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Abstract i

Abstract

A Markov chain, or a random walk, is a simple and important stochastic process,

which often appears as mathematical models and analyses in diverse fields including

theoretical computer science. For instance, a random walk is intensively studied as a

useful approach for network exploration because of its simplicity, locality and robustness

in changing networks, and Markov chain Monte Carlo (MCMC) is established as a general

scheme for randomized approximate counting algorithms. The performance of these

randomized algorithms based on measures of the Markov chain such as mixing time and

the cover time. Many analytic techniques of these values have been developed, and form

the basis of the theory of randomized computation.

Recently, a deterministic random walk, which is a deterministic process analogous to a

Markov chain, has been studied as an alternative of a random walk in some contexts such

as network exploration and simulations of physical phenomena. In particular, the mixing

property and the cover time of a deterministic random walk corresponding to a simple

random walk (called rotor-router model) on specific graphs such as integer lattice and

hypercube has been analyzed. However, the theory of the deterministic random walk is

still developing compared with the rich theory of general Markov chains in a long history.

For example, few studies are concerned with deterministic random walks corresponding

to general transition probabilities beyond simple random walks. Little is known about

the gap between a randomized computation and a deterministic computation, which is

one of the important topic on theoretical computer science.

Motivated by understanding the gap between a randomized computation and a de-

terministic computation, this study constructs a general framework of analyses of de-

terministic random walks. In particular, we analyze the mixing property and the cover

time of deterministic random walks corresponding to general finite Markov chains, and

this thesis mainly makes progress on the following three topics.
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First, we analyze the vertex-wise discrepancy of token-configurations between a re-

versible Markov chain and its corresponding deterministic random walk. We present an

upper bound in terms of the mixing time and the stationary distribution of the Markov

chain, and the local discrepancy of the deterministic random walk. This result implies

polynomial upper bounds for rapidly mixing chains which are developed in the context

of MCMC.

Second, we give an analysis of the total variation discrepancy, which is an important

measure as designing randomized algorithms based on MCMC. This is the first results on

an upper bound of the total variation discrepancy between a general finite Markov chain

and its corresponding deterministic random walk. The upper bound depends only on the

edge size of the graph, the mixing time of the Markov chain, and the local discrepancy

of the deterministic random walk, but is independent of the stationary distribution of

the Markov chain as well as the total number of tokens. On the other hand, we give an

instance for a lower bound that the total variation discrepancy gets as large as the order

of magnitude of the number of states, which implies that an extra argument is required

to derandomize MCMC in general.

Third, we analyze the discrepancy of visit frequencies between a reversible Markov

chain and its corresponding deterministic random walk. We give an upper bound of the

discrepancy described in terms of the mixing time and the stationary distribution of the

Markov chain, and the local discrepancy of the deterministic random walk. Based on

the analyses, we give an upper bound of the cover time of deterministic random walks

corresponding to general transition probabilities. This result improves the existing result

on the speed up ratio of the rotor-router model as increasing the number of tokens in

general graphs.
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Chapter 1 Introduction 1

Chapter 1

Introduction

A Markov chain is an important stochastic process often appearing in diverse fields, and

many analytic techniques have been developed in the literature. Recently, a deterministic

process, called rotor-router model, is intensively studied in some contexts as an analogy of

a simple random walk. However, the theory for deterministic processes corresponding to

general transition probabilities has not been established yet. Motivated by understanding

the gap between a randomized computation and a deterministic computation from the

viewpoint of theoretical computer science, this thesis studies the deterministic random

walk, which is a deterministic analogy of a general Markov chain. Then, we construct a

general framework of analyses of the mixing property and the cover time of deterministic

random walks.

1.1 Markov chains

Markov chains appear in diverse fields as mathematical models and techniques of

analyses. For example, a Markov chain is often used as a description of physical phe-

nomena. Brownian motion is a typical one, which is the irregular motion of particles in

a solvent like a fluid. This phenomenon is mathematically modeled by Wiener process,

which is related to a limit of the random walk [34]. Other diffusion processes occurring in

nature are also featured to the diffusion property of Markov chains, e.g., heat diffusion,

internal diffusion limited aggregation (IDLA) [61], etc. Markov chains are also used in

the simulation of spin systems [80, 72], analyses of the phase transition phenomena of

the percolation [44], etc. There are many other appearance of Markov chains in various

contexts, e.g., queueing systems in operations research [59], reliability of systems, game
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theory, the card shuffling in mathematics, a typical model of memoryless information

sources in information theory, Pagerank [14], etc.

Markov chain is also an important mathematical tool for algorithm design and analy-

sis in theoretical computer science, e.g., the analysis of randomized algorithm for 2-SAT,

(randomized) distributed algorithms such as load balancing [56, 75], voting [18], popula-

tion protocol [24], etc. In particular, this thesis refers to two successful topics of Markov

chains in theoretical computer science. One is Markov chain Monte Carlo (MCMC),

which is a general scheme of randomized approximate counting, and the other is the

cover time of a random walk, which is concerned in the contexts of network exploration,

log space randomized algorithm for the connectivity, etc.

1.1.1 Counting and random sampling

Counting is a fundamental topic in Combinatorics. Valiant [84] proposed the class

#P, which is a computational class of the counting version of NP. Several counting

problems are known to be #P-complete, such as 0-1 knapsack solutions [55, 85], linear

extensions of a partially ordered set (poset) [13], matchings in a graph [85], etc. #P

is an important class of polynomial-time complexity theory, which is suggested by the

celebrated Toda’s theorem [83], PH ⊆ P#P, for instance.

Counting is highly related to sampling, which is a fundamental topic in Probability

Theory. Jerrum et al. [53] showed the equivalence in the sense of the polynomial time

computation between almost uniform generation and randomized approximate counting

for self-reducible problems. Markov chain Monte Carlo (MCMC) is a powerful technique

of random sampling from a complicated space. The idea of MCMC is simple; design

an ergodic Markov chain with a desired limit distribution, and sample from the limit

distribution simulating the chain (see Section 2.2). A number of fully polynomial-time

randomized approximation schemes (FPRAS) based on MCMC have been developed for

#P-hard problems, such as the volume of a convex body [35, 66, 23], integral of a log-

concave function [66], partition function of the Ising model [50], and counting bipartite

matchings [51]. When designing an FPRAS based on the technique, it is important that

the total variation distance of the approximate distribution from the target distribution

is sufficiently small, and hence analyses of the mixing times of Markov chains are central

issues in a series of works on MCMC for FPRAS to guarantee a small total variation

distance. Many techniques are established to estimate the mixing time of a Markov
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chain, e.g., coupling, conductance, eigenvalue analysis, etc [65], and above FPRAS are

constructed by proving polynomial-size bounds of mixing times of Markov chains on

target combinatorial objects.

1.1.2 Network exploration

A random walk is often used for network exploration, because of its simplicity, locality

and robustness in changing networks. The expected cover time (this paper simply says

cover time) of a random walk on a finite graph is the expected time until every vertex

has been visited by a token. The cover time of a random walk has been well investigated

since it is a key measure of the network exploration by a random walk. The network

exploration by a random walk is related to some basic topics of theoretical computer

science such as connectivity, universal traversal sequences, etc (see [5] for detail).

Aleliunas et al. [5] showed that the cover time of a simple random walk, in which a

neighboring vertex is chosen uniformly at random, is upper bounded by 2m(n − 1) for

any connected graph, where m denotes the number of edges and n denotes the number of

vertices. Feige [37, 38] showed that the cover time is lower bounded by
(
1− o(1)

)
n log n

and upper bounded by
(
1 + o(1)

)
(4/27)n3 for any graph.

Motivated by a faster cover time, the cover time by more than one token has also been

investigated. Broder et al. [15] gave an upper bound of the cover time of k independent

parallel simple random walks (k-simple random walks) when tokens start from stationary

distribution. For an arbitrary initial configuration of tokens, Alon et al. [6] showed that

the cover time of k-simple random walks is upper bounded by
(
(e + o(1))/k

)
thit log n for

any graph if k ≤ log n, where e is Napier’s constant and thit denotes the (maximum)

hitting time. Elsasser and Sauerwald [36] gave a better upper bound for large k of

O
(
tmix + (thit log n)/k

)
for any graph if k ≤ n, where tmix is the mixing time.

Ikeda et al. [48] took another approach for speeding up, using general transition prob-

abilities (beyond simple random walks). They devised β-random walk, consisting of irra-

tional transition probabilities in general, and showed that the cover time is O(n2 log n).

Nonaka et al. [70] showed that the cover time of a Metropolis-walk, which is based on

the Metropolis-Hastings algorithm, is O(n2 log n) for any graph. Abdullah et. al. [1]

proposed the minimum degree weighting scheme and they showed that the cover time of

which is O(n2 log n). This upper bound is recently refined by David and Feige [25]: the

minimum degree weighting scheme has O(n2) cover time.



Chapter 1 Introduction 4

Little is known about the cover time by multiple tokens with general transition prob-

abilities. Elsasser and Sauerwald [36] gave a general lower bound of Ω
(
(n log n)/k

)
for

any transition probabilities and for any nε ≤ k ≤ n, where 0 < ε < 1 is a constant.

1.2 Rotor-router model—a deterministic process

Recently, the rotor-router model, also known as the Propp machine [71, 22, 57], is

studied as a deterministic analogy of a simple random walk on a graph. For example,

this model is used for the model of internal diffusion limited aggregation (IDLA) instead

of random walk, and diffusion properties are studied in [62, 63, 64, 49]. The rotor-router

model is also concerned with the research on information spreading [9, 27, 29, 30, 31, 32,

33, 47].

This section reviews existing results on the discrepancy of token-configurations be-

tween a rotor-router model and a simple random walk, considering the ability of a rotor-

router model to imitate a stationary distribution of random walks, and results on the

cover time of the rotor-router model for a deterministic network exploration algorithm.

1.2.1 Token-configuration of rotor-router models

The idea of the rotor-router model is as follows: tokens distributed over vertices are

deterministically served to neighboring vertices in the round-robin fashion, instead of at

random (see Section 2.3.2 for the detail of the rotor-router model). Then, it is a natural

question whether tokens are entirely distributed over vertices by the rotor-router model,

similar to random walks.

Cooper and Spencer [22] investigated the rotor-router model on Zn, and gave an

analysis on the discrepancy of a single vertex: they showed a bound that |χ(t)
v −µ(t)

v | ≤ cd,

where χ
(t)
v (resp. µ

(t)
v ) denotes the number (resp. the expected number) of tokens on vertex

v ∈ Zd in a rotor-router model (resp. in the corresponding random walk) at time t on the

condition that initial configuration of tokens on “even” vertices and for any configuration

of rotor-routers, and cd is a constant depending only on the dimension d, but independent

of the total number of tokens in the system. Later, it is shown that c1 ' 2.29 [21] and c2

is about 7.29 or 7.83 depending on the routers [28]. On the other hand, Cooper et al. [20]

gave an example of a rotor-router on the infinite k-regular tree, such that its vertex-wise

discrepancy gets Ω(
√
kt) for an arbitrarily fixed t. Friedrich et al. [40] showed an example
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of unbounded lower bound of discrepancy on a lattice without the “even” condition on

the initial token configuration.

For some specific finite graphs, such as hypercubes and tori, some upper bounds on

the discrepancy of polylogarithmic to the size of the transition diagram are known. For d-

dimensional hypercube, Kijima et al. [57] gave a bound O(d3). Akbari and Berenbrink [2]

gave a bound O(n1.5) for lazy random walks on d-dimensional hypercubes, using results

by Friedrich et al. [39]. Akbari and Berenbrink [2] also gave a bound O(1) for constant

dimensional tori.

Similar, or essentially the same concepts have been independently developed in load-

balancing. Rabani et al. [73] are concerned with a deterministic algorithm similar to the

rotor-router model corresponding to a simple random walk on a d-regular graph, and

showed for the model that the vertex-wise discrepancy is O (d log(n)/(1− λ∗)) where

λ∗ is the second largest eigenvalue of corresponding transition matrix. Friedrich et

al. [39] proposed the “BED” algorithm for load balancing, which uses some extra in-

formation in the previous time, and they gave O(d1.5) bound for hypercube and O(1)

bound for constant-dimensional tori. Akbari and Berenbrink [2] discussed the relation

between the BED algorithm and the rotor-router model, and gave the same bounds

for a rotor-router model. Berenbrink et al. [12] investigated about cumulatively fair

balancers algorithms, which includes the rotor-router model, and gave an upper bound

O(dmin(
√

log(n)/(1− λ∗),
√
n)) for a lazy version of simple random walks on d-regular

graphs. We remark that those results are for simple random walks on regular graphs.

1.2.2 Cover time of rotor-router model

From the view point of a deterministic graph exploration, the rotor-router model

is intensively studied recently. Yanovski et al. [88] studied the asymptotic behavior of

the rotor-router model, and proved that any rotor-router model always stabilizes in a

traversal of an Eulerian cycle after 2mD steps at most, where D denotes the diameter of

the graph. Bampas et al. [10] gave examples of which the stabilization time gets Ω(mD).

Their results imply that the cover time of a single token version of a rotor-router model

is Θ(mD) in general. Another approach to examine the cover time of the rotor-router

model is connecting qualities of a random walk and the visit frequency X
(T )
v of the rotor-

router model, where X
(T )
v denotes the total number of times that tokens visited vertex

v by time T . Holroyd and Propp [45] showed that |πv −X(T )
v /T | ≤ Kπv/T , where K is
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an constant independent of T , and π is the stationary distribution of the corresponding

random walk. This theorem means that X
(T )
v /T converges to πv as T increasing. Using

this fact, Friedrich and Sauerwald [41] gave upper bounds of the cover time for many

classes of graphs.

To speed up the cover time, the rotor-router model with k > 1 tokens is studied by

Dereniowski et al. [26]. They gave an upper bound O(mD/ log k) for any graph when

k = O
(
poly(n)

)
or 2O(D), and also gave an example of Ω(mD/k) as a lower bound.

Kosowski and Pajak [60] gave a modified upper bound of the cover time for many graph

classes by connecting X
(T )
v and the corresponding simple random walk. They showed

that the upper bound is O
(
tmix + (∆/δ)(mtmix/k)

)
for general graphs, where ∆, δ are

respectively the maximum, minimum degrees. Recently, Chalopin et al. [17] gave upper

and lower bounds of the stabilization time for the rotor-router model with many tokens.

Cooper et al. [19] used this result and discussed the coalescing of tokens of the rotor-

router model.

1.3 Current issues

Compared with the rich theory of Markov chain in a long history, the study on

the rotor-router model is still developing and few techniques of general analysis are

known. First of all, the rotor-router model imitates only a simple random walk, and

the targets of existing analyses are limited. Furthermore, existing works concerning

the discrepancy analysis only deal with the vertex-wise discrepancy, but not the total

variation discrepancy, which is an important measure in MCMC. Concerning the analysis

of the cover time, very few is known about deterministic processes corresponding to

general transition probabilities beyond simple random walks. This section discusses

these current issues in detail.

1.3.1 Vertex-wise discrepancy of general transition matrices

While there are examples of Markov chains containing irrational transition prob-

abilities, such as Gibbs samplers for the Ising model (cf. [80, 72]), reversible Markov

chains for queueing networks (cf. [58]), etc, few studies are concerned with determin-

istic processes corresponding to general transition probabilities beyond simple random

walks. Motivated by general rational transition matrices, Kijima et al. [57] investigated
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a rotor-router model on finite multidigraphs, and gave an upper bound O(n|A|) of the

vertex-wise discrepancy when P is rational, ergodic and reversible, where n = |V | and A
denotes the set of multiple edges. For an arbitrary rational transition matrix P , Kajino

et al. [54] gave an upper bound using the second largest eigenvalue λ∗ of P and some

other parameters of P . Rabani et al. [73] mentioned that possibility of generalization

of their deterministic algorithm for a simple random walk to a reversible transition ma-

trix, but there are no clear analyses of token-configuration discrepancies concerned with

general transition probabilities.

