLP 〈S,m〉 of size n that represents a dictionary Π〈S,m〉 for m

patterns of total length N , we can preprocess the DSLP in O((n log log n+m logm) logN

log∗N) time and O(n logN log∗N) space so that, given any text T in a streaming fashion,

we can detect all occ occurrences of the patterns in T in O(|T | logm logN log∗N + occ)

time.

Proof. In the preprocessing phase, we construct a static signature encoding G =

(Σ,V ,D, S) of size w′ such that id(val(X1)), . . . , id(val(Xn)) ∈ V using Lemma 27, spend-

ing O(n log log n logN log∗M) time, where w′ = O(n logN log∗M). Next we construct a

compacted trie of size O(m) that represents the m patterns, which we denote by PTree

(pattern tree). Formally, each non-root node of PTree represents either a pattern or the

longest common prefix of some pair of patterns. PTree can be built by using LCP of Theo-

rem 10 in O(m logm logN) time. We let each node have its string depth, and the pointer

to its deepest ancestor node that represents a pattern if such exists. Further, we augment

PTree with a data structure for level ancestor queries so that we can locate any prefix of

any pattern, designated by a pattern and length, in PTree in O(logm) time by locating

the string depth by binary search on the path from the root to the node representing the

pattern. Supposing that we know the longest prefix of T [i..|T |] that is also a prefix of

one of the patterns, which we call the max-prefix for i, PTree allows us to output occi
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patterns occurring at position i in O(logm + occi) time. Hence, the pattern matching

problem reduces to computing the max-prefix for every position.

In the pattern matching phase, our algorithm processes T in a streaming fashion,

i.e., each character is processed in increasing order and discarded before taking the next

character. Just before processing T [j+1], the algorithm maintains a pair of signature p and

integer l such that val(p)[1..l] is the longest suffix of T [1..j] that is also a prefix of one of the

patterns. When T [j+1] comes, we search for the smallest position i ∈ {j−l+1, . . . , j+1}
such that there is a pattern whose prefix is T [i..j + 1]. For each i ∈ {j − l+ 1, . . . , j + 1}
in increasing order, we check if there exists a pattern whose prefix is T [i..j + 1] by binary

search on a sorted list of m patterns. Since T [i..j] = val(p)[i− j+ l..l], LCE with p can be

used for comparing a pattern prefix and T [i..j+1] (except for the last character T [j+1]),

and hence, the binary search is conducted in O(logm logN log∗M) time. For each i, if

there is no pattern whose prefix is T [i..j+1], we actually have computed the max-prefix for

i, and then we output the occurrences of patterns at i. The time complexity is dominated

by the binary search, which takes place O(|T |) times in total. Therefore, the algorithm

runs in O(|T | logm logN log∗M + occ) time.

By the way, one might want to know occurrences of patterns as soon as they appear as

Aho-Corasick automata do it by reporting the occurrences of the patterns by their ending

positions. Our algorithm described above can be modified to support it without changing

the time and space complexities. In the preprocessing phase, we additionally compute

RPTree (reversed pattern tree), which is analogue to PTree but defined on the reversed

strings of the patterns, i.e., RPTree is the compacted trie of size O(m) that represents the

reversed strings of the m patterns. Let T [i..j] be the longest suffix of T [1..j] that is also

a prefix of one of the patterns. A suffix T [i′..j] of T [i..j] is called the max-suffix for j iff

it is the longest suffix of T [i..j] that is also a suffix of one of the patterns. Supposing that

we know the max-suffix for j, RPTree allows us to output eoccj patterns occurring with

ending position j in O(logm+ eoccj) time. Given a pair of signature p and integer l such

that T [i..j] = val(p)[1..l], the max-suffix for j can be computed in O(logm logN log∗M)

time by binary search on a list of m patterns sorted by their “reversed” strings since

each comparison can be done by “leftward” LCE with p. Except that we compute the

max-suffix for every position and output the patterns ending at each position, everything

else is the same as the previous algorithm, and hence, the time and space complexities

are not changed. �
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Note that Theorem 6 also the grammar compressed dictionary matching problem. Our

data structure of Theorem 13 is always smaller, and runs faster when h = ω(logm logN

log∗N).

4.3 Conclusions and Future Work

In this chapter, we presented a dynamic compressed LCE data structures and its appli-

cations. As a future work, we are planning to present a dynamic compressed LCE data

structures supporting LCE queries in O(logN) time. This realization is hard but we

believe that it is not impossible.



Chapter 5

Dynamic Compressed Index and

LZ77 Factorization

In this chapter, we handle the dynamic index problem and LZ77 factorization problem.

Especially, we show Theorems 4 and 5.

5.1 Different Points with Previous Techniques

To emphasize the difference between our dynamic compressed index and previously pro-

posed indexes, we explain that difference points.

To achieve Theorem 4, technically speaking, we use the signature encoding G of T .

The signature encoding and the related ideas have been used in many applications. In

particular, our dynamic compressed index has close relationship to Alstrup et al.’s index [4,

3], which is based on signature encodings, and the ESP-indices [60, 61], which are based

on ESP. Note that ESP is an another version of signature encodings. Hence, we describe

the difference points with their indices.

Alstrup et al.’s index is dynamic and non-compressed index which is based on the sig-

nature encoding of strings, while improving the update time of signature encodings [4] and

the locally consistent parsing algorithm (details can be found in the technical report [3]).

Our data structure uses insert/delete update operations of signature encodings which

are based on Alstrup et al.’s fast string concatenation/split algorithms (update algorithm)

and linear-time computation of locally consistent parsing, but has little else in common

than those. Especially, Alstrup et al.’s dynamic pattern matching algorithm [4, 3] re-

quires to maintain specific locations called anchors over the parse trees of the signature
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encodings, but our index does not use anchors, and also, it is different that we focus on

the size of the dynamic index but they did not.

Our index also has close relationship to the ESP-indices [60, 61], but there are two

significant differences between ours and ESP-indices: The first difference is that the ESP-

index [60] is static and its online variant [61] allows only for appending new characters to

the end of the text, while our index is fully dynamic allowing for insertion and deletion

of arbitrary substrings at arbitrary positions. The second difference is that the pattern

search time of the ESP-index is proportional to the number occc of occurrences of the

so-called “core” of a query pattern P , which corresponds to a maximal subtree of the

ESP derivation tree of a query pattern P . If occ is the number of occurrences of P in the

text, then it always holds that occc ≥ occ, and in general occc cannot be upper bounded

by any function of occ. In contrast, as can be seen in Theorem 4, the pattern search

time of our index is proportional to the number occ of occurrences of a query pattern P .

