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Abstract 

Because of their higher attenuation for switching harmonics with lower weight and size, 

LCL filters are widely used to connect the pulse width modulated converters into the utility grid 

in order to limit the harmonic contents of the injected grid current to be complied with the grid 

codes; i.e. IEEE 519-1992. However, the resonance introduced by the LCL filters represents a 

challenge for control system designers.  

For the digitally controlled converters, which have an inherent delay due to computations 

and sample and hold effect, the stability of single control loop can be maintained only for 

resonant frequencies higher than one-sixth of the sampling frequency. However, the stability 

violates if the resonant frequency decreases less than this critical value. Such decreasing in the 

resonant frequency can occur with the frequent increase in the grid inductance. Damping 

techniques have to be adopted to cope with this challenge. Compared to passive damping which 

causes power losses, active damping by modifying the control algorithm is more efficient.  

Number of active damping methods have been presented in the literature. Capacitor-

current-based active damping method is the simplest method among these methods. However 

more number of sensors is needed. This, in turn, increase the overall system cost. Moreover, 

excitation of unstable open loop poles is mandatory for resonant frequencies more than one-

sixth of the sampling frequency; this non-minimum phase behavior declines the system 

robustness. A differentiation of the capacitor voltage can be used to produce the damping effect; 

however, this method causes noise amplification. To reduce the number of sensors, grid-

current-based active damping by using high-pass filter (HPF) can be employed. However, the 

co-design steps of this HPF along with the fundamental current regulator are very complicated. 

In order to overcome the limitations of the existing active damping methods, some novel 

algorithms and analysis are proposed. The thesis consists of five chapters. These chapters can 

be summarized as follows: 

In chapter one, a theoretical background about LCL filters, resonance problem and 

digitally controlled grid-connected converters are introduced. A literature review about the 

existing damping techniques along with their limitations are presented as well.  

In chapter two, an observer in the control system is employed to estimate the capacitor 

current without the need for additional sensors. A systematic design of the observer loop is 

presented. The control algorithm is implemented in stationary reference frame to reduce the 

overall computation burden on control hardware. The results show that the observer-based 

system offers a good damping behavior without the need for additional sensors. This, in turn, 

reduces the overall cost. 
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In chapter three, a novel active damping method using two feedback loops of the 

capacitor voltage and the grid current is proposed. The proposed method is derived in the 

continuous time domain with a discussion for its discrete implementation. To show the 

superiority of the proposed method, a comparative study is presented. Compared to capacitor-

current-based method, the cost is reduced by omitting the high cost current sensor. Moreover, 

the non-minimum phase behavior is avoided over wide range of resonant frequencies. 

Compared to capacitor-voltage-based method, the proposed method behaves effectively over 

wide range of resonant frequencies without stability violation or the need to a differentiator 

which amplifies the noise. Compared to grid-current-based method, straightforward co-design 

steps for the active damping loops along with the fundamental current regulator are proposed. 

The superiority of the proposed method is verified over wide range of resonant frequencies.  

In chapter four, active damping using high-pass filter (HPF) of the grid current is 

investigated. A detailed study for the actively damped filter in discrete time domain is 

introduced. Limits for the HPF parameters are derived in order to avoid the non-minimum phase 

behavior. Based on this investigation, the performance of this method is highly improved where 

the ability to avoid the non-minimum phase behavior is extended up to resonant frequencies 

about 0.39 of the sampling frequency. In addition, straightforward co-design steps for the HPF 

along with the fundamental current regulator are proposed. Numerical example and 

experimental work are carried out to confirm the obtained results. 

In chapter five, the last chapter in the thesis, both the final summary and the conclusion 

outlines for the thesis are introduced. The expected future work is introduced as well. 
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Chapter 1: 

Introduction 

The penetration of renewable energy sources (wind and PV power plants) into the 

grid system worldwide is increasing exponentially [1]. A typical structure of such grid-

connected systems is shown in Fig. 1.1 where a power converter is used to transfer the 

harvested energy from the renewable energy sources into the utility grid.  

 

 

Fig. 1.1 Typical structure of grid-connected renewable energy source 
 

In addition to transfer the generated DC power to the AC grid, the power 

converters should be carefully controlled to exhibit advanced and sophisticated 

functions such as dynamic control of active and reactive power, voltage ride-through, 

reactive current injection during faults, participation in a grid balancing, etc [1]. This 

in turn increases the need to more powerful computational device and more distributed 

intelligence. These requirements make the application of digital control techniques very 

interesting. This is mainly because of the several advantages a digital controller offers 

when compared to an analog one; these advantages include [2]: 
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 The possibility it offers for implementing sophisticated control laws, taking care 

of nonlinearities, parameter variations or construction tolerances by means of self-

analysis and auto-tuning strategies, very difficult or impossible to implement 

analogically. 

 The flexibility inherent in any digital controller, which allows the designer to 

modify the control strategy, or even to totally reprogram it, without the need for 

significant hardware modifications.  

 The complete absence of ageing effects or thermal drifts. 

1.1  Power Filters  

Beside the power converter and the control unit, the power filter is a key 

component for grid-connected converters to attenuate the harmonics of the injected grid 

current to comply with the standard grid codes; i.e. IEEE 519-1992 [3]. Two types of 

filters, L or LCL filters, are mainly used for this purpose as shown in Fig. 1.2. Compared 

to L type filters, LCL type filters offer the following advantages [4]–[11]: 

1. Attenuation of -60 dB/decade for frequencies in excess of the resonance frequency. 

2. Low grid current distortion and reactive power production, 

3. Reduced filter size and weight for the same switching frequency. 

4. Possibility of using a relatively low switching frequency for a given harmonic 

attenuation. 

L

Converter 
side

Grid 
side

iv gv

 

C

gLiL

Converter 
side

Grid 
side

iv gv

ii gi

 
                  (a)  (b) 

Fig. 1.2 Power filter types: (a) L type filter, (b) LCL type filter 
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1.2  LCL Filter Resonance  

Fig. 1.3(a) shows the block diagram of the LCL filter. The transfer function relating 

the modulated converter voltage (vi) to the grid side current (ig) is expressed as Gig(s) 

in (1.1) where ωres, expressed in (1.2), is the filter resonant frequency. Fig. 1.3(b) plots 

a conceptual Bode diagram for Gig(s).  

(ݏ)௜௚ܩ =
௜೒(௦)

௩೔(௦)
= ଵ

௅೔௅೒஼௦൫௦మାఠೝ೐ೞ
మ ൯

                                            (1.1) 

߱௥௘௦ = 2π ௥݂௘௦ = ට൫ܮ௜ + ௚൯ܮ ൫ܮܥ௜ܮ௚൯ൗ                                     (1.2) 
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Fig. 1.3 Characteristics of LCL filter (a) block diagram, (b) Bode plot related the 

converter voltage to the grid current 
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The resonance of the LCL filter can cause instability of the current control loop 

and, in turn, represents a challenge for the controller designer. Moreover, resonance 

excitation, due to disturbances from other sources connected to the grid, can cause 

failure for other system components. 

For digitally controlled converters, the instability effect of the LCL filter resonance 

is highly related to the inherent delay of the digital controller due to digital pulse width 

modulation process  and computational time [12]–[16]. The origin of this delay along 

with some concepts related to the digitally controlled converters are explained in the 

next section. After that, the resonance damping methods are presented. 

1.3  Digitally Controlled Converters 

A single phase inverter connected to the grid through an LCL filter with the typical 

organization of its digital control system is shown in Fig. 1.4. Typically, the control 

system consists of two loops, the outer loop is responsible for regulation the input DC 

voltage; this is usually performed with proportional-integral (PI) regulator. The output 

of this loop is the reference current waveform to the inner current control loop which is 

responsible for regulating the grid current and response to grid disturbances.  The outer 

loop is usually tuned to have a much lower bandwidth than the inner loop. Therefore, 

the two loops can be considered decoupled and independent analysis for each loop can 

be performed [16].  

Considering the current control loop, the sensed grid current is sampled by an 

analog to digital converter (ADC) and the control calculations are performed by the 

DSP. The resultant modulation command is fed to digital pulse width modulator 

(PWM) where it is compared against a triangular carrier to generate the switch 

commands [2]. 
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It should be noted here that the sampling process is synchronized to occur at the 

peak or the valley of the carrier waveform to avoid aliasing effect,  [2], [17], [18]. 

 

giii

ci
gv

dcV C

gLiL
1S

2S

3S

4S
iv

 

Fig. 1.4 Single phase grid-connected converter with typical organization of a digital 

control system. 

 

1.3.1 Current Regulator 

The current regulator is responsible for regulating the injected grid current, such 

that a high quality sinusoidal current is injected into the utility grid. To achieve this 

objective, the current controller should be able to reject the disturbance produced by 

the utility grid with ensuring a quick recover from transients.  

Several current control techniques have been discussed in the literature such as 

linear proportional-integral (PI) and proportional-resonant controllers (PR) [16], [19]–

[29], deadbeat controllers [30]–[36], model predictive current controllers [37]–[45], 

state feedback controllers [46]–[53],  sliding mode controllers [54]–[57], and Hysteresis 

controllers [58]–[60]. 
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Among these techniques, linear PR controllers are widely used as it has the 

following advantages [19], [61]: 

 It offers fast dynamic response and zero steady state tracking error for sinusoidal 

signals.  

 Avoiding the need to convert the system variables into the synchronous reference 

frame (dq-frame) and the associated need for a phase-locked loop (PLL). This 

significantly reduces the overall computation burden on control hardware and 

driving down system cost. 

 Better suited for single phase systems, where the dq–transformation is difficult to 

apply. 

Throughout this thesis, the PR controller is employed. The transfer function for 

PR controller is expressed as Gc(s) in (1.3).  

(ݏ)௖ܩ = ௣ܭ + ௄ೝௌ
ௌమାఠ೚

మ                                               (1.3) 

with ߱௢ = ߨ2 ௢݂ where ߱௢  and ௢݂  are the fundamental grid frequency in rad/sec and Hz, 

respectively. 

The proportional term (Kp) determines the bandwidth and stability phase margin. 

On the other hand, the resonant term (ܭ௥ܵ (ܵଶ + ߱௢ଶ)⁄ ) acts to eliminate the steady-

state error [28], [61], [62]. 

The controller parameters are usually tuned so that the resonant term has negligible 

effect at the crossover frequency, so the system stability is mainly determined by the 

proportional term (Kp) [28], [61], [62]. 

Either the grid side current (ig) or the inverter side current (ii) can be controlled; 

both techniques are denoted as GCF (grid current feedback) and ICF (inverter current 

feedback), respectively. Feeding back the inverter side currents is reasonable if the 

current sensors are already built into the converter for protection purpose. In this case, 
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the filter phase shift must be compensated in order to set the power factor on the grid 

side. On the other hand, feeding back the grid current feedback is reasonable since one 

of the main objectives is the control of power factor at the point of the grid connection. 

In this case, the line current phase angle can be directly controlled [16]. Throughout 

this thesis, the grid current is adopted as the main controlled variable. 

1.3.2  Digital Pulse Width Modulator (DPWM) 

1.3.2.1  Basic Operation 

A single leg inverter, shown in Fig.1.5, is used to explain the basic operation of 

DPWM. An equivalent model for the uniformly sampled digital pulse width modulator 

is shown in Fig. 1.6. A sinusoidal control signal vm(t), with frequency of ωo (=2πfo),  is 

uniformly sampled with a sampling  frequency of fs (= 1 ௦ܶ⁄ ,	where Ts is the sampling 

period).  

(ݐ)௠ݒ = ௠ܸି௣௘௔௞ sin(߱௢ݐ)                               (1.4) 

The sampled signal is sent to an Zero-Order-Hold circuit (ZOH). The output of the 

ZOH, vms(t), is compared with a triangular carrier waveform vtri(t). This comparison is 

shown in Fig. 1.7.  

Both the switches S1 and S2 are operated as fo1low: 

If      vms(t)> vtri(t)    then     S1 is ON       &            S2 is OFF 

If      vms(t)< vtri(t)    then     S1 is OFF       &            S2 is ON 

Based on this realization, the output voltage (vAo) is not a perfect sine wave and it 

contains voltage components at harmonic frequencies of the carrier frequency [63]. The 

frequency of the control signal (fo) identifies the desired fundamental frequency of the 

output voltage. On the other hand, the frequency of the carrier waveform (fsw) identifies 

the switching frequency.  
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Two indices, amplitude modulation index (m) and frequency modulation index 

(mf), are identified as follow:  

݉ =
௏೘ష೛೐ೌೖ

௏೟ೝ೔ష೛೐ೌೖ
                                                      (1.5) 

݉௙ = ௙ೞೢ
௙೚

                                                       (1.6) 

where Vm-peak and Vtri-peak are the amplitudes of the control signal (vm) and carrier 

waveform (vtri), respectively. 

For large values of mf, the averaged output leg voltage (ݒ஺ை)1 can be determined 

as in (1.7). Actually, this averaged value is equal to the fundamental component of the 

output voltage [63]. 

ଵ(஺ைݒ) =
݇ܽ݁݌−ܸ݉
݇ܽ݁݌−݅ݎݐܸ

௏೏೎
ଶ

sin(߱ݐ݋) = ݉ ௏೏೎
ଶ

sin(߱ݐ݋)                       (1.7) 

The waveforms of both the instantaneous leg voltage (vAo) and its fundamental 

component (vAo)1 are plotted in Fig. 1.7. 
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2S

dcV
2
dcV
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Fig. 1.5 One leg inverter 
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Fig. 1.6 Equivalent model of uniformly sampled DPWM 
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2
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2
dcV



mv triv
msv

AOv 1AOv

 

Fig. 1.7 Basic operation of DPWM, upper waveforms explain the ZOH and 

comparison process of the uniformly sampled DPWM, and lower waveforms are 

the instantaneous output leg voltage (vAo) and its fundamental component (vAo)1. 

  
1.3.2.2  Delay in Digitally Controlled Converters  

Two sources of delay can be identified as follow: 

1. Because of the sample and hold operation, the sampled control signal will be 

constant over the whole sampling period.  On the average, this effect can be 

modelled by a delay of half of the sampling period [2], [64]. 

2. An additional source of delay is the control algorithm computation delay (the 

time required by the processor to compute a new modulation signal value which 

is the input of DPWM). This time always represents a significant fraction of the 

modulation period. Then, the input to the modulator cannot be computed during 

the same modulation period when it has to be applied, it must be computed 

during the previous control algorithm iteration [2]. 
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The above-introduced delays can be modelled in two ways: 

1. In discrete time domain, Zero-Order-Hold (ZOH) discretization for the plant (LCL 

filter) along with a unit step delay (z-1) is used to represent the above delays. The 

ZOH discrete representation for Gig(s) is expressed as Gig(z) in (1.8) with Ts denotes 

the sampling period [64].  

(ݖ)௜௚ܩ = ೞ்

൫௅೔ା௅೒൯
ቀ(ଵିఈ)௭మିଶ(௖௢௦(ఋ)ିఈ)௭ା(ଵିఈ)

(௭ିଵ)(௭మିଶ௭௖௢௦(ఋ)ାଵ)
ቁ                             (1.8) 

  

where ߜ = ߱௥௘௦ ௦ܶ and ߙ = ௦௜௡(ఠೝ೐ೞ ೞ்)
ఠೝ೐ೞ ೞ்

 

2. In continuous time domain, the delays can be emulated using an exponential delay 

function of Gd(s). In this case, the ZOH delay is approximated by half sampling 

period delay, and the computation delay is modelled by one sampling period [2], 

[64]. Then, a total time delay (Td) of one and half sampling period (Td = 1.5Ts) can 

be used to represent the total delay as follow. 
 

(ݏ)ௗܩ = ݁ିଵ.ହ௦ ೞ்                                                (1.9) 

The control system representations using the above two methods are respectively 

shown in Figs 1.8(a) and 1.8(b) where Gc is the fundamental current regulator and iref 

is the desired value for the grid current.  

 zG ig
1z

 ziref  zig zG c
 zv i

 
(a) 

 sGig

 siref  sig sGc  sGd

 sv i

 
(b) 

Fig. 1.8 Delay representation in digital control systems (a) using discrete 

representation, (b) using continuous time domain approximation.  
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1.3.2.3 Inherent Damping of Single Control Loop  

The stability of single control loop systems based on grid current feedback has 

been investigated [12], [14]–[16], [62], [65]–[68]. It was indicated in [16] the stability 

is closely related to the ratio of sampling frequency to the LCL filter resonance 

frequency, however this relationship was not identified. Using Nyquist stability 

criterion, it was shown in [69] that the system stability of can be maintained only for 

high resonant frequencies. In [13] and [70], it was found that the single control loop 

systems can be stable only if the resonant frequency is lower than one-six of the 

sampling frequency (necessary condition).  

This stability range has been confirmed in [71] using a virtual impedance model 

for the single control loop. Figs. 1.9 show the derivation of this virtual impedance model.  

gsL
1

sC
1

isL
1

 sGc
ci svi

cv sGd

 siref  sig

 

(a) 

gsL
1

sC
1

isL
1

 sGc

eqZ
1

ciiv cv
 sGd

 siref
 sig

 

(b) 

cv C

gLiL

iv gv

ii gi

ci eqZ
 

(c) 
Fig. 1.9 Single loop control using grid current feedback (a) Original system, (b) 

Equivalent block diagram. (b) Virtual equivalent circuit. 
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It is obvious that equivalently a virtual impedance Zeq is connected in parallel with 

the capacitor C. With expressing the fundamental current regulator Gc(s) by its 

proportional gain of Kp this impedance is expressed as follow: 

ܼ௘௤ = ି௅೔௅೒
௄೛

߱ଶ(cos 1.5߱ ௦ܶ + ݆ sin 1.5߱ ௦ܶ) = ܴ௘௤(߱)‖ ଵ
௝ఠ஼೐೜(ఠ)

                 (1.10) 

where                   ܴ௘௤(߱) = ି௅೔௅೒ఠమ

௄೛ ୡ୭ୱ(ଵ.ହఠ ೞ்)
(߱)௘௤ܥ			, = ௄೛ ୱ୧୬(ଵ.ହఠ ೞ்)

௅೔௅೒ఠయ  

Therefore, a resistor Req and a capacitor Ceq are in parallel with the filter capacitor 

C. Req is frequency dependent, which provides a frequency dependent damping. It can 

be shown that Req is positive for frequencies above fs/6. Therefore, fres is required to be 

more than this critical value for stability (necessary condition).   