Another point is that the existing analyses highly depend on the structures of the

specific graphs, e.g., hypercubes, tori [2]. These analyses seems difficult to be extended

to general structures appearing in MCMC algorithms. Kijima et al. [57] gave rise to

a question if there is a deterministic random walk for #P-hard problems, such as 0-1

knapsack solutions, bipartite matchings, etc., such that |χ(t)
v − µ

(t)
v | is bounded by a

polynomial in the input size.

1.3.2 Total variation discrepancy

As we mentioned, the total variation distance of the Markov chain from the stationary

distribution plays a key role for designing an FPRAS based on MCMC. While there are

several works on deterministic random walks concerning the vertex-wise discrepancy

‖χ(t) − µ(t)‖∞ such as [73, 57, 54, 77, 12], little is known about the total variation

discrepancy ‖χ(t) − µ(t)‖1.

This theme is concerned with designing deterministic approximation algorithms for

#P-hard problems. Comparing with the progress on randomized approximation algo-

rithms based on MCMC, not many results are known about deterministic approximation

algorithms for #P-hard problems. A remarkable progress is the correlation decay tech-

nique, independently devised by Weitz [87] and Bandyopadhyay and Gamarnik [11], and

there are several recent developments on the technique. For counting 0-1 knapsack so-

lutions, Gopalan et al. [42], and Stefankovic et al. [81] gave deterministic approximation

algorithms (see also [43]). Ando and Kijima [7] gave an FPTAS based on approximate

convolutions for computing the volume of a 0-1 knapsack polytope. A direct derandom-

ization of MCMC algorithms is not known yet, but it holds a potential for a general

scheme of designing deterministic approximation algorithms for #P-hard problems. De-

terministic processes may be used as a substitute for Markov chains, for this purpose.
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1.3.3 Cover time of general deterministic processes

For the cover time of a random walk, it is known that general transition probabilities

beyond simple random walks give a faster cover time, such as the β-random walk us-

ing irrational transition probabilities or the minimum degree weighting scheme archiving

O(n2) cover time for any graphs. For the cover time of a deterministic process, Holroyd

and Propp [45] provides the stack walk based on the low-discrepancy sequence [82, 8],

and showed a connection between the visit frequency and hitting probabilities. How-

ever, nothing is known about the cover time of deterministic random walks for general

transition probabilities, as far as we know.

Even for the rotor-router model, there are some remaining problems on the speed

up by multiple tokens on general graphs. The speed-up parameter S(k) is defined by

T
(1)
cov/T

(k)
cov , where T

(i)
cov is the cover time of i-tokens version of the rotor-router model.

Kosowski and Pajak [60] showed that S(k) = Θ(k) for the rotor-router model on a

regular graph with tmix = O(D). Since this analysis depends on the regularity of a

graph, it is unclear that S(k) = Θ(k) or not for irregular graphs.

1.4 Contributions

This thesis investigates a deterministic random walk for general transition probabili-

ties possibly containing irrational numbers, and presents analyses of the mixing property

and the cover time of the deterministic random walk in general. In a deterministic ran-

dom walk, each vertex v deterministically serves tokens on v to a neighboring vertex

u with a ratio about Pv,u, where Pv,u denotes the transition probability from v to u

of a corresponding random walk i.e., z
(t)
v,u, which is the number of tokens moving from

v ∈ V to u ∈ V at time t, is almost χ
(t)
v Pv,u (see Chapter 3 for detail). For this model,

this study mainly make progress on the following three topics: the vertex-wise discrep-

ancy for general transition matrices, the total variation discrepancy, and the cover time.

Those results are derived from our technical key lemma (Lemma 3.1), which implies the

discrepancy between a random walk and a deterministic random walk is expressed by a

geometric series of the transition matrix of the random walk where the coefficients are

the local discrepancy of the deterministic random walk.
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1.4.1 Analyses of the vertex-wise discrepancy

First, we estimate vertex-wise discrepancies between a Markov chain and its corre-

sponding deterministic random walk. We show ‖χ(t) − µ(t)‖∞ = O
(
φ(πmax/πmin)∆tmix

)
(Theorem 4.1) for any ergodic and reversible P and for any deterministic random walk,

where πmax and πmin are respectively the maximum, and the minimum values of the sta-

tionary distribution π of P , tmix is the mixing time of P , and ∆ is the maximum degree

of the transition diagram. Local discrepancy φ
def
= maxv,u,t |Z(t)

v,u − χ
(t)
v Pv,u|, depending

on the routing model, plays a key role in the analysis. We investigate the SRT-router

model, in which φ is bounded by a constant (see Section 3.2.4).

Next, we show an improved upper bound ‖χ(t) − µ(t)‖∞ = O
(
Φ(πmax/πmin)∆

√
tmix

)
(Theorem 4.2) for ergodic, reversible and lazy P , where Φ

def
= maxv,u,T |

∑T−1
t=0 (z

(t)
v,u −

χ
(t)
v Pv,u)| is the cumulative local discrepancy, which is also constant for its corresponding

SRT-router model.

These upper bounds imply that rapidly mixing chain has small vertex-wise discrep-

ancy. Section 4.3 shows some examples of rapidly mixing chains and polynomial upper

bounds for them. In Section 4.4, we show examples of lower bounds of the vertex-wise

discrepancy, which our upper bounds are tight for some specific examples.

1.4.2 Analyses of the total variation discrepancy

Next, motivated by a derandomization of MCMC, we give analyses about total varia-

tion discrepancy. We give two upper bounds: ‖χ(t)−µ(t)‖1 = O(φmtmix) for any ergodic

P (Theorem 5.1), and ‖χ(t) − µ(t)‖1 = O(Φm
√
tmix) for any ergodic and lazy P (Theo-

rem 5.1), where m is the number of edges of the transition diagram of P . Notice that

these upper bounds do not require reversibility of P , and free from πmax/πmin, meaning

that it is independent of weights of transition probabilities, instead depending on m.

For a lower bound, we give an example of the oblivious model such that ‖χ(t)−µ(t)‖1 =

Ω(ntmix) (Proposition 5.14), which implies that the mixing time tmix is non negligible

in the L1 discrepancy for the oblivious model, in general. For a rotor-router model, we

show an example satisfying ‖χ(t) − µ(t)‖1 = Ω(m) (Proposition 5.13). We also show

‖χ(t) − µ(t)‖1 = Ω(n) (Proposition 5.12) for an appropriate number of tokens in general.

This general lower bound implies that an extra argument is required to derandomized

MCMC in general.
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1.4.3 Cover time of general deterministic processes

This thesis is also concerned with the cover time of the deterministic random walk

according to general transition probabilities with k tokens, while previous results studied

the rotor-router model (corresponding to simple transition probabilities). We give an

upper bound of the cover time for any deterministic random walk imitating any ergodic

and reversible transition matrix possibly containing irrational numbers (Theorem 6.6).

Precisely, the upper bound is O
(
tmix +m′tmix/k

)
for any number of tokens k ≥ 1, where

m′ = maxu∈V (δ(u)/πu). This is the first result on an upper bound of the cover time

for deterministic random walks imitating general transition probabilities, as far as we

know. Theorem 6.6 implies that the upper bound of the cover time of the rotor-router

model is O
(
tmix + mtmix/k

)
for any graph (Corollary 6.9). For k = 1, this bound

matches to the existing bound O(mD) by [88] when tmix = O(D). This bound is better

than O(mD/ log k) by [26] when tmix is small or k is large. Our bound also improves

the bound O
(
tmix + (∆/δ)(mtmix/k)

)
by [60] in ∆/δ factor for irregular graphs, and

guarantees speed-up parameter S(k) = Θ(k) for any graphs with tmix = O(D).

In our proof, we investigate the connection between the visit frequency X
(T )
v of the

deterministic random walk and the corresponding multiple random walks with general

transition probabilities by extending the arguments of token-configuration analyses. This

approach is an extension of [45, 41, 60]. In precise, we show that |πv − (X
(T )
v /kT )| <

Kπv/T holds for any reversible and ergodic transition matrix, where πv is the stationary

distribution of the corresponding transition matrix and K is constant independent of

T . This upper bound extends the result of [45] to k > 1 tokens and general transition

probabilities.

1.5 Organization

This thesis is organized as follows. Chapter 2 introduces the notations, basic facts of

Markov chains and the rotor-route model. Chapter 3 describes the model of deterministic

random walks, and presents a foundation of discrepancy analyses. Chapter 4 shows

upper and lower bounds of the vertex-wise discrepancy. Chapter 5 shows upper and

lower bounds of the total variation discrepancy. Chapter 6 deals with the visit frequency

and the cover time of deterministic random walks. In Chapter 7, we conclude this thesis

and discuss future works.
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Chapter 2

Preliminaries

This chapter introduces the notations and terminology of the thesis, and explains some

known facts on Markov chains or deterministic processes.

2.1 Notations

Let R (resp. R≥0,R>0) denote the set of real numbers (resp. nonnegative, positive

reals), Q (Q≥0,Q>0) denote the set of rational numbers (nonnegative, positive rationals),

and Z (Z≥0,Z>0) denote the set of integers (nonnegative, positive integers). Let V =

{1, 2, . . . , n} be a finite set and ξ ∈ Rn be a vector on V . Then, ξv (or (ξ)v) denotes the

v-th element of ξ for any v ∈ V , and ξA (or (ξ)A) denotes
∑

v∈A ξv for any subset A ⊆ V .

Let P ∈ Rn×n be a n×n matrix on V . Then, (P )u,v = Pu,v denotes (u, v) ∈ V ×V entry

of P . Let P t be the t-th power of P , then P t
u,v denotes the (u, v)-entry of P t, i.e., (P t)u,v.

Let Pu,· denotes the u-th row vector of P , i.e., Pu,· = euP ∈ Rn and (Pu,·)v = Pu,v, where

eu is the u-th unit vector. For any ξ ∈ Rn, we define

‖ξ‖∞ = max
u∈V
|ξu| (L∞ norm of ξ) (2.1)

‖ξ‖1 =
∑
u∈V

|ξu| (L1 norm of ξ) . (2.2)

2.2 Markov chain

Suppose we wish to sample from V = {1, 2, . . . , n} with a probability proportional to

a given positive vector f = (f1, . . . , fn) ∈ Rn
≥0; for example, we will be in Section 4.3.1
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concerned with uniform sampling of 0-1 knapsack solutions, where V denotes the set of

0-1 knapsack solutions and fv = 1 for each v ∈ V . The idea of Markov chain Monte

Carlo (MCMC) is to sample from a limit distribution of a Markov chain which is equal

to the target distribution f/‖f‖1.

Let P ∈ Rn×n
≥0 be a transition matrix on V , where Pu,v denotes the transition proba-

bility from u to v (u, v ∈ V ), i.e.,
∑

v∈V Pu,v = 1 for any u ∈ V . A transition matrix P is

irreducible if for any u and v in V there exists t ≥ 0 such that P t
u,v > 0. A transition ma-

trix P is aperiodic if GCD{t ∈ Z>0 | P t
x,x > 0} = 1 holds for any x ∈ V . An irreducible

and aperiodic transition matrix is called ergodic. It is well-known that an ergodic P has

a unique stationary distribution π ∈ Rn
≥0, which is a probability distribution satisfying

πP = π. (2.3)

Theorem 2.1 ([65](Theorem 4.9)). If P is ergodic, then,

lim
t→∞

ξP t = π

holds for any probability distribution ξ.

An ergodic Markov chain with a transition matrix P ∈ Rn×n
≥0 is reversible if the

detailed balance equation

fuPu,v = fvPv,u (2.4)

holds for any u, v ∈ V .

Proposition 2.2 ([65](Proposition 1.19)). If a probability distribution ξ ∈ Rn satisfies

the detailed balance equation (2.4), then ξ is a stationary distribution of P .

Proof. By the hypothesis that ξ and P satisfies (2.4),

(ξP )v =
∑
u∈V

ξuPu,v =
∑
u∈V

ξvPv,u = ξv

holds for any v ∈ V . By the definition of the stationary distribution (2.3), we obtain the

claim.

Let ξ and ζ be probability distributions on V , then the total variation distance Dtv

between ξ and ζ is defined by

Dtv(ξ, ζ)
def
= max

A⊂V

∣∣∣∣∣∑
v∈A

(ξv − ζv)

∣∣∣∣∣ =
1

2
‖ξ − ζ‖1 . (2.5)

The second equality holds by the following observation.
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Observation 2.3. If ξ ∈ Rn satisfies
∑

v∈V ξv = 0, then,

max
A⊆V
|ξA| =

1

2
‖ξ‖1 =

∑
x∈V :ξx>0

ξx

holds.

Proof. For convenience, let ξ+, ξ− ∈ Rn be defined by ξ+
i

def
= max{ξi, 0} and ξ−i

def
=

max{−ξi, 0}. Then, it is easy to check that

ξ+
i − ξ−i = max{ξi, 0} −max{−ξi, 0} = ξi, (2.6)

ξ+
i + ξ−i = max{ξi, 0}+ max{−ξi, 0} = |ξi| (2.7)

hold. (2.6) and (2.7) imply that∑
i∈V

ξ+
i −

∑
i∈V

ξ−i =
∑
i∈V

ξi = 0, (2.8)∑
i∈V

ξ+
i +

∑
i∈V

ξ−i =
∑
i∈V

|ξi| = ‖ξ‖1, (2.9)

and hence ∑
i∈V

ξ+
i =

∑
i∈V

ξ−i =
1

2
‖ξ‖1 (2.10)

holds. This derives the second equality of (2.5) since
∑

i∈V ξ
+
i =

∑
x∈V :ξx>0 ξx. The first

equality of (2.5) follows from

max
A⊆V
|ξA| = max

{ ∑
x∈V :ξx>0

ξx,
∑

x∈V :ξx<0

(−ξx)

}
= max

{∑
i∈V

ξ+
i ,
∑
i∈V

ξ−i

}
=

1

2
‖ξ‖1.

Note that

0 ≤ Dtv(ξ, ζ) ≤ 1 (2.11)

holds for any ξ and ζ, since ‖ξ‖1 and ‖ζ‖1 are respectively equal to one. Let

d(t)
def
= max

v∈V
Dtv(P t

v,·, π). (2.12)
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The mixing time of a Markov chain is defined by

τ(ε)
def
= min {t ∈ Z≥0 | d(t) ≤ ε} (2.13)

for any ε > 0. In other words, the distribution P t
v,· of the Markov chain after τ(ε)

transitions satisfies Dtv(P t
v,·, π) ≤ ε, and we obtain an approximate sample from the

target distribution. For convenience, let

tmix
def
= τ(1/4), (2.14)

which is often used as an important characterization of the mixing time of P (cf. (4.36)

of [65]).

2.3 Rotor-router model

This section introduces the rotor-router model [57, 22], which is a simple deterministic

process analogous to a simple random walk.

2.3.1 Multiple random walks

As a preliminary step, Section 2.3.1 introduces the notations for multiple random

walks according to P . Let µ(0) = (µ
(0)
1 , . . . , µ

(0)
n ) ∈ Zn≥0 denote an initial configuration of

k tokens over V . Then, at each time step t ∈ Z≥0, each token move randomly according

to P , i.e., each token on v ∈ V moves independently to u ∈ V with probability Pv,u. Let

µ(t) = (µ
(t)
1 , . . . , µ

(t)
n ) ∈ Rn

≥0 denote the expected configuration of tokens at time t ∈ Z≥0.