This became possible due to our discovery of a new property of the signature encoding [3]

(stated in Lemma 29).

5.2 The Idea of Our Searching Algorithm

As already mentioned in the introduction, our strategy for pattern matching is different

from that of Alstrup et al. [3]. It is rather similar to the one taken in the static index for

SLPs of Claude and Navarro [14]. Besides applying their idea to RSLPs, we show how to

speed up pattern matching by utilizing the properties of signature encodings.

Index for SLPs. For given an SLP S, we consider the static index of the SLP using

Observations 3 and 4. Let prec/succ query for a given string P denote a query which asks

xPprec, x
P
succ, y

P
prec and yPsucc in S. Let qprec/succ, qreport, qvOcc denote query times for computing

prec/succ queries for a given string P , a reporting queries in RS , and vOcc(X,S) for a

given variable X ∈ V . Then the following lemma holds by Observations 3 and 4.

Lemma 28 (e.g. [14]) For an SLP S, Given a pattern P of length at least 2, we can

compute Occ(P, T ) in O(|P |(qprec/succ + qreport) + |pOccS(P )| × qvOcc) time.

Index for RSLPs. In Chapter 2, we already explained that Lemma 4 can be extended

to the RSLP version by Observations 5 and 6. This means that we can easily extend
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Lemma 28 to the RSLPs version. Specifically, the added task is to compute the maximal

integer x such that X is (j, x)-stabbed variable of P for a given variable X → X̂k such

that X is j-stabbed variable of P . Fortunately, we can compute this x in constant time

using the fact that X is the run of X̂. Hence the RSLPs version of Lemma 28 achieve the

same bounds in Lemma 28.

Index for signature encodings. Let G = (Σ,V ,D, S) be a signature encoding of size w

of a dynamic string T of current length N with an M -function. Since signature encodings

are RSLPs, we can use the RSLPs version of Lemma 28 for G. However, we can reduce

the number of range reporting queries in Lemma 28. The following lemma is stronger

than Observation 3 and this is a new property of signature encodings.

Lemma 29 Let P be a string with |P | > 1. If |PowP
0 | = 1, then pOccG(P, i) = φ

for 1 < i < |P |. Otherwise, pOccG(P, i) = φ holds for i ∈ [1..|P | − 1] \ P, where

P = {|val+(u[1..i])| | 1 ≤ i < |u|, u[i] 6= u[i+ 1]} with u = Uniq(P ).

Proof. If |PowP
0 | = 1, then P = a|P | for some character a ∈ Σ. In this case, P must be

contained in a node labeled with a signature e→ êd such that ê→ a and d ≥ |P |. Hence,

all stabbing variables of P can be found by pOccG(P, 1).

If |PowP
0 | > 1, we consider the common sequence u of P . Recall that substring P occur-

ring at j in val(e) is represented by u for any e ∈ pOcc(P, j) by Lemma 14. Hence at least

pOccG(P, i) = φ holds for i ∈ [1..|P |−1]\P ′, where P ′ = {|val+(u[1])|, . . . , |val+(u[..|u|−
1])|}. Moreover, we show that pOccG(P, i) = ∅ for any i ∈ P ′ with u[i] = u[i + 1]. Note

that u[i] and u[i+ 1] are encoded into the same signature in the derivation tree of e, and

that the parent of two nodes corresponding to u[i] and u[i + 1] has a signature e′ in the

form e′ → u[i]d. Now assume for the sake of contradiction that e = e′. By the definition

of the stabbing variables, i = 1 must hold, and hence, ShrinkP0 [1] = u[1] ∈ Σ. This means

that P = u[1]|P |, which contradicts |PowP
0 | > 1. Therefore the statement holds. �

Lemma 29 means that all we have to do is to compute pOcc(P, i) for i ∈ P . Hence the

following lemma holds by Lemmas 28 and 29. Note that for computing P , we need to

compute the common sequence of P using Lemma 16 in O(log |P | log∗M) time, and also,

need to compute id(P ) in O(|P |fA) time.
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Lemma 30 Let G be a dynamic signature encoding of T using Theorem 1. Given a

pattern P , we can compute Occ(P, T ) in O(|P |fA+log |P | log∗M+|P|(qprec/succ+qreport)+

|pOccS(P )| × qvOcc) time using G.

5.3 Dynamic Compressed Index for Signature En-

codings

In this section, we propose a new dynamic compressed index using Lemma 30. Since G
supports computing vOcc(e, S) for a given signature e and id(P ) for a given pattern P ,

our remain tasks are considering dynamic data structures supports prec/succ queries for a

given string P and reporting queries in RG. We can construct the dynamic data structure

supporting prec/succ queries for a given string P using the following lemma.

Lemma 31 For a signature encoding G of size w, there exists a data structure of size

O(w) which can compute xPprec, x
P
succ, y

P
prec and yPsucc for e ∈ V in O(logw(logN ′+log |val(e)|

log∗M)), where P is a substring of val(e) and N ′ = max{|val(e′)| | e′ ∈ V}. For a given

signature e added into/removed from G, xepred and yepred , this data structure can be updated

in O(logw) time, where xepred = max{x′ ∈ XG | x′ ≤ e.leftR} and yepred = max{y′ ∈ YG |
y′ ≤ e.right}.

Proof. Consider two self-balancing search trees for XG and YG. We can efficiently

compute xPprec, x
P
succ, y

P
prec and yPsucc using LCE queries by G(Theorem 3) and binary search

on these trees.

For a given signature e added into/removed from G, we can update XG and YG in

O(logw) time using xepred and yepred . Hence Lemma 31 holds. �

Next, we can construct the dynamic data structure supporting reporting queries in RG
using the following lemma.

Lemma 32 For a signature encoding G of size w, there exists a data structure of size

O(w) which can compute reportRG(x1, x2, y1, y2) for given x1, x2, y1 and y2 in O(logw +

occ(logw/ log logw)) time. For a given signature e added into/removed from G, xepred and

yepred , this data structure can be updated in amortized O(logw) time.
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Proof. Consider a Blelloch’s dynamic 2D range reporting data structure for RG and

two Diez and Sleator’s order maintenance data structures for XG and YG. Blelloch’s data

structure uses Diez and Sleator’s data structures to compare any two elements in RG
in constant time. Hence this range reporting data structure can support reportRG in

O(logw + occ(logw/ log logw)) time. Since these data structure clearly can be updated

in amortized O(logw) time using xepred and yepred , Lemma 32 holds. �

We show Theorem 4.