  

1.4  Resonance Damping Methods:  

There are mainly two methods to damp the LCL filter resonance; passive and 

active damping. 

- Passive damping: by adding a resistor to introduce the damping effect [72]–[78]. 

Many passive damping configurations have been presented for this purpose as 

shown in Fig. 1.10. However, passive damping produces power losses which 

decrease the overall system efficiency and increases the filter size and weight [79]–

[81]. 

- Active damping: by modifying the control algorithm to introduce the damping 

effect without the need for additional passive elements. Number of active damping 

methods have been presented in the literature.  



Introduction 
 

13 
 

C

gLiL

dR
 

C

gLiL

dR

dC

 
(a) Series R damper (b) Shunt RC damper 

C

gLiL

dR
dC

dL

 

C

gL
iL

dR

dC

dL

 
(c) Series RLC damper (d) Shunt RLC damper 

Fig. 1.10 Passive damping configurations 

 

 
1.5  Problem Definition 

From the above discussion, it is shown that the stability of single control loop 

can be maintained only for resonant frequencies higher than one-sixth of the 

sampling frequency. However, the stability violates if the resonant frequency 

decreases to values less than this critical value. Such decreasing in the resonant 

frequency can occur with the frequent increase in the grid inductance [82]–[86]. For 

that reason, damping techniques have to be adopted to suppress the resonance of the 

LCL filters. Passive damping, by using a resistor, can be used to cope with this 

challenge. However, it causes power losses. Thus active damping by modifying the 

control algorithm is preferred. Number of active damping methods have been 

discussed in the literature. These methods along with their limitations are presented 

in the next section. 
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1.6  Literature Review on Active Damping Methods 

1.6.1 Filter-Based Active Damping:  

A digital filter is plugged in, in cascade to the main controller, to damp the unstable 

dynamics [69], [87]–[92].  A general discrete transfer function for such filter is 

expressed in (1.11) as D(z). The system block diagram is shown in Fig. 1.11 and a 

conceptual bode plot for D(z) is shown in Fig. 1.12. The main idea is compensating the 

LCL resonant peak by inserting an anti-resonance peak at certain notch frequency 

denote as fnoth. 

(ݖ)ܦ = ௔మ௭మା௔భ௭ା௔బ
௕మ௭మା௕భ௭ା௕బ

                                            (1.11) 

 zG ig
1z zG c  zD

 ziref  zig zv i

 
 Fig. 1.11 Closed loop system with using a digital notch filter. 
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Fig. 1.12 Conceptual characteristics of digital notch filter 
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In [69], the performance of three digital filters (low-pass filter, lead-lag filter and 

notch filter) has been studied for grid and converter current based control at low, 

medium and high resonant frequencies. The performance of each type has been 

evaluated in terms of bandwidth, complexity, robustness and stability margins. Among 

these types, the notch-filter offered the most flexible and effective damping behavior. 

In [89], multiple notch filters in series are proposed to attenuate multiple resonance 

peaks. The order of the cascaded notch filter is determined by the number of peaks, of 

which the magnitude is above 0 dB. In order to make the notch filter insensitive to the 

variation of the resonances due to the fluctuation of the filter parameters, the bandwidth 

of the notch filter has been expanded. However, such expanding would potentially 

reduce the system phase margin, and hence, a tradeoff during the design of the notch 

filter has to be considered. 

In [90], optimum filter parameters are determined using genetic algorithm to have 

the desired stability of the system and to preserve dynamics performance. Over wide 

range of resonant frequencies, both the grid current and the converter current feedback 

are considered. Compared to using other non-linear techniques, using the genetic 

algorithm does not need a priori knowledge for the range in which the active damping 

parameters should lie. This makes using the genetic algorithm more suitable as the aim 

is to have a tuning method that should work with different resonant frequencies and for 

different system configurations. 

In [91], a straightforward tuning procedure for a notch filter self-commissioning 

has been proposed. In order to account for the grid inductance variations, the resonance 

frequency is estimated firstly using the Goertzel algorithm and later used for tuning the 

notch filter. However, this requires an extra computational resources in the existing 

control processor. Another technique to increase the system robustness against grid 
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inductance variation, has been adopted in [92] where it is suggested to design the 

frequency of the notch filter to be less than the resonant frequency.  

Recently, the notch filter is employed along with a passive RC damper and 

harmonic selective compensator to increase both the system robustness and the system 

capability to reject the low-order grid voltage harmonics [93]. 

The easy plug-in feature and the physical meaning are the two main advantages of 

this approach. However, using such cascade network decreases the closed loop system 

bandwidth. Moreover, it is very sensitive to filter parameter variations which can likely 

occur with different number of grid-tied inverters in parallel [82]–[86]. 

1.6.2 Multi-Loop Active Damping Methods:  

In this method, the damping is achieved through an inner loop from one of the 

filter states (capacitor current, capacitor voltage, grid current or converter current). 

1.6.2.1 Capacitor-Current-Based Active Damping: 

The block diagram for this method is shown in Fig. 1.13 where the capacitor 

current is fed back through a proportional feedback of Hd.  
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Fig. 1.13 Active damping using capacitor current feedback. 
  

 

This method was firstly proposed in [94] where it was shown that a proportional 

feedback from the capacitor current results in the same damping effect as a series 
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resistor connected to the filter capacitor. Further studies have been introduced in the 

literature to investigate the damping behavior for this method [24], [28], [95]–[104].    

In [24], with the converter side current controlled, capacitor-current-based active 

damping has been investigated considering different ratios of the resonant frequency 

with respect to the sampling frequency. It was shown that resonance poles can be 

damped into the unity circle with the proper tuning of the proportional feedback at high 

and medium resonant frequencies. However, if the resonant frequency gets lower, 

resonance damping suffers from interactions with the fundamental controller. For this 

reason, resonance damping and stability get worse. However, the specific boundaries 

for these regions - low, medium and high resonant frequencies- are not given to design 

system parameters. 

In [28], co-design steps for the capacitor current feedback along with the 

fundamental current regulator have been presented. Two types of controllers have been 

considered, PI and PR regulators. By dealing with the interaction between the current 

regulator and active damping coefficient, satisfactory regions of the controller 

parameters have been obtained for given specifications of steady state errors and 

stability margins. However, the design steps did not consider the transpose delay due 

to discrete implementation.   

In [95], a differentiation of the capacitor current has been adopted to produce the 

damping effect with the converter side current controlled.  It was clarified that this 

method can damp resonance effectively only for high resonant frequencies. However, 

for low resonant frequencies, the system stability can only be achieved by lowering the 

proportional gain of the current controller which reduces the system bandwidth, or by 

using more complex control algorithms like state space control. 
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In [96], [97], a virtual impedance model for the discrete active damping loop has 

been presented. Fig. 1.14 show the derivation of this virtual impedance model using the 

equivalent s-domain system.  
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Fig. 1.14 Equivalent representation of capacitor–current active damping. (a) 

Block diagram representation. (b) Equivalent circuit. 
 

It is obvious that equivalently a virtual impedance ZCeq is connected in parallel 

with the capacitor C. This impedance is expressed as follow: 

ܼ஼௘௤ = ௅೔
ு೏஼

(cos 1.5߱ ௦ܶ + ݆ sin 1.5߱ ௦ܶ)                           (1.15) 

Using the above expression, it can be shown that the real part of this impedance 

becomes negative for resonant frequencies greater than a critical value of one-sixth of 

the sampling frequency. This implies a non-minimum phase behavior, owing to the 

presence of open loop unstable poles.  

Although the closed loop system can be stable for resonant frequencies more than 

the critical value of one-sixth of the sampling frequency, It was shown in [96], [97] that 

this non-minimum phase behavior declines the system robustness against grid 

inductance variation which can occur particularly in weak grids. This, in turn, worse 
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the system stability. In addition, this behavior declines the damping effect as a resonant 

peak more than 0 dB has to be allowed to stabilize the closed loop system [97].  

Modified feedback loops of the capacitor current have recently been proposed to 

avoid the non-minimum phase behavior over a wider range of resonant frequencies 

[96]–[99]. In [98], this critical resonant frequency has been extended to 0.25 of the 

sampling frequency using an improved capacitor-current-feedback active damping 

method. On the other hand, in [97], this limit has been further extended to one-third of 

the sampling frequency using a virtual RC damper instead of the conventional virtual 

R damper. Finally, in [96] and [99], it was shown that using a high sampling rate in the 

active damping loop contributes to extend the non-minimum phase behavior.  

However, feeding back the capacitor current needs a high precision current sensor; 

this in turn increases the overall cost. To avoid the need for more sensors, model-based 

estimation methods have been proposed in the literature. In [105], a virtual flux model 

has been derived for the LCL filter. Based on the derived model, the capacitor current 

has been estimated using a second derivative of the capacitor virtual flux. In [106], 

[107], an observer has been designed using the pole placement technique. However, the 

performance of these methods is highly dependent on the LCL filter parameters which 

can likely changed in the real operation. Moreover, these methods increase the system 

complexity.   

1.6.2.2 Capacitor-Voltage-Based Active Damping 

The block diagram for this method is shown in Fig. 1.14 where the capacitor 

voltage is fed back through a general transfer function of Hv(s) [108]–[116]. Ideally, 

this needs a differentiation of the capacitor current. However, for practical 

implementation, such differentiation can amplify the noise and decline the overall 

controller performance. In [108], a lead–lag network in the synchronous reference 
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frame applied to the feedback from the capacitor voltage. The analysis was carried out 

in s-domain with approximating the PWM transport delay as a first order pole. It was 

shown that the damping effectiveness depends on the bandwidth of the inner active 

damping loop compared to the outer current control loop. However, an increasing in 

the response overshoot was observed due to the active damping loop. 
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Fig. 1.14 Active damping using capacitor voltage feedback. 

In [109], the lead-lag network has been designed to act sharply in a little range 

around the resonant frequency without influence at low frequencies and switching 

frequencies. Using the pole-map plot, it was shown that both the system stability and 

the damping behavior are highly dependent on the network gain; optimum value for 

this gain is determined using the system pole-map with sweeping the network gain.  

In [110], high-pass filter HPF is employed in dq axis for active damping purpose. 

In this work, the d and q axis components of the capacitor voltage are low pass filtered. 

To decrease the high harmonic delay, the HPF is realized by subtracting the low pass 

filtered capacitor voltage components from their corresponding dq axis components. 

The capacitor voltage has been estimated by subtracting the modulated converter 

voltage and the voltage across the inverter side inductor which, in turn, has been 

determined by differentiation the converter side current. To avoid the switching noise 

multiplication problem due to the current differentiation, the ac currents have been 

sampled during the middle of the zero-vector states in the conventional SVM. The same 
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strategy for estimating the capacitor voltage has been adopted in [111]; however, a lead-

lag compensator feedback has been used. This lead lag compensator has been tuned to 

a maximum lead angle at the resonant frequency.   

In [112], a systematic tuning steps for the lead-lag network to behave as a 

differentiator as possible around the resonant frequency has been presented; the effect 

of the PWM and computation delays of the DSP was considered. Stability is studied by 

means of the root locus analysis in -plane. The robustness against the grid inductance 

variation is also analyzed. In consistent with the obtained results from [109], it was 

shown that there an optimum network gain for stability and damping. This gain was 

determined using the pole-map plot for the closed loop system. It was indicated also 

that this lead-lag network can be used effectively over the limited range of resonant 

frequencies between 1/3.2 and 1/3.4 of the sampling frequency [112]. 

In [113], the capacitor voltage has been used to determine a harmonic current 

reference component to emulate a virtual damping resistance. This is achieved in two 

steps; firstly, the harmonic components of the capacitor voltage have been detected 

using a second-order Butterworth low-pass filters; after that, a harmonic current 

reference component has been determined by dividing the detected harmonic 

components by the virtual damping resistance.  It was shown that this method is 

effective to damp multi-resonance in parallel grid-connected converters. 

To match the derivative function without associated noise amplification, two 

derivatives methods have been recently proposed using either second-order or non-ideal 

generalized integrator [115], [116].  However, the system becomes more complex.  

1.6.2.3  Grid-Current-Based Active Damping  

The block diagram for this method is shown in Fig. 1.15 where the grid current is 

fed back through a general transfer function of Hg(s). 
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Fig. 1.15 Active damping using capacitor voltage feedback. 

In terms of number of sensors and system complexity, grid-current-based active 

damping is more preferred than capacitor-current-based or capacitor-voltage-based 

active damping techniques; this is because there is no need to additional sensors or 

complicated control algorithms. Ideally, this needs an s2 term in the active damping 

loop [117]; however, it is not implemented practically due to the noise amplification. 

Two approaches have been presented in the literature to overcome this issue: one 

approach employs a second order Infinite Impulse Response (IIR) filter [118]. To 

acquire robustness against parameter variation with adequate stability margins, the 

phase of the IIR is tuned to compensate the delay of the DSP and to show a flat 

characteristics around the resonant frequency. On the other hand, to limit the effect of 

the IIR around resonant frequency without deterioration of the fundamental current 

compensation, the gain of the IIR has been tuned to be large at resonant frequency 

relative to its magnitude at low frequencies. However, the control system is complicated 

and many iterations are needed to meet pre-specified behavior. 

The other approach employs HPF of the grid current feedback [117], [119], [120]. 

In [117], the feasibility of using two types of filters, first order and second order filter, 

has been investigated. In terms of noise amplification, phase characteristics, low 

frequency range attenuation and preserving adequate stability characteristics, the first 

order high pass filter show superiority over using higher order filters. Based on this 
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conclusion, the first order HPS has been tuned to behave as the ideal s2 term around the 

resonant frequency. However, there are no straightforward design steps introduced 

especially for the discrete implementation.  

This approach has been further investigated in [119] where an independent design 

for the HPF and the Synchronous Rotating Frame Proportional-Integrator (SRFPI) 

current regulator has been proposed. However, d-q axis coupling of the LCL filter has 

been ignored. This ignorance can lead to an imprecise evaluation for the system 

performance especially at the resonant frequency. In [117] and [119], there is no 

consideration for the transport delays of the digitally controlled system and their effect 

on the open loop system stability which, upon violation, can decline the damping 

performance and the system robustness. Moreover, as indicated in [120], both the active 

damping loop and the fundamental current regulator must be co-designed together to 

meet pre-specified performance.  

Based on s-domain emulation of the digitally controlled system, a virtual 

impedance model for the grid-current-based actively damped filter has been derived in 

[120] as a shunt impedance across the grid side inductance. Based on this realization, it 

was derived that unstable open loop behavior can be avoided for resonant frequencies 

up to 0.27 of the sampling frequency. However, such s-domain emulation cannot 

accurately represent the digitally controlled system aspects. Moreover, for certain 

resonant frequency, it could not identify the parametric influence of the HPF on the 

open loop stability. Consequently, the tuning process becomes tedious and many 

iterations are needed to co-design the HPF along with the fundamental current regulator 

without open loop stability violation. In addition, it is cost-effective to design LCL 

filters with higher resonant frequencies, and without violation of open loop stability 

especially when selective harmonic compensation is of concern [97]. 
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1.7  Research Objectives 

As introduced in the above review, active damping is more preferred over passive 

damping which increases the power losses. Number of active damping methods have 

been presented in the literature. Each one of these methods has its own advantages and 

disadvantages in terms of its ability to avoid the non-minimum phase behavior, the 

required number of sensors, control system complexity and the tuning steps of the 

control parameters.  

In order to overcome the limitations of the existing active damping methods, some 

novel algorithms and analysis are proposed. Firstly, an observer in the control system 

is employed to estimate the capacitor current without the need for additional sensors. 

After that, a novel two state feedback active damping technique for the LCL filter 

resonance is proposed using the capacitor voltage and the grid current. Finally, an 

investigation for grid-current-based active damping method is presented to improve its 

performance. 

1.8  Thesis Outlines 

The Thesis is divided into five chapters. The outlines of these chapters are as follows: 

In chapter one, a theoretical background about LCL filters, resonance problem 

and digitally controlled grid-connected converters are introduced. A literature review 

about the existing damping techniques along with their limitations are presented as well.  

In chapter two, an observer in the control system is employed to estimate the 

capacitor current without the need for additional sensors. A systematic design of the 

observer loop is presented. The control algorithm is implemented in stationary 

reference frame to reduce the overall computation burden on control hardware. The 
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results show that the observer-based system offer a good damping behavior without the 

need for additional sensors. This, in turn, reduces the overall cost. 

In chapter three, a novel active damping method using two feedback loops of the 

capacitor voltage and the grid current is proposed. The proposed method is derived in 

the continuous time domain with a discussion for its discrete implementation. To show 

the superiority of the proposed method, a comparative study is presented. Compared to 

capacitor-current-based method, the cost is reduced by omitting the high cost current 

sensor. Moreover, the non-minimum phase behavior is avoided over wide range of 

resonant frequency. Compared to capacitor-voltage-based method, the proposed 

method behaves effectively over wide range of resonant frequencies without stability 

violation or the need to a differentiator which amplifies the noise. Compared to grid 

current based method, straightforward co-design steps for the active damping loops 

along with the fundamental current regulator are proposed. The superiority of the 

proposed method is verified over wide range of resonant frequencies.  

In chapter four, Active damping using high-pass filter (HPF) of the grid current 

is investigated. A detailed study for the actively damped filter in discrete time domain 

is introduced. Limits for the HPF parameters are derived in order to avoid the non-

minimum phase behavior. Based on this investigation, the performance of this method 

is highly improved where the ability to avoid the non-minimum phase behavior is 

extended up to resonant frequencies about 0.39 of the sampling frequency. In addition, 

straightforward co-design steps for the HPF along with the fundamental current 

regulator are proposed. Numerical example and experimental work are carried out to 

confirm the obtained results. 