Then

(µ(t))v =
∑
u∈V

µ(t−1)
u Pu,v = (µ(t−1)P )v = · · · = (µ(0)P t)v (2.15)

holds for any v. Note that∣∣∣µ(T )
S − kπS

∣∣∣ =

∣∣∣∣∣∑
u∈V

µ(0)
u (P T

u,S − πS)

∣∣∣∣∣ ≤ ∑
u∈V

µ(0)
u |P T

u,S − πS| ≤ kd(T ) (2.16)

holds, thus Dtv(µ(t)/k, π) ≤ ε holds after t ≥ τ(ε).

Let G = (V, E) denote the transition diagram of P where E = {(u, v) ∈ V × V |
Pu,v > 0}. Let N+(v) and N−(v) respectively denote the out-neighborhood and in-

neighborhood of v ∈ V (N+(v) = {u ∈ V | Pv,u > 0} and N−(v) = {u ∈ V | Pu,v > 0}).
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Let δ+(v) = |N+(v)| and δ−(v) = |N−(v)|. Since N+(v) = N−(v) holds for any v ∈ V
for reversible P , we use N (v)(= N+(v) = N−(v)) and δ(v)(= δ+(v) = δ−(v)).

Let G = (V,E) be an undirected graph. Then, in a simple random walk on G, each

token on v moving to a randomly picked neighbor at each t, i.e., the transition matrix

of a simple random walk on G is defined by

Pu,v =

{
1/δ(u) (if {u, v} ∈ E)

0 (otherwise)
. (2.17)

2.3.2 Rotor-router model: model description

The rotor-router model is an analogy of a simple random walk on G. First, we define

an arbitrary ordering ρv(0), ρv(1), . . . , ρv(δ(v) − 1) over N (v) for each v ∈ V , and let

ρv(j)
def
= ρv(j mod δ(v)). Let χ(0) ∈ Zn≥0 be an initial configuration of tokens, and let

χ(t) ∈ Zn≥0 denote the configuration of tokens at time t ∈ Z≥0 in the rotor-router model.

A configuration χ(t) is updated by rotor-routers on vertices, as follows. At first time

step (t = 0), there are χ
(0)
v tokens on vertex v, and each v serves tokens to neighbors

according to ρv(0), ρv(1), . . . , ρv(χ
(0)
v − 1). In other words, |{j ∈ [0, χ

(0)
v ) | ρv(j) = u}|

tokens move from v to u, and χ
(1)
u =

∑
v∈V |{j ∈ [0, χ

(0)
v ) | ρv(j) = u}|. Next time step

(t = 1), there are χ
(1)
v tokens on vertex v, and each v serves tokens to neighbors according

to ρv(χ
(0)
v ), ρv(χ

(0)
v + 1), . . . , ρv(χ

(0)
v + χ

(1)
v − 1), and χ(2) is defined in a similar way.

In general, z
(t)
v,u, which denotes the number of tokens moving from v to u at time t is

defined as

z(t)
v,u =

∣∣{j ∈ [0, χ(t)
v ) | σv(X(t)

v + j) = u
}∣∣ (2.18)

where X
(T )
v

def
=
∑T−1

t=0 χ
(t)
v (X

(0)
v = 0). Then, χ(t+1) is defined by

χ(t+1)
u =

∑
v∈V

z(t)
v,u. (2.19)

It is not difficult to see that

|{j ∈ {0, . . . , z − 1} | ρv(j) = u}|
z

z→∞−−−→ 1

δ(v)
(2.20)

holds, which implies that the “outflow ratio” of tokens at v to u approaches asymptoti-

cally to 1/δ(v) as T increasing, e.g.,

Z
(T )
v,u

X
(T )
v

T→∞−−−→ 1

δ(v)
(2.21)
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holds where Z
(T )
v,u =

∑T−1
t=0 z

(t)
v,u. Thus, the rotor-router is expected to approximate the

distribution of tokens by a simple random walk.

2.4 Geometric convergence of Markov chains

This section gives some analyses of d(t) given by (2.12), related measures, based on

the standard argument of the analysis of the mixing time (see [4, 67, 65] for details),

which we will use in Chapters 4, 5, 6. Section 2.4.1 gives upper bounds of d(t) and d̄(t)

defined by

d̄(t)
def
= max

u,v∈V
Dtv(P t

u,·, P
t
v,·). (2.22)

Section 2.4.2 gives the upper bound of d̃(t) defined by

d̃(t)
def
= max

v∈V
Dtv(P t

v,·, P
t+1
v,· ). (2.23)

Section 2.4.3 analyses the separation distance introduced in [3].

2.4.1 Distances from stationary

Section 2.4.1 establishes the following proposition.

Proposition 2.4.

d̄(`tmix + k) ≤ 1

2`
(∀` ≥ 0, ∀k ≥ 0), (2.24)

d(`tmix + k) ≤ 1

2`+1
(∀` > 0, ∀k ≥ 0). (2.25)

We will use Proposition 2.4 in Chapters 4, 5, 6. To prove Proposition 2.4, we use the

following lemmas.

Lemma 2.5 ([65]). Let ξ, ζ ∈ Rn be arbitrary probability distributions. Then,

Dtv(ξP t, ζP t) ≤ d̄(t)

holds for any t ≥ 0.
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Proof. From the definition (2.5) of Dtv, we have

2Dtv(ξP t, ζP t) =
∥∥ξP t − ζP t

∥∥
1

=
∑
w∈V

∣∣(ξP t)w − (ζP t)w
∣∣

=
∑
w∈V

∣∣∣∣∣∑
x∈V

ξxP
t
x,w −

∑
y∈V

ζyP
t
y,w

∣∣∣∣∣
=

∑
w∈V

∣∣∣∣∣∑
x∈V

∑
y∈V

ξxζyP
t
x,w −

∑
x∈V

∑
y∈V

ξxζyP
t
y,w

∣∣∣∣∣
=

∑
w∈V

∣∣∣∣∣∑
x∈V

∑
y∈V

ξxζy(P
t
x,w − P t

y,w)

∣∣∣∣∣ . (2.26)

Note that we use
∑

x∈V ξx =
∑

y∈V ζy = 1 in the second equality. We also obtain

∑
w∈V

∣∣∣∣∣∑
x∈V

∑
y∈V

ξxζy(P
t
x,w − P t

y,w)

∣∣∣∣∣ ≤ ∑
w∈V

∑
x∈V

∑
y∈V

ξxζy
∣∣P t

x,w − P t
y,w

∣∣
=

∑
x∈V

∑
y∈V

ξxζy
∥∥P t

x,· − P t
y,·
∥∥

1
≤ max

x,y∈V

∥∥P t
x,· − P t

y,·
∥∥

1

∑
x∈V

∑
y∈V

ξxζy = 2d̄(t) (2.27)

from the definition (2.22) of d̄(t). Combining (2.26) and (2.27), we obtain the claim.

Lemma 2.6 ([65](Lemma 4.11)).

d(t) ≤ d̄(t) ≤ 2d(t)

holds for any t ≥ 0.

Proof. Suppose d(t) = Dtv(P t
v∗,·, π) holds for v∗ ∈ V (see (2.12)). Then,

d(t) = Dtv(P t
v,·, π) = Dtv(ev∗P

t, πP t) ≤ d̄(t)

holds by Lemma 2.5, thus we obtain d(t) ≤ d̄(t). Similarly, suppose d̄(t) = Dtv(P t
v∗,·, P

t
w∗,·)

holds for v∗, w∗ ∈ V (see (2.22)). Then,

d̄(t) = Dtv(P t
v∗,·, P

t
w∗,·) =

1

2

∑
u∈V

∣∣P t
v∗,u − P t

w∗,u

∣∣
=

1

2

∑
u∈V

∣∣P t
v∗,u − πu + πu − P t

w∗,u

∣∣ ≤ 1

2

∑
u∈V

∣∣P t
v∗,u − πu

∣∣+
1

2

∑
u∈V

∣∣πu − P t
w∗,u

∣∣ ≤ 2d(t)

holds, and we obtain the claim.
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Lemma 2.7 ([67](Lemma 5.7)). Suppose that ξ ∈ Rn satisfies
∑

v∈V ξv = 0. Then,

‖ξP t‖1 ≤ ‖ξ‖1d̄(t)

holds for any t ≥ 0.

Proof. Let ξ+, ξ− ∈ Rn be defined by ξ+
i

def
= max{ξi, 0} and ξ−i

def
= max{−ξi, 0}. Then,

ξ = ξ+ − ξ− (2.28)

from (2.6), and ξ+
1
2
‖ξ‖1

, ξ−
1
2
‖ξ‖1

are probabilistic distributions, respectively from (2.10). Thus,

by Lemma 2.5,∥∥ξP t
∥∥

1
=

∥∥ξ+P t − ξ−P t
∥∥

1
=

1

2
‖ξ‖1·

∥∥∥∥ ξ+

1
2
‖ξ‖1

P t − ξ−

1
2
‖ξ‖1

P t

∥∥∥∥
1

≤ ‖ξ‖1 d̄(t)

holds, and we obtain the claim.

Lemma 2.8 ([4](Lemma 2.20 and (2.17))).

(a) d̄(s+ t) ≤ d̄(s)d̄(t), for any s, t ≥ 0 (the submultiplicativity property).

(b) d(s+ t) ≤ d(s)d̄(t), for any s, t ≥ 0.

Proof. Suppose d̄(s + t) = (1/2)‖ev∗P s+t − ew∗P s+t‖1 holds for v∗, w∗ ∈ V (see (2.22)).

Then,

2d̄(s+ t) =
∥∥ev∗P s+t − ew∗P s+t

∥∥
1

=
∥∥(ev∗P

s − ew∗P s)P t
∥∥

1

≤ ‖ev∗P s − ew∗P s‖1 d̄(t) ≤ 2d̄(s)d̄(t)

holds by Lemma 2.7, and we get d̄(s+ t) ≤ d̄(s)d̄(t).

Similarly, suppose d(s+t) = (1/2)‖ev∗P s+t−π‖1 holds for v∗ ∈ V (see (2.12)). Then,

2d(s+ t) =
∥∥ev∗P s+t − π

∥∥
1

=
∥∥(ev∗P

s − π)P t
∥∥

1
≤ ‖ev∗P s − π‖1 d̄(t) ≤ 2d(s)d̄(t)

holds by Lemma 2.7, and we get d(s+ t) ≤ d(s)d̄(t).

Proof of Proposition 2.4. Lemma 2.8 implies that d(t) and d̄(t) are monotone non in-

creasing, i.e.,

d̄(t) ≥ d̄(t+ 1), (2.29)

d(t) ≥ d(t+ 1) (2.30)



Chapter 2 Preliminaries 19

hold since 0 ≤ d̄(t) ≤ 1 and 0 ≤ d(t) ≤ 1 hold by the definitions of d(t), d̄(t) and (2.11).

Then,

d̄(`tmix + k) ≤ d̄(`tmix) ≤ d̄(tmix)` ≤
(
2d(tmix)

)` ≤ (
2 · 1

4

)`
=

1

2`
(2.31)

and

d(`tmix + k) ≤ d(`tmix) ≤ d(tmix)d̄
(
(`− 1)tmix

)
≤ 1

4
· 1

2`−1
=

1

2`+1

hold.

2.4.2 Distance between P t
u,· and P t+1

u,· for lazy chains

A transition matrix P is lazy if Px,x ≥ 1/2 holds for any x ∈ V . This section gives

the following proposition.

Proposition 2.9. For any ergodic and lazy Markov chain,

d̃(`tmix + k) ≤ 12

2`
√
k

holds for any ` ≥ 0 and for any k > 0.

Notice that Proposition 2.9 provides a better bound for lazy chains than Proposi-

tion 2.4 which implies d̃(`tmix + k) = O(2−`). We use this proposition in the analyses of

Chapters 4 and 5. To obtain this proposition, we show the following lemma.

Lemma 2.10.

d̃(s+ t) ≤ d̃(s)d̄(t)

holds for any s, t ≥ 0.

Proof. Suppose d̃(s + t) = (1/2)‖eu∗P s+t − eu∗P s+t+1‖1 holds for u∗ ∈ V (see (2.23)).

Then,

2d̃(s+ t) = ‖eu∗P s+t − eu∗P s+t+1‖1 = ‖(eu∗P s − eu∗P s+1)P t‖1

≤ ‖eu∗P s − eu∗P s+1‖1d̄(t) ≤ 2d̃(s)d̄(t)

holds from the definition and Lemma 2.7, thus we obtain the claim.
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For any lazy chain, we have the following lemma.

Lemma 2.11 ([65](Proposition 5.6)). For any ergodic and lazy Markov chain,

d̃(t) ≤ 12√
t

holds for any t > 0.

Proof of Proposition 2.9. Combining Lemma 2.10, Lemma 2.11 and Proposition 2.4, we

obtain

d̃(`tmix + k) ≤ d̃(k)d̄(`tmix) ≤ 12

2`
√
k
. (2.32)

2.4.3 Separation distance

The separation distance introduced in [3], is defined by

s(t)
def
= max

u,v∈V

(
1−

P t
u,v

πv

)
. (2.33)

We will use the discussions of this section in Chapter 6. First, we remark that

0 ≤ s(t) ≤ 1 (2.34)

holds. The latter inequality is trivial by the definition. For the former inequality, there

exists a pair u∗, v∗ ∈ V satisfying 1 − (P t
u∗,v∗/πv∗) ≥ 0 (⇔) πv∗ − P t

u∗,v∗ ≥ 0 since∑
v∈V (πv − P t

u,v) = 0 holds for any u ∈ V . This means that 0 ≤ s(t).

Lemma 2.12 ([3](Lemma 3.7)). For any ergodic Markov chain,

s(t+ u) ≤ s(t)s(u) [the submultiplicativity property]

holds for any t, u ≥ 1.

Proof. Let

Q(t)
x,y

def
=

1

s(t)

(
P t
x,y −

(
1− s(t)

)
πy
)

(2.35)
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for any x, y ∈ V . Then,
∑

y∈V Q
(t)
x,y = 1 and Q

(t)
x,y ≥ 0 holds for any x, y ∈ V and t ≥ 1

since s(t) ≥ 1 − (P t
x,y/πy) holds for any x, y ∈ V and t ≥ 1. Thus Q(t) ∈ Rn×n is a

transition matrix for any t ≥ 1, and∑
x∈V

πxQ
(t)
x,y =

1

s(t)

(∑
x∈V

πxP
t
x,y −

∑
x∈V

πx
(
1− s(t)

)
πy

)
=

1

s(t)

(
πy −

(
1− s(t)

)
πy
)

= πy (2.36)

holds. Since P t
x,y = s(t)Q

(t)
x,y +

(
1− s(t)

)
πy,

P t+u
x,y =

∑
z∈V

P t
x,zP

u
z,y

=
∑
z∈V

(
s(t)Q(t)

x,z +
(
1− s(t)

)
πz
) (
s(u)Q(u)

z,y +
(
1− s(u)

)
πy
)

= s(t)s(u)
∑
z∈V

Q(t)
x,zQ

(u)
z,y + s(t)

∑
z∈V

Q(t)
x,z

(
1− s(u)

)
πy

+
(
1− s(t)

)∑
z∈V

πzs(u)Q(u)
z,y +

(
1− s(t)

)∑
z∈V

πz
(
1− s(u)

)
πy

= s(t)s(u)
∑
z∈V

Q(t)
x,zQ

(u)
z,y + s(t)

(
1− s(u)

)
πy

+
(
1− s(t)

)
s(u)πy +

(
1− s(t)

)(
1− s(u)

)
πy

=
(
1− s(t)s(u)

)
πy + s(t)s(u)

∑
z∈V

Q(t)
x,zQ

(u)
z,y (2.37)

holds for any x, y ∈ V and t, u ≥ 1, where we used (2.36) in the fourth equality. Suppose

that x∗, y∗ ∈ V is a pair satisfying s(t+ u) = 1− (P t+u
x∗,y∗/πy∗). Notice that s(t+ u) ≥ 0

by (2.34). Then, from (2.37),

s(t)s(u) =
πy∗ − P t+u

x∗,y∗

πy∗ −
∑

z∈V Q
(t)
x∗,zQ

(u)
z,y∗

=
πy∗ − P t+u

x∗,y∗

πy∗
· πy∗

πy∗ −
∑

z∈V Q
(t)
x∗,zQ

(u)
z,y∗

= s(t+ u)· πy∗

πy∗ −
∑

z∈V Q
(t)
x∗,zQ

(u)
z,y∗

≥ s(t+ u)

holds, and we obtain the claim.