Proof. We focus on the case |PowP
0 | > 1 as the other case is easier to be solved.

By Lemma 31, we get qprec/succ = O(logw(logN + log |P | log∗M)) for a string P [..i] and

P [i + 1..], where id(P ) ∈ V and 1 ≤ i < |P |. By Lemma 32, we get qreport = O(logw +

occ(logw/ log logw)). Hence, by Lemma 30, our dynamic index of O(w) space supports

FIND queries in O(|P |fA + logw log |P | log∗M(logN + log |P | log∗M) + occ logN) time.

Next, we consider the update of our dynamic index. For a given signature e added

into/removed from G, we can compute xepred and yepred in O(logw logN log∗M) time using

Lemma 31. Since the number of signatures added to or removed from G during a single

update operation is upper bounded by Lemma 17, the update part of Theorem 4 holds

by Theorem 1, Lemmas 31 and 32. Therefore Theorem 4 holds. �

5.4 LZ77 Factorization Algorithm using Signature En-

codings

In this section, we show Theorem 5 using the idea of our dynamic index. For integers j, k

with 1 ≤ j ≤ j + k − 1 ≤ N , let Fst(j, k) be the function which returns the minimum

integer i such that i < j and T [i..i + k − 1] = T [j..j + k − 1], if it exists. To compute

LZ77 factorization, we use following fact and lemma.

fact 1 Let f1, . . . , fz = LZ77wo(T ). Given f1, . . . , fi−1, we can compute fi with O(log |fi|)
calls of Fst(j, k) (by doubling the value of k, followed by a binary search), where j =

|f1 · · · fi−1|+ 1.

Lemma 33 Given a signature encoding G = (Σ,V ,D, S) of size w which generates T

of length N with an M-function, we can construct a data structure of O(w) space in



CHAPTER 5. DYNAMIC COMPRESSED INDEX AND LZ77 FACTORIZATION 56

O(w logw logN log∗M) time to support queries Fst(j, k) in O(logw log k log∗M(logN +

log k log∗M)) time.

Proof. We explain how to support queries Fst(j, k) efficiently using the signature

encoding. We define e.min = min vOcc(e, S) + |e.left| for a signature e ∈ V with e→ e`er

or e→ êk. We also define FstOcc(P, i) for a string P and an integer i as follows:

FstOcc(P, i) = min{e.min | e ∈ pOccG(P, i)}

Then Fst(j, k) can be represented by FstOcc(P, i) as follows:

Fst(j, k) = min{FstOcc(T [j..j + k − 1], i)− i | i ∈ {1, . . . , k − 1}

= min{FstOcc(T [j..j + k − 1], i)− i | i ∈ P},

where P is the set of integers in Lemma 29 with P = T [j..j + k − 1]. Hence we

can compute Fst(j, k) efficiently by computing FstOcc(P, i) efficiently. We can com-

pute FstOcc(P, i) by a rmq(x
P [..i]
prec , x

P [..i]
succ , y

P [i+1..]
prec , y

P [i+1..]
succ ) query of Lemma 5 because we

can regard a signature e as a 2D weighted point by regarding e.min as its weight.

(Recall that we regarded e as a 2D point in Section 5.2.) Note that we already de-

scribed how to compute x
P [..i]
prec , x

P [..i]
succ , y

P [i+1..]
prec and y

P [i+1..]
succ , and also, we can compute

RLE (Uniq(P )) with P = T [j..j + k − 1] in O(logN + log k log∗M) time by Lemma 16.

Hence we can compute Fst(j, k) in O(log k log∗M(logw(logN+log k log∗M)+log2w)) =

O(logw log k log∗M(logN + log k log∗M)) time.

For construction, we first compute e.min in O(w) time for all e ∈ V using the DAG

of G. Next, given G, XG (and YG) can be sorted in O(w logw logN log∗M) time by LCE

algorithm (Lemma 24) and a standard comparison-based sorting. Finally we build the

data structure of Lemma 5 in O(w logw) time. �

Hence Theorem 5 immediately holds by Fact 1 and Lemma 33. We remark that we can

similarly compute the LZ77 factorization with self-reference of a text in the same time

and same working space.

5.5 Conclusions and Future Work

In this chapter, we presented a new dynamic compressed index and LZ77 factorization

algorithm in compressed space. As a future work, we are planning to present a new
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dynamic compressed index which is based on signature encodings and supports faster

find queries. Specifically, we are planning to realize the Alstrup’s anchor technique in

compressed space. If it is possible, the speeding up find queries is easy. Furthermore,

we can present faster LZ77 factorization in compressed space using the anchor technique.

These realizations are hard but we believe that they are not impossible.



Chapter 6

Compressed Automata for

Dictionary Matching

In this chapter, we show Theorem 6. We describe the process of the proof of Theorem 6.

Recall the AC automaton introduced in Chapter 2, which consists of goto, failure and

output functions. We show to emulate these functions in compressed space. In Sub-

section 6.1.1, we show to compute goto function in O(logN) time using O(n) space by

preprocessing O(n3 log n) time and O(n2) working space(Lemma 35). In Subsections 6.1.2

and 6.1.3, we show to compute failure function in O(log n) time using O(n2 logN) space

by preprocessing O(n3 log n logN) time and O(n2 logN) working space(Lemma 42). In

Subsection 6.1.4, we show to compute output function in O(h + m) time using O(nm)

space by preprocessing O(n3 log n) time and O(n2) working space(Lemma 45). In Sub-

section 6.1.5, we show Theorem 6 using above results. In Section 6.2, we describe a

compressed MP-automaton.

6.1 Compressed AC Automata

In this section, we consider the AC automaton for ΠS = Π〈S,n〉 = {val(Xi) | i ∈ [1..n]},
not for Π〈S,m〉. Independently of m ∈ [1..n], we use the goto and the failure functions of

this automaton, and adjust the output function appropriately for Π〈S,m〉.