Chapter five – the last chapter in the thesis – includes both the final summary and 

the conclusion outline for the thesis and the expected extended future work. 
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Chapter 2: 

Design and Analysis of Observer-Based Active 

Damping for the LCL Filter Resonance  

2.1 Introduction 

It was proved that the proportional feedback of the filter capacitor current is 

equivalent to a resistor in series with the filter capacitor [94]. This active damping 

method is simple, flexible, effective and robust. However, it needs an additional high-

precision sensor to get the capacitor current or voltage, and this increases the overall cost 

of the system. 

To decrease the required number of sensors, the capacitor current can be estimated 

using model-based analytical methods. Observer based active damping technique have 

been proposed to get the non-measured value of the capacitor current [107]. However, 

it has been applied mainly in the dq synchronous reference frame which increases the 

control effort. Also, in the literature, it was applied with control algorithms based on 

converter side current control. However, one of the main objectives of the whole control 

system is controlling the power factor at the point of grid connection [16].  

This chapter introduces a systematic design of the observer-based active damping 

technique. The grid current is adopted as the main controlled state with taking into 

account the transport delay due to digital implantation. The control algorithm is 

implemented in stationary reference frame. 
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2.2 Observer-Based Active Damping System  

Fig. 2.1 shows a single phase inverter connected to the grid through an LCL filter. 

The plant (inverter + filter) transfer function is expressed in (2.1) as Gf(s) where m is the 

modulation index (control signal to PWM).  

(ݏ)௙ܩ =
௜೒(௦)

௠(௦)
= ௏೏೎

௅೔௅೒஼௦൫௦మାఠೝ೐ೞమ ൯
                                       (2.1) 

߱௥௘௦ = ට൫ܮ௜ + ௚൯ܮ ൫ܮܥ௜ܮ௚൯ൗ                                         (2.2) 

The observer-based system is shown in Fig. 2.2. For design purpose, a state space 

model for the LCL filter is firstly derived as introduced in the next section. 
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Fig. 2.1. Single phase inverter connected to the grid through an LCL filter. 
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Fig. 2.2. Observer-based active damping system. 

 

2.2.1 Filter State Space Model 

The continuous state space model for the LCL filter is expressed as in (2.3) 
ௗ௫
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= ݔܨ +  (2.3)                                                             ܷܩ
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The filter discrete model can be expressed as in (2.4) 

݇)ݔ + 1) = (݇)ݔ߮ +  (2.4)                                            (݇)ܷ߁

where    ߮ = ݁ி்	,߁ = ∑ ிೖ ೞ்
ೖశభ

(௞ାଵ)!
ஶ
௞ୀ଴  

 
 Considering the DSP delay due to computation and digital PWM operation, the 

modulation index input will be md(k) instead of m(k) where: 

݉ௗ(݇) = ݉(݇ − 1)                                                                               (2.5) 

then, the discrete state model is re-written in (2.6) as follow. 

݇)ݔ + 1) = (݇)ݔ߮ + ߁ ௗܷ(݇)                                                            (2.6) 

where   	 ௗܷ(݇) = ൤
݉ௗ(݇)
(݇)௚ݒ ൨  

 

2.2.2 Observer Design 

  Using Luenberger observer technique [64], the observer state space model is 

expressed in (2.7).  

݇)ݔ̅                + 1) = ൫߮ − (݇)ݔ൯̅ܪ௣ܮ + ߁] [௣ܮ ൤
ܷௗ(݇)
݅௚(݇) ൨ 

(2.7) 
(݇)തݕ                             =  (݇)ݔ̅ܪ

with       ܪ = [−1			1				0]. 

  In (2.7), Lp is the weighting matrix for the correction part between the measured 

grid current (ig) and its estimated value. The value of Lp depends on the observer poles 

which should be at least two times faster than the poles of the plant (actively damped 

filter) to do not make deterioration for the dynamic characteristics [64]. In our case, the 

value of Lp is tuned to obtain observer poles equal to three times the plant poles. 

 

2.3 Control Parameters Design 

  Since the observer poles are chosen to be faster than the plant poles, the 

fundamental current regulator can be designed separately from the observer. 
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2.3.1 Fundamental Current Regulator Design 

  The transfer function for a proportional resonant (PR) controller is expressed as 

Gc(s) in (2.8) with ߱௢ = ߨ2 ௢݂ where ߱௢  and ௢݂   are the fundamental grid frequency in 

rad/sec and Hz, respectively. 

(ݏ)௖ܩ = ௣ܭ + ௄ೝௌ
ௌమାఠ೚

మ                                               (2.8) 

For the PR regulator coefficients, they are tuned to achieve a pre-specified value of 

crossover frequency (ωc) as follow. 

 Kp tuning: For frequencies greater than the fundamental frequency (ωo), the PR 

controller function can be reduced to Kp since the resonant gain has negligible effect 

above ωo [28]. Since the crossover frequency (ωc) should be adequately higher than 

the fundamental frequency, Kp can be determined as in (2.9) [13]: 

௉ܭ  = ߱஼൫ܮ௜ +   ௚൯                                                  (2.9)ܮ

 Kr tuning: This parameter is tuned to ensure that its phase contribution is small at 

the crossover frequency (ωc) as in (2.10) [13].  

௥ܭ = ௄೛ఠ೎

ଵ଴
                                                          (2.10) 

2.3.2 Design the Active Damping Coefficient (Hd)  

  This value is tuned to achieve the best possible damping. Fig. 2.3(a) shows the 

block diagram for the discrete system of the observer-based actively damped filter. The 

grid voltage is considered as a disturbance input. Ggc(z) and Gmc(z) are the discrete 

transfer functions from the inputs of the observer, measured grid current and inverter 

modulation index respectively, to the estimated capacitor current. 

  To derive an expression for the actively damped filter, this system is manipulated 

as shown in Figs. 2.3(b) till 2.3(d) where, 

(ݖ)ଵܩ = ଵ
ଵା௭షభு೏ீ೘೎(௭)

			                                                      (2.11) 
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From Fig. 2.3(d), the transfer function of the observer-based actively damped filter 

can be expressed in (2.12) as Gf-d-obs. The closed loop system transfer function is 

expressed in (2.13) as Tclosed-obs. 

(ݖ)௙ିௗି௢௕௦ܩ = ௭షభ భீ(௭)ீ೑(௭)

ଵା௭షభு೏ீభ(௭)ீ೑(௭)ீ೒೎(௭)
                                      (2.12) 

 

௖ܶ௟௢௦௘ௗି௢௕௦(ݖ) = ீ೑ష೏ష೚್ೞ(௭) ೎ீ(௭)

ଵାீ೑ష೏ష೚್ೞ(௭)ீ೎(௭)
                                  (2.13) 
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 zG f

 kvid

  
(a) 

 

dH

1z
 kig

 zGgc

 zG f

 zGz mc
1

 kvid  km  kmd

  
(b) 

 

1z
 kig

 zG f

 zGHz mcd
1

 zGH gcd

 zG 1

 kvid

 
 (c) 

1z
 kig

 zG f

 zGH gcd

 zG 1

 zG obsdf 

 kvid

 
 (d) 

Fig. 2.3 (a) till (d) Block diagram manupulation for the observer-based actively 

damped filter. 
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2.4 Robustness against Grid Inductance Variation 

Table 2.1 presents the parameters of the grid-connected single phase invereter. The 

system robustness is investigated at three capacitance values, corresponding to three 

resonant frequencies of 0.147ωs, 0.195ωs and 0.23ωs, denoted as ωres1, ωres2 and ωres3, 

respectively. Firstly, the fundamental current regulator is designed for certain crossover 

frequency (ωc). To achieve an adequate phase margin, ωc should be adequately higher 

than the fundamental frequency and below the resonant frequency value. For this 

purpose, the value of ωc is considered as 0.33 of the corresponding resonant frequency 

of each case. Then, using (2.9) and (2.10), Kp and Kr are determined. 

 

Table 2.1  
System parameters  

Symbol Quantity Value 
P Rated power 400 W 
Vg Grid voltage 100 V 
Fo Grid Frequency 50 Hz 
Vdc DC Voltage 180 V 
Li Inverter side inductance 2.75 mH 
Lg Grid side inductance 1.2 mH 
C Capacitance 14.1 µF, 8 µF, 5.7 µF 
fsw Switching Frequency 10 kHz 
fs Sampling Frequency 10 kHz 

 

Table 2.2  
Designed Control Parameters 

C (µF) Hd Kp Kr 
14.1 9 12 3652 

8 6 15.94 6436 
5.7 5 18.9 9033 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

The pole maps of the closed loop system are plotted using (2.13) with sweeping 

the active damping coefficient (Hd). These pole maps are shown in Figs. 2.4(a), 2.5(a) 

and 2.6(a) for ωres1, ωres2 and ωres3, respectively. Using these plots, the values of Hd 
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corresponding to the farthest resonant poles inside the unit circle are selected to achieve 

the best possible damping. Table 2.2 lists the designed control parameters.  

The system robustness is studied by plotting the closed loop pole map with 

increasing the grid side inductance. For each resonant frequency, the grid side 

inductance is swept starting from its original value (Lg) till 3Lg. The corresponding pole 

maps are shown in Figs. 2.4(b), 2.5(b) and 2.6(b) for ωres1, ωres2 and ωres3, respectively. 
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(a) (b) 
Fig. 2.4. Pole map of Tclosed-obs (z) for ωres1=0.147ωs, (a) with sweeping Hd to tune 
the  control parameters (b) with sweeping Lg to investigate the system robustness 
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(a) (b) 
Fig. 2.5. Pole map of Tclosed-obs (z) for ωres2=0.195ωs, (a) with sweeping Hd to tune 
the  control parameters (b) with sweeping Lg to investigate the system robustness 
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(a) (b) 
Fig. 2.6. Pole map of Tclosed-obs (z) for ωres3=0.23ωs, (a) with sweeping Hd to tune the  

control parameters (b) with sweeping Lg to investigate the system robustness 
 

It is shown from Figs. 2.4(b), 2.5(b) and 2.6(b) that two of the closed loop poles 

are moving toward the unit circle limit with increasing the grid inductance value. 

Although the system is still stable in the considered range of grid inductance variation, 

but, at higher values of the grid inductance, the system may become unstable.  

 

2.5 Simulation & Experimental Results 

  To verify the behavior of the proposed algorithm, simulation and experimental 

work are carried out in two cases; using capacitor current sensor and using the proposed 

observer loop. To verify the dynamic response, the rms value of the reference current 

(Iref) is stepped up from 2 Arms to 4 Arms (rated value) during these tests.   

The simulation work is carried out in PSIM environment. Discrete models for the 

observer loop and the PR controller are constructed using PSIM digital control modules. 

For experimental verification, a single phase inverter prototype has been constructed 
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and connected through an LCL filter to an AC source to emulate the utility grid. The 

controller was implemented on a Texas Instruments TMS320C6713 DSP.  

Figs. 2.7 and 2.8 show the simulation and experimental waveforms of the grid 

voltage and the grid current for the two considered cases; using capacitor current sensor 

and observer loop, respectively.  

  

 
Fig. 2.7. Results with using current sensor for ωres2 = 0.195ωs , upper waveforms 

(simulation), lower waveforms (experimental). 
 

 
Fig. 2.8. Results with using the proposed observer loop for ωres2 = 0.195ωs, upper 

waveforms (simulation), lower waveforms (experimental) 
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Both the simulation and experimental waveforms indicate that the proposed active 

damping algorithm can damp the resonance oscillations without the need for additional 

current sensors. For the experimental waveforms, it is shown that the steady state grid 

current contains some ripples in the sensor-based case. On the other hand, such high 

frequency switching ripples are largely attenuated with the observer-based case. This is 

due to the limited bandwidth of the observer. This represents another practical merit for 

replacing the current sensor by the observer. 

 

2.6 Summary 

An active damping algorithm based on the capacitor current estimation is 

investigated in this chapter. An observer in the control loop to is employed to estimate 

the capacitor current value without the need for additional current sensor. The observer 

poles are selected to be faster than the plant poles. This in turn, facilitates a separate 

design for the fundamental current regulator along with the active damping coefficient 

to meet pre-specified values of cross over frequency and damping behavior. The 

robustness of the closed loop stability is investigated against grid inductance variation; 

it is indicated that the stability get worse as the grid inductance increases. The 

simulation and the experimental results are introduced to verify the performance of the 

observer based active damping algorithm. These results show that the observer-based 

system offer a good damping behavior without the need for additional sensors. 

Moreover, compared to sensor-based system, it offers lower switching ripples.   
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 Chapter 3: 

A Two State Feedback Active Damping Strategy 

for the LCL Filter Resonance  

3.1   Introduction 

A novel active damping strategy for the LCL filter resonance is propose in this 

chapter. The proposed strategy uses two feedback loops of the grid current and the 

capacitor voltage. The proposed strategy is derived in the continuous time domain with 

a discussion for its discrete implementation. According to the proposed strategy, 

excitation of unstable open loop poles, which results in non-minimum phase behavior, 

can be avoided over wide range of resonant frequencies. Moreover, straightforward co-

design procedures for both the fundamental current regulator and the active damping 

loops are proposed. A numerical example along with experimental results are 

introduced to validate the proposed strategy performance over wide range of resonant 

frequencies. 

3.2  Proposed Active Damping Strategy 

3.2.1  System Description 

Fig. 3.1 shows a single phase inverter connected to the grid through an LCL filter. 

The block diagram of the capacitor-current-based active damping system is shown in 

Fig. 3.2, where a proportional feedback (Hd) of the capacitor current is used to actively 

damp the filter resonance.  
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Fig. 3.1. Single phase inverter connected to the utility grid through an LCL filter. 
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  Fig. 3.2. Block diagram of capacitor-current-based active damping. 

The un-damped filter transfer function Gig(s) and the filter resonant frequency ωres 

are re-written in (3.1) and (3.2), respectively. 

(ݏ)௜௚ܩ            =
௜೒(௦)

௩೔(௦)
= ଵ

௅೔௅೒஼௦൫௦మାఠೝ೐ೞమ ൯
                                        (3.1)        

             ߱௥௘௦ = ට൫ܮ௜ + ௚൯ܮ ൫ܮܥ௜ܮ௚൯ൗ                                              (3.2) 

A proportional-resonant (PR) controller with a transfer function of Gc(s) is 

employed for fundamental current regulation. It is expressed in (3.3) with ߱௢ = ߨ2 ௢݂ 

where ߱௢  and ௢݂   are the fundamental grid frequency in rad/sec and Hz, respectively. 

(ݏ)௖ܩ = ௣ܭ + ௄ೝௌ
ௌమାఠ೚

మ                                                  (3.3) 

According to Fig. 3.2, the transfer function of the capacitor-current-based actively 

damped filter can be expressed in (3.4) as Fad(s). 

(ݏ)௔ௗܨ = (ݏ)݃݅

(ݏ)݀݅ݒ
= ଵ

஼௅೒௅೔ௌ൬ௌమା
ಹ೏
ಽ೔
ௌାఠೝ೐ೞ

మ ൰
                                  (3.4) 
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In Figs. 3.3(a) till 3.3(d), the capacitor-current-based active damping system is 

manipulated using signal flow graph manipulation. In Fig. 3.3(a), the capacitor current 

is replaced by the difference between the inverter output current and the grid injected 

current.  

gi
gsL

1

sC
1

isL
1

gv
refi

 sGc

iv++ + ++

dH ii
 

 (a) 
 

gi
gsL

1

sC
1

isL
1

gv
refi

 sGc

iv

isL
1

dH

Liv

  
(b) 

gi
gsL

1

sC
1

isL
1

gv
refi

 sGc

iv

isL
1

dH
isL

1

cv

 
(c) 

gi
gsL

1

sC
1

isL
1

gv
refi

 sGc

iv

isL
1i

d

sL
H

)(sG h

)(sGi

cvdH

 
(d) 

Fig. 3.3. Manipulation of the capacitor-current-based active damping technique. 
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With further manipulation, it is shown in Fig. 3.3(c) that the capacitor current 

feedback is equivalent to multiplying the active damping coefficient (Hd) with three 

feedback loops of: 

 A unity feedback of the grid current (ig) 

 An integrator of the capacitor voltage (vc) with a time constant of Li. 

 An integrator of the output inverter voltage (vi) with a time constant of Li. 

By further manipulation, the modulated inverter voltage feedback loop is 

augmented in the main loop as a high-pass filter (HPF), with a cut off frequency of 

߱௛ = ௗܪ ⁄௜ܮ . This HPF is denoted as Gh(s) and expressed in (3.5). This system is shown 

in Fig. 3.3(d). 

(ݏ)௛ܩ = ଵ
ఠ೓
∙ ௦
ଵା௦ ఠ೓⁄                                              (3.5) 

The typical rang for ߱௛  can be calculated by expressing the transfer function of 

the actively damped filter (Fad), expressed in (3.4), in terms of ߱௛  and writing it in a 

standard form as in (3.6).  

(ݏ)௔ௗܨ = ଵ
஼௅೒௅೔ௌ൫ௌమାఠ೓ௌାఠೝ೐ೞ

మ ൯
 = ଵ

஼௅೒௅೔ௌ൫ௌమାଶఠೝ೐ೞௌାఠೝ೐ೞ
మ ൯

             (3.6) 

Since the damping ratio   is typically around 0.7 [28], then a range of 0.5<<1 

will be considered; therefore, the typical range for ߱௛  can be determined as in (3.7). 

߱௥௘௦ < ߱௛ < 2߱௥௘௦                                                (3.7) 

Note that the integrator of the capacitor voltage feedback in Fig. 3.3(d). is denoted 

as Gi(s). 

The presence of the HPF (Gh) in cascade with the main control loop can decline 

both the system disturbance rejection and reference tracking capabilities. More 

modifications should be done to cope with these issues. 
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3.2.2  Proposed Active Damping System 

The proposed system is derived in two steps as follow: 

Step 1 

To maintain the damping effect of the cascaded block Gh(s) without 

deterioration of other control objectives, Gh(s) is eliminated from the main control 

loop and only inserted into the active damping feedback loop to keep its damping 

effect. With multiplying Gh(s) by Hd, the resulted transfer function, Gad(s) 

expressed in (3.8), is still a HPF with a gain of Li. 