In particular, the following holds for reversible chains.

Lemma 2.13 ([65] (Lemma 19.3)). If P is ergodic and reversible, then,

s(2t) ≤ 1−
(
1− d̄(t)

)2
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holds for any t ≥ 0.

Proof. Since P is reversible, we have

P 2t
x,y

πy
=

∑
z∈V P

t
x,zP

t
z,y

πy
=
∑
z∈V

P t
x,z

P t
z,y

πy
=
∑
z∈V

P t
x,z

P t
y,z

πz
=
∑
z∈V

P t
x,zP

t
y,z

πz

∑
z∈V

πz

≥

∑
z∈V

√
P t
x,zP

t
y,z

πz

√
πz

2

=

(∑
z∈V

√
P t
x,zP

t
y,z

)2

≥

(∑
z∈V

min{P t
x,z, P

t
y,z}

)2

, (2.38)

where we used Cauchy-Schwarz inequality for the first inequality. Then, by using Ob-

servation 2.3,∑
z∈V

min{P t
x,z, P

t
y,z} =

∑
z∈V

:P t
x,z≤P t

y,z

P t
x,z +

∑
z∈V

:P t
x,z>P

t
y,z

P t
y,z

=
∑
z∈V

:P t
x,z≤P t

y,z

P t
x,z +

 ∑
z∈V

:P t
x,z>P

t
y,z

P t
x,z −

∑
z∈V

:P t
x,z>P

t
y,z

P t
x,z

+
∑
z∈V

:P t
x,z>P

t
y,z

P t
y,z

=
∑
z∈V

P t
x,z −

∑
z∈V

:P t
x,z>P

t
y,z

(P t
x,z − P t

y,z)

= 1−Dtv(P t
x,·, P

t
y,·) (2.39)

holds, and we obtain the claim.
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Chapter 3

Deterministic Random Walks

This chapter introduces deterministic random walk, which is a deterministic process

analogous to a Markovian process µ(t) (see (2.15)) with a transition matrix P ∈ Rn×n
≥0 .

Section 3.1 presents the concept of the model, and Sections 3.2 and 3.3 give some specific

models of deterministic random walks.

3.1 Framework of deterministic random walks

3.1.1 Model description

Let V = {1, 2, . . . , n} be a finite set and P ∈ Rn×n
≥0 be a transition matrix on V . Let

χ(0) = (χ
(0)
1 , χ

(0)
2 , . . . , χ

(0)
n ) ∈ Zn≥0 denote a initial configuration of k tokens over V in a

deterministic random walk. In particular, we assume

χ(0) = µ(0) (3.1)

holds. Let χ(t) ∈ Zn≥0 denote the configuration of tokens at time t ∈ Z≥0 in a deterministic

random walk. An update in a deterministic random walk is described by the number

of tokens moving from v to u at time t denoted z
(t)
v,u ∈ Z≥0. Here, z

(t)
v,u must satisfy the

condition that ∑
u∈N+(v)

z(t)
v,u = χ(t)

v (3.2)

for any v ∈ V . Then, χ(t+1) is defined by

χ(t+1)
u

def
=

∑
v∈N−(u)

z(t)
v,u (3.3)
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for any u ∈ V . We will explain some specific models of the deterministic random walk

in Sections 3.2 and 3.3 by giving precise definitions of z
(t)
v,u.

3.1.2 Foundation of discrepancy analyses

The goal of this study is to analyze the discrepancy between χ(t) and µ(t). This

section establishes Lemma 3.1, which is the framework of discrepancy analyses. To state

Lemma 3.1, we introduce the local discrepancy φ
(t)
v,u for a deterministic random walk.

Definition 1 (Local discrepancy).

φ(t)
v,u

def
= z(t)

v,u − χ(t)
v Pv,u. (3.4)

Let φv,u
def
= maxt≥0 |φ(t)

v,u|, and φ
def
= maxv,u∈V φv,u, for convenience.

Recall that there are χ
(t)
v tokens at vertex v ∈ V at time t. The local discrepancy

φ
(t)
v,u is the discrepancy between χ

(t)
v Pv,u, which is the expected number of tokens move

from v to u ∈ N+(v), and z
(t)
v,u, which is the actual number of tokens move from v to

u ∈ N+(v) in a deterministic random walk. We will give upper bounds of the vertex-

wise discrepancy (Theorem 4.1) and total variation discrepancy (Theorem 5.1) using φ.

We also give the upper bound of φ for some specific model. Especially, φ is bounded by a

constant for the SRT-router model (Section 3.2.4) and the oblivious model (Section 3.3).

Now, we state Lemma 3.1.

Lemma 3.1.

χ(T )
w − µ(T )

w =
∑
u∈V

∑
v∈N−(u)

T−1∑
t=0

φ(T−t−1)
v,u P t

u,w

holds for any w ∈ V and for any T ≥ 0.

Lemma 3.1 implies that the discrepancy between χ(t) and µ(t) is expressed by a

geometric series of its transition matrix where the coefficients are the local discrepancy at

each time. We use this lemma in Chapter 4 for the vertex-wise discrepancy, in Chapter 5

for the total variation discrepancy, and in Chapter 6 for the discrepancy of the visit

frequencies concerned with the cover time.
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Proof. For convenience, we assume that P 0 is the identity matrix (P 0
u,w = 1 if u = w and

otherwise P 0
u,w = 0). First, we see that

T−1∑
t=0

(
χ(T−t)P t − χ(T−t−1)P t+1

)
= χ(T )P 0 − χ(0)P T

holds. Hence we obtain

χ(T ) − µ(T ) =
T−1∑
t=0

(
χ(T−t) − χ(T−t−1)P

)
P t (3.5)

since χ(0)P T = µ(0)P T = µ(T ) holds by (3.1) and (2.15). From (3.5),

χ(T )
w − µ(T )

w =
T−1∑
t=0

(
(χ(T−t) − χ(T−t−1)P )P t

)
w

=
T−1∑
t=0

∑
u∈V

(
χ(T−t) − χ(T−t−1)P

)
u
P t
u,w (3.6)

and (
χ(t+1) − χ(t)P

)
u

= χ(t+1)
u − (χ(t)P )u =

∑
v∈V

z(t)
v,u −

∑
v∈V

χ(t)
v Pv,u

=
∑

v∈N−(u)

(z(t)
v,u − χ(t)

v Pv,u) =
∑

v∈N−(u)

φ(t)
v,u (3.7)

holds for any t ≥ 0 and u ∈ V by (3.3) and (3.4). Thus we obtain the claim combining

(3.6) and (3.7).

3.2 Functional-router model

Recall that on the rotor router model, Z
(T )
v,u /X

(T )
v approaches asymptotically to 1/δ(v)

as T increases (2.21), where

X(T )
v

def
=

T−1∑
t=0

χ(t)
v , (3.8)

which is the total number of tokens visited vertex v by time T , and

Z(T )
v,u

def
=

T−1∑
t=0

z(t)
v,u, (3.9)
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which is the total number of tokens moving from v to u by time T (we assume that

X
(0)
v = 0 and Z

(0)
v,u = 0). Now, we consider the model satisfying the generalization of

(2.21), e.g.,

Z
(T )
v,u

X
(T )
v

T→∞−−−→ Pv,u. (3.10)

In order to get a model satisfying (3.10), we generalize the rotor-router using the following

idea: each vertex has a functional-router σv : Z≥0 → N+(v) satisfying

|{j ∈ {0, . . . , z − 1} | σv(j) = u}|
z

z→∞−−−→ Pv,u, (3.11)

meaning that local ratio of token moving imitates local transition probability of corre-

sponding random walks. Precisely, for given χ(0) and σv, z
(t)
v,u is defined by

z(t)
v,u

def
=

∣∣{j ∈ [0, χ(t)
v ) | σv

(
X(t)
v + j

)
= u

}∣∣
=

∣∣{j ∈ [X(t)
v , X(t)

v + χ(t)
v ) | σv (j) = u

}∣∣ (3.12)

for any v, u ∈ V . We in Section 3.2 give some specific functional-routers satisfying (3.10),

i.e., satisfying small cumulative local discrepancy Φ defined by the following.

Definition 2 (Cumulative local discrepancy).

Φ(T )
v,u

def
=

T−1∑
t=0

φ(t)
v,u = Z(T )

v,u −X(T )
v Pv,u. (3.13)

Let Φv,u
def
= maxT≥0 |Φ(T )

v,u |, and Φ
def
= maxv,u∈V Φv,u, for convenience.

The cumulative local discrepancy satisfies Φ ≤ 1 for the SRT-router model described

in Section 3.2.4. We will give upper bounds of the vertex-wise discrepancy (Theorem 4.2),

the total variation discrepancy (Theorem 5.2), the discrepancy of visit frequencies (The-

orem 6.1) and the cover time (Theorem 6.4) using Φ.

Now, we explain some specific functional-router models, namely the weighted rotor-

router in Section 3.2.1, the quasi-random router in Section 3.2.2, the billiard router in

Section 3.2.3, and the SRT router in Section 3.2.4.
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3.2.1 Weighted rotor-router

The rotor-router model described in Section 2.3.2 can be generally considered on

digraphs with parallel edges (i.e., multidigraphs). Kijima et al. [57] and Kajino et al. [54]

are concerned with the rotor-router model on finite multidigraphs. Suppose that P

is a transition matrix with rational entries. For each v ∈ V , let δ̄(v) ∈ Z≥0 be a

common denominator (or the least common denominator) of Pv,u for all u ∈ N+(v),

meaning that δ̄(v)·Pv,u is an integer for each u ∈ N+(v). We define a rotor-router

σv(0), σv(1), . . . , σv(δ̄(v)− 1) arbitrarily satisfying that∣∣{j ∈ [0, . . . , δ̄(v)) | σv(j) = u}
∣∣ = δ̄(v)·Pv,u

for any v ∈ V and u ∈ N+(v). Then, σv(i) is defined by

σv(i) = σv(i mod δ̄(v))

(
≡ σv

(
i− δ̄(v)·

⌊
i

δ̄(v)

⌋))
. (3.14)

For the weighted rotor router, it is not difficult to observe the following.

Proposition 3.2. If P ∈ Qn×n
≥0 , then,∣∣∣∣∣{j ∈ [z, z′) | σv(j) = u}

∣∣− (z′ − z)Pv,u

∣∣∣ ≤ δ̄(v)Pv,u

holds for any v, u ∈ V and for any z, z′ ∈ Z≥0 satisfying z′ > z.

Proof. Considering (3.14),

δ̄(v)Pv,u·
⌊
z′ − z
δ̄(v)

⌋
≤
∣∣{j ∈ [z, z′) | σv(j) = u}

∣∣ ≤ δ̄(v)Pv,u·
⌈
z′ − z
δ̄(v)

⌉
holds, and we obtain the claim.

3.2.2 Quasi-random router

Motivated by deterministic random walks for irrational transition probabilities, this

section gives a router σ based on the van der Corput sequence [86, 69], which is a well-

known low-discrepancy sequence.

The van der Corput sequence ψ : Z≥0 → [0, 1) is defined as follows. Suppose i ∈ Z>0

is represented in binary as i =
∑blg ic

j=0 βj(i)· 2j where βj(i) ∈ {0, 1} (j ∈ {0, 1, . . . , blg ic})
denotes the j-th bit coefficient of i. Then, we define

ψ(i)
def
=

blg ic∑
j=0

βj(i)· 2−(j+1) (3.15)
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and ψ(0)
def
= 0. For example, ψ(1) = 1 × 1/2 = 1/2, ψ(2) = 0 × 1/2 + 1 × 1/4 = 1/4,

ψ(3) = 1 × 1/2 + 1 × 1/4 = 3/4, ψ(4) = 0 × 1/2 + 0 × 1/4 + 1 × 1/8 = 1/8, ψ(5) =

1× 1/2 + 0× 1/4 + 1× 1/8 = 5/8, ψ(6) = 0× 1/2 + 1× 1/4 + 1× 1/8 = 3/8, and so on.

Clearly, ψ(i) ∈ [0, 1) holds for any (finite) i ∈ Z≥0.

Now, given i ∈ Z>0, we define σv(i) as follows. Without loss of generality, we may

assume that an ordering u1, . . . , uδ(v) is defined on N+(v) for each v ∈ V . Then, we

define the functional-router σv : Z≥0 → N+(v) on v ∈ V such that σv(i) = uk ∈ N+(v)

satisfies that ∑k−1
j=1 Pv,uj ≤ ψ(i) <

∑k
j=1 Pv,uj

for k ∈ {1, . . . , δ+(v)}, where
∑0

j=1 Pv,uj = 0, for convenience.

The following proposition is due to van der Corput [86].

Proposition 3.3 ([86]). For any transition matrix P ,∣∣∣∣∣{j ∈ [0, z) | σv(j) = u
}∣∣− z·Pv,u∣∣∣ ≤ lg(z + 1)

holds for any v, u ∈ V and any z ∈ Z>0.

More sophisticated bounds are found in [69]. Carefully examining Proposition 3.3,

the following proposition is shown.

Proposition 3.4 ([86]). For any transition matrix P ,∣∣∣∣∣{j ∈ [z, z′) | σv(j) = u
}∣∣− (z′ − z)Pv,u

∣∣∣ ≤ 2 lg(z′ − z + 1)

holds for any v, u ∈ V , and for any z, z′ ∈ Z≥0 satisfying z′ > z.

3.2.3 Billiard-router

Billiard sequence is known to be a balanced sequence (cf. [74]). This section presents

a functional router based on the billiard sequence. Let σv(i) be u∗ ∈ N+(v) minimizing

the value ∣∣{j ∈ [0, i) | σv(j) = u
}∣∣+ 1

Pv,u

in all u ∈ N+(v), and if there are two or more such u ∈ N+(v), then let u∗ be arbitrary

one of them. Then, the following theorem for the billiard sequence is known.
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Proposition 3.5 ([74]). For any transition matrix P ,∣∣∣∣∣{j ∈ [z, z′) | σv(j) = u
}∣∣− (z′ − z)Pv,u

∣∣∣ ≤ 1 + δ+(v)Pv,u

holds for any v, u ∈ V , and for any z, z′ ∈ Z≥0 satisfying z′ > z.

3.2.4 SRT-router

This section introduces SRT router, which is originally given by Holroyd and Propp [45]

and Angel et al. [8] by the name of stack-walk. The SRT-router is similar to the billiard-

router, but more sophisticated. The SRT router σv(i) (i ∈ Z≥0) on v ∈ V is defined, as

follows. Let

Ti(v) = {u ∈ N+(v) |
∣∣{j ∈ [0, i) | σv(j) = u

}∣∣− (i+ 1)Pv,u < 0}. (3.16)

Then, let σv(i) be a vertex u∗ ∈ Ti(v) minimizing the value∣∣{j ∈ [0, i) | σv(j) = u
}∣∣+ 1

Pv,u
(3.17)

in all u ∈ Ti(v). If there are two or more such u ∈ Tv(i), then let u∗ be arbitrary one of

them.