6.1.1 Compact Representation of G-Trie

For a compact representation of the g-trie, we can adopt the so-called path compaction

technique like the suffix trees [63]. The compact g-trie for S = {Xi → expr i}ni=1 is the

58
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Figure 6.1: The AC automaton and the compact g-trie for ΠS are displayed on
the upper and on the lower, respectively, where S is identical to the
SLP of Figure 1.1.

path-compacted trie obtained from the g-trie for {val(Xi) | i ∈ [1..n]} by removing the

implicit states, where every edge e from q to r (let q and r be explicit states representing

strings u and uv, respectively) is labeled by 〈a,Xi〉 such that a = v[1], Xi[1..|uv|] = uv

and Xi stabs [1..|uv|]. The next lemma directly follows from Lemma 7.

Lemma 34 There are at most 2n states in the compact g-trie for S of size n.

Figure 6.1 displays the AC automaton and the compact g-trie for ΠS where S is

identical to the example SLP of Figure 1.1.

An implicit state q′ on edge e = (q, r) can be specified by an integer h ≥ 1 such that

q′ represents the string Xi[1..|u| + h] and Xi stabs [1..|u| + h], where q represents string

u and e is labeled by 〈a,Xi〉.

Lemma 35 An O(n)-space compact g-trie can be constructed in O(n3 log n) time and

O(n2) space so that for any state q and any character c, g(q, c) can be determined in

O(logN) time.

Proof. We can compute in O(n3 log n) time the sorted index σ of S and an array storing

the longest common prefix length of val(Xσ(i)) and val(Xσ(i+1)) for all i ∈ [1..n−1]. Thus

the compact g-trie can be constructed in O(n3 log n) time.
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When q is an explicit state, we can find the edge e = (q, r) labeled by 〈c,Xi〉 for some

variable Xi in O(log |Σ|) time, if such e exists, and we thus determine g(q, c) in O(log |Σ|)
time. When q is an implicit state on edge e specified by integer h, we can compute the

(h+1)-th character in the string spelled out by e in O(logN) time by using the technique

of Lemma 10, and then compare it with c to determine g(q, c). �

Thus, we can represent the goto function compactly. A naive implementation of the

failure function, however, requires exponential space. In the following two subsections,

we describe how to represent the failure and the output functions in polynomial space

with respect to n. By combining those results, we will finally show our main theorem in

Subsection 6.1.5.

6.1.2 Compact Representation of Failure Function

As stated in the previous subsection we can represent any implicit state of the compact g-

trie as a pair of an edge e = (q, r) and an integer h. Here, we show another representation

of states in the compact g-trie: A reference-pair of explicit/implicit state q is defined to

be 〈Xi, h〉 such that q represents string Xi[1..h] and Xi stabs [1..h].

Lemma 36 A mutual conversion between the two state representations can be performed

in O(log n) time using some data structure of size O(n2).

Proof. Let q be any state that represents string u. Suppose q is an explicit state. If

q is terminating, let Xi be the variable corresponding to q, and otherwise, let Xi be the

variable such that some out-going edge e from q is labeled by 〈a,Xi〉. Then, 〈Xi, |u|〉
gives a reference-pairs of q. Suppose q′ is an implicit state on edge e = (q, r) specified by

integer h, and e is labeled by 〈a,Xi〉. Then, 〈Xi, |u|+ h〉 gives a reference-pairs of q.

Conversely, suppose we are given a reference-pair 〈Xi, h〉 of some state q′. Then, it is

possible to determine in O(log n) time the explicit state q that is the nearest ancestor of

q′, by using a simple binary search over the lengths of strings represented by the explicit

states on the path from the initial state to the terminating state for Xi. �

Let Prefix (S) denote the set of prefixes of val(Xi) for all variables Xi in S. For any

variable Xi → XlXr ∈ S, an f-interval of Xi is a maximal element in the set {[b..e] | 1 <
b ≤ |Xl| < e ≤ |Xi|, Xi[b..e] ∈ Prefix (S)} with respect to the set inclusion relation ⊆.
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X n

X n-1 X n-3

X n-2

X n-3

|X n-1| |X n|1
[3..|X n-1|+1]

[4..|X n-1|+2]

[|X n-1|..|X n|-1]

[5..|X n-1|+3]
... }∈ F(X n )

Figure 6.2: The f-interval sequence F(Xn) of length 2n−4 − 1 in Example 10 is
illustrated.

The f-interval sequence of Xi, denoted F(Xi), is defined to be the sequence {[bk..ek]}sk=1

of all f-intervals of Xi arranged in the increasing order of bk. By definition e1, . . . , es are

also arranged in the increasing order of ek.

The set of f-interval sequences represents the failure function f as follows:

Lemma 37 Let q be any state. Suppose q represents string Xi[1..h]. If h = 1, then f(q)

is the initial state. Suppose h ≥ 2. Choose Xi so that Xi stabs [1..h]. Let {[bk..ek]}sk=1

be the f-interval sequence of Xi, and let k′ ∈ [1..s] be the smallest integer such that

h ∈ [bk′ ..ek′ ]. Then, the state f(s) represents the string Xi[bk′ ..h]. If no such k′ exist, then

f(q) represents the string Xr[1..h− |Xl|] where Xi → XlXr ∈ S.

A naive way of encoding the f-interval sequence {[bk..ek]}sk=1 of a variable Xi is to have

a linear-list of triples of 〈bk, ek, Xj〉 such that Xi[bk..ek] = Xj[1..ek − bk + 1] and Xj stabs

[1..ek − bk + 1]. The list length s can, however, be exponential with respect to n.

Example 10 Consider the SLP S = (Σ,V ,D, S) and D = {X1 → a} ∪ {Xi → Xi−1Xi−1

}n−3
i=2 ∪ {Xn−2 → b, Xn−1 → Xn−2Xn−3, Xn → Xn−1Xn−3}. Then there are 2n−4 − 1

f-intervals of Xn. See Figure 6.2.

Fortunately, we can prove Lemma 42 by making use of cyclic structures on f-intervals.

For any variable Xi → XlXr ∈ S and any f-interval [b..e] ∈ F(Xi), if there is a run

[α..β] with period p such that α ≤ b < e ≤ β and e − b + 1 ≥ 2p, we say that the run

[α..β] subsumes the f-interval [b..e]. Note that if such run exists, p is the smallest period of
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Figure 6.3: When |Xl| + p ≤ e < β′ holds, p′ and p − p′ are periods of u. From
the periodicity lemma, gcd(p − p′, p′) is also a period of u. This
contradicts that p > gcd(p− p′, p′) is the smallest period of Xi[α..β].