(ݏ)௔ௗܩ = ௦௅೔
ଵା௦ ఠ೓⁄

                                             (3.8) 

This system is shown in Fig. 3.4. Then, the new actively damped filter transfer 

function is expressed as Fnew(s) in (3.9) 

(ݏ)௡௘௪ܨ = ீ೔೒(௦)

ଵିீೌ೏(௦)ீ೔೒(௦)ቀଵା௦௅೒ீ೔(௦)ቁ
= (ଵା௦ ఠ೓⁄ )

௦మ൬
಴ಽ೔ಽ೒
ഘ೓

௦మା஼௅೔௅೒௦ା
൫ಽ೔శಽ೒൯
ഘ೓

൰
                   (3.9)        

The ݏଶ term in the denominator of Fnew(s) results in a constant phase of -180° 

in the open loop bode plot. This in turn, can dramatically deteriorate the phase 

margin. As a result, more modifications are necessary. 

 
Fig. 3.4. Block diagram of the proposed active damping strategy. 

Step 2 

Both the gain of Gad(s) and the time constant of Gi(s) are expressed in terms 

of a new variable (Kd) as in (3.10) and (3.11), respectively.  



 
A Two State Feedback Active Damping Strategy for the LCL ...… 

 

41 
 

(ݏ)௔ௗܩ	 =
൫௄೏ି௅೒൯௦

ଵା௦ ఠ೓⁄
                                             (3.10) 

(ݏ)௜ܩ = ଵ
൫௄೏ି௅೒൯௦

                                             (3.11) 

Substituting (3.10) and (3.11) into (3.9), Fnew(s) is re-written as in (3.12). 

 

௡௘௪ܨ = (ଵା௦ ఠ೓⁄ )
஼௅೔௅೒௦൫௦మାఠೝ೐ೞ

మ ൯(ଵା௦ ఠ೓⁄ )ି௦௄೏
= (ଵା௦ ఠ೓⁄ )

಴ಽ೔ಽ೒
ഘ೓

௦రା஼௅೔௅೒௦యା
ಽ೔శಽ೒
ഘ೓

௦మା(௅೔ା௅೒ି௄೏)௦
     (3.12) 

Using Routh’s criteria, Kd has to follow the constraint in (3.13) to guarantee 

the open loop system stability and hence minimum phase behavior.  

0 < ௗܭ < ൫ܮ௜ +  ௚൯                                             (3.13)ܮ

To generalize the following analysis, Kd is expressed in terms of the above 

maximum limit ൫ܮ௜ + ௚൯ as in (3.14), where  0ܮ < ௗߚ < 1  for a stable open loop 

system. 

ௗܭ = ௗߚ 	൫ܮ௜ +  ௚൯                                              (3.14)ܮ

Substituting (3.14) into (3.12), the actively damped filter of the proposed system 

is finally expressed in (3.15). 

(ݏ)௡௘௪ܨ = (ଵା௦ ఠ೓⁄ )
஼௅೔௅೒௦൫௦మାఠೝ೐ೞ

మ ൯(ଵା௦ ఠ೓⁄ )ି௦ఉ೏	൫௅೔ା௅೒൯
                           (3.15) 

3.3  Discret Implementation of the Proposed System 

3.3.1 System Discretization 

The discrete representation of the proposed active damping strategy is shown in 

Fig. 3.5 where the DSP delay is represented by one sample delay. Using Tustin 

approximation with pre-warping at the fundamental frequency, the discrete PR 

regulator is determined in (3.16) where Ts is the sampling period. 

(ݖ)௖ܩ = ௣ܭ + ௥ܭ
௦௜௡(ఠ೚ ೞ்)

ଶఠ೚

௭మିଵ
(௭మିଶ௭௖௢௦(ఠ೚ ೞ்)ାଵ)

                                (3.16) 
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Fig. 3.5. Discrete representation of the proposed system. 

 

In addition to Gig(s), expressed in (3.1), two other transfer functions should be defined 

for system discretization: 

 Giv(s), expressed in (3.17), is the transfer function relating the modulated inverter 

voltage to the filter capacitor voltage. 

(ݏ)௜௩ܩ            = ଵ
஼௅೔൫௦మାఠೝ೐ೞ

మ ൯
                                         (3.17) 

 Gvg(s), expressed in (3.18), is the transfer function relating the filter capacitor voltage 

to the grid current. 

(ݏ)௩௚ܩ                         = ଵ
௦௅೒

				                                        (3.18) 

Using Zero-Order-Hold (ZOH) discretization, Gig(z) and Giv(z) are expressed as 

(3.19) and (3.20), respectively. Gvg(z) is determined as Gig(z)/Giv(z).  

(ݖ)௜௚ܩ   = ೞ்
൫௅೔ା௅೒൯

ቀ(ଵିఈ)௭మିଶ(௖௢௦(ఋ)ିఉ)௭ା(ଵିఈ)
(௭ିଵ)(௭మିଶ௭ ௖௢௦(ఋ)ାଵ)

ቁ                                  (3.19) 

(ݖ)௜௩ܩ               = ଵ
௅೔஼ఠೝ೐ೞ

మ
(ଵି௖௢௦(ఋ))(ଵା௭)
(௭మିଶ௭௖௢௦(ఋ)ାଵ)

                                        (3.20) 

where   ߜ = ߱௥௘௦ ௦ܶ and   ߙ = ௦௜௡(ఠೝ೐ೞ ೞ்)
ఠೝ೐ೞ ೞ்

 

For the active damping loops, Gi(z) and Gad(z) are determined using Tustin 

approximation and expressed in (3.21) and (3.22), respectively. 

(ݖ)௜ܩ                          = ೞ்

ଶ൫௄೏ି௅೒൯
௭ାଵ
௭ିଵ

	                                                 (3.21) 
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(ݖ)௔ௗܩ                         = ௔ௗܭ
௭ିଵ

௭ାఠೌ೏
                                                     (3.22) 

where ܭ௔ௗ = ଶఠ೓൫ఉ೏ 	൫௅೔ା௅೒൯ି௅೒൯

ఠ೓ ೞ்ାଶ
  and ߱௔ௗ = ఠ೓ ೞ்ିଶ

ఠ೓ ೞ்ାଶ
  

Finally, the discrete actively damped filter and the loop transfer function are 

expressed in (3.23) and (3.24), respectively. 

(ݖ)௡௘௪ܨ      = ௭షభீ೔೒(௭)

ଵି௭షభீ೔೒(௭)ீೌ೏(௭)൫ଵାீ೔(௭) ೡீ೒(௭)ൗ ൯
                               (3.23) 

                 ௟ܶ௢௢௣(ݖ) =  (3.24)                                               (ݖ)௡௘௪ܨ(ݖ)௖ܩ

3.3.2  Control Parameters Design 

For tuning purpose, the equivalent s-domain representation, shown in Fig. 3.6, is 

used. As demonstrated in chapter 1, the DSP delay can be modelled by an exponential 

transfer function of: 

(ݏ)ௗܩ = ݁ିଵ.ହ௦ ೞ்                                                     (3.25) 

gi
gsL

1
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1

isL
1

gv
refi
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-- sGad  sG i cv
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-+-+ -+ -+-+)(sGd

 
Fig. 3.6. s-domain representation for the proposed system discrete implementation. 

 
According to this representation, both the actively damped filter transfer function 

(Fnew-d) and the loop transfer function (Tloop-d) can expressed in (3.26) and (3.27), 

respectively.  

(ݏ)௡௘௪ିௗܨ = (ଵା௦ ఠ೓⁄ )ீ೏(௦)
஼௅೔௅೒௦൫௦మାఠೝ೐ೞ

మ ൯(ଵା௦ ఠ೓⁄ )ି௦ఉ೏	൫௅೔ା௅೒൯ீ೏(௦)
                              (3.26)   

                ௟ܶ௢௢௣ିௗ(ݏ) =  (3.27)                                         (ݏ)௡௘௪ିௗܨ(ݏ)௖ܩ
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At the resonant frequency, the gain of Fnew-d can be approximated as in (3.28).  

|௡௘௪ିௗ(݆߱௥௘௦)ܨ|      ≅ ฬ (ଵା௝ఠೝ೐ೞ ఠ೓⁄ )
ି௝ఠೝ೐ೞఉ೏ 	൫௅೔ା௅೒൯

ฬ                                   (3.28) 

According to (3.28), higher values of ωh should be adopted to acquire better 

damping effect. Theoretically, for discrete implementation, ωh can be extended up to 

0.5ωs (Nyquist sampling theory, where ߱௦  is the control frequency in rad/sec). 

However, such high value can deteriorate the discretization process. A value of ωh 

=0.4ωs is adopted here. 

Since the resonant gain of the PR regulator is mainly effective at the fundamental 

frequency, the PR controller can be approximated as (3.29) 

(݆߱)௖ܩ         = ൜
௣ܭ ߱						ݎ݋݂ > ߱௢
௥ܭ ߱							ݎ݋݂ = ߱௢

                                     (3.29) 

At the crossover frequency (߱௖), which should be sufficiently higher than ߱௢  and 

below both ߱௥௘௦and the adopted ߱௛  (0.4߱௦ ), the loop gain can be approximated as 

(3.30). 

௟ܶ௢௢௣ିௗ(݆߱௖) =
௣ܭ

߱௖൫ܮ௜ + ௚൯ܮ
݁ି௝ଵ.ହ ೞ்ఠ೎

(1 − ௗ݁ି௝ଵ.ହߚ ೞ்ఠ೎) 

ห ௟ܶ௢௢௣ିௗ(݆߱௖)ห = ௄೛
ఠ೎൫௅೔ା௅೒൯

ฬ ଵ
൫ଵିఉ೏௘షೕభ.ఱ೅ೞഘ೎൯

ฬ = 1                          (3.30) 

Using Trigonometry, this gain is reduced to (3.31). 

ห ௟ܶ௢௢௣ିௗ(݆߱௖)ห = ௄೛
ఠ೎൫௅೔ା௅೒൯

ቚ ଵ
஺೎௘ೕഇ೎

ቚ = ௄೛
ఠ೎൫௅೔ା௅೒൯஺೎

= 1                     (3.31) 

where 

௖ܣ = ට1 + ௗଶߚ − ௗଶߚ2 cos(1.5 ௦ܶ߱௖) 
(3.32) 

௖ߠ = sinିଵ
ௗߚ sin(1.5 ௦ܶ߱௖)

௖ܣ
 

Hence, for certain value of ߚௗ, Kp should be calculated as in (3.33) to obtain certain 

crossover frequency. 
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௣ܭ                    = ߱௖൫ܮ௜ +  ௖                                                (3.33)ܣ௚൯ܮ

Substituting (3.32) into (3.24), the loop transfer function is expressed in (3.34) 

          ௟ܶ௢௢௣(ݖ) = ௜ܮ௖߱௖൫ܣ +  (3.34)                                    (ݖ)௡௘௪ܨ௚൯ܮ

At the fundamental frequency, the loop gain can be approximated as in (3.35).     

       ห ௟ܶ௢௢௣ିௗ(݆߱௢)ห = ௄ೝ
ఠ೚൫௅೔ା௅೒൯஺೚

                                      (3.35) 

where ܣ௢ = ඥ1 + ௗଶߚ − ௗଶߚ2 cos(1.5 ௦ܶ߱௢) 

This is expressed in dB in (3.36) from which Kr can be determined from (3.37) for 

certain fundamental loop gain (Tfo). 

           ௙ܶ௢ = 20 logଵ଴
௄ೝ

ఠ೚൫௅೔ା௅೒൯஺೚
                                          (3.36) 

௥ܭ                 = ߱௢൫ܮ௜ + ௢ܣ௚൯ܮ ∙ 10
೅೑೚
మబ                                        (3.37) 

Using the above-derived expressions, the following steps are proposed to co-

design the control system parameters.  

1. Plot the pole-map of Fnew(z), expressed in (3.23), by sweeping ߚௗ. Select βd so that 

it corresponds to the farthest resonant poles inside the unit circle to achieve the best 

damping. 

2. For a certain value of the fundamental loop gain (Tfo) along with the selected value 

for βd, use (3.37) to determine Kr. 

3. For a certain value of the crossover frequency (߱௖) along with the selected value of 

βd, use (3.33) to determine Kp. 

4. Plot a bode diagram for the loop transfer function expressed in (3.24). Check the 

resonant peak. If the resonant peak is more than 0 dB, then decrease the pre-

specified crossover frequency (߱௖) and repeat steps 3 and 4. 

These steps are organized in the flowchart shown in Fig. 3.7. 



 
Chapter (3) 

46 
 

 
Fig. 3.7 Flowchart of the co-design steps for the control parameters of the proposed 

active damping strategy 

3.4  Numerical Verification 

3.4.1  Numerical Example  

Table 3.1 lists the parameter values of the grid-connected inverter shown in Fig. 

3.1. Four capacitance values, corresponding to resonant frequencies of 0.143ωs, 

0.179ωs, 0.209ωs and 0.241ωs are used to verify the performance of the proposed 

system over wide range of resonant frequencies with respect to the control frequency. 

These resonant frequencies are denoted as ωres1, ωres2, ωres3 and ωres4, respectively.  
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The HPF cut off frequency (ωh) value is taken as 0.4ωs to mitigate the resonant 

peak as much as possible. In addition, a value of 60 dB is adopted for the fundamental 

loop gain (Tfo). Finally, an initial value for the crossover frequency of 0.3 of each 

corresponding resonant frequency is adopted. 

Using the tuning steps presented in the last section, a pole-map of Fnew(z) is plotted 

with variation of βd. These pole-maps are plotted in Figs. 3.8(a), 3.9(a), 3.10(a) and 

3.11(a) for the resonant frequencies ωres1, ωres2, ωres3 and ωres4, respectively. To achieve 

the best damping effect, the values of βd corresponding to the farthest resonant poles 

inside the unit circle are selected. These values are determined as 0.55, 0.45, 0.3 and 

0.15 for ωres1, ωres2, ωres3 and ωres4, respectively. Using the selected values of βd along 

with the pre-specified values of ωc and Tfo, the corresponding values of Kp and Kr are 

determined from (3.33) and (3.37), respectively. 

For ωres1 and ωres2, Figs. 3.8(b) and 3.9(b) show bode plots of the loop transfer 

function, expressed in (3.24), respectively. It is shown that the resonance peak is less 

than 0 dB. 

 
Table 3.1 

System Parameters 
Symbol Quantity Value 

P Rated power 400 W 

Vg Grid voltage 100 V 

Fo Grid Frequency 50 Hz 

Vdc DC Voltage 200 V 

Li Inverter side inductance 1.85 mH 

Lg Grid side inductance 1.3 mH 

C Capacitance 16.3 µF, 10.4 µF, 7.6 µF, 5.7 µF 

fsw Switching Frequency 10 kHz 

fs Sampling Frequency 10 kHz 
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Fig. 3.8: (a) pole-map of Fnew(z) for ωres1=0.143ωs with sweeping βd (b) corresponding 
bode plot for Tloop at βd =0.55 
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Fig. 3.9: (a) pole-map of Fnew(z) for ωre2 =0.179ωs with sweeping βd, (b) corresponding 
bode plot for Tloop at βd =0.45 

 

 

 

For ωres3 and ωres4, it is found that the frequency response exhibits a resonant peak 

of more than of 0 dB. To overcome this issue, a reduction in the crossover frequency 

has to be adopted. For ωres3, it is found that a reduction of the crossover frequency of 

0.12ωres3 can reduce the resonant peak to less than 0 dB However, for ωres4, a large 

crossover frequency reduction is required to obtain a resonant peak of less than 0 dB. 

Such a reduction can deteriorate the system dynamic performance. Moreover, the phase 

lag introduced by the PR controller at low frequencies dramatically reduces the phase 
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margin. Therefore, only a reduction of the crossover frequency to 0.1ωres4 is adopted. 

Figs. 3.10(b) and 3.11(b) show the frequency responses for ωres3 and ωres4, respectively. 

Table 3.2 summaries the designed control parameters and the achieved 

performance of the phase margin (PM), ߱௖  and Tfo. These results indicate the well 

damped performance of the proposed method over a wide range of resonant frequencies 

while meeting the pre-specified values of ߱௖ and Tfo. 
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Fig. 3.10: (a) pole-map of Fnew(z) for ωre3 =0.209ωs with sweeping βd, (b) 
corresponding bode plot for Tloop at βd =0.3 and different crossover frequencies 
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Fig. 3.11: (a) pole-map of Fnew(z) for ωres4=0.241ωs with sweeping βd, (b) 
corresponding bode plot for Tloop at βd =0.15 and different crossover frequencies 
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Table 3.2 
Designed Control Parameters & Frequency Response Results 

C 
(µF) 

Assumed 
ωc 

(rad/sec) 

Designed 
Parameters 

Achieved frequency response 

βd Kr Kp ωc  (rad/sec) 
PM 

(degree) 
Tfo (dB) 

16.3 0.3ωres1 0.55 446 4.57 0.32ωres1 19.9 60.1 

10.4 0.3ωres2 0.45 545 6.83 0.31ωres2 25.2 60.1 

7.6 
0.3ωres3 

0.3 693 
9.54 0.32ωres3 31.2 60.1 

0.12ωres3 3.53 0.14ωres3 31.5 60 

5.7 
0.3ωres4 

0.15 841 
12.73 0.32ωres4 35.2 60.1 

0.1ωres4 4.08 0.12ωres4 35.1 60 

 

3.4.2 Robustness against Grid Inductance Variations 

In real operation, the grid side inductance (Lg) may vary significantly. To 

investigate system robustness against such variations, the pole-maps of the closed loop 

system Tclosed, expressed in (3.38), are plotted in Fig. 3.12 while sweeping Lg between 

100-300% of its original value. 
 