Considering σv(i) ∈ Ti(v), we can see that
∣∣{j ∈ [0, i+1) | σv(j) = u

}∣∣−(i+1)Pv,u < 1

holds for any u, v and i, by an induction on i ∈ Z≥0. The following theorem is due to

Angel et al. [8] and Tijdeman [82].

Theorem 3.6. [82, 8] For any transition matrix P ,∣∣∣∣∣{j ∈ [0, z) | σv(j) = u
}∣∣− z·Pv,u∣∣∣ ≤ 1

holds for any v, u ∈ V and any z ∈ Z>0.

Theorem 3.6 was firstly given by Tijdeman [82], where he gave a slightly better bound∣∣∣∣∣{j ∈ [0, z) | σv(j) = u
}∣∣ − z·Pv,u

∣∣∣ ≤ 1 − (2(δ+(v) − 1))−1, in fact. Angel et al. [8]

rediscovered Theorem 3.6 in the context of deterministic random walk (see also [45]),

where they also proved a similar statement even when the corresponding probability is

time-inhomogeneous.
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3.3 Oblivious model

Memoryless is an important property of a Markovian process. This section presents an

oblivious deterministic random walk. In the oblivious model, z
(t)
v,u is defined by dχ(t)

v Pv,ue
or bχ(t)

v Pv,uc to satisfy (3.2). Precisely, suppose that an arbitrary ordering u1, . . . , uδ+(v)

on N+(v) is prescribed for each v ∈ V . Then, let

z(t)
v,ui

=


⌊
χ

(t)
v Pv,ui

⌋
+ 1 (i ≤ i∗)⌊

χ
(t)
v Pv,ui

⌋
(otherwise)

(3.18)

where i∗
def
= χ

(t)
v −

∑δ+(v)
i=1 bχ

(t)
v Pv,uic denotes the number of “surplus” tokens. It is easy to

check that the condition (3.2) holds for any v ∈ V and t ∈ Z≥0. Then, the configuration

χ(t+1) is updated according to (3.3), recursively.

The following is obvious from the definition (3.18) for any oblivious model.

Proposition 3.7. For any P ∈ Rn×n
≥0 and for any its corresponding oblivious models,

φ(t)
v,u ≤ 1

holds for any v, u ∈ V and for any t ≥ 0.

Note that oblivious models described in Section 3.1 do not satisfy (3.10) in general.
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Chapter 4

Vertex-wise Discrepancy

This chapter investigates the vertex-wise discrepancy (L∞ discrepancy) between the

token configuration χ(t) of a deterministic random walk (see (3.3)) and the expected

token configuration µ(t) of a random walk (see (2.15)). First, we present general upper

bounds (Theorem 4.1 and Theorem 4.2) in Section 4.1. In Section 4.2, we show upper

bounds for specific models defined in Section 3.2. Section 4.3 discusses the complexity of

a simulation of deterministic random walk for some rapidly mixing chains. Section 4.4

discusses some lower bounds.

4.1 General upper bounds of the vertex-wise discrepancy

This section establishes two theorems for general upper bounds of the vertex-wise

discrepancy between a deterministic random walk and a reversible Markov chain.

Theorem 4.1. If P ∈ Rn×n
≥0 is ergodic and reversible, then∣∣χ(T )

w − µ(T )
w

∣∣ ≤ 3πw max
u∈V

∑
v∈N (u) φv,u

πu
tmix = O

(
φ
πmax

πmin

∆tmix

)
holds for any w ∈ V and for any T ≥ 0.

For lazy chains, we show the following better upper bound.

Theorem 4.2. If P ∈ Rn×n
≥0 is ergodic, reversible and lazy, then∣∣χ(T )

w − µ(T )
w

∣∣ ≤ 96πw max
u∈V

∑
v∈N (u) Φv,u

πu

√
tmix = O

(
Φ
πmax

πmin

∆
√
tmix

)
holds for any w ∈ V and for any T ≥ 0.
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4.1.1 Proof of Theorem 4.1

To prove Theorem 4.1, we introduce the following lemma derived from Lemma 3.1.

Lemma 4.3.

χ(T )
w − µ(T )

w =
∑
u∈V

∑
v∈N−(u)

T−1∑
t=0

φ(T−t−1)
v,u (P t

u,w − πw)

holds for any w ∈ V and for any T ≥ 0.

Proof. First, we see that∑
u∈V

(
χ(t+1) − χ(t)P

)
u

=
∑
u∈V

χ(t+1)
u −

∑
u∈V

∑
v∈V

χ(t)
v Pv,u

=
∑
u∈V

χ(t+1)
u −

∑
v∈V

χ(t)
v = 0 (4.1)

holds for any t ≥ 0. Combining (3.6) and (4.1), we obtain

χ(T )
w − µ(T )

w =
T−1∑
t=0

∑
u∈V

(
χ(T−t) − χ(T−t−1)P

)
u
P t
u,w − 0

=
T−1∑
t=0

∑
u∈V

(
χ(T−t) − χ(T−t−1)P

)
u
P t
u,w −

T−1∑
t=0

∑
u∈V

(
χ(T−t) − χ(T−t−1)P

)
u
πw

=
T−1∑
t=0

∑
u∈V

(
χ(T−t) − χ(T−t−1)P

)
u

(P t
u,w − πw). (4.2)

Thus, we obtain the claim by (4.2) and (3.7).

The following lemma is corresponding to the property of d(t).

Lemma 4.4.
T∑
t=0

d(t) ≤ 3

2
tmix

holds for any T ≥ 0.

Proof. Uisng Proposition 2.4, we obtain
T∑
t=0

d(t) ≤
∞∑
`=0

tmix−1∑
k=0

d(`tmix + k) =

tmix−1∑
k=0

d(k) +
∞∑
`=1

tmix−1∑
k=0

d(`tmix + k)

≤
tmix−1∑
k=0

1 +

tmix−1∑
k=0

∞∑
`=1

1

2`+1
≤

tmix−1∑
k=0

1 +

tmix−1∑
k=0

1

2
=

3

2
tmix.
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Proof of Theorem 4.1. Note that N−(u) = N (u) holds for any u ∈ V and πuP
t
u,w =

πwP
t
w,u hold from the assumption of reversibility of P . Using Lemma 4.3, we have

χ(T )
w − µ(T )

w =
∑
u∈V

∑
v∈N (u)

T−1∑
t=0

φ(T−t−1)
v,u

(
πw
πu
P t
w,u − πw

)

= πw
∑
u∈V

1

πu

∑
v∈N (u)

T−1∑
t=0

φ(T−t−1)
v,u (P t

w,u − πu). (4.3)

Using the definitions (3.4) of φv,u and (2.12) of d(t),

∣∣χ(T )
w − µ(T )

w

∣∣ ≤ πw
∑
u∈V

1

πu

∑
v∈N (u)

T−1∑
t=0

∣∣φ(T−t−1)
v,u

∣∣ |P t
w,u − πu|

≤ πw
∑
u∈V

1

πu

∑
v∈N (u)

T−1∑
t=0

φv,u|P t
w,u − πu|

≤ πw max
u∈V

∑
v∈N (u) φv,u

πu

T−1∑
t=0

∑
u∈V

|P t
w,u − πu|

≤ πw max
u∈V

∑
v∈N (u) φv,u

πu

T−1∑
t=0

2d(t) (4.4)

holds. Thus, we obtain the claim combining (4.4) and Lemma 4.4.

4.1.2 Proof of Theorem 4.2

For convenience, we assume that P−1 is the zero matrix (P−1
u,w = 0 for any u,w ∈ V ).

To prove Theorem 4.2, we introduce the following lemma derived from Lemma 3.1.

Lemma 4.5.

χ(T )
w − µ(T )

w =
∑
u∈V

∑
v∈N−(u)

T−1∑
t=0

Φ(T−t)
v,u

(
P t
u,w − P t−1

u,w

)
holds for any w ∈ V and for any T ≥ 0.

Proof. Note that Φ
(t+1)
v,u − Φ

(t)
v,u = φ

(t)
v,u holds for any t ≥ 0 from the definition (3.13).
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Hence

T−1∑
t=0

φ(T−t−1)
v,u P t

u,w =
T−1∑
t=0

(
Φ(T−t)
v,u − Φ(T−t−1)

v,u

)
P t
u,w

=
T−1∑
t=0

Φ(T−t)
v,u P t

u,w −
T−1∑
t=0

Φ(T−t−1)
v,u P t

u,w

=
T−1∑
t=0

Φ(T−t)
v,u P t

u,w −
T−2∑
t=−1

Φ(T−t−1)
v,u P t

u,w

=
T−1∑
t=0

Φ(T−t)
v,u P t

u,w −
T−1∑
t=0

Φ(T−t)
v,u P t−1

u,w

=
T−1∑
t=0

Φ(T−t)
v,u

(
P t
u,w − P t−1

u,w

)
(4.5)

where we used the assumptions P−1
v,u = 0 and Φ

(0)
v,u = 0 for any v, u ∈ V in the third

equality. We obtain the claim combining Lemma 3.1 and (4.5).

The following lemma is corresponding to the property of d̃(t).

Lemma 4.6. If P is ergodic and lazy, then,

T∑
t=0

d̃(t) ≤ 48
√
tmix − 23

holds for any T ≥ 0.

Proof. Using Proposition 2.9, we obtain

T∑
t=0

d̃(t) ≤ d̃(0) +
∞∑
`=0

tmix∑
k=1

d̃(`tmix + k)

≤ 1 +
∞∑
`=0

tmix∑
k=1

12

2`
√
k

= 1 + 12
∞∑
`=0

1

2`

tmix∑
k=1

1√
k

≤ 1 + 12(2 · (2
√
tmix − 1)) = 48

√
tmix − 23.

where we used the fact that
∑T

k=1
1√
k
≤ 2
√
T − 1.

Proof of Theorem 4.2. Note that N−(u) = N (u) holds for any u ∈ V and πuP
t
u,w =

πwP
t
w,u holds for any u,w ∈ V and t ≥ 0 from the assumption of reversibility of P . Then
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Lemma 4.5 implies that

χ(T )
w − µ(T )

w = πw
∑
u∈V

1

πu

∑
v∈N (u)

T−1∑
t=0

Φ(T−t)
v,u

(
P t
w,u − P t−1

w,u

)
.

Thus, by definition (3.13),∣∣χ(T )
w − µ(T )

w

∣∣ ≤ πw
∑
u∈V

1

πu

∑
v∈N (u)

T−1∑
t=0

∣∣Φ(T−t)
v,u

∣∣ ∣∣P t
w,u − P t−1

w,u

∣∣
≤ πw

∑
u∈V

1

πu

∑
v∈N (u)

T−1∑
t=0

Φv,u

∣∣P t
w,u − P t−1

w,u

∣∣
≤ πw max

u∈V

∑
v∈N (u) Φv,u

πu

T−1∑
t=0

∑
u∈V

∣∣P t
w,u − P t−1

w,u

∣∣ (4.6)

holds. Using Lemma 4.6, we have

T−1∑
t=0

∑
u∈V

∣∣P t
w,u − P t−1

w,u

∣∣ =
T−2∑
t=−1

∑
u∈V

∣∣P t+1
w,u − P t

w,u

∣∣ =
∑
u∈V

∣∣P 0
w,u

∣∣+
T−2∑
t=0

∑
u∈V

∣∣P t
w,u − P t+1

w,u

∣∣
≤ 1 +

T−2∑
t=0

2d̃(t) ≤ 96
√
tmix. (4.7)

Thus we obtain the claim combining (4.6) and (4.7).

4.2 Upper bounds for specific models

Now, we give upper bounds of the vertex-wise discrepancy for specific models. As a

preliminary step, we show the following properties for any functional-router model.

Proposition 4.7.

φv,u ≤ max
z′>z

∣∣∣∣∣{j ∈ [z, z′) | σv(j) = u
}∣∣− (z′ − z)Pv,u

∣∣∣
≤ 2 max

z

∣∣∣∣∣{j ∈ [0, z) | σv(j) = u
}∣∣− z·Pv,u∣∣∣

and

Φv,u ≤ max
z

∣∣∣∣∣{j ∈ [0, z) | σv(j) = u
}∣∣− z·Pv,u∣∣∣

≤ max
z′>z

∣∣∣∣∣{j ∈ [z, z′) | σv(j) = u
}∣∣− (z′ − z)Pv,u

∣∣∣
holds for any functional-router models.
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Proof.

φv,u = max
t≥0
|Z(t)

v,u − χ(t)
v Pv,u|

= max
t≥0

∣∣∣∣∣{j ∈ [X(t)
v , X(t)

v + χ(t)
v ) | σv(j) = u

}∣∣− χ(t)
v Pv,u

∣∣∣
≤ max

z′>z

∣∣∣∣∣{j ∈ [z, z′) | σv(j) = u
}∣∣− (z′ − z)Pv,u

∣∣∣.
Φv,u = max

T>0

∣∣∣∣∣
T−1∑
t=0

(Z(t)
v,u − χ(t)

v Pv,u)

∣∣∣∣∣ = max
T>0

∣∣∣∣∣
T−1∑
t=0

Z(t)
v,u −X(T )

v Pv,u

∣∣∣∣∣
= max

T>0

∣∣∣∣∣
T−1∑
t=0

∣∣{j ∈ [X(t)
v , X(t)

v + χ(t)
v ) | σv(j) = u

}∣∣−X(T )
v Pv,u

∣∣∣∣∣
= max

T>0

∣∣∣∣∣{j ∈ [0, X(T )
v ) | σv(j) = u

}∣∣−X(T )
v Pv,u

∣∣∣
≤ max

z

∣∣∣∣∣{j ∈ [0, z) | σv(j) = u
}∣∣− z·Pv,u∣∣∣.

4.2.1 SRT-router models

First, for SRT-router models, we give the following proposition by Proposition 4.7

and Theorem 3.6.

Proposition 4.8. For any P ∈ Rn×n
≥0 and for any its corresponding SRT-router models,

φv,u ≤ 2,

Φv,u ≤ 1

holds for any v, u ∈ V .

Thus, it is easy to check the following upper bounds by Proposition 4.8.

Corollary 4.9. Suppose P ∈ Rn×n
≥0 is ergodic and reversible. Let χ(T ) ∈ Zn≥0 denote the

distribution of tokens of any corresponding SRT-router model. Then,∣∣χ(T )
w − µ(T )

w

∣∣ ≤ 6πw max
u∈V

δ(u)

πu
tmix = O

(
πmax

πmin

∆tmix

)
holds for any w ∈ V and for any T ≥ 0.
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Corollary 4.10. Suppose P ∈ Rn×n
≥0 is ergodic, reversible and lazy. Let χ(T ) ∈ Zn≥0

denote the distribution of tokens of any corresponding SRT-router model. Then,∣∣χ(T )
w − µ(T )

w

∣∣ ≤ 96πw max
u∈V

δ(u)

πu

√
tmix = O

(
πmax

πmin

∆
√
tmix

)
holds for any w ∈ V and for any T ≥ 0.

4.2.2 Billiard-router models

For billiard-router models, we give the following upper bounds, which are almost

same as the bound for SRT-router models. We use the following proposition obtained

by Proposition 4.7 and Proposition 3.5.

Proposition 4.11. For any P ∈ Rn×n
≥0 and for any its corresponding billiard-router

models,

φv,u ≤ 1 + δ+(v)Pv,u,

Φv,u ≤ 1 + δ+(v)Pv,u

holds for any v, u ∈ V .

Corollary 4.12. Suppose P ∈ Rn×n
≥0 is ergodic and reversible. Let χ(T ) ∈ Zn≥0 denote

the distribution of tokens of any corresponding billiard-router model. Then,∣∣χ(T )
w − µ(T )

w

∣∣ ≤ 6πw max
u∈V

δ(u)

πu
tmix = O

(
πmax

πmin

∆tmix

)
holds for any w ∈ V and for any T ≥ 0.