Xi[b..e] and the run is unique with respect to [b..e]. If a run [α..β] subsumes two distinct

f-intervals [b..e] and [b′..e′] such that Xi[b..e] = Xi[b
′..e′] and b < b′ ≤ |Xl| − p, [α..β] is

said to be f-rich.

Lemma 38 For any variable Xi → XlXr in S, there is at most one f-rich run.

Proof. The existence of an f-rich run [α..β] with period p implies that u = Xi[|Xl|−p+

1..|Xl|] = Xi[|Xl| + 1..|Xl| + p]. Also, from the definition of f-rich run, there must exist

an f-interval [b..e] such that [b..e] ⊇ [|Xl| − p+ 1..|Xl|+ p].

Assume on the contrary that there is another f-rich run [α′..β′] with period p′ (w.l.o.g.

assume p′ < p). Since Xi[|Xl| − p′ + 1..|Xl|] = Xi[|Xl|+ 1..|Xl|+ p′], p− p′ is a period of

u. Since any interval contained in [b..e] cannot be an f-interval, at least one of α′ < b ≤
|Xl| − p+ 1 or |Xl|+ p ≤ e < β′ must hold. In either case, we can see that u has a period

p′ (Figure 6.3 depicts the situation when |Xl| + p ≤ e < β′ is assumed). It follows from

the periodicity lemma that gcd(p− p′, p′) is a period of u, which means that p is not the

smallest period of Xi[α..β], a contradiction. �

Lemma 39 Let Xi → XlXr be any variable in S. Let [b..e] and [b′..e′] be the first and

the last f-intervals subsumed by a run [α..β] with period p, respectively. For any d with

p ≤ d < d+ p < b′ − b, [b+ d..e′′] ∈ F(Xi)⇐⇒ [b+ d+ p..e′′ + p] ∈ F(Xi).

Proof. We remark that Xi[b..e
′] has period p.

Firstly, we show that [b + d..e′′] ∈ F(Xi) =⇒ [b + d + p..e′′ + p] ∈ F(Xi). It is

clear that Xi[b + d..e′′] ∈ Prefix (S). Note that e′′ < e′′ + p < e′ holds, since otherwise
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Figure 6.4: If [b+d+p..e′′+p] /∈ F(Xi) due to Xi[b+d+p..e′′+p+1] ∈ Prefix (S),
Xi[b + d + p..e′′ + p + 1] = Xi[b + d..e′′ + 1] ∈ Prefix (S) holds. This
contradicts [b+ d..e′′] ∈ F(Xi).

Xi[b + d + p..e′] is a prefix of Xi[b + d..e′′] and in Prefix (S), which implies that [b′..e′] is

not an f-interval. Assume on the contrary that [b + d + p..e′′ + p] /∈ F(Xi), i.e., at least

one of Xi[b + d + p..e′′ + p + 1] ∈ Prefix (S) or Xi[b + d + p− c..e′′ + p] ∈ Prefix (S) with

some c > 0 holds. If Xi[b+d+p..e′′+p+ 1] ∈ Prefix (S), we get Xi[b+d+p..e′′+p+ 1] =

Xi[b + d..e′′ + 1] ∈ Prefix (S), which contradicts that [b + d..e′′] is an f-interval (see also

Figure 6.4). If Xi[b+ d+ p− c..e′′ + p] ∈ Prefix (S), we consider two cases: When c > p,

we get [b+d..e′′] ⊂ [b+d+p−c..e′′+p], which contradicts that [b+d..e′′] ∈ F(Xi). When

c ≤ p, we get Xi[b + d + p − c..e′′ + p] = Xi[b + d − c..e′′] ∈ Prefix (S), a contradiction.

Therefore [b+ d..e′′] ∈ F(Xi) =⇒ [b+ d+ p..e′′ + p] ∈ F(Xi) holds.

Next we show that [b + d..e′′] ∈ F(Xi) ⇐= [b + d + p..e′′ + p] ∈ F(Xi). Note that

e < e′′, since otherwise Xi[b..e
′′] = Xi[b+p..e′′+p] is in Prefix (S), which implies that [b+

d+p..e′′+p] is not in F(Xi). Assume on the contrary that [b+d..e′′] /∈ F(Xi), i.e., at least

one of Xi[b+ d..e′′+ 1] ∈ Prefix (S) or Xi[b+ d− c..e′′] ∈ Prefix (S) with some c > 0 holds.

If Xi[b+d..e
′′+1] ∈ Prefix (S), we get Xi[b+d..e

′′+1] = Xi[b+d+p..e′′+p+1] ∈ Prefix (S),

which contradicts that [b+ d+ p..e′′ + p] is an f-interval. If Xi[b+ d− c..e′′] ∈ Prefix (S),

we consider two cases: When c > d, we get [b..e] ⊂ [b+ d− c..e′′], which contradicts that

[b..e] ∈ F(Xi). When c ≤ d, we get Xi[b+d− c..e′′] = Xi[b+d+p− c..e′′+p] ∈ Prefix (S),

a contradiction. Therefore [b+ d..e′′] ∈ F(Xi)⇐= [b+ d+ p..e′′ + p] ∈ F(Xi) holds. �
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Lemma 39 implies that f-intervals subsumed by the f-rich run are cyclic except for the

ones starting from the first period and the last f-interval in the run. Moreover, the next

lemma shows that the number of f-intervals subsumed by the f-rich run and starting with

an arbitrary period is at most n.

Lemma 40 Let Xi → XlXr be any variable in S. Let [b..e] and [b′..e′] be the first and

the last f-intervals subsumed by a run [α..β] with period p, respectively. For any d with

0 ≤ d < d+ p < b′ − b, |{[b′′..e′′] | [b′′..e′′] ∈ F(Xi), b+ d ≤ b′′ < b+ d+ p}| ≤ n.