௖ܶ௟௢௦௘ௗ(ݖ) =
்೗೚೚೛(௭)

ଵା்೗೚೚೛(௭)
                                                 (3.38) 

For the considered resonant frequencies, it is shown from the above pole-map plots 

that the closed loop poles move inside the unit circle with an increasing Lg. These plots 

reflect the system robustness against grid inductance variations. 

3.5 Comparative Study 

To show the superiority of the proposed active damping method compared to the 

existing capacitor voltage-based and current-based AD methods, the limitations of these 

methods are clarified under the same parameters used in the aforementioned numerical 

example as follow. 
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Fig. 3.12. Closed loop pole-maps with grid inductance (Lg) variation for (a) 
ωres1=0.143ωs, (b) ωres2=0.179ωs, (c) ωres3=0.201ωs, (d) ωres4=0.241ωs 

 

3.5.1 Capacitor-Voltage-Based AD Method Limitation:  

Fig. 3.13 shows the discrete representation of the capacitor-voltage-based AD 

method, where a lead-lag network of Gad-v (z) is used for damping purpose. The s-

domain counterpart of this network is expressed as Gad-v (s) in (3.39). Using Fig. 3.13, 

the discrete loop transfer function can be expressed as (3.40).  

(ݏ)௔ௗି௩ܩ        = ௥௘௦߱ܥௗܭ
௦ା௄೑ఠೝ೐ೞ

௄೑௦ାఠೝ೐ೞ
                                        (3.39) 

      ௢ܶ௣௘௡ି௩(ݖ) = ௭షభீ೎(௭)ீ೔ೡ(௭) ೡீ೒(௭)

ଵା௭షభீೌ೏షೡ(௭)ீ೔ೡ(௭)
                                        (3.40) 
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Fig. 3.13. Block representation of capacitor-voltage-based AD method. 

It was shown in [112] that this method can behave effectively over the limited 

range of resonant frequencies between 1/3.2 and 1/3.4 of the sampling frequency (ωs). 

To emphasize the difficulty of using this method outside these specified limits, the AD 

loop design procedures presented in [112]  are used for the resonant frequencies ωres1 

and ωres2 (<ωs/3.2); these procedures are shown in Fig. 3.14.  

 

 
 

Fig. 3.14 Design steps for capacitor voltage based AD method [112]. 
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Firstly, the value of Kf is determined using (3.41) to achieve a maximum network 

angle (φmax) of 75 degree at a frequency of ωmax = ωres. Then, the minimum value of Kd 

is determined as ൫ܭௗ௠௜௡ = ௚ܮ 3 ௦ܶ⁄ ൯.	 

௙ܭ          = ටଵିୱ୧୬ఝ೘ೌೣ

ଵାୱ୧୬ఝ೘ೌೣ
                                                      (3.41)  

Following this, the root locus of the closed loop system, expressed in (3.42), is 

plotted while sweeping Kd (starting from Kdmin) as shown in Figs. 3.15(a) and 3.15(b) 

for the resonant frequencies ωres1 and ωres2, respectively. 

   ௖ܶ௟௢௦௘ௗି௩(ݖ) = ೚்೛೐೙షೡ(௭)

ଵା ೚்೛೐೙షೡ(௭)
                                        (3.42) 
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    (a)          (b) 

Fig. 3.15. Closed loop pole-map using capacitor-voltage-based AD method with 
sweeping Kd, a) for ωres1=0.143ωs (Kp=8.47), b) for ωres2=0.179ωs (Kp=10.6). 

 

It is shown in these plots that the system cannot be stable for any values of Kd. 

This ensures the difficulty of using this method for resonant frequencies outside specific 

limits. On the other hand, the proposed method behaves effectively over a wide range 

of resonant frequencies as verified in the above numerical example. 
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3.5.2 Capacitor-Current-Based AD Method Limitation:  

The discrete representation of the capacitor-current-based AD method is shown 

Fig. 3.16. For analysis purpose, the filter transfer function is divided into two functions 

as follow;  

 Gic(s), expressed in (3.43), is the transfer function relating the modulated inverter 

voltage to the filter capacitor current. 

(ݏ)௜௖ܩ            = ௦
௅೔൫௦మାఠೝ೐ೞమ ൯

                                            (3.43) 

 Gcg(s), expressed in (3.44), is the transfer function relating the filter capacitor current 

to the grid current. 

(ݏ)௖௚ܩ                         = ଵ
௖௅೒௦మ

				                                            (3.44) 

ZOH discretization for Gic(s) is used to determine Gic(z) as expressed in (3.45). On 

the other hand, Gcg(z) is expressed in (3.46) from dividing Gig(z), expressed in (3.19), 

by Gic(z).  

(ݖ)௜௖ܩ    = ௦௜௡(ఠೝ ೞ்)
ఠೝ௅೔

௭షభ൫ଵି௭షభ൯
(ଵିଶ௭షభ ௖௢௦(ఠೝ ೞ்)ା௭షమ)

	                                (3.45) 

(ݖ)௖௚ܩ                          = ீ೔೒(௭)

ீ೔೎(௭)
	                                                    (3.46) 

Using the above expressions, the closed loop transfer function is expressed as 

Tclosed-c in (3.47). 

௖ܶ௟௢௦௘ௗି௖(ݖ) =
௭షభீ೔೒(௭)ீ೎(௭)

ଵା௭షభீ೔೎(௭)൫ீ೎(௭)ீ೎೒(௭)ାு೏൯
                                    (3.47) 

girefi
 zGc - +- +

dH

)(zGic )(zGcg
1z

ci
 

Fig. 3.16. Discrete representation of capacitor-current-based AD method 
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In addition to its need for a high cost current sensor or a complicated observer loop 

to measure or estimate the capacitor current, it was shown in [96] and [99] that non-

minimum phase behavior in the capacitor-current-based active damping method cannot 

be avoided for resonant frequencies of more than one-sixth of the sampling frequency, 

which implies an ineffective active damping [97]. Moreover, it was demonstrated in 

[96] and [99] that closed loop systems can hardly be stable at resonant frequency equal 

to one-sixth of the sampling frequency. This value of the resonant frequency can likely 

be reached due to grid inductance variations, which in turn implies a weak robustness.  

To emphasize the above-mentioned limitations, the capacitor-current-based AD 

method is used with the resonant frequencies ωres2 and ωres3 (>ωs/6). To verify the 

system robustness, the pole-maps of Tclosed-c is plotted while sweeping Lg between 100-

300% of its original value. These plots are shown in Figs. 3.17(a) and 3.17(b) for ωres2 

and ωres3, respectively. (The control parameters are determined using the procedures 

presented in [13] and listed in below the corresponding plots).  

It is shown that the closed loop poles are very close to the unit circle. This in turn, 

demonstrates the ineffective damping performance of this method for resonant 

frequencies of more than one-sixth of the sampling frequency. Moreover, as shown in 

the zoomed part, the system stability violates around a certain value of the grid 

inductance corresponding to a resonant frequency of one-sixth of the sampling 

frequency.  

On the other hand, it has been shown that avoiding such non-minimum behavior 

and high robustness against grid inductance variations can be achieved over a wide 

range of resonant frequencies using the proposed AD method. 
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                                 (b)  
Fig. 3.17 Closed loop pole-map of capacitor-current-based AD method with 

sweeping Lg, a) for ωres2 (Kp=10.6, Hd=5) , b) for ωres3 (Kp=4.96, Hd=1). 

3.6 Experimental Work 

Using the system parameters listed in Table 3.1, a single phase inverter prototype 

has been built and connected through an LCL filter to an AC power supply to emulate 

the utility grid. The control algorithm has been implemented using the PE-Expert3 
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platform, which consists of a C6713-A DSP development board along with a high-

speed PEV board for analog-to-digital conversion and PWM signal generation. 

To verify the dynamic response, the rms value of the reference current (Iref) is 

stepped up from 2 Arms to 4 Arms (rated value). Using the designed parameters listed 

in Table 3.2, the experimental tests are carried out with and without the proposed active 

damping method. 

For ωres1, which is lower than one-sixth of the sampling frequency, the system 

cannot be stabilized without active damping (AD). Thus, removing the active damping 

loop for this case causes a high oscillatory current as shown in Fig. 3.18(a). On the other 

hand, Fig. 3.18(b) shows the stabilization effect of active damping loops. 

 

 

Time (20 msec/div)

vg (100 V/div) ig (10 A/div)

 

 

 (a)  

 

Time (10 msec/div)

vg (100 V/div) ig (2.5 A/div)

Iref = 2 Arms Iref = 4 Arms

 
(b) 

 

Fig. 3.18 Experimental waveforms of grid current (ig) and grid voltage (vg) for ωres1 
=0.143ωs (a) without AD, (b) with AD. 
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For ωres2, ωres3 and ωres4, the system can be stabilized without active damping as 

shown in Figs. 3.19(a), 3.20(a) and 3.21(a). However, it can recognize the dynamic 

oscillations which are caused by weak damping (there is some damping introduced by 

the small resistance of the coils). Figs. 3.19(b), 3.20(b) and 3.21(b) show the waveforms 

when using the proposed active  damping loops. The mitigation of the dynamic 

oscillations can be recognized when using the proposed active damping method.  

 

 

 

 (a)  

 

 
(b) 

 

Fig. 3.19 Experimental waveforms of grid current (ig) and grid voltage 
(vg) for ωres2 =0.179ωs (a) without AD, (b) with AD. 
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(a) 

 

 

 

 

 (b)  
Fig. 3.20. Experimental waveforms of grid current (ig) and grid voltage 

(vg) for ωres3 =0.209ωs (a) without AD, (b) with AD. 

 

The resonance mitigation effect of the AD loop can be further clarified by plotting 

the spectrum of the grid current with and without the proposed active damping method. 

These spectrums are shown in Figs. 3.22, 3.23 and 3.24 at the resonant frequencies 

ωres2, ωres3 and ωres4, respectively. 
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Without using AD loop, it can be recognized from Figs. 3.22(a), 3.23(a) and 

3.24(a) that there is a significant current harmonic component, denoted as ires, with a 

frequency equal to the corresponding resonant frequency in each case. On the other 

hand, In Figs. 3.22(b), 3.23(b) and 3.24(b), it is shown that this resonance harmonic 

component is completely suppressed.  

 

 

 

 

 (a)  

 

 

 

 (b)  
Fig. 3.21. Experimental waveforms of grid current (ig) and grid voltage (vg) for 

ωres4 =0.241ωs (a) without AD, (b) with AD. 
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(a) (b) 
Fig. 3.22. Spectrum of the grid current (ig) for ωres2=0.179ωs (a) without active damping 

loops (b) with active damping loops 

  

(a) (b) 
Fig. 3.23. Spectrum of the grid current (ig) for ωres3 =0.209ωs (a) without active damping 

loops (b) with active damping loops 

 
 

(a) (b) 

Fig. 3.24. Spectrum of the grid current (ig) for ωres4=0.241ωs (a) without active damping 
loops (b) with active damping loops 

For experimental verification of its ineffective damping for resonant frequencies 

of more than one-sixth of the sampling frequency, the capacitor current based AD 

method has been used for the resonant frequency ωres2 (=0.179ωs), and Fig. 2.25 shows 

the corresponding experimental waveforms. It can be seen that the resonant current 
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oscillations are still present in this case. On the other hand, the damping of the proposed 

AD method at the same resonant frequency has been clarified in Fig. 3.19(b). 

The above-introduced results, along with the frequency response analysis 

introduced in the above numerical example, reflect satisfactory steady state and 

transient performances along with resonance damping over a wide range of resonant 

frequencies using the proposed active damping method and the control parameters 

tuning steps. 

 
Fig. 3.25. Experimental waveforms of grid voltage (vg) and grid current (ig) using 

capacitor-current-based AD at ωres2 =0.179ωs. 

3.7  Summary 

A novel active damping strategy using two feedback loops of the grid current and 

filter capacitor voltage is proposed in this chapter. Compared to the previous active 

damping methods, the proposed one can offer the following merits. 

 Compared to the capacitor-current-based method, the cost can be reduced by omitting 

the high cost current sensor. Moreover, the non-minimum phase behavior can be 

avoided over a wide range of resonant frequencies. 
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 Compared to the capacitor-voltage-based method, the proposed strategy can behave 

effectively over a wide range of the resonant frequencies without stability violations. 

 Compared to the grid current based method, a straightforward co-design method for the 

fundamental current regulator and the active damping loops are proposed.  

A numerical example has been introduced to verify the performance of the proposed 

method over a wide range of resonant frequencies. To show the superiority of the 

proposed method, the drawbacks of the capacitor voltage/current based methods have 

been clarified. This example along and experimental results reflect the satisfactory 

performance of the proposed method. 
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 Chapter 4: 

Synthesis of Grid-Current-Based Active Damping 

for the LCL Filter Resonance  

4.1 Introduction: 

Compared to other active damping techniques, Grid-current-based active damping 

is more preferred where there is no need to additional sensors or complicated control 

algorithms. Ideally, this needs an s2 term in the active damping loop [117]; however, it 

is not implemented practically due to the associated noise amplification. One approach 

to overcome this issue has been introduced in [117], [119] and [120] where the s2 term 

is replaced by a high-pass filter (HPF). However, the following challenges can be 

identified when handling with this approach: 

 Identifying the parametric influence of the HPF on the open loop system stability 

of the digitally controlled system at certain resonant frequency. 

 Extending the resonant frequency range over which unstable open loop behavior 

can be avoided. 

 Straightforward co-design steps for the HPF along with the fundamental current 

regulator to meet pre-specified behavior. 

This chapter investigates active damping of grid-connected LCL filter resonance 

using HPF of the grid current. By extending the signal flow graph manipulation of the 

active damping method introduced in the previous chapter, a new expression for such 

HPF is derived in terms of the filter components. This expression facilitates a detailed 
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study for the actively damped filter behavior in discrete time domain. Limits for the HPF 

parameters are derived in order to avoid excitation of unstable open loop poles which, 

upon excitation, can worse the damping performance and the system robustness. 

Moreover, straightforward co-design steps for the HPF along with the fundamental 

current regulator are presented. To investigate the system performance, a numerical 

example at different resonant frequencies is introduced. Finally, the experimental work 

is presented. 

4.2  Proposed HPF Form for Active Damping  

The grid-connected single phase inverter considered in the previous chapter along 

with the block diagram of the proposed active damping system presented in the previous 

chapter are shown in Figs. 4.1 and 4.2, respectively. A proportional-resonant (PR) 

controller with a transfer function of Gc(s) is employed for fundamental current 

regulation. It is expressed in (4.1) with ߱௢ = ߨ2 ௢݂  where ߱௢  and ௢݂   are the 

fundamental grid frequency in rad/sec and Hz, respectively. 

(ݏ)௖ܩ = ௣ܭ + ௄ೝௌ
ௌమାఠ೚

మ                                                  (4.1) 
 

+

-

giii

ci
gv

dcV C

gLiL
1S

2S

3S

4S

iv

 
Fig. 4.1.  A single phase inverter connected to the grid through an LCL filter. 

 
Fig. 4.2. Block diagram of the active damping strategy presented in chapter 2. 
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By further manipulation for the proposed active damping system presented in the 

previous chapter, the capacitor voltage feedback can be shifted towards the grid current 

to produce single feedback loop of the grid current with a transfer function of Gad-g(s); 

this transfer function is expressed in (4.2) where ߱௛ = ௗܪ ⁄௜ܮ . The manipulated system 

is shown in Fig. 4.3. 

(ݏ)௔ௗି௚ܩ                          =
௦ఉ೏(௅೔ା௅೒)

ଵା௦ ఠ೓⁄
                                                    (4.2) 

gi
gsL

1

sC
1

isL
1 gv

refi
 sGc

 sG gad 

iv

 

Fig. 4.3. System block diagram with a HPF of grid current.  

Expressing the HPF gain in terms of the filter inductances helps to clarify the 

different system characteristics in terms of the filter parameters and in turn, makes the 

tuning steps simple and straightforward as indicated in the following sections.  

4.3  Discussing the Effect of HPF Parameters 

4.3.1 System Discretization 

Fig. 4.4 shows the system discrete representation where the digital signal processor 

(DSP) delay is modeled by one sample delay. Gig(z) and Gc(z) are the discrete transfer 

function the un-damped LCL filter and the PR controller. They have been determined 

in the previous chapter and are re-written here in (4.3) and (4.4) respectively. Gad-g(z) is 

determined using Tustin approximation and expressed in (4.5). 

 zGig
1zrefi gi zGc

 zG gad

 
Fig. 4.4. Discrete representation of the grid-current-based AD system. 
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(ݖ)௜௚ܩ             = ೞ்
൫௅೔ା௅೒൯

ቀ(ଵିఈ)௭మିଶ(௖௢௦(ఋ)ିఈ)௭ା(ଵିఈ)
(௭ିଵ)(௭మିଶ௭ ௖௢௦(ఋ)ାଵ)

ቁ                                 (4.3) 

(ݖ)௖ܩ = ௣ܭ + ௥ܭ
௦௜௡(ఠ೚ ೞ்)

ଶఠ೚

௭మିଵ
(௭మିଶ௭௖௢௦(ఠ೚ ೞ்)ାଵ)

                                    (4.4) 

(ݖ)௔ௗି௚ܩ                     = ௔ௗܭ
௭ିଵ

௭ାఠೌ೏
                                                  (4.5) 

where  
ߜ = ߱௥௘௦ ௦ܶ, ߙ = ௦௜௡(ఠೝ೐ೞ ೞ்)

ఠೝ೐ೞ ೞ்
, 

             (4.6) 
௔ௗି௚ܭ =

ଶఠ೓ఉ೏(௅೔ା௅೒)

ఠ೓ ೞ்ାଶ
, ߱௔ௗ =

߱௛ ௦ܶ − 2
߱௛ ௦ܶ + 2

 

and Ts denotes the sampling time. 

To generalize the analyses, both ωres and ωh are expressed in terms of the sampling 

frequency (⍵s) as in (4.7). Then, the expressions in (4.6) are re-written in (4.8). 