Proof. We have δ(u) = δ+(u) = δ−(u) from the assumption. Using Proposition 4.11,∑
v∈N−(u) φv,u

πu
≤
∑

v∈N−(u)(1 + δ+(v)Pv,u)

πu
=

∑
v∈N (u)(1 + δ(v)Pv,u)

πu
(4.8)

holds for any u ∈ V . Then, we have∑
v∈N (u)(1 + δ(v)Pv,u)

πu
=

∑
v∈N (u) 1

πu
+
∑

v∈N (u)

δ(v)Pv,u
πu

=
δ(u)

πu
+
∑

v∈N (u)

δ(v)Pu,v
πv

≤ δ(u)

πu
+ max

v∈N (u)

δ(v)

πv

∑
v∈N (u)

Pu,v ≤
δ(u)

πu
+ max

v∈V

δ(v)

πv
,
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thus

max
u∈V

∑
v∈N (u)(1 + δ(v)Pv,u)

πu
≤ max

u∈V

(
δ(u)

πu
+ max

v∈V

δ(v)

πv

)
= 2 max

u∈V

δ(u)

πu
(4.9)

holds, and we obtain the claim combining Theorem 4.1, (4.8) and (4.9).

Corollary 4.13. Suppose P ∈ Rn×n
≥0 is ergodic, reversible and lazy. Let χ(T ) ∈ Zn≥0

denote the distribution of tokens of any corresponding billiard-router model. Then,∣∣χ(T )
w − µ(T )

w

∣∣ ≤ 192πw max
u∈V

δ(u)

πu

√
tmix = O

(
πmax

πmin

∆
√
tmix

)
holds for any w ∈ V and for any T ≥ 0.

Proof. Using Proposition 4.11,∑
v∈N−(u) Φv,u

πu
≤
∑

v∈N−(u)(1 + δ+(v)Pv,u)

πu
=

∑
v∈N (u)(1 + δ(v)Pv,u)

πu
(4.10)

holds for any u ∈ V . Thus we obtain the claim combining Theorem 4.2, (4.10) and

(4.9).

4.2.3 Weighted rotor-router models

Combining Proposition 4.7 and Proposition 3.2, we give the following.

Proposition 4.14. Suppose P ∈ Qn×n
≥0 . Then, for any its corresponding weighted-rotor-

router models,

φv,u ≤ δ̄(v)Pv,u,

Φv,u ≤ δ̄(v)Pv,u

holds for any v, u ∈ V .

We obtain the following upper bounds for weighted-rotor-router models. Note that

we assume P is rational.

Corollary 4.15. Suppose P ∈ Qn×n
≥0 is ergodic and reversible. Let χ(T ) ∈ Zn≥0 denote

the distribution of tokens of any corresponding weighted rotor-router model. Then,∣∣χ(T )
w − µ(T )

w

∣∣ ≤ 3πw max
u∈V

δ̄(u)

πu
tmix = O

(
πmax

πmin

∆̄tmix

)
holds for any w ∈ V and for any T ≥ 0.
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Proof. We have δ(u) = δ−(u) from the assumption. Using Proposition 4.11,∑
v∈N−(u) φv,u

πu
≤
∑

v∈N (u) δ̄(v)Pv,u

πu
(4.11)

holds for any u ∈ V . Then,∑
v∈N (u)

δ̄(v)Pv,u
πu

=
∑

v∈N (u)

δ̄(v)Pu,v
πv

≤ max
v∈N (u)

δ̄(v)

πv

∑
v∈N (u)

Pu,v ≤ max
v∈V

δ̄(v)

πv
(4.12)

holds, and we obtain the claim combining to Theorem 4.1.

Corollary 4.16. Suppose P ∈ Qn×n
≥0 is ergodic, reversible and lazy. Let χ(T ) ∈ Zn≥0

denote the distribution of tokens of any corresponding weighted rotor-router-router model.

Then, ∣∣χ(T )
w − µ(T )

w

∣∣ ≤ 96πw max
u∈V

δ̄(u)

πu

√
tmix = O

(
πmax

πmin

∆̄
√
tmix

)
holds for any w ∈ V and for any T ≥ 0.

Proof. Using Proposition 4.11,∑
v∈N−(u) Φv,u

πu
≤
∑

v∈N (u) δ̄(v)Pv,u

πu
. (4.13)

holds for any u ∈ V . Thus, we obtain the claim combining Theorem 4.2, (4.13) and

(4.13).

4.2.4 Quasi random-router models

The following proposition is obtained by Proposition 4.7 and Proposition 3.4.

Proposition 4.17. For any P ∈ Rn×n
≥0 and for any its corresponding quasi-random-

router models,

φv,u ≤ 2 lg(k + 1)

holds for any v, u ∈ V and for any z ≥ 0.



Chapter 4 Vertex-wise Discrepancy 40

It is easy to check the following upper bound by Proposition 4.17.

Corollary 4.18. Suppose P ∈ Rn×n
≥0 is ergodic and reversible. Let χ(T ) ∈ Zn≥0 denote

the distribution of tokens of any corresponding quasi random-router model. Then,∣∣χ(T )
w − µ(T )

w

∣∣ ≤ 6πw max
u∈V

δ(u)

πu
tmix lg(k + 1) = O

(
πmax

πmin

∆tmix log k

)
holds for any w ∈ V and for any T ≥ 0.

4.2.5 Oblivious models

It is easy to check the following upper bound by Proposition 3.7.

Corollary 4.19. Suppose P ∈ Rn×n
≥0 is ergodic and reversible. Let χ(T ) ∈ Zn≥0 denote

the distribution of tokens of any corresponding oblivious model. Then,∣∣χ(T )
w − µ(T )

w

∣∣ ≤ 3πw max
u∈V

δ(u)

πu
tmix = O

(
πmax

πmin

∆tmix

)
holds for any w ∈ V and for any T ≥ 0.

4.3 Application to rapidly mixing chains

This section shows some examples of bounds suggested by Corollaries 4.9 and 4.12

for some celebrated Markov chains known to be rapidly mixing, namely ones for 0-

1 knapsack solutions (Section 4.3.1), linear extensions (Section 4.3.2), and matchings

(Section 4.3.3).

4.3.1 0-1 knapsack solutions

Given a ∈ Zn>0 and b ∈ Z>0, the set of 0-1 knapsack solutions is defined by ΩKna =

{x ∈ {0, 1}n |
∑n

i=1 aixi ≤ b}. We define a transition matrix PKna ∈ R|ΩKna|×|ΩKna| by

PKna(x,y) =


1/2n (if y ∈ NKna(x))

1− |NKna(x)|/2n (if y = x)

0 (otherwise)

(4.14)

for x,y ∈ ΩKna, where NKna(x) = {y ∈ ΩKna | ‖x− y‖1 = 1}. Note that the stationary

distribution of PKna is uniform distribution since PKna is symmetric. The following

theorem is due to Morris and Sinclair [68].
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Theorem 4.20. [68] The mixing time τ(γ) of PKna is O(n
9
2

+α log γ−1) for any α > 0

and for any γ > 0.

Thus, Corollaries 4.9 and 4.12 imply the following.

Theorem 4.21. For the SRT-router model (as well as the billiard-router model) corre-

sponding to PKna, the discrepancy between χ(T ) and µ(T ) satisfies∣∣χ(T )
w − µ(T )

w

∣∣ = O(n
11
2

+α)

for any w ∈ V and T ≥ 0, where α > 0 is an arbitrary constant.

Let µ̃(t) = µ(t)/M , for simplicity, then clearly µ̃(∞) = π holds, since P is ergodic

(see Section 2.2). By the definition of the mixing time, Dtv(µ̃(τ(ε)), π) ≤ ε holds where

τ(ε) denotes the mixing time of P , meaning that µ̃ approximates the target distribu-

tion π well. Thus, we hope for a deterministic random walk that the “distribution”

χ̃(T ) def
= χ(T )/M approximates the target distribution π well. For convenience, a point-

wise distance Dpw(ξ, ζ) between ξ ∈ RN
≥0 and ζ ∈ RN

≥0 satisfying ‖ξ‖1 = ‖ζ‖1 = 1 is

defined by

Dpw(ξ, ζ)
def
= max

v∈V
|ξv − ζv| = ‖ξ − ζ‖∞. (4.15)

Corollary 4.22. For an arbitrary ε (0 < ε < 1), let the total number of tokens M :=

c1 n
11
2

+αε−1 with some appropriate constants c1 and α. Then, the pointwise distance

between χ̃(T ) def
= χ(T )/M and π satisfies

Dpw

(
χ̃(T ), π

)
≤ ε (4.16)

for any T ≥ c2 n
9
2

+α log ε−1 with an appropriate constant c2, where π is the uniform

distribution over ΩKna.

4.3.2 Linear extensions of a poset

Let S = {1, 2, . . . , n}, and Q = (S,�) be a partial order. A linear extension of Q

is a total order X = (S,v) which respects Q, i.e., for all i, j ∈ S, i � j implies i v j.

Let ΩLin denote the set of all linear extensions of Q. We define a relationship X ∼p X ′
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(p ∈ {1, . . . , n}) for a pair of linear extensions X and X ′ ∈ ΩLin satisfying that xp = x′p+1,

xp+1 = x′p, and xi = x′i for all i 6= p, p+ 1, i.e.,

X = (x1, x2, . . . , xp−1, xp, xp+1, xp+2, . . . , xn)

X ′ = (x1, x2, . . . , xp−1, xp+1, xp, xp+2, . . . , xn)

holds. Then, we define a transition matrix PLin ∈ R|ΩLin|×|ΩLin| by

PLin(X,X ′) =


F (p)/2 (if X ′ ∼p X)

1−
∑

I∈NLin(X) PLin(X, I) (if X ′ = X)

0 (otherwise)

(4.17)

for X,X ′ ∈ ΩLin, where NLin(X) = {Y ∈ ΩLin | X ∼p Y (p ∈ {1, . . . , n − 1})} and

F (p) = p(n−p)
1
6

(n3−n)
. Note that PLin is ergodic and reversible, and its stationary distribution

is uniform on ΩLin [16]. The following theorem is due to Bubley and Dyer [16].

Theorem 4.23. [16] For PLin,

τ(γ) ≤
⌈

1

6
(n3 − n) ln

n2

4γ

⌉
holds for any γ > 0.

It is not difficult to see that the maximum degree ∆ = n (including a self-loop) of

the transition diagram PLIN. Thus, Corollaries 4.9 and 4.12 imply the following.

Theorem 4.24. For the SRT-router model (as well as the billiard-router model) corre-

sponding to PLIN, the discrepancy between χ(T ) and µ(T ) satisfies∣∣χ(T )
w − µ(T )

w

∣∣ ≤ n

⌈
1

3
(n3 − n) lnn

⌉
= O(n4 log n)

for any w ∈ V and T ≥ 0.

4.3.3 Matchings in a graph

Counting all matchings in a graph, related to the Hosoya index [46], is known to be

#P-complete [85]. Jerrum and Sinclair [51] gave a rapidly mixing chain. This section is

concerned with a Markov chain for sampling from all matchings in a graph1.

1Remark that counting all perfect matchings in a bipartite graph, related to the permanent, is also

well-known #P-complete problem, and Jerrum et al. [52] gave a celebrated FPRAS based on an MCMC

method using annealing. To apply our bound to a Markov chain for sampling perfect matchings, we

need some assumptions on the input graph (see e.g., [80, 51, 52]).
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Let H = (U, F ) be an undirected graph, where |U | = n and |F | = m. A match-

ing in H is a subset M ⊆ F such that no edges in M share an endpoint. Let ΩMat

denote the set of all possible matchings of H. Let NC(M) = {e = {u, v} | e /∈
M, both u and v are matched in M} and let NMat(M) = {e | e /∈ NC(M)}. Then,

for e = {u, v} ∈ NMat(M), we define M(e) by

M(e) =


M− e (if e ∈M)

M+ e (if u and v are unmatched in M)

M+ e− e′ (if exactly one of u and v is matched in M ,

and e′ is the matching edge).

The we define the transition matrix PMat ∈ R|ΩMat|×|ΩMat| by

PMat(M,M′) =


1/2m (if M′ =M(e))

1− |NMat(M)|/2m (if M′ =M)

0 (otherwise)

for anyM,M′ ∈ ΩMat. Note that PMat is ergodic and reversible, and its stationary distri-

bution is uniform on ΩMat [51]. The following theorem is due to Jerrum and Sinclar [51].

Theorem 4.25. [51] For PMat,

τ(γ) ≤ 4mn(n lnn+ ln γ−1)

holds for any γ > 0.

It is not difficult to see that the maximum degree ∆ = m+ 1 (including a self-loop)

of the transition diagram PLIN. Thus, Corollaries 4.9 and 4.12 imply the following.

Theorem 4.26. For the SRT-router model (as well as the billiard-router model) corre-

sponding to PLIN, the discrepancy between χ(T ) and µ(T ) satisfies∣∣χ(T )
w − µ(T )

w

∣∣ ≤ 4(m+ 1)mn(n lnn+ ln 4) = O(m2n2 log n)

for any w ∈ V and T ≥ 0.

4.4 Lower bounds of the vertex-wise discrepancy

This section shows some lower bounds on some specific structures and specific models.
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Proposition 4.27 ([57](Theorem 4.1)). Suppose Pu,v = 1/n for any u, v ∈ V . Then

there exists an example of its corresponding rotor-router model such that∣∣χ(T )
w − µ(T )

w

∣∣ = Ω(n)

holds for any w ∈ V and for any odd T ≥ 0.

Note that for such P , it is easy to check that π is uniform distribution, tmix = O(1)

and δ̄(u) = n for any u. Thus∣∣χ(T )
w − µ(T )

w

∣∣ ≤ 3n ·O(1) = O(n)

holds by Corollary 4.15. This P is an example of |χ(T )
w − µ(T )

w | = Θ(n).

Proposition 4.28 ([12]). Suppose that G is d-regular graph and P is the transition

matrix of the simple random walk on G. Then there exists an example of its corresponding

oblivious model such that

|χ(T )
w − µ(T )

w | = Ω(dD)

holds for any T ≥ tmix and for some w ∈ V .

Note that for such P , it is easy to check that π is uniform distribution, δ(u) = d for

any u. Thus ∣∣χ(T )
w − µ(T )

w

∣∣ ≤ 3dtmix

holds by Corollary 4.19. This P is an example of
∥∥χ(T ) − µ(T )

∥∥
∞ = Θ(dtmix) when

tmix = O(D).

Proposition 4.29. There exists an example of P ∈ Rn×n
≥0 and its corresponding oblivious

model such that ∣∣χ(T )
w − µ(T )

w

∣∣ = Ω(tmix)

holds for any w ∈ V and for any T ≥ tmix.

Proof. Suppose γ ≥ 2 is a natural number. Let V = {x, y} and Px,y = Py,x = 1/γ,

Px,x = Py,y = 1−1/γ. Then, πx = πy = 1/2 and it is not difficult to see that tmix = O(γ).

Now, let χ(0) = (γ − 1, 0). Then,

z(0)
x,x =

⌊
(γ − 1)· γ − 1

γ

⌋
+ 1 = γ − 1

z(0)
x,y =

⌊
(γ − 1)· 1

γ

⌋
= 0
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holds from the definition of oblivious model, thus χ(t) = (γ − 1, 0) holds for any t ≥ 0.

Hence for any T ≥ tmix,

χ(t)
x − µ(t)

x ≥ γ − 1− γ − 1

2
− 1

4
= Ω(γ) = Ω(tmix)

holds and we obtain the claim.