Proof. Assume on the contrary that |{[b′′..e′′] | [b′′..e′′] ∈ F(Xi), b+d ≤ b′′ < b+d+p}| >
n. By the pigeon hole principle, there exists Xj such that Xi[b1..e1] and Xi[b2..e2] are

prefixes of Xj, where [b1..e1], [b2..e2] ∈ F(Xi) with b+d ≤ b1 < b2 < b+d+p. Also, recall

that from the definition of f-rich run, [|Xl| − p + 1..|Xl| + p] is covered by an f-interval,

and the length of any f-interval subsumed by the f-rich run is longer than p. Consider

u = Xi[b1..b2 + p− 1] and observe that p and b2− b1(< p) are both periods of u. Then, it

follows from the periodicity lemma that gcd(b2 − b1, p) is a period of u which contradicts

that p is the smallest period of the f-rich run. �

In light of Lemma 39 we consider storing cyclic f-intervals in a different way from the

naive list of F(Xi). Since information of f-intervals for one period is enough to compute

failure function for any state within the cyclic part, it can be stored in an O(n)-size list

Lc(Xi) by Lemma 40. Let L(Xi) denote the list storing F(Xi) other than cyclic f-intervals.

Note that L(Xi) includes O(n) f-intervals subsumed by the f-rich run but not in the cyclic

part.

Lemma 41 For any Xi → XlXr ∈ S, the size of L(Xi) is bounded by O(n logN).

Proof. Let Xj be any variable and let c0, . . . , cs (c0 < · · · < cs) be the positions of

val(Xl) at which a suffix of val(Xl) overlaps with a prefix of val(Xj). We note that each

ck is a candidate for the beginning position of an f-interval of Xi. It follows from Lemma 2

that c0, . . . , cs can be partitioned into at most O(log |Xl|) disjoint segments such that each

segment forms an arithmetic progression.

Let 0 ≤ k < k′ ≤ s be integers such that C = ck, . . . , ck′ is represented by one

arithmetic progression. Let d be the step of C, i.e., ck′ = ck′−1 + d = · · · = ck + (k′− k)d.
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We show that if more than two elements of C are related to the beginning positions of

f-intervals of Xi, the f-rich run subsumes all those f-intervals but the last one.

Suppose that for some k ≤ h1 < h2 < h3 ≤ k′, ch1 , ch2 , ch3 ∈ C are corresponding to f-

intervals, namely, [ch1 ..e], [ch2 ..e
′], [ch3 ..e

′′] ∈ F(Xi) with e−ch1+1 = LCP(Xi[ch1 ..|Xi|], Xj),

e′ − ch2 + 1 = LCP(Xi[ch2 ..|Xi|], Xj) and e′′ − ch3 + 1 = LCP(Xi[ch3 ..|Xi|], Xj). It is clear

that d is the smallest period of Xi[ch1 ..|Xl|] and |Xl| − ch1 + 1 > 2d. Let β be the

largest position of val(Xi) such that Xi[ch1 ..β] has period d, i.e., there is a run [α, β] with

α ≤ ch1 < |Xl| < β. Let β′ be the largest position of val(Xj) such that Xj[1..β
′] has

period d.

• If β < e′′. Note that this happens only when β − ch3 + 1 = β′. Consequently,

LCP(Xi[ch1 ..|Xi|], Xj) = LCP(Xi[ch2 ..|Xi|], Xj) = β′.

• If β ≥ e′′. It is clear that β′ < e′′ − ch2 + 1, since otherwise [ch3 ..e
′′] would be

contained in [ch2 ..e
′]. Then, LCP(Xi[ch1 ..|Xi|], Xj) = LCP(Xi[ch2 ..|Xi|], Xj) = β′.

In either case Xi[ch1 ..e] = Xi[ch2 ..e
′] = Xj[1..β

′] holds, which means that except for at

most one f-interval [c..e] satisfying β < e the others are all subsumed by the f-rich run

[α..β].

Since in each segment there are at most two f-intervals which are not subsumed by

the f-rich run, the number of such f-intervals can be bounded by O(logN). Considering

every variable Xj, we can bound the size of L(Xi) by O(n logN). �

In light of Lemmas 39 and 41 we get the next lemma.

Lemma 42 An O(n2 logN)-size representation of the failure function f can be con-

structed in O(n3 log n logN) time using O(n2 logN) space so that given reference-pair

of any state q, a reference-pair of the state f(q) can be computed in O(log n) time.

Proof. Karpinski et al. considered in [37] a compressed overlap table OV for an SLP

of size n such that for any pair of variables X and Y , OV (X, Y ) contains O(logN)-

size representation of overlaps between suffixes of val(X) and prefixes of val(Y ). They

showed how to compute OV in O(n3 log n logN) time. Actually, their algorithm can be

extended to compute L(Xi) and Lc(Xi) for all variable Xi ∈ S in O(n3 log n logN) time

(see Subsection 6.1.3 for the details). From Lemma 39 and Lemma 41, the total size for

L(Xi) and Lc(Xi) for all variable Xi ∈ S is bounded by O(n2 logN).
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Using L(Xi) and Lc(Xi), we can compute f(q) for any state q = 〈Xi, h〉 in O(log n)

time. If q is not in cyclic part of f-intervals, we conduct binary search on L(Xi), otherwise

on Lc(Xi) with proper offset. It takes O(log(n logN)) = O(log n) time. �

6.1.3 Efficient Construction of Failure Function

Here we show that Lc(Xi) and L(Xi) for all 1 ≤ i ≤ n can be computed inO(n3 log n logN)

time. Let Xi → XlXr. Let an f-interval of Xi w.r.t. Xj is a maximal element in the set

{[b..e] | 1 < b ≤ |Xl| < e ≤ |Xi|, Xi[b..e] ∈ Prefix (Xj)} with respect to the set inclusion

relation ⊆. The f-interval sequence of Xi w.r.t. Xj, denoted F(Xi, Xj), is defined to be

the sequence {[bk..ek]}sk=1 of all f-intervals of Xi w.r.t. Xj, arranged in the increasing

order of bk. For any 1 ≤ i ≤ n, we compute F(Xi) by first computing F(Xi, Xj) for all

1 ≤ j ≤ n, and then we build Lc(Xi) and L(Xi).

We use the compressed overlap table and FirstMismatch. The compressed overlap

table OV for SLP of size n, introduced by Karpinski [37], is n × n table, where for

any pair of variables X and Y , OV (X, Y ) contains O(logN) arithmetic progressions

which represent the overlaps between suffixes of val(X) and prefixes of val(Y ). Thus

the space requirement of OV is O(n2 logN). For variables X, Y and integer k, let

FirstMismatch(X, Y, k) = min{i > 0 : X[|X| − k + i] 6= Y [i]}.
The following results are known:

Lemma 43 ([37]) The compressed overlap table OV for a given SLP of size n can be

computed in O(n3 log n logN) time and O(n2 logN) space.