               ߱௥௘௦ = ௥௘௦߱௦,         ߱௛ߚ = ௛߱௦ߚ                                           (4.7) 

ߜ = ௥௘௦ߚߨ2 ߙ , = ௦௜௡(ଶగఉೝ೐ೞ)
ଶగఉೝ೐ೞ

, 

             (4.8) 
௔ௗି௚ܭ = ଶ߱ߚݏℎ݀ߚ(௅೔ା௅೒)

ଶగఉ೓ାଶ
, ߱௔ௗ = ଶగఉ೓ିଶ

ଶగఉ೓ାଶ
  

Using (4.3), (4.5) and (4.7), the discrete model of the actively damped filter        

(Fnew-g(z)) is expressed in (4.9).  

(ݖ)௡௘௪ି௚ܨ =
௭షభீ೔೒(௭)

ଵି௭షభீೌ೏(௭)ீ೔೒(௭)
= ೞ்

൫௅೔ା௅೒൯
∙

(௭ାఠೌ೏)ቀ(ଵିఈ)௭మିଶ(௖௢௦(ఋ)ିఈ)௭ା(ଵିఈ)ቁ

(௭ିଵ)൤௭(௭ାఠೌ೏)(௭మିଶ௭ ௖௢௦(ఋ)ାଵ)ି
రഏഁ೏ഁ೓
మഏഁ೓శమ

൫(ଵିఈ)௭మିଶ(௖௢௦(ఋ)ିఈ)௭ା(ଵିఈ)൯൨
     (4.9) 

Only the gain of Fnew-g(z) depends on the specific values of the sampling frequency 

and the filter inductances. On the other hand, zeros and poles of Fnew-g(z) do not depend 

on these specific values; they depend only on βd (gain-multiplier of HPF), βres (ratio of 

ωres to ωs) and βh (ratio of ωh to ωs). From (4.9), Fnew-g(z) has one constant pole at z=1 
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and four other poles depend on βd, βres and βh: two resonant poles at the resonant 

frequency of Fnew-g(z), and the other two poles will be called non-resonant poles.  

Since the PR controller, expressed in (4.4), does not have unstable poles, the 

stability of the open loop system ( ௢ܶ௣௘௡(ݖ) = -is implied only by Fnew ((ݖ)௡௘௪ି௚ܨ(ݖ)௖ܩ

g(z), and in turns, by βd, βres and βh. In the next sections, detailed study is introduced to 

investigate the effect of βd, βres and βh on the stability of Fnew-g(z).  

4.3.2  Discussing the Effect of HPF Parameters 

In Fig. 4.5, the pole-map of Fnew-g(z) is plotted by sweeping βh from 0 to 0.5 

(corresponding to ωh equals Nyquist frequency) at constant value of βd (βd=1; 

corresponding to HPF gain of Li+Lg) and three values of βres (βres1<βres2<βres3; 

corresponding to different resonant frequencies). The following remarks can be 

revealed from this plot: 

1. Beside the constant pole at z=1, one of the non-resonant poles is also constant at 

z=1; the second non-resonant pole tracks entirely inside the unit circle for all 

values of βres (its track direction is not shown to make the figure clear).  
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Fig. 4.5.  Pole-maps of Fnew-g (z) with sweeping βh (at βd =1 and different βres). 
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2. The tracks of the resonant poles start from some point on the unit circle 

(corresponding to undamped LCL filter). By increasing βh, the resonant poles may 

track entirely inside the unit circle (as for βres1), or it may track entirely outside 

the unit circle (as for βres3), or it may initially track outside the unit circle before 

tracking inside the unit circle above certain value of βh (as for βres2).  

From the second remark, it is expected that there is a maximum limit for βres above 

which Fnew-g(z) is unstable  in  the range of βh (<0.5). This maximum limit will be 

denoted as βres-max (corresponding to resonant frequency of ωres-max). At βres-max, the 

tracks of the resonant poles should track outside the unit circle and end by intersection 

with the unit circle at βh=0.5. Based on this understanding, βres-max can be determined 

by plotting the pole-map of Fnew-g (z) with sweeping βres at constant value of βh=0.5. 

To investigate the effect of HPF gain variation, this pole-map is plotted for 

different values of βd. Two regions of βd are considered; (0<βd ≤1) and (βd <0) as shown 

in Figs. 4.6 (a) and (b), respectively. In this plot, βres is swept from 0.1 to 0.45. 

Theoretically, βres can be extended to 0.5; however, due to the resonant frequency 

variation with discrete implementation, the resonant frequency should be adequately 

far from the vicinity of the Nyquist frequency [64]. From these figures, the following 

remarks can be revealed: 

1. For 0< βd ≤1: in Fig. 4.6(a), the resonant poles track initially inside the unit circle 

before tracking outside the unit circle above certain value of βres=βres-max. It is 

observed that all the tracks of the resonant poles intersect with the unit circle at 

certain point corresponding to resonant poles denoted as P1,2. Accordingly, for 

0<βd ≤1, Fnew-g(z) is stable only for resonant frequencies below certain value of 

ωres-max (=βres-maxωs).  
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Fig. 4.6. Pole-maps of Fnew-g (z) with sweeping βres at βh=0.5 and different values of βd. 

(a) 1≥r>0. (b) r<0 

2. For βd <0: in Fig. 4.6(b), the resonant poles track initially outside the unit circle 

before tracking inside the unite circle above certain value of βres; this value will 

be denoted as βres-min. Furthermore, it is observed that all the tracks of the resonant 

poles intersect with the unit circle at the same point corresponding to resonant 

poles P1,2. For low values of βd in this region and with increasing βres above βres-

min, one of the non-resonant poles tracks outside the unit circle above  certain value 

of βres corresponding to one of the non-resonant poles at (-1,0). This value will be 

denoted as βres-high. Accordingly, for certain value of βd <0, Fnew-g(z) is  stable only 

over certain range of resonant frequencies between ωres-min (=βres-minωs) and ωres-

high (=βres-highωs). By decreasing βd in this region, the range between βres-min and 

βres-high shrinks till it vanishes at certain βd corresponding to βres-min=βres-high. This 

value of βd will be denoted as βd-b with corresponding βres denoted as βres-b. 
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4.3.3  HPF Cutoff Frequency Variation at Different HPF Gains 

For the two regions of r (0<βd ≤1 and βd<0), the above analyses are respectively 

repeated in Figs. 4.7, 4.8 and 4.9 for three values of βh of 0.4, 0.3 and 0.2, respectively. 

It is shown that, by decreasing βh, the resonant poles P1,2 move to the right on the unit 

circle. The performance in the two ranges of βd is still the same: for 0<βd≤1, Fnew-g(z) 

is stable below certain value of βres= βres-max; for βd<0, Fnew-g(z) is stable over certain 

range of βres-min <βres< βres-high.  
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Fig. 4.7. Pole-maps of Fnew-g (z) at βh=0.4 with sweeping βres for (a) 0<βd≤1, (b) βd<0. 

Im
ag

in
ar

y 
A

xi
s 

-1 0 1
-1

0

1
1P

2P

0:2.0:1 d

 

 

Im
ag

in
ar

y 
A

xi
s 

-1 0 1
-1

0

1
1P

2P

 0,1

6.0:1.0:1.0 d

  Real Axis   Real Axis 
 (a)   (b) 

Fig. 4.8. Pole-maps of Fnew-g (z) at βh=0.3 with sweeping βres for (a) 0<βd≤1, (b) βd<0. 
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Fig. 4.9. Pole-maps of Fnew-g (z) at βh=0.2 with sweeping βres for (a) 0<βd≤1, (b) βd<0. 

4.4  Regions for Stable Open Loop System 

From the above discussion, the stability of Fnew-g(z) in the two regions of βd can be 

identified for certain βh as follow: 

1. 0<βd≤1; for certain βd in this region, Fnew-g(z) is stable only for resonant 

frequencies below certain value of ωres-max.  

2. 0>βd≥ βd-b; for certain βd in this region, Fnew-g(z) is stable only over  certain range 

of resonant frequencies between ωres-min and ωres-high .  

The values of βres-max, βres-min, βres-b and βd-b can be determined for certain value 

of βh as follows: at βres-max or βres-min, it was shown that Fnew-g(z) has five poles: 

one pole at z=1, two resonant poles at P1,2 and two non-resonant poles (will be 

denoted as P3 and P4). Accordingly, the denominator of Fnew-g(z) at βres-max or βres-

min can be expressed as in (4.10). 

 

݀݁݊൫ܨ௡௘௪(ݖ)൯หఉೝ೐ೞష೘ೌೣ ఉೝ೐ೞష೘೔೙⁄ = ݖ) − 1)൫ݖ ± ଵܲ,ଶ൯(ݖ − ଷܲ)(ݖ − ସܲ)                          (4.10) 
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By expanding (4.10) and equating its coefficients with the denominator 

coefficients of Fnew-g(z), expressed in (4.9), the expressions of (4.11), (4.12) and (4.13) 

can be derived to determined βd, P3 and P4 respectively. 

ௗߚ = ଶగఉ೓ାଶ
ସగఉ೓

∙ ୡ୭ୱ ఋିோ௘௔௟൛௉భ,మൟ
(ଵିఈ)∙ோ௘௔௟൛௉భ,మൟାఈିୡ୭ୱఋ

                                (4.11) 

ଷܲ = ଵ
ଶ
൬2 cos ߜ − ߱௔ௗ − 2ܴ݈݁ܽ൛ ଵܲ,ଶൟ −

ට൫2 cosߜ − ߱௔ௗ − 2ܴ݈݁ܽ൛ ଵܲ,ଶൟ൯
ଶ

+ ଵ଺గఉ೏ఉ೓(ଵିఈ)
ଶగఉ೓ାଶ

൰                                    (4.12) 

         ସܲ = ସగ݀ߚఉ೓(ଵିఈ)
(ଶగఉ೓ାଶ)௉య

                                                        (4.13) 

Fig. 4.10 plots βd along with the magnitudes of P3 and P4 versus βres-max/βres-min at 

βh of 0.5. Using this figure, it can be implied that: 
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Fig. 4.10. HPF gain factor (βd) along with |P3| and |P4| versus βres-max/βres-min at βh=0.5. 

 

1. For 0<βd ≤1, the minimum limit of βres-max is corresponding to βd =1 and denoted as 

βres-a. Furthermore, by decreasing r, βres-max increases till reaches its maximum limit 

at βd=0. On the other hand, for 0>βd≥βd-b, the maximum limit of βres-min is 
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corresponding to βd-min = βd-b. Furthermore, by increasing βd, βres-min decreases till it 

reaches its minimum limit at βd=0. At βd=0, both βres-max and βres-min have the same 

value which is denoted as βres-cr and expressed in (4.14) by substituting βd=0 in 

(4.11). It is shown from Figs. 4.7 till 4.9 that decreasing βh causes right movement 

for the poles P1,2 on the unit circle; and, in turn, increasing of real{P1,2}. 

Accordingly, from (4.14), βres-cr decrease as βh decreases; and, in turn, the maximum 

value for βres-cr is corresponding to βh=0.5 at which real{P1,2} is determined from 

Figs. 4.6(a) or 4.6(b) as -0.111. By substituting this value into (4.14), the maximum 

value of βres-cr is determined as 0.268. Therefore, for 0<βd≤1, Fnew-g(z) can be stable 

only for resonant frequencies less than 0.268ωs.  

௥௘௦ି௖௥ߚ                     = ୡ୭ୱషభ൫ோ௘௔௟൛௉భ,మൟ൯
ଶగ

                                         (4.14) 

2. For 0>βd≥ βd-b, both βd-b and βres-b are corresponding to one pole of P3 or P4 at (-

1,0).Thus βd-b and βres-b can be determined from Fig. 4.10 by locating their values at 

unity magnitude of P3 or P4. 

βres-high is not corresponding to resonant poles at P1,2, it is corresponding only to 

one pole of P3 or P4 at (-1,0); so, it cannot be determined from Fig. 4.10. However, at 

high values of βd in its second region, the non-resonant poles track entirely inside the 

unit circle over the entire range of βres as shown in Figs. 4.7 (b), 4.8 (b) and 4.9 (b) (e.g. 

the non-resonant poles track entirely inside the unit circle for βd of -0.1 and -0.2). Hence 

the stable range of Fnew-g(z) can be extended to βres-high of 0.45 (the maximum considered 

limit of βres) using high values of βd in its second region. 

Then, using Fig. 4.10, the stable regions of Fnew-g(z) can be re-identified at constant 

βh as follow:  

1. For βres ≤ βres-a, Fnew-g(z) can be stable only in the first region of βd (0<βd ≤1). 
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2. For βres-a<βres<βres-cr, Fnew-g(z) can be stable only over certain range in the first 

region of βd between 0 and the value of βd corresponding to βres in Fig. 4.10. 

3. For βres-cr<βres<βres-b, Fnew-g(z) can be stable only over certain range in the second 

region of βd between 0 and the value of βd corresponding to βres in Fig. 4.10. 

4.5  Control System Design 

4.5.1  HPF Cutoff Frequency Tuning (βh tuning) 

To tune βh, the pole-maps of Fnew-g(z) are plotted with sweeping βh for different 

values of βres in the two identified regions of βd: 

 First region; 0<βd≤1, the pole-maps are plotted in Figs. 4.11 (a), (b) and (c) for 

three values of r at 0.2, 0.5 and 0.8 respectively. In each figure, three βres values of 

0.17, 0.2 and 0.24 are considered (these values are less than βres-cr=0.268; above 

which positive βd cannot be used for the stability of Fnew-g(z)). By increasing βh, the 

resonant poles may track entirely outside or inside the unit circle or it may initially 

track outside the unit circle before tracking inside the unit circle with increasing βh. 

To ensure the stability of Fnew-g(z), high βh should be adopted. Theoretically, βh can 

be extended to 0.5; however, such value can deteriorate the discretization process. 

A value of βh=0.4 will be adopted. At this value, βres-cr and βres-a are determined by 

plotting the pole-map of Fnew-g(z) with sweeping βres at any constant value of βd (any 

of the pole-maps in Fig. 4.7(a) or Fig. 4.7(b) can be used). From these figures, 

real{P1,2} is determined as -0.0562. Using (4.11), (4.12) and (4.13), Fig. 4.12 plots 

βd along with the magnitudes of P3 and P4 versus βres-max/βres-min in the first region 

of βd. From this figure,βres-cr and βres-a are determined as 0.188 and 0.259 

respectively. Then the first and the second regions of βres at βh=0.4 are identified as 

βres ≤ 0.188 and 0.188<βres<0.259 respectively. 
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Fig. 4.11. Pole-maps of Fnew-g(z) with sweeping βh at different βres and different 
values of r in its first region (0<βd≤1). (a) βd=0.2, (b) βd=0.5 and (c) βd=0.8. 
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Fig. 4.12. HPF gain factor (βd) along with |P3| and |P4| versus βres-max at βh =0.4. 

 Second region; 0>βd≥ βd-b, the pole-maps of Fnew-g(z) are plotted in Figs. 4.13 (a), 

(b) and (c) for values of βd at -0.2, -0.4 and -0.6, respectively. In each figure, three 

βres values of 0.3, 0.34 and 0.38 are considered. By increasing βh, the resonant poles 

may track entirely inside the unit circle or it may initially track inside the unit circle 

before tracking outside the unit circle with increasing βh. From these pole-maps, 

using a medium value for βh (0.25) is a good tradeoff to ensure the stability of Fnew-

g(z). At this value, βres-cr and βres-b can be determined by plotting the pole-map of 

Fnew-g(z) with sweeping βres at any value of βd (βd=1 is used) as shown in Fig. 4.14 

(a) from which real{P1,2} is determined as 0.0653. Using (4.11), (4.12) and (4.13), 

Fig. 4.14 (b) plots βd and the magnitudes of P3 and P4 versus βres-max/βres-min in the 

second region of βd. From this figure, βres-cr and βres-b are determined as 0.239 and 

0.395 respectively; also βd-b is determined as -0.875. Then the third region of βres at 

βh=0.25 is identified as 0.239<βres<0.395. Note that, as indicated previously, for 

values of 0.395<βres<0.45, higher values of βd in its second region has to be adopted 

to stabilize Fnew-g(z) (e.g. -0.1 and -0.2).  
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Fig. 4.13. Pole-maps of Fnew-g(z) with sweeping βh at different βres and different 
values of βd in its second region (0>βd≥ βd-b). (a) βd=-0.2, (b) βd=-0.4 and (c) βd=-0.6. 
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Fig. 4.14. At βh =0.25, (a) Pole-map of Fnew-g(z), (b) HPF gain factor (βd) along with |P3| and 

|P4| versus βres-min. 

 If βres is between 0.239 (βres-cr at βh =0.25) and 0.259 (βres-cr at βh =0.4), either βh of 

0.25 or 0.4 with the corresponding regions of βd can be used. 

 

4.5.2  Control Parameters Design 

The design objectives of the overall system are:  

1. To ensure the stability of Fnew-g(z). 

2. To meet pre-specified values of fundamental loop gain (Tfo) and crossover 

frequency (ωc). 

The equivalent s-domain model, shown in Fig. 4.15, is used to design the control 

parameters. 
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Fig. 4.15 S-domain representation for the discrete control system. 
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It can be shown that the equivalent s-domain actively damped filter has the same 

transfer function as the proposed system presented in the previous chapter. So, the same 

relations to determine the PR controller parameters, kp and kr, can be employed here. 

These relations are re-written below.  

௣ܭ = ߱௖൫ܮ௜ +  ௖                                                  (4.15)ܣ௚൯ܮ

௥ܭ = ߱௢൫ܮ௜ + ௢ܣ௚൯ܮ ∙ 10
೅೑೚
మబ                                            (4.16) 

where   ܣ௖ = ඥ1 + ௗଶߚ − ௗߚ2 cos(1.5 ௦ܶ߱௖)   &   ܣ௢ = ඥ1 + ௗଶߚ − ௗߚ2 cos(1.5 ௦ܶ߱௢)                                      

Substituting of (4.15) and (4.16) into (4.4), Gc(z) is expressed in terms of βd and 

the pre-specified quantities as in (4.17).  