Note that for this P , ∣∣χ(T )
w − µ(T )

w

∣∣ ≤ 6tmix = O(tmix)

holds by Corollary 4.19, meaning that this P is an example of |χ(T )
w −µ(T )

w | = Θ(tmix) for

oblivious model.
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Chapter 5

Total Variation Discrepancy

This chapter investigates the total variation discrepancy (L1 discrepancy) between the

token configuration χ(t) of a deterministic random walk (see (3.3)) and the expected token

configuration µ(t) of a random walk (see (2.15)). First, we state general upper bounds

in Section 5.1. Section 5.2 gives upper bounds for some specific models. Section 5.3

discusses lower bounds.

5.1 General upper bounds of the total variation discrepancy

First, we show the following bound, which requires only ergodicity of P , in contrast

to Theorems 4.1 and 4.2 assuming reversibility.

Theorem 5.1. If P ∈ Rn×n
≥0 is ergodic, then∣∣∣χ(T )

S − µ
(T )
S

∣∣∣ ≤∑
u∈V

∑
v∈N−(u)

φv,utmix = O(φmtmix)

holds for any S ⊆ V and for any T ≥ 0.

Theorem 5.1 says that the total variation discrepancy is upper bounded by the edge

size m, which is independent of the weights of its stationary distribution. For lazy chains

and for deterministic random walks such that Φ is bounded, we obtain the following

better bound.

Theorem 5.2. If P ∈ Rn×n
≥0 is ergodic and lazy, then∣∣∣χ(T )

S − µ
(T )
S

∣∣∣ ≤ 48
∑
u∈V

∑
v∈N−(u)

Φu,v

√
tmix = O(Φm

√
tmix)

for any S ⊆ V and for any T ≥ 0.
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5.1.1 Proof of Theorem 5.1

In order to get the idea of the proof of Theorem 5.1, we prove the following weak

version, whose proof is very easy.

Theorem 5.3. Suppose P ∈ Rn×n
≥0 is ergodic. Then,∣∣∣χ(T )

S − µ
(T )
S

∣∣∣ ≤ 3

2

∑
u∈V

∑
v∈N−(u)

φv,utmix = O(φmtmix)

for any S ⊆ V and for any T ≥ 0.

Proof. Lemma 4.3 says that

χ
(T )
S − µ

(T )
S =

∑
w∈S

∑
u∈V

∑
v∈N−(u)

T−1∑
t=0

φ(T−t−1)
v,u (P t

u,w − πw)

=
∑
u∈V

∑
v∈N−(u)

T−1∑
t=0

φ(T−t−1)
v,u (P t

u,S − πS).

Thus∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ ≤ ∑
u∈V

∑
v∈N−(u)

T−1∑
t=0

∣∣φ(T−t−1)
v,u

∣∣ |P t
u,S − πS| ≤

∑
u∈V

∑
v∈N−(u)

φv,u

T−1∑
t=0

d(t)

holds, and we obtain the claim using Lemma 4.4.

Proof of Theorem 5.1. From (3.5), we have∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ =

∣∣∣∣∣∑
w∈S

T−1∑
t=0

(
(χ(T−t) − χ(T−t−1)P )P t

)
w

∣∣∣∣∣ =

∣∣∣∣∣
T−1∑
t=0

(
(χ(T−t) − χ(T−t−1)P )P t

)
S

∣∣∣∣∣
≤

T−1∑
t=0

∣∣((χ(T−t) − χ(T−t−1)P )P t
)
S

∣∣ ≤ T−1∑
t=0

1

2
‖(χ(T−t) − χ(T−t−1)P )P t‖1(5.1)

since
∑

v∈V
(
(χ(T−t) − χ(T−t−1)P )P t

)
v

= 0 holds. We can apply Lemma 2.7 to (5.1) since

(4.1) holds. Then, we have∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ ≤ 1

2

T−1∑
t=0

‖χ(T−t) − χ(T−t−1)P‖1d̄(t)

=
1

2

T−1∑
t=0

∑
u∈V

∣∣(χ(T−t) − χ(T−t−1)P )u
∣∣ d̄(t)

=
1

2

T−1∑
t=0

∑
u∈V

∣∣∣∣∣∣
∑

v∈N−(u)

φ(T−t−1)
v,u

∣∣∣∣∣∣ d̄(t) ≤ 1

2

T−1∑
t=0

∑
u∈V

∑
v∈N−(u)

φv,ud̄(t)(5.2)
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Note that we use (3.7) for the second equality. Thus, we obtain the claim since

T−1∑
t=0

d̄(t) ≤
∞∑
`=0

tmix−1∑
k=0

d̄(`tmix + k) ≤
∞∑
`=0

tmix−1∑
k=0

1

2`
= tmix

∞∑
`=0

1

2`
≤ 2tmix (5.3)

holds by Proposition 2.4.

5.1.2 Proof of Theorem 5.2

Proof. Lemma 4.5 implies that

χ
(T )
S − µ

(T )
S =

∑
w∈S

∑
u∈V

∑
v∈N−(u)

T−1∑
t=0

Φ(T−t)
v,u

(
P t
u,w − P t−1

u,w

)
=

∑
u∈V

∑
v∈N−(u)

T−1∑
t=0

Φ(T−t)
v,u

(
P t
u,S − P t−1

u,S

)
.

Thus, by the definition (3.13),

∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ ≤ ∑
u∈V

∑
v∈N−(u)

T−1∑
t=0

∣∣Φ(T−t)
v,u

∣∣ ∣∣P t
u,S − P t−1

u,S

∣∣
≤

∑
u∈V

∑
v∈N−(u)

T−1∑
t=0

Φv,u

∣∣P t
u,S − P t−1

u,S

∣∣
≤

∑
u∈V

∑
v∈N−(u)

Φv,u

(
|P 0
u,S|+

T−1∑
t=1

2d̃(t− 1)

)

≤
∑
u∈V

∑
v∈N−(u)

Φv,u

(
1 +

T−2∑
t=0

2d̃(t)

)

holds, and we obtain the claim using Lemma 4.6.

5.2 Upper bounds for specific models

This section states upper bounds for specific deterministic random walks by Theo-

rem 5.1 and Theorem 5.2.
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5.2.1 SRT-router models

It is easy to check the following bounds combining Theorem 5.1, Theorem 5.2 and

Proposition 4.8.

Corollary 5.4. Suppose P ∈ Rn×n
≥0 is ergodic. Let χ(T ) ∈ Zn≥0 denote the distribution of

tokens of any corresponding SRT-router model. Then,∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ ≤ 2mtmix

holds for any S ⊆ V and for any T ≥ 0.

Corollary 5.5. Suppose P ∈ Rn×n
≥0 is ergodic, reversible and lazy. Let χ(T ) ∈ Zn≥0 denote

the distribution of tokens of any corresponding SRT-router model. Then,∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ ≤ 48m
√
tmix

for any S ⊆ V and for any T ≥ 0.

5.2.2 Billiard-router models

We give almost the same upper bounds as one for the SRT-router model for billiard-

router models.

Corollary 5.6. Suppose P ∈ Rn×n
≥0 is ergodic and reversible. Let χ(T ) ∈ Zn≥0 denote the

distribution of tokens of any corresponding billiard-router model. Then,∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ ≤ 2mtmix

holds for any S ⊆ V and for any T ≥ 0.

Proof. We have ∑
u∈V

∑
v∈N−(u)

φv,u ≤
∑
u∈V

∑
v∈N−(u)

(1 + δ+(v)Pv,u)

from Proposition 4.11. Thus∑
u∈V

∑
v∈N−(u)

(1 + δ+(v)Pv,u) =
∑
u∈V

∑
v∈N−(u)

1 +
∑
u∈V

∑
v∈N−(u)

δ+(v)Pv,u

= m+
∑
u∈V

∑
v∈V

δ+(v)Pv,u = m+
∑
v∈V

δ+(v) = 2m (5.4)

holds, and we obtain the claim.
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Corollary 5.7. Suppose P ∈ Rn×n
≥0 is ergodic, reversible and lazy. Let χ(T ) ∈ Zn≥0 denote

the distribution of tokens of any corresponding billiard-router model. Then,∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ ≤ 96m
√
tmix

for any S ⊆ V and for any T ≥ 0.

Proof. We have ∑
u∈V

∑
v∈N−(u)

Φv,u ≤
∑
u∈V

∑
v∈N−(u)

(1 + δ+(v)Pv,u) (5.5)

Thus we obtain the claim combining Theorem 5.2, (5.5) and (5.4).

5.2.3 Weighted rotor-router models

Corollary 5.8. Suppose P ∈ Rn×n
≥0 is ergodic and reversible. Let χ(T ) ∈ Zn≥0 denote the

distribution of tokens of any corresponding weighted rotor-router model. Then,∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ ≤ m̄tmix

holds for any S ⊆ V and for any T ≥ 0.

Proof. We have ∑
u∈V

∑
v∈N−(u)

φv,u ≤
∑
u∈V

∑
v∈N−(u)

δ̄(v)Pv,u

from Proposition 4.14. Thus∑
u∈V

∑
v∈N−(u)

δ̄(v)Pv,u ≤
∑
u∈V

∑
v∈V

δ̄(v)Pv,u =
∑
v∈V

δ̄(v) = m̄ (5.6)

holds, and we obtain the claim.

Corollary 5.9. Suppose P ∈ Rn×n
≥0 is ergodic, reversible and lazy. Let χ(T ) ∈ Zn≥0 denote

the distribution of tokens of any corresponding weighted rotor-router-router model. Then,∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ ≤ 48m̄
√
tmix

for any S ⊆ V and for any T ≥ 0.

Proof. We have ∑
u∈V

∑
v∈N−(u)

Φv,u ≤
∑
u∈V

∑
v∈N−(u)

δ̄(v)Pv,u (5.7)

Thus we obtain the claim combining Theorem 5.2, (5.7) and (5.6).
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5.2.4 Quasi random-router models

It is easy to check the following upper bound by Proposition 4.17.

Corollary 5.10. Suppose P ∈ Rn×n
≥0 is ergodic and reversible. Let χ(T ) ∈ Zn≥0 denote

the distribution of tokens of any corresponding quasi random-router model. Then,∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ ≤ 2mtmix lg(k + 1)

holds for any S ⊆ V and for any T ≥ 0.

5.2.5 Oblivious models

It is easy to check the following upper bound by Proposition 3.7.

Corollary 5.11. Suppose P ∈ Rn×n
≥0 is ergodic and reversible. Let χ(T ) ∈ Zn≥0 denote

the distribution of tokens of any corresponding oblivious model. Then,∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ ≤ mtmix

holds for any S ⊆ V and for any T ≥ 0.

5.3 Lower bounds of the total variation discrepancy

This section gives lower bounds of the total variation discrepancy.

5.3.1 General lower bound

First, we observe the following proposition, which is caused by the integral gap be-

tween χ(T ) ∈ Zn and µ(T ) ∈ Rn.

Proposition 5.12. Suppose that P is ergodic and its stationary distribution is uniform.

Then, for any χ(T ) ∈ Zn≥0 with an appropriate number of tokens k,

max
S⊆V

∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ = Ω(n)

holds for any time T after mixing.
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Proof of Proposition 5.12. Let M = (k−(1/2))n be the number of tokens for an arbitrary

positive integer k. Note that µ̃
(t)
v = µ

(t)
v /M converges to 1/n for any v ∈ V since the

stationary distribution is uniform. Precisely, for any S ⊆ V and T ≥ τ (1/(8k)),

|S|
n
− 1

8k
≤
∑
v∈S

µ̃(T )
v ≤ |S|

n
+

1

8k
(5.8)

holds by the definition (2.13) of the mixing time τ(ε).

Let T be an arbitrary time, and let S = {v ∈ V | χ(T )
v ≥ k}. First, we consider the

case that |S| ≥ n/2. Then, we see that
∑

v∈S χ
(T )
v ≥ k|S| holds. At the same time∑

v∈S

µ(T )
v =

∑
v∈S

Mµ̃(T )
v ≤

(
k − 1

2

)
n·
(
|S|
n

+
1

8k

)
≤
(
k − 1

2

)
|S|+ n

8

holds. Thus∑
v∈S

(
χ(T )
v − µ(T )

v

)
≥ k|S| −

((
k − 1

2

)
|S|+ n

8

)
=

1

2
|S| − n

8
≥ n

8

where the last inequality follows |S| ≥ n/2. We obtain the claim in the case. Next, we

consider the other case, meaning that |S| < n/2. Then we see that
∑

v∈S χ
(T )
v ≤ (k−1)|S|

since χ
(T )
v < k for any v ∈ S. At that time,∑
v∈S

µ(T )
v =

∑
v∈S

Mµ̃(T )
v ≥

(
k − 1

2

)
n·
(
|S|
n
− 1

8k

)
≥
(
k − 1

2

)
|S| − n

8

holds. Thus∑
v∈S

(
µ(T )
v − χ(T )

v

)
≥
((

k − 1

2

)
|S|+ n

8

)
− (k − 1)|S| = 1

2
|S| − n

8
≥ n

8

where the last inequality follows |S| ≥ n/2. We obtain the claim.

5.3.2 Lower bounds for specific models

Proposition 5.13. Suppose n is even and Pu,v = 1/n for any u, v ∈ V . Then there

exists an example of rotor-router model such that

max
S⊆V

∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ = Ω(m)

holds for any T > 0.
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Proof. We consider a random walk on a complete graph K2n′ , i.e., let V = {0, 1, . . . , 2n′−
1} (n′ ∈ Z>0) and Pu,v = 1/(2n′) for any u, v ∈ V . Let A = {0, 1, . . . , n′ − 1}, B =

{n′, n′ + 1 . . . , 2n′ − 1} and let

χ(0)
u =

(2k + 1)n′ (u ∈ A)

0 (u ∈ B),

for an arbitrary k ∈ Z≥0. Note that M = ‖χ(0)‖1 = (2k + 1)(n′)2. Since this P mixes in

a single step, µ
(t)
A = µ

(t)
B = (2k+ 1)(n′)2/2 holds for any t > 0. We define the SRT-router

σu(i) as

σu(i mod 2n′) = i

for any u ∈ V . Then, it is not difficult to check that χ
(t)
A = (k+ 1)(n′)2 and χ

(t)
B = k(n′)2

when t is odd, as well as that χ
(t)
A = k(n′)2 and χ

(t)
B = (k + 1)(n′)2 when t > 0 is even.

Thus,

max
S⊆V
|χ(t)
S − µ

(t)
S | ≥ |χ

(t)
A − µ

(t)
A | =

(n′)2

2
=
n2

8

holds for any t > 0. We obtain the claim.

Note that tmix = O(1) holds for the Markov chain considered in Proposition 5.13.

Thus ∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ ≤ 2m ·O(1) = O(m)

holds by Corollary 5.4. This P is an example of maxS⊆V |χ(T )
S − µ

(T )
S | = Θ(m).

We give the following lower bound for an oblivious model. This proposition implies

that the factor tmix in total variation discrepancy for an oblivious model is not negligible,

in general.

Proposition 5.14. There exists an example of P and its corresponding oblivious model

such that

max
S⊆V

∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ = Ω(ntmix)

holds for any time T after mixing.
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Proof. Let V = {0, . . . , n− 1} and let k be an arbitrary integer greater than one. Let a

transition matrix P be defined by Pu,u = (k− 1)/k for any u ∈ V , and Pu,v = 1/k(n− 1)

for any u, v ∈ V such that u 6= v, i.e., P denotes a simple random walk on Kn with a

self-loop probability (k− 1)/k for any vertex. For this P , it is not difficult to check that

τ(ε) ≤ k ln ε−1 (5.9)

holds for any 0 < ε < 1 (see Proposition 5.15). Now, we give a corresponding oblivious

deterministic random walk. Let us assume that the prescribed ordering for each v ∈ V
starts with v itself Let

χ(0)
u =

k (u ∈ A)

0 (u ∈ B),

where A = {0, . . . , dn/2e − 1} and B = {dn/2e, . . . , n − 1} (M = kdn/2e). Then, the

initial configuration is stable, i.e., χ(t) = χ(0) for any t ≥ 0, since each v ∈ A serves

bk · k−1
k
c+ 1 = k tokens to itself (notice that the “surplus” token stays at v according to

the prescribed ordering). Thus it is easy to see that

max
S⊆V
|χ(t)
S − µ

(t)
S | ≥ |χ

(t)
A − µ

(t)
A | ≥ k

⌈n
2

⌉
−
(
kn

4
+ ε

)
≥ kn

4
− ε ≥ nτ(ε)

4 ln ε−1
− ε = Ω(ntmix)

holds for any t ≥ τ(ε). We obtain the claim.