Lemma 44 ([37]) Given the overlap table OV for an SLP S of size n, for any pair

of variables X and Y of S and integer k, FirstMismatch(X, Y, k) can be computed in

O(n log n) time.

Let Xi → XlXr. Since an f-interval of Xi w.r.t. Xj accompanies an overlap between

a suffix of Xl and a prefix of Xj, F(Xi, Xj) can be computed from OV (Xl, Xj), i.e.,

we consider extending prefix matches of Xj in Xl presented in OV (Xl, Xj) to Xr and

computing prefix matches of Xj in Xi that cross the boundary of Xl and Xr. Although

there could be exponential number of overlaps to consider which are presented in arith-

metic progressions, similar techniques to compute the overlap table can be used and each

arithmetic progression can be processed by constant number of FirstMismatch queries.



CHAPTER 6. COMPRESSED AUTOMATA FOR DICTIONARY MATCHING 67

X
j

p

X
i

X
l

X
r

h

c
u

g

Figure 6.5: The right arrows illustrate the values of LCP(Xi[c + d′p..|Xi|], Xj).
In this picture d = 2.

Take one arithmetic progression from OV (Xl, Xj) and consider suffixes of Xi that

start from c, c + p, . . . , c + kp, i.e., Xl[c + k′p..|Xl|] is a prefix of Xj for any 0 ≤ k′ ≤ k.

Let u be the suffix of Xi starting from c. Let g be the length of the longest prefix of u

having period p, and let h be the length of the longest prefix of u that is also a prefix Xj.

We can compute g and h in O(n log n) time by asking FirstMismatch(Xi, Xr, |Xr| + p)

and FirstMismatch(Xi, Xj, |Xi| − c + 1), respectively. From the periodicity that can be

seen in the prefixes of u and Xj, we are able to know that

LCP(Xi[c+ d′p..|Xi|], Xj) =

h if 0 ≤ d′ < d,

g − d′p if d < d′ ≤ k,

where d is the minimum integer such that h + dp ≥ g with 0 ≤ d ≤ k if such exists, or

otherwise d = k + 1 (see also Figure 6.5). Also LCP(Xi[c+ dp..|Xi|], Xj) ≥ g − dp.
Since LCP(Xi[c + dp..|Xi|], Xj) ≥ g − dp > g − (d + 1)p ≥ g − d′p = LCP(Xi[c +

d′p..|Xi|], Xj) for any d < d′ ≤ k, F(Xi, Xj) cannot contain an f-interval starting from

c + d′p with d < d′ ≤ k. Then, it suffices to consider f-intervals starting from c + d′p

with 0 ≤ d′ ≤ d. Note that when d ≥ 2 the f-intervals w.r.t. Xj corresponding to c+ d′p

with 0 ≤ d′ < d should be subsumed by the f-rich run, and are represented in O(1) space.

When d ≥ 2, we treat the intervals corresponding to c + d′p with 0 ≤ d′ < d all together

as a group-candidate. Let us call an interval not belonging to a group-candidate as a

solo-candidate.

We now consider building F(Xi, Xj). We process arithmetic progressions of OV (Xl, Xj)

in increasing order of positions while maintaining a tentative list of F(Xi, Xj). Note
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that the list can be maintained in O(logN) space since for each arithmetic progres-

sion we discover at most two solo-candidates and one group-candidate. When solo-

candidates/group-candidates are discovered, we add them to the list and update so

that the list contains maximal elements w.r.t. the set inclusion relation ⊆. For a

solo-candidate the maintenance can be easily done in O(logN) time. For a group-

candidate, it follows from the proof of Lemma 38 that group-candidate with a small

period is completely included by an f-interval in group-candidate with a bigger period,

and hence, it suffices to consider the group-candidate with the biggest period. Therefore,

by processing O(logN) arithmetic progressions of OV (Xl, Xj), we can build F(Xi, Xj)

in O(n log n logN + log2N) = O(n log n logN) time.

Finally, we can build F(Xi) of size O(n logN) by merging F(Xi, Xj) for all 1 ≤ j ≤ n

in O(n2 log n logN + n log2N) = O(n2 log n logN) time, and obtain Lc(Xi) and L(Xi).

Hence, Lc(Xi) and L(Xi) for all 1 ≤ i ≤ n can be computed in O(n3 log n logN) time.

6.1.4 Compact Representation of Output Function

Lemma 45 An O(nm)-size representation of the output function λ can be computed in

O(n3 log n) time and O(n2) space so that given any state q = 〈Xi, h〉 we can compute λ(q)

in O(height(Xi) +m) time.

Proof. First we construct a tree with nodes Π ∪ {ε} such that for any p ∈ Π〈S,m〉 the

parent of p is the longest element of Π〈S,m〉 ∪ {ε} which is also a suffix of p. The tree can

be constructed in O(n3 log n) time in a similar way to the construction of the compact

g-trie. Note that λ(q) can be computed by detecting the longest member p of Π〈S,m〉 which

is also a suffix of Xi[1..h], and outputting all patterns on the path from p to the root of

the tree. In addition, we compute in O(n3) time a table of size O(nm) such that for any

pair of p ∈ Π〈S,m〉 and variable Xj the table has Occξ(p,Xj) in a form of one arithmetic

progression.

Now we show how to compute the longest member of Π〈S,m〉 which is also a suffix of

Xi[1..h]. We search for it in descending order of pattern length. We use three variables

p′, i′ and h′, which are initially set to the longest pattern in Π〈S,m〉, i and h, respectively.

We omit the case when |p′| = 1 or |p′| > h since it is trivial. If the end position of Xi[1..h]

is contained in Xr(i′) and |p′| > h′ − |X`(i′)|, using arithmetic progression of Occξ(p′, Xi′),

we can check if p′ is a suffix of Xi[1..h] or not in constant time by simple arithmetic
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operations. If the above condition does not hold, we traverse the derivation tree of Xi′

toward the end position of Xi[1..h] updating i′ and h′ properly until meeting the above

situation, where h′ is updated to be the length of the overlapped string between Xi′ and

Xi[1..h].

It is not difficult to see that the total time is O(height(Xi) +m). �

6.1.5 Main Result on Compressed AC Automata

We show Theorem 6.

Proof. By Lemma 35, an O(n)-size representation of the g-trie can be obtained in

O(n3 log n) time and O(n2) space. By Lemma 42, an O(n2 logN)-size representation

of the failure function can be obtained in O(n3 log n logN) time and O(n2 logN) space.