(ݖ)௖ܩ = ߱௖൫ܮ௜ + ௖ܣ௚൯ܮ +
ఠ೚൫௅೔ା௅೒൯஺೚∙ଵ଴

೅೑೚
మబ ∙௦௜௡(ఠ೚ ೞ்)൫௭మିଵ൯

ଶఠ೚(௭మିଶ௭ ௖௢௦(ఠ೚ ೞ்)ାଵ)
                  (4.17) 

From Fig. 4.4, the discrete closed loop transfer function is expressed in (4.18). 

           ௖ܶ௟௢௦௘ௗ(ݖ) =
ீ೎(௭)ி೙೐ೢష೒(௭)

ଵାீ೎(௭)ி೙೐ೢష೒(௭)
                                               (4.18) 

Using the above-addressed expressions, the control parameters are co-designed as 

follow: 

1. Check the value of βres; if βres ≤ 0.259, use high βh (0.4); if βres>0.259, use medium 

βh (0.25).  

2. Using (4.11), (4.12) and (4.13), plot βd along with |P3| and |P4| versus βres-max/βres-min 

for the adopted βh and determine βd corresponding to βres. 

3. Identify the range of βd for stability of Fnew(z) as follow: 

a. For βres ≤ 0.188, the stable range is 0< βd≤1. 

b. For 0.188 <βres< 0.259, the stable range is from 0 to the value of βd in its first 

region corresponding to βres. 

c. For βres>0.259, the stable range is from 0 to the value of βd in its second region 

corresponding to βres. 
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4. Use the adopted βh along with the pre-specified quantities (Tfo and ⍵c) to plot the 

pole-map of Tclosed, expressed in (4.18), with sweeping βd over its identified range 

in step 3. Select the value for βd corresponding to the farthest poles inside the unit 

circle. 

5. Use the selected βd to determine Kp and Kr from (4.15) and (4.16) respectively. 

4.6  Numerical & Experimental Verification 

4.6.1 Numerical Example  

Table 4.1 presents the parameters of the system shown in Fig. 4.1. Four 

capacitance values, corresponding to βres of 0.146, 0.197, 0.296 and 0.379 are used to 

verify the proposed tuning steps. These values are respectively denoted as βres1, βres2, 

βres3 and βres4 with corresponding resonant frequencies denoted as ωres1, ωres2, ωres3 and 

ωres4 respectively. Tfo is specified as 65 dB, and ⍵c is specified as ratio of the 

corresponding resonant frequencies as follows: 0.3ωres1, 0.25ωres2, 0.22ωres3 and 

0.18ωres4.  

Table 4.1 

System parameters 

Symbol Quantity Value 

P Rated power 1 kW 

Vg Grid voltage 120 V 

Fo Grid Frequency 50 Hz 

Vdc DC Voltage 220 V 

Li Inverter side inductance 2.75 mH 

Lg Grid side inductance 1.2 mH 

C Capacitance 22.2 µF, 12.2 µF, 5.4 µF, and 3.3 µF 

fsw Switching Frequency 8 kHz 

fs Sampling Frequency 8 kHz 
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At the beginning, a value of βh=0.4 is adopted for βres of 0.146 and 0.197. On the 

other hand, a value of βh=0.25 is adopted for βres of 0.296 and 0.379. Then, for these 

values of βh, Figs. 4.12 and 4.14 (b) plot βd versus βres-max/βres-min. From Fig. 4.12, βd for 

βres2 is determined as 0.83. From Fig. 4.14 (b), βd for βres3 and βres4 are determined as -

0.48 and -0.84 respectively. To complete the tuning process, the pole-map of Tclosed(z) 

are plotted over the corresponding stable range of βd for each value of βres as follow: 

 

 0<βd≤1 for βres1=0.146 (<0.188). 

 0<βd<0.83 for βres2=0.197. 

 0>βd>-0.48 for βres3=0.296.  

  0>βd>-0.84 for βres4=0.379.  

Then, values of βd corresponding to farthest closed loop poles inside the unit circle 

are selected as 0.24, 0.16, -0.12 and -0.18 for βres1, βres2, βres3 and βres4 respectively. 

Finally, Kp and Kr are determined from (4.15) and (4.16). Table 4.2 lists the designed 

control parameters along with the experimental results introduced later. 

4.6.2  Experimental Results 

Using the experimental set-up described in the previous chapter, experimental 

investigations have been conducted using the designed parameters listed in Table 4.2. 

The experimental work has been done at the four resonant frequencies considered in 

the above numerical example using the corresponding designed control parameters. 

The control scheme has been implemented using PE-Expert3 platform that consists of 

C6713-A DSP development board along with high-speed PEV board for analog-to-

digital conversion and PWM gate signals generation. To verify the transient 

characteristics, the rms value of the reference current (Iref) is stepped up from 4.167 

Arms to 8.333 Arms (rated value).  



Synthesis of Grid-Current-Based Active Damping for the LCL Filter ...… 
 

83 
 

 

vg [100 V/div] ig [10 A/div]

[10 msec/div]
 

 

 
(a) 
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Fig. 4.16. Experimental measurements of grid voltage (vg) and current (ig) for 

βres1=0.146, (a) without AD, (b) with AD. 
 

For ωres1, which is lower than one-sixth of the sampling frequency, the system 

cannot be stabilized without active damper (AD). Thus removing the active damping 

loop causes high oscillatory current as shown in Fig. 4.16(a). On the other hand, Fig. 

4.16(b) shows the waveforms when using the active damping loop. These waveforms 

indicate clearly the stabilization effect of the active damping loop for resonant 

frequencies less than one-sixth of the sampling frequency.  
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For ωres2, ωres3 and ωres4, the system can be stabilized without AD. However, with 

increasing the grid side inductance, the system stability can be violated. Moreover, 

oscillatory resonant currents can be generated in this case.  

 

 

 
 (a) 

 

 

 

 (b) 

 

Fig. 4.17. Experimental measurements of grid voltage (vg) and current (ig) for 
βres2=0.197, (a) without AD, (b) with AD. 

 

For ωres2, Fig. 4.17(a) shows the waveforms without using AD. It can be 

recognized the oscillatory resonant currents in this case. These oscillatory components 

can be much worse if the grid voltage contains some harmonic components around the 

resonant frequency. Fig. 4.17(b) shows the waveforms when using AD. It can be 
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recognized the mitigation effect introduced by AD in this case.  Finally, for ωres3 and 

ωres4, Figs. 4.18(a) and (b) show respectively the waveforms using AD. 

 

 

 

 
(a) 

 

 

 

 

 (b)  

 Fig. 4.18. Experimental measurements of grid voltage (vg) and current (ig) with 
AD at: (a) βres3=0.296, (b) βres4=0.379. 

 

At steady state conditions, Table 4.2 presents the measured fundamental current 

component ( ௚ଵܫ ), the power factor (PF), and the steady state error ൫ܧ௦௦ =

ห൫ܫ௥௘௙ − ௚ଵ൯ܫ ௥௘௙ൗܫ ห× 100൯.These results reflect satisfactory steady state and transient 
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performances along with resonance damping over the entire possible range of resonant 

frequencies. 

Table 4.2 

Designed Parameters & Experimental Results 

C 

(µF) 
βres 

Designed Controller Experimental Results 

βh r Kp Kr Ig1 Ess PF 

22.2 0.146 0.4 0.24 6.84 1678 8 0.04 0.999 

12.2 0.197 0.4 0.16 8.41 1854 8.01 0.039 0.999 

5.4 0.296 0.25 -0.1 14.01 2427 7.98 0.042 0.999 

3.3 0.379 0.25 -0.18 15.56 2600 8.03 0.037 0.999 

 

4.7  Summary 

This chapter investigates active damping of LCL filter resonance using HPF of the 

grid current feedback.  A new expression for this HPF, in terms of the filter components, 

has been derived. This expression facilitates a general stability study for the actively 

damped filter. Through discrete time domain investigation for the actively damped 

filter, three regions of resonant frequencies have been identified for stable open loop 

behavior at certain HPF cutoff frequency. These regions cover wide range of resonant 

frequencies up to 0.39 of the sampling frequency. Moreover, straightforward co-design 

steps for both the HPF and the fundamental current regulator have been proposed. 

Numerical example and experimental work have been introduced. The results show that 

good steady state and dynamic performance along with resonance damping can be 

obtained over wide range of resonant frequencies using the proposed co-design steps of 

the control parameters. 
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Chapter 5: 

Conclusion and Future Work 

5.1 Conclusion: 

Out of this search, some important conclusions can be summarized as follows: 

1. Observer-based-active damping method has been investigated. The observer 

poles are selected to be faster than the plant poles. This in turn, facilitates a 

separate design for the fundamental current regulator along with the active 

damping coefficient to meet pre-specified values of cross over frequency and 

damping behavior. The results show that the observer-based system offer a 

good damping behavior without the need for additional sensors. Moreover, 

compared to sensor-based system, it offers lower switching ripples.  

2. A novel active damping strategy using two feedback loops of the grid current 

and filter capacitor voltage has been proposed. Compared to the existing active 

damping methods, the proposed strategy can offer the following merits. 

a. Compared to the capacitor-current-based method, the cost can be reduced 

by omitting the high cost current sensor. Moreover, the non-minimum 

phase behavior can be avoided over a wide range of resonant frequencies. 

b. Compared to the capacitor-voltage-based method, the proposed strategy 

can behave effectively over a wide range of the resonant frequencies 

without stability violations. 
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c. Compared to the grid current based method, a straightforward co-design 

method for the fundamental current regulator and the active damping 

loops are proposed. 

3. Grid-current-based active damping using high-pass filter (HPF) of the grid 

current has been investigated. Three regions of resonant frequencies have been 

identified for stable open loop behavior at certain HPF cutoff frequency. These 

regions cover wide range of resonant frequencies up to 0.39 of the sampling 

frequency. 

4. Straightforward co-design steps for both the control parameters of grid-current-

based active damping method have been proposed. The results show that good 

steady state and dynamic performance along with resonance damping can be 

obtained over wide range of resonant frequencies using the proposed co-design 

steps of the control parameters. 

5.2 Future Work: 

1. Studying the effect of using different sampling frequencies in the active 

damping loops of the proposed active damping method.  

2. Investigation the interaction between the developed active damping strategies 

and the other control objectives such as harmonic suppression techniques. 

3. Applying grid-inductance estimation techniques with the developed active 

damping algorithms to increase the system robustness.  

4. Investigation the effect of different scenarios which may occur with parallel 

converters connection. 



89 
 

References 

[1] R. Teodorescu, M. Liserre, and P. Rodriguez, Grid converters for photovoltaic 

and wind power systems, Chichester, West Sussex ; Hoboken, N.J: IEEE ; 

Wiley, 2011. 

[2] S. Buso and P. Mattavelli, Digital control in power electronics, Morgan & 

Claypool, 2006. 

[3] T. M. Blooming, and D. J. Carnovale, “Application of IEEE Std. 519-1992 

harmonic limits,” in Proc. Annu. Pulp and Paper Industry Technical Conf., 

pp. 1-9, 2006. 

[4] R. Teodorescu, F. Blaabjerg, U. Borup, and M. Liserre, “A new control 

structure for grid-connected LCL PV inverters with zero steady-state error and 

selective harmonic compensation,” in Proc. 19th Annu. IEEE Appl. Power 

Electron. Conf. Expo., APEC, 2004, vol. 1, pp. 580–586. 

[5] A. Reznik, M. G. Simoes, A. Al-Durra, and S. M. Muyeen, “LCL filter design 

and performance analysis for grid-interconnected systems,” IEEE Trans. Ind. 

Appl., vol. 50, no. 2, pp. 1225–1232, Mar. 2014. 

[6] M. Liserre, F. Blaabjerg, and S. Hansen, “Design and control of an LCL-filter-

based three-phase active rectifier,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 

1281–1291, Sep. 2005. 

[7] Y. Tang, P. C. Loh, P. Wang, F. H. Choo, F. Gao, and F. Blaabjerg, “Design, 

control, and implementation of LCL-filter-based shunt active power filters,” in 

Proc. 26th Annu. IEEE Appl. Power Electron. Conf. Expo., APEC, 2011, pp. 

98–105. 

[8] B.-G. Cho and S.-K. Sul, “LCL filter design for grid-connected voltage-source 

converters in high power systems,” in Proc. IEEE Energy Conversion 

Congress and Exposition Conf., ECCE, 2012, pp. 1548–1555. 

[9] M. Routimo and H. Tuusa, “LCL type supply filter for active power filter - 

comparison of an active and a passive method for resonance damping,” in Proc. 

IEEE Power Electron. Specialists Conf., PESC, 2007, pp. 2939–2945. 

[10] J. Muhlethaler, M. Schweizer, R. Blattmann, J. W. Kolar, and A. Ecklebe, 

“Optimal design of LCL harmonic filters for three-phase PFC rectifiers,” in 

37th Annu.  IEEE Ind. Electron. Society Conf., IECON, 2011, pp. 1503–1510. 



References 
 

90 
 

[11] K. H. Ahmed, S. J. Finney, and B. W. Williams, “Passive filter design for three-

phase inverter interfacing in distributed generation,” in Proc. Compatibility in 

Power Electron., CPE ’07, 2007, pp. 1–9. 

[12] J. Yin, S. Duan, and B. Liu, “Stability analysis of grid-connected inverter with 

LCL filter adopting a digital single-loop controller with inherent damping 

characteristic,” IEEE Trans. Ind. Inform., vol. 9, no. 2, pp. 1104–1112, May 

2013. 

[13] S. G. Parker, B. P. McGrath, and D. G. Holmes, “Regions of active damping 

control for LCL filters,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 424–432, 

Jan. 2014. 

[14] Y. Tang, P. C. Loh, P. Wang, F. H. Choo, and F. Gao, “Exploring inherent 

damping characteristic of LCL-filters for three-phase grid-connected voltage 

source inverters,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1433–1443, 

Mar. 2012. 

[15] M. H. Bierhoff and F. W. Fuchs, “Active damping for three-phase PWM 

rectifiers with high-order line-side filters,” IEEE Trans. Ind. Electron., vol. 56, 

no. 2, pp. 371–379, Feb. 2009. 

[16] J. Dannehl, C. Wessels, and F. W. Fuchs, “Limitations of voltage-oriented PI 

current control of grid-connected PWM rectifiers With LCL filters,” IEEE 

Trans. Ind. Electron., vol. 56, no. 2, pp. 380–388, Feb. 2009. 

[17] L. Corradini, D. Maksimović, P. Mattavelli, and R. Zane, Digital control of 

high-frequency switched-mode power converters. Hoboken, New Jersey: 

IEEE, John Wiley & Sons Inc, 2015. 

[18] D. O. Neacsu, Switching power converters: medium and high power, 2nd ed. 

Boca Raton, Fla.: CRC Press, 2013. 

[19] J. G. Hwang, P. W. Lehn, and M. Winkelnkemper, “A generalized class of 

stationary frame-current controllers for grid-connected AC-DC converters,” 

IEEE Trans. Power Deliv., vol. 25, no. 4, pp. 2742–2751, Oct. 2010. 

[20] A. G. Yepes, F. D. Freijedo, O. Lopez, and J. Doval-Gandoy, “Analysis and 

design of resonant current controllers for voltage-source converters by means 

of nyquist diagrams and sensitivity function,” IEEE Trans. Ind. Electron., vol. 

58, no. 11, pp. 5231–5250, Nov. 2011. 

[21] A. R. Dash, B. C. Babu, K. B. Mohanty, and R. Dubey, “Analysis of PI and PR 

controllers for distributed power generation system under unbalanced grid 



References 
 

91 
 

faults,” in Proc. Int. Conf. on Power and Energy Systems (ICPS), 2011, pp. 1–

6. 

[22] Guoqiao Shen, Xuancai Zhu, Jun Zhang, and Dehong Xu, “A new feedback 

method for PR current control of LCL-filter-based grid-connected inverter,” 

IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2033–2041, Jun. 2010. 

[23] T. Midtsund, J. A. Suul, and T. Undeland, “Evaluation of current controller 

performance and stability for voltage source converters connected to a weak 

grid,” in Proc. 2nd Int. Symposium on Power Electron. for Distributed 

Generation Systems, 2010, pp. 382–388. 

[24] J. Dannehl, F. W. Fuchs, S. Hansen, and P. B. Thøgersen, “Investigation of 

Active Damping Approaches for PI-Based Current Control of Grid-Connected 

Pulse Width Modulation Converters With LCL Filters,” IEEE Trans. Ind. 

Appl., vol. 46, no. 4, pp. 1509–1517, Jul. 2010. 

[25] N. Geddada and M. K. Mishra, “LCL filter with active damping using PI and 

SSI regulators in synchronous rotating reference frame current controller for 

DSTATCOM,” Int. J. Emerg. Electr. Power Syst., vol. 14, no. 4, Jan. 2013. 

[26] R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, “Proportional-resonant 

controllers and filters for grid-connected voltage-source converters,” IEE Proc. 

Electr. Power Appl., vol. 153, no. 5, p. 750, 2006. 

[27] A. Kuperman, “Proportional-resonant current controllers design based on 

desired transient performance,” IEEE Trans. Power Electron., vol. 30, no. 10, 

pp. 5341–5345, Oct. 2015. 

[28] Chenlei Bao, Xinbo Ruan, Xuehua Wang, Weiwei Li, Donghua Pan, and Kailei 

Weng, “Step-by-step controller design for LCL-type grid-connected inverter 

with capacitor-current-feedback active-damping,” IEEE Trans. Power 

Electron., vol. 29, no. 3, pp. 1239–1253, Mar. 2014. 

[29] J. Doval-Gandoy, Ó. López, J. Malvar, A. G. Yepes, F. D. Freijedo, and A. 

Vidal, “Transient response evaluation of stationary-frame resonant current 

controllers for grid-connected applications,” IET Power Electron., vol. 7, no. 

7, pp. 1714–1724, Jul. 2014. 