Proposition 5.15. Let

Pu,v =

k−1
k

(if v = u)

1
k(n−1)

(otherwise).

Then

τ(ε) ≤ k ln ε−1.

Proof. For this P , it is not difficult to check

P t
u,v =


1
n

+ n−1
n

(
1− n

k(n−1)

)t
(if v = u)

1
n
− 1

n

(
1− n

k(n−1)

)t
(otherwise)
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holds for any t ≥ 0. Thus,

Dtv(P t
u,·, π) =

1

2

(
|P t
u,u − πu|+

∑
v∈V,v 6=u

|P t
u,v − πv|

)
=
n− 1

n

(
1− n

k(n− 1)

)t
(5.10)

holds for any t ≥ 0. By (5.10),

τ(ε) =


ln ε−1 − ln n

n−1

ln
(

1− n
k(n−1)

)−1

 ≤ ln ε−1· k(n− 1)

n
≤ k ln ε−1

holds, where we used the fact that log(1 − x)−1 ≥ x holds for any x (0 < x < 1). We

obtain the claim.

Remark that our example on a complete graph, implies only Ω(
√
mtmix) lower bound.

The gap between the upper and lower bounds remains as open.



Chapter 6 Visit Frequency and Cover Time 57

Chapter 6

Visit Frequency and Cover Time

Chapter 6 analyses the visit frequency X
(T )
w =

∑T−1
t=0 χ

(t)
w (see (3.8) at vertex w ∈ V ).

Let M
(T )
w denote the expected visit frequency on random walks, i.e.,

M (T )
w

def
=

T−1∑
t=0

µ(t)
w (6.1)

where µ(t) is the expected number of tokens on w ∈ V at time t (see (2.15)). Then we

give an analysis of the cover time of deterministic random walks.

6.1 Analysis of the visit frequency

Section 6.1 establishes the following upper bound of the discrepancy of visit frequency.

Theorem 6.1. Suppose P ∈ Rn×n
≥0 is ergodic and reversible. Then,∣∣X(T )

w −M (T )
w

∣∣ ≤ 3πw max
u∈V

∑
v∈N (u) Φv,u

πu
tmix = O

(
Φ
πmax

πmin

∆tmix

)
for any w ∈ V and for any T ≥ 0.

This bound says that the discrepancy of visit frequencies depends on Φ, which is

independent of number of tokens k and T for SRT/billiard/weighted rotor-router models.

From Theorem 6.1, we get the following Corollary 6.2, like Theorem 4 of [45].

Corollary 6.2. Suppose P ∈ Rn×n
≥0 is ergodic and reversible. Then,∣∣∣∣∣X(T )

w

kT
− πw

∣∣∣∣∣ ≤ 3tmix

2T
+

3πw maxu∈V

∑
v∈N (u) Φv,u

πu
tmix

kT
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holds for any w ∈ V and for any T > 0.

Note that Corollary 6.2 gives an upper bound for the SRT-router model with k tokens,

while Theorem 4 of [45] is for rotor-router models with a single token. Corollary 6.2 also

means that
∣∣∣πw − X

(T )
w

kT

∣∣∣ ≤ ε if T ≥ 3
(

1
2

+ πw∆
πmink

)
tmixε

−1.

To prove Theorem 6.1, we introduce the following lemma.

Lemma 6.3.

X(T )
w −M (T )

w =
∑
u∈V

∑
v∈N−(u)

T −2∑
t=0

Φ(T −t)
v,u (P t

u,w − πw)

holds for any w ∈ V and for any T > 1.

Proof. From the definitions and Lemma 4.3, we have

X(T )
w −M (T )

w =
T −1∑
T=0

(
χ(T )
w − µ(T )

w

)
=
T −1∑
T=1

(
χ(T )
w − µ(T )

w

)
=

∑
u∈V

∑
v∈N−(u)

T −1∑
T=1

T−1∑
t=0

φ(T−t−1)
v,u (P t

u,w − πw). (6.2)

Then, carefully exchanging the variables of the summation, we obtain

T −1∑
T=1

T−1∑
t=0

φ(T−t−1)
v,u (P t

u,w − πw) =
T −2∑
t=0

T −1∑
T=t+1

φ(T−t−1)
v,u (P t

u,w − πw). (6.3)

Thus, we obtain the claim combining (6.2), (6.3) and definition (3.13).

Proof of Theorem 6.1. Note that N−(u) = N (u) holds for any u ∈ V and πuP
t
u,w =

πwP
t
w,u hold from the assumption of reversibility of P . Lemma 6.3 implies that

X(T )
w −M (T )

w = πw
∑
u∈V

1

πu

∑
v∈N (u)

T −2∑
t=0

Φ(T −t)
v,u (P t

w,u − πu).
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Thus, by definition (3.13),

∣∣X(T )
w −M (T )

w

∣∣ ≤ πw
∑
u∈V

1

πu

∑
v∈N (u)

T −2∑
t=0

∣∣Φ(T −t)
v,u

∣∣ |P t
w,u − πu|

≤ πw
∑
u∈V

1

πu

∑
v∈N (u)

T −2∑
t=0

Φv,u|P t
w,u − πu|

≤ πw max
u∈V

∑
v∈N (u) Φv,u

πu

∑
u∈V

T −2∑
t=0

|P t
w,u − πu|

≤ πw max
u∈V

∑
v∈N (u) Φv,u

πu

T −2∑
t=0

2d(t)

holds, and we obtain the claim by Lemma 4.4.

Proof of Corollary 6.2. Notice that∣∣∣∣∣πw − X
(T )
w

kT

∣∣∣∣∣ =

∣∣∣kTπw −X(T )
w

∣∣∣
kT

≤

∣∣∣kTπw −M (T )
w

∣∣∣+
∣∣∣M (T )

w −X(T )
w

∣∣∣
kT

≤

∣∣∣M (T )
w − kTπw

∣∣∣
kT

+
3πw maxu∈V

maxu∈V
∑

v∈N (u) Φv,u

πu
tmix

kT
,

where the last inequality follows Theorem 6.1. Thus, it is sufficient to prove that |M (T )
w −

kTπw| ≤ 3ktmix/2. Note that
∑T−1

t=0

∑
u∈V µ

(0)πw = kTπw holds since
∑

v∈V µ
(0) = k from

the definition, and also note that M
(T )
w =

∑T−1
t=0 µ

(t)
w =

∑T−1
t=0

∑
u∈V µ

(0)
u P t

u,w holds by the

definitions. Then,

∣∣M (T )
w − kTπw

∣∣ =

∣∣∣∣∣
T−1∑
t=0

∑
u∈V

µ(0)
u P t

u,w −
T−1∑
t=0

∑
u∈V

µ(0)πw

∣∣∣∣∣ =

∣∣∣∣∣
T−1∑
t=0

∑
u∈V

µ(0)
u (P t

u,w − πw)

∣∣∣∣∣
≤

∑
u∈V

µ(0)
u

T−1∑
t=0

|P t
u,w − πw| (6.4)

holds. By Lemma 4.4 and the definition of total variation distance (2.5),

T−1∑
t=0

|P t
u,w − πw| ≤

T−1∑
t=0

Dtv(P t
u,·, π) ≤ 3

2
tmix. (6.5)

Combining (6.4) and (6.5), |M (T )
w −kTπw| ≤ 3ktmix/2 holds, and we obtain the claim.
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6.2 Cover time

Combining techniques of the analysis of the visit frequency and reversible Markov

chains, we get the cover time of deterministic random walks, where the cover time of a

deterministic random walk is given by

Tcov = min
{
T ∈ Z≥0 | X(T )

v ≥ 1 holds for any v ∈ V
}
. (6.6)

6.2.1 General upper bound of the cover time

First, we show the following theorem.

Theorem 6.4. Suppose P ∈ Rn×n
≥0 is ergodic and reversible. If

T > 2tmix +
12tmix

k
max
u∈V

∑
v∈N (u) Φv,u

πu

then X
(T )
w ≥ 1 holds for any w ∈ V .

To prove Theorem 6.4, we introduce the following proposition giving a lower bound

of M
(T )
w .

Proposition 6.5. Suppose P is ergodic, reversible and T ≥ 2tmix. Then,

M (T )
w ≥ kπw(T − 2tmix)

4

holds for any u,w ∈ V .

Proof. Note that s(t) ≤ s(2tmix) holds from the hypothesis t ≥ 2tmix. Then, we have

1−
P t
u,w

πw
≤ s(t) ≤ s(2tmix) ≤ 1− (1− d̄(tmix))2 ≤ 1−

(
1− 1

2

)2

=
3

4

for any u,w ∈ V and t ≥ 2tmix. Thus

M (T )
w =

T−1∑
t=0

∑
u∈V

µ(0)
u P t

u,w ≥
T−1∑

t=2tmix

∑
u∈V

µ(0)
u P t

u,w

≥
T−1∑

t=2tmix

∑
u∈V

µ(0)
u

πw
4

=
kπw(T − 2tmix)

4
(6.7)

holds, and we obtain the claim.
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Proof of Theorem 6.4. By Theorem 6.1 and Proposition 6.5, we have

X(T )
w ≥ M (T )

w − 3πw max
u∈V

∑
v∈N (u) Φv,u

πu
tmix

≥ kπw(T − 2tmix)

4
− 3πw max

u∈V

∑
v∈N (u) Φv,u

πu
tmix (6.8)

for any w ∈ V and T ≥ 0. Then, from (6.8) and the assumption of the theorem, we

obtain

X(T )
w > 0 (6.9)

holds for any w ∈ V and T > 2tmix + 12tmix

k
maxu∈V

∑
v∈N (u) Φv,u

πu
. Thus we obtain the

claim since X
(T )
w is an integer.

6.2.2 Upper bounds for specific models

Theorem 6.4 gives upper bounds of deterministic random walks. First, we show the

following bound for the SRT-router model.

Corollary 6.6. Suppose P is ergodic and reversible. Then, the cover time of its corre-

sponding SRT-router model with k tokens satisfies

Tcov ≤ 2tmix + 1 +
12tmix

k
max
u∈V

δ(u)

πu
= O

(
max

{
tmix∆

πmink
, tmix

})
.

Proof. From Proposition 4.8, Φv,u ≤ 1 holds for any v, u ∈ V . Thus Theorem 6.4

guarantees X
(T )
w ≥ 1 for any T > 2tmix

12tmix

k
maxu∈V

δ(u)
πu

, and we obtain the claim.

We obtain the following bounds for billiard/weighted rotor-router model, similarly.

Corollary 6.7. Suppose P is ergodic and reversible. Then, the cover time of its corre-

sponding billiard-router model with k tokens satisfies

Tcov ≤ 2tmix + 1 +
24tmix

k
max
u∈V

δ(u)

πu
= O

(
max

{
tmix∆

πmink
, tmix

})
.

Corollary 6.8. Suppose P is ergodic and reversible. Then, the cover time of its corre-

sponding weighted-router model with k tokens satisfies

Tcov ≤ 2tmix + 1 +
12tmix

k
max
u∈V

δ̄(u)

πu
= O

(
max

{
tmix∆̄

πmink
, tmix

})
.
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Corollary 6.8 implies the following upper bounds for rotor-router model on G.

Corollary 6.9. The cover time of any rotor-router model with k tokens on G = (V,E)

satisfies

Tcov ≤ 2tmix + 1 +
24mtmix

k
= O

(
max

{
mtmix

k
, tmix

})
,

where tmix is the mixing time of a simple random walk on G.

Proof. We see that δ̄(u) = δ(u) and maxu∈V
δ(u)
πu

= 2m, since πu = δ(u)
2m

. Thus,

Tcov ≤ 2tmix + 1 +
24mtmix

k

holds.

The upper bound by [60] (Theorem 4.1, Proposition 4.2, and Theorem 4.5) is O
(
tmix+

(∆/δ)(mtmix/k)
)
, where ∆/δ is the maximum/minimum degree of the graph. Hence

Corollary 6.9 improves their bound for irregular graphs. Compare to the O(mD/ log k)

bound by [26] (Theorem 3.3 and 3.7), our bound is better when tmix = O
(
D(k/ log k)

)
(meaning that tmix is small or k is large).

For the rotor-router model with multiple tokens, we have the following theorems.

Theorem 6.10 ([10](Theorem 2)). Let T
(i)
cov be the cover time defined by (6.6) on the

assumption of
∑

v∈V χ
(t)
v = i (the total number of tokens is i). Then,

T (1)
cov ≥

1

4
mD

holds for any rotor-router model with 1 token on G = (V,E).

Theorem 6.11 ([88](Theorem 3) and [26] (Theorem 4.1)). Let T
(i)
cov be the cover time

defined by (6.6) on the assumption of
∑

v∈V χ
(t)
v = i (the total number of tokens is i).

Then,

T
(1)
cov

T
(k)
cov

= O(k)

holds for any rotor-router model with k tokens on G = (V,E)

Combining Theorem 6.10, Theorem 6.11 and Corollary 6.9, we get the following

theorem.
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Theorem 6.12. Let T
(i)
cov be the cover time defined by (6.6) on the assumption of

∑
v∈V χ

(t)
v =

i (the total number of tokens is i). If the mixing time of a simple random walk on G

satisfies tmix = O(D), then

T
(1)
cov

T
(k)
cov

= Θ(k)

holds for any rotor-router model on G with k ≤ m tokens.

Proof. From the assumptions tmix = O(D), k ≤ m and Corollary 6.9, we have

T (k)
cov = O

(
mD

k

)
. (6.10)

Combining (6.10) and Theorem 6.10, we have

T
(1)
cov

T
(k)
cov

= Ω(k), (6.11)

thus we obtain the claim from (6.11) and Theorem 6.11.

Theorem 6.12 implies that the rotor-router model achieves k-times speed up ratio for

general expander graphs. The same speed up ratio as Theorem 6.12 is proven for simple

random walks [36] (Theorem 5.1).
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Chapter 7

Conclusion

This paper gave analyses of the deterministic random walk. Chapter 4 gave an upper

bound of the vertex-wise discrepancy |χ(t)
v − µ

(t)
v | when Markov chain is ergodic and

reversible. It is a future work if the vertex-wise discrepancy is independent of πmax/πmin

and tmix.

Chapter 5 gave an upper bounds of the total variation discrepancy ‖χ(t) − µ(t)‖1 =

O(mtmix) for any ergodic Markov chains, where note that the bound depends on the

number of edges m but is independent of πmax/πmin. We also showed some lower bounds.

The gap between upper and lower bounds is a future work. Development of a determinis-

tic approximation algorithm based on deterministic random walks for #P-hard problems

is a challenge.

Chapter 6 has developed analytic techniques for the visit frequency X
(T )
v of determin-

istic random walks with multiple tokens, and gave an upper bound of the cover time for

any ergodic and reversible Markov chains. Also, the upper bound improves the existing

results of the rotor-router model with multiple tokens in general case. A better upper

bound of the cover time by derandomizing a specific fast random walk (e.g., β-random

walk, Metropolis walk, the minimum degree weighting scheme) is a future work.
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