By Lemma 45, an O(nm)-size representation of the output function can be obtained in

O(n3 log n) time and O(n2) space. We also build an O(n2)-size data structure to con-

duct the bidirectional conversion between a state on the g-trie and its reference-pair (see

Lemma 36). Thus, the space occupancy of our compressed automaton is O(n2 logN)

which is dominated by the representation of the failure function. While pattern match-

ing, the computations on the compact g-trie, the failure function and the output function

require O(logN), O(log n) and O(height(Xi) +m) amortized time per character, respec-

tively. Note that the failure function is called O(1) times per character. Therefore we get

the statement. �

We note that when m = 1, the output function of Lemma 45 is not needed since

it is enough to report the occurrence of Xn when we reach there. Hence, the following

Corollary holds.

Corollary 1 For an SLP S of size n representing string T of length N , it is possible to

build, in O(n3 log n logN) time and O(n2 logN) space, an O(n2 logN)-size compressed

automaton that recognizes all occurrences of T within an arbitrary string with O(logN)

amortized running time per character.
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6.2 Compact Representation of MP Automata for

SLPs

In this section, we show Theorem 7. Note that MP automaton is identical to an uncom-

pressed AC-automaton for a single pattern. See the definition in Chapter 2. Since the MP

automaton consists of goto and failure functions, we consider the compact representations

by the following lemmas.

Lemma 46 (Goto function) Given an SLP S of size n that represents a string T of

length N , it is possible to build a data structure in O(n) time using O(n) space, so that

the value g(q, a) can be determined in O(logN) time for any state q and any symbol a.

Proof. Directly from Lemma 10. �

Lemma 47 (Failure function) Given an SLP S of size n that represents a string T of

length N , it is possible to build a data structure of size O(n logN) in O(n3 log n logN)

time using O(n2 logN) space, so that the value f(q) can be determined in O(height(S))

time for any state q ∈ Q with q 6= 0.

Proof. Similar to Subsection 6.1.2, we realize the failure transition by considering

f-intervals for each variable Xi, but we slightly modify the definition and how to use it

since every transition state of failure function represents a prefix of T . An f-interval of Xi

(Xi → XlXr) is a maximal element in the set {[b..e] | 1 < b ≤ |Xl| < e ≤ |Xi|, Xi[b..e] ∈
Prefix (T )} in the set inclusion relation ⊆. Since such f-intervals hold Lemmas 38 and 39,

they can be split into non-cyclic part L(Xi) and cyclic part Lc(Xi). Note that the space

requirements for L(Xi) and Lc(Xi) are O(logN) and O(1), respectively, since f-intervals

are defined on Prefix (T ) instead of Prefix (S) in Subsection 6.1.2. In a similar way to the

construction of f-intervals for compressed AC automata, we can build L(Xi) and Lc(Xi)

for all variables in S in O(n3 log n logN) time and O(n2 logN) space. We remark that

the size of the data structure is O(n logN), and we can build it in O(n2 log n logN) time

if the compressed overlap table for S is computed in advance.

Now we show how to calculate f(q) using f-intervals. What we want to do is to find

the leftmost f-interval that covers position q. Firstly, we conduct binary search on the

derivation tree of S starting from the root and searching for the shallowest node such that

its right node contains q and its rightmost f-interval covers q. If such a node is found,
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we can find, in the f-intervals of the node, the leftmost f-interval that covers q, taking

O(log logN) time. If such a node is not found, it means that f(q) < 2. Then, f(q) = 1 if

T [q] = T [1], f(q) = 0 otherwise. The computational time is dominated by the search on

the derivation tree which takes O(height(S)) time. �

Theorem 7 follows from Lemmas 46 and 47.

6.3 Conclutions, Discussion and Future Work

In this chapter, we presented a new grammar compressed AC automaton and MP au-

tomaton.

Our method of Section 6.1 builds the goto and the failure functions of the AC au-

tomaton for the dictionary Π〈S,n〉 independently of m. This introduces redundant states

and edges into the compact g-trie, and unnecessary failure transitions. Another possible

solution to Problem 5 would be to divide the input DSLP into m SLPs and then build

compressed MP automata, proposed in Section 6.2, for each of them.

Both solutions need O(n3 log n logN) time and O(n2 logN) space for construction.

There is a space–time tradeoff: The sizes of a compressed AC automaton and m com-

pressed MP automata are O(n2 logN) and O(mn logN), respectively. On the other hand,

their amortized running time per character are O(height(S) + m) and O(m height(S)),

respectively.

As a future work, we are planning to remove the amortization factor in running time

of our AC automaton. This realization is hard but we believe that it is not impossible.



Chapter 7

Conclusions

In this thesis, we presented some compressed data structures and algorithms based on

grammar compressed strings for string processings.

In Chapter 3, we introduced signature encodings, showed that we can maintain the sig-

nature encoding of a dynamic string in compressed space, and we can construct efficiently

the signature encoding of a string T for a given uncompressed string T , SLP representing

T , or LZ77 factorization representing T . Especially, we showed that the signature encod-

ing of T can be constructed for a given SLP representing T inO(n logN log log n log∗Nmax)

time and O(n log∗Nmax + w) working space using an O(m log logm) sorting algorithm,

and also, we presented an application of signature encodings.

In Chapter 4, we showed that signature encodings support LCE queries in O(logN +

log ` log∗Nmax) time. Since signature encodings support INSERT and DELETE oper-

ations in O((y + logN log∗Nmax)fA) time, we can solve the dynamic LCE problem by

signature encodings, and also, we show that our LCE data structures improve previous

some results using LCE queries.

In Chapter 5, we presented a new dynamic compressed index which supports find

queries in O(|P |fA + logw log |P | log∗Nmax(logN + log |P | log∗Nmax) + occ logN) time,

INSERT and DELETE operations in amortized O((|Y |+ logN log∗Nmax) logw logN

log∗Nmax) time, and also, we presented a new LZ77 factorization algorithm which runs

in O(z logw log3N(log∗N)2) time and O(w) working space.

In Chapter 6, we showed how to construct our compressed AC automata in O(n3 log n

logN) time using O(n2 logN) space, and also, we showed that the grammar compressed

dictionary matching problem can be solved in O(|T |(h+m)) time by our compressed AC

automata.
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