[30] M. Lindgren and J. Svensson, “Control of a voltage-source converter connected 

to the grid through an LCL-filter-application to active filtering,” in Proc. 29th 

Annu IEEE Power Electron. Specialists Conf., PESC 98 Record, 1998, vol. 1, 

pp. 229–235. 



References 
 

92 
 

[31] K. Nishida, T. Ahmed, and M. Nakaoka, “Cost-effective deadbeat current 

control for wind-energy inverter application with LCL filter,” IEEE Trans. Ind. 

Appl., vol. 50, no. 2, pp. 1185–1197, Mar. 2014. 

[32] A. Papavasiliou, S. A. Papathanassiou, S. N. Manias, and G. Demetriadis, 

“Current control of a voltage source inverter connected to the grid via LCL 

filter,” in Proc. IEEE Power Electron. Specialists Conf., PESC, 2007, pp. 

2379–2384. 

[33] R. Kadri, J.-P. Gaubert, G. Champenois, and M. Mostefai, “Design of a single-

phase grid-connected photovoltaic system based on deadbeat current control 

with LCL filter,” in Proc. 14th Int. Power Electronics and Motion Control 

Conference (EPE/PEMC), 2010. 

[34] E. Wu and P. W. Lehn, “Digital current control of a voltage source converter 

with active damping of LCL resonance,” IEEE Trans. Power Electron., vol. 

21, no. 5, pp. 1364–1373, Sep. 2006. 

[35] J. He, Y. W. Li, D. Bosnjak, and B. Harris, “Investigation and resonances 

damping of multiple PV inverters,” in Proc. 27th Annu. IEEE Appl. Power 

Electron. Conf. Expo., APEC, 2012, pp. 246–253. 

[36] Yang Han, Lin Xu, M. M. Khan, Chen Chen, Gang Yao, and Li-Dan Zhou, 

“Robust deadbeat control scheme for a hybrid APF with resetting filter and 

ADALINE-based harmonic estimation algorithm,” IEEE Trans. Ind. Electron., 

vol. 58, no. 9, pp. 3893–3904, Sep. 2011. 

[37] C. Fischer, S. Mariethoz, and M. Morari, “A model predictive control approach 

to reducing low order harmonics in grid inverters with LCL filters,” in Proc.  

39th Annu. IEEE Industrial Electronics Society Conf., IECON, 2013, pp. 3252–

3257. 

[38] S. Mariethoz, A. G. Beccuti, and M. Morari, “Analysis and optimal current 

control of a voltage source inverter connected to the grid through an LCL 

filter,” in Proc. IEEE Power Electron. Specialists Conf., PESC, 2008, pp. 

2132–2138. 

[39] G. S. Perantzakis, F. H. Xepapas, and S. N. Manias, “Efficient predictive 

current control technique for multilevel voltage source inverters,” in Proc. 

Power Electron. and App. European Conf., 2005, P.10. 



References 
 

93 
 

[40] S. Mariethoz and M. Morari, “Explicit model-predictive control of a PWM 

inverter with an LCL filter,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 

389–399, Feb. 2009. 

[41] S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, “Model 

predictive control - a simple and powerful method to control power 

converters,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1826–1838, Jun. 

2009. 

[42] H. Miranda, R. Teodorescu, P. Rodriguez, and L. Helle, “Model predictive 

current control for high-power grid-connected converters with output LCL 

filter,” in Proc.  35th Annu.  IEEE Ind. Electron. Society Conf., IECON, 2009, 

pp. 633–638. 

[43] J. Scoltock, T. Geyer, and U. Madawala, “Model predictive direct current 

control for a grid-connected converter: LCL-filter versus L-filter,” in Proc. 

IEEE Int. Conf. on Ind. Technology (ICIT), 2013, pp. 576–581. 

[44] J. Rodriguez et al., “Predictive current control of a voltage source inverter,” 

IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495–503, Feb. 2007. 

[45] H.-S. Heo, G.-H. Choe, and H.-S. Mok, “Robust predictive current control of 

a grid-connected inverter with harmonics compensation,” in Proc. 28th Annu. 

IEEE Appl. Power Electron. Conf. Expo., APEC, 2013, pp. 2212–2217. 

[46] F. Huerta, E. Bueno, S. Cobreces, F. J. Rodriguez, and C. Giron, “Control of 

grid-connected voltage source converters with LCL filter using a Linear 

Quadratic servocontroller with state estimator,” in Proc. IEEE Power Electron. 

Specialists Conf., PESC, 2008, pp. 3794–3800. 

[47] E. J. Bueno, F. Espinosa, F. J. Rodriguez, J. Urefia, and S. Cobreces, “Current 

control of voltage source converters connected to the grid through an LCL-

filter,” in Proc. 35th Annu. IEEE Power Electron. Specialists Conf., PESC 04, 

2004, pp. 68–73. 

[48] M. Xue, Y. Zhang, Y. Kang, Y. Yi, S. Li, and F. Liu, “Full feedforward of grid 

voltage for discrete state feedback controlled grid-connected inverter with LCL 

filter,” IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4234–4247, Oct. 

2012. 

[49] E. Twining and D. G. Holmes, “Grid current regulation of a three-phase voltage 

source inverter with an LCL input filter,” IEEE Trans. Power Electron., vol. 

18, no. 3, pp. 888–895, May 2003. 



References 
 

94 
 

[50] F. Huerta, D. Pizarro, S. Cobreces, F. J. Rodriguez, C. Giron, and A. Rodriguez, 

“LQG servo controller for the current control of LCL Grid-connected voltage-

source converters,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4272–4284, 

Nov. 2012. 

[51] Fei Liu, Yan Zhou, Shanxu Duan, Jinjun Yin, Bangyin Liu, and Fangrui Liu, 

“Parameter design of a two-current-loop controller used in a grid-connected 

inverter system with LCL filter,” IEEE Trans. Ind. Electron., vol. 56, no. 11, 

pp. 4483–4491, Nov. 2009. 

[52] J. Dannehl, F. W. Fuchs, and P. B. Thogersen, “PI state space current control 

of grid-connected PWM converters with LCL filters,” IEEE Trans. Power 

Electron., vol. 25, no. 9, pp. 2320–2330, Sep. 2010. 

[53] X. Bao, F. Zhuo, Y. Tian, and P. Tan, “Simplified feedback linearization 

control of three-phase photovoltaic inverter with an LCL filter,” IEEE Trans. 

Power Electron., vol. 28, no. 6, pp. 2739–2752, Jun. 2013. 

[54] R. Guzman, L. G. de Vicuna, A. Camacho, J. Matas, M. Castilla, and J. Miret, 

“Active damping control for a three phase grid-connected inverter using sliding 

mode control,” in Proc.  39th Annu. Conf. of the IEEE Industrial Electronics 

Society, IECON, 2013, pp. 382–387. 

[55] X. Hao, X. Yang, T. Liu, L. Huang, and W. Chen, “A sliding-mode controller 

with multiresonant sliding surface for single-phase grid-connected VSI with an 

LCL filter,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2259–2268, May 

2013. 

[56] F. Fuchs, J. Dannehl, and F. W. Fuchs, “Discrete sliding mode current control 

of grid-connected three-phase PWM converters with LCL filter,” in IEEE Int. 

Symposium on Ind. Electron., 2010, pp. 779–785. 

[57] J. Hu, Z. Q. Zhu, H. Nian, L. Shang, and Y. He, “Sliding mode current control 

of grid-connected voltage source converter,” in Proc. IEEE Energy Conversion 

Congress and Exposition Conf., ECCE, 2010, pp. 912–919. 

[58] H. Mao, X. Yang, Z. Chen, and Z. Wang, “A hysteresis current controller for 

single-phase three-level voltage source inverters,” IEEE Trans. Power 

Electron., vol. 27, no. 7, pp. 3330–3339, Jul. 2012. 

[59] M. Mohseni and S. M. Islam, “A New vector-based hysteresis current control 

scheme for three-phase PWM voltage-source inverters,” IEEE Trans. Power 

Electron., vol. 25, no. 9, pp. 2299–2309, Sep. 2010. 



References 
 

95 
 

[60] A. Tripathi and P. C. Sen, “Comparative analysis of fixed and sinusoidal band 

hysteresis current controllers for voltage source inverters,” IEEE Trans. Ind. 

Electron., vol. 39, no. 1, pp. 63–73, Feb. 1992. 

[61] D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM 

inverters with zero steady-state error,” IEEE Trans. Power Electron., vol. 18, 

no. 3, pp. 814–822, May 2003. 

[62] M. Liserre, R. Teodorescu, and F. Blaabjerg, “Stability of photovoltaic and 

wind turbine grid-connected inverters for a large set of grid impedance values,” 

IEEE Trans. Power Electron., vol. 21, no. 1, pp. 263–272, Jan. 2006. 

[63] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics: converters, 

applications, and design, 2nd ed., New York: Wiley, 1995. 

[64] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control of dynamic 

systems, 3rd ed., Menlo Park, Calif.: Addison-Wesley, 2002. 

[65] M. Castilla, J. Miret, A. Camacho, J. Matas, and L. G. de Vicuna, “Reduction 

of current harmonic distortion in three-phase grid-connected photovoltaic 

inverters via resonant current control,” IEEE Trans. Ind. Electron., vol. 60, no. 

4, pp. 1464–1472, Apr. 2013. 

[66] X. Zhang, J. W. Spencer, and J. M. Guerrero, “Small-signal modeling of 

digitally controlled grid-connected inverters With LCL filters,” IEEE Trans. 

Ind. Electron., vol. 60, no. 9, pp. 3752–3765, Sep. 2013. 

[67] R. Teodorescu, F. Blaabjerg, M. Liserre, and A. Dell’Aquila, “A stable three-

phase LCL-filter based active rectifier without damping,” in Conf. Record 38th 

IAS Annu. Meeting Ind. Appl. Conf., 2003, vol. 3, pp. 1552–1557. 

[68] A. Kahrobaeian and Y. A.-R. I. Mohamed, “Robust single-loop direct current 

control of LCL-filtered converter-based DG units in grid-connected and 

autonomous microgrid modes,” IEEE Trans. Power Electron., vol. 29, no. 10, 

pp. 5605–5619, Oct. 2014. 

[69] J. Dannehl, M. Liserre, and F. W. Fuchs, “Filter-based active damping of 

voltage source converters With LCL filter,” IEEE Trans. Ind. Electron., vol. 

58, no. 8, pp. 3623–3633, Aug. 2011. 

[70] J. Wang, J. D. Yan, L. Jiang, and J. Zou, “Delay-dependent stability of single-

loop controlled grid-connected inverters with LCL filters,” IEEE Trans. Power 

Electron., vol. 31, no. 1, pp. 743–757, Jan. 2016. 



References 
 

96 
 

[71] J. Wang and J. D. Yan, “Using virtual impedance to analyze the stability of 

LCL-filtered grid-connected inverters,” in Proc. IEEE Ind. Technology (ICIT) 

Conf., 2015, pp. 1220–1225. 

[72] Weimin Wu, Min Huang, Yunjie Sun, Xiongfei Wang, and F. Blaabjerg, “A 

composite passive damping method of the LLCL-filter based grid-tied 

inverter,” in Proc. 3rd IEEE International Symposium on Power Electronics for 

Distributed Generation Systems (PEDG), 2012, pp. 759–766. 

[73] A. K. Balasubramanian and V. John, “Analysis and design of split-capacitor 

resistive-inductive passive damping for LCL filters in grid-connected 

inverters,” IET Power Electron., vol. 6, no. 9, pp. 1822–1832, Nov. 2013. 

[74] R. Peña-Alzola, M. Liserre, F. Blaabjerg, R. Sebastián, J. Dannehl, and F. W. 

Fuchs, “Analysis of the passive damping losses in LCL-filter-based grid 

converters,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2642–2646, Jun. 

2013. 

[75] W. Wu, Y. He, T. Tang, and F. Blaabjerg, “A New design method for the 

passive damped LCL and LLCL filter-based single-phase grid-tied inverter,” 

IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4339–4350, Oct. 2013. 

[76] R. N. Beres, X. Wang, M. Liserre, F. Blaabjerg, and C. L. Bak, “A review of 

passive power filters for three-phase grid-connected voltage-source 

converters,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 1, pp. 54–

69, Mar. 2016. 

[77] R. Beres, X. Wang, F. Blaabjerg, C. L. Bak, and M. Liserre, “Comparative 

evaluation of passive damping topologies for parallel grid-connected 

converters with LCL filters,” in Proc. Int. Power Electron. Conf. (IPEC-

Hiroshima 2014 - ECCE ASIA), 2014, pp. 3320–3327. 

[78] M. Routimo and H. Tuusa, “LCL type supply filter for active power filter - 

comparison of an active and a passive method for resonance damping,” in Proc. 

IEEE Power Electron. Specialists Conf., PESC, 2007, pp. 2939–2945. 

[79] M. H. Hedayati, A. A. B., and V. John, “Common-mode and differential-mode 

active damping for PWM rectifiers,” IEEE Trans. Power Electron., vol. 29, no. 

6, pp. 3188–3200, Jun. 2014. 

[80] M. Huang, X. Wang, P. C. Loh, and F. Blaabjerg, “Active damping of LLCL-

filter resonance based on LC-trap voltage and capacitor current feedback,” in 

Proc. IEEE Appl. Power Electron. Conf. Expo., APEC, 2015, pp. 2903–2910. 



References 
 

97 
 

[81] Wenqiang Zhao and Guozhu Chen, “Comparison of active and passive 

damping methods for application in high power active power filter with LCL-

filter,” in Proc. Sustainable Power Generation and Supply Conf., 

SUPERGEN ’09., 2009, pp. 1–6. 

[82] T. Tang, S. Xie, and J. Xu, “Evaluations of current control in weak grid case 

for grid-connected LCL-filtered inverter,” IET Power Electron., vol. 6, no. 2, 

pp. 227–234, Feb. 2013. 

[83] S. Cobreces, E. Bueno, F. J. Rodriguez, F. Huerta, and P. Rodriguez, “Influence 

analysis of the effects of an inductive-resistive weak grid over L and LCL filter 

current hysteresis controllers,” in Proc. European Power Electron. and App. 

Conf., 2007, pp. 1–10. 

[84] Dae-Keun Choi, Duk-Hong Kang, and Kyo-Beum Lee, “A novel gain 

scheduling method for distributed power generation systems with a LCL-filter 

by estimating grid impedance,” in Proc. IEEE Int. Symposium on Industrial 

Electron., 2010, pp. 3438–3443. 

[85] M. Liserre, F. Blaabjerg, and R. Teodorescu, “Grid impedance detection via 

excitation of LCL-filter resonance,” in Proc. 40th Annu. meeting Ind. App. (IAS) 

Conf., 2005, vol. 2, pp. 910–916. 

[86] M. Liserre, R. Teodorescu, and F. Blaabjerg, “Stability of grid-connected PV 

inverters with large grid impedance variation,” in Proc. 35th Annu. IEEE Power 

Electron. Specialists Conf., PESC 04, 2004, pp. 4773–4779. 

[87] C. Liu, X. Zhang, L. Tan, and F. Liu, “A novel control strategy of LCL-VSC 

based on notch concept,” in Proc. 2nd Int. Symposium on Power Electron. for 

Distributed Generation Systems, 2010, pp. 343–346. 

[88] X. Lu, K. S. L. Huang, and M. L. F. Blaabjerg, “An active damping method 

based on biquad digital filter for parallel grid-interfacing inverters with LCL 

filters,” in Proc. 19th Annu. IEEE Appl. Power Electron. Conf. Expo., APEC, 

2014, pp. 392–397. 

[89] S. Zhang, S. Jiang, X. Lu, B. Ge, and F. Z. Peng, “Resonance issues and 

damping techniques for grid-connected inverters with long transmission 

cable,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 110–120, Jan. 2014. 

[90] M. Liserre, A. Dell’Aquila, and F. Blaabjerg, “Genetic algorithm-based design 

of the active damping for an LCL-filter three-phase active rectifier,” IEEE 

Trans. Power Electron., vol. 19, no. 1, pp. 76–86, Jan. 2004. 



References 
 

98 
 

[91] R. Pena-Alzola, M. Liserre, F. Blaabjerg, M. Ordonez, and T. Kerekes, “A self-

commissioning notch filter for active damping in a three-phase LCL -filter-

based grid-tie converter,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 

6754–6761, Dec. 2014. 

[92] W. Yao, Y. Yang, X. Zhang, and F. Blaabjerg, “Digital notch filter based active 

damping for LCL filters,” in Proc. Annu. IEEE Appl. Power Electron. Conf. 

Expo., APEC, 2015, pp. 2399–2406. 

[93] Y. Liu, W. Wu, Y. He, Z. Lin, F. Blaabjerg, and H. S.-H. Chung, “An efficient 

and robust hybrid damper for  LCL - or  LLCL -based grid-tied inverter with 

strong grid-side harmonic voltage effect rejection,” IEEE Trans. Ind. Electron., 

vol. 63, no. 2, pp. 926–936, Feb. 2016. 

[94] P. A. Dahono, Y. R. Bahar, Y. Sato, and T. Kataoka, “Damping of transient 

oscillations on the output LC filter of PWM inverters by using a virtual 

resistor,” in Proc. 4th IEEE Int. Conf. on Power Electron. and Drive Systems, 

2001, vol. 1, pp. 403–407. 

[95] C. Wessels, J. Dannehl, and F. W. Fuchs, “Active damping of LCL-filter 

resonance based on virtual resistor for PWM rectifiers - stability analysis with 

different filter parameters,” in Proc. IEEE Power Electronics Specialists Conf., 

PESC, 2008, pp. 3532–3538. 

[96] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, “Capacitor-current-feedback 

active damping with reduced computation delay for improving robustness of 

LCL-type grid-connected inverter,” IEEE Trans. Power Electron., vol. 29, no. 

7, pp. 3414–3427, Jul. 2014. 

[97] X. Wang, F. Blaabjerg, and P. C. Loh, “Virtual RC damping of LCL-filtered 

voltage source converters with extended selective harmonic compensation,” 

IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4726–4737, Sep. 2015. 

[98] X. Li, X. Wu, Y. Geng, X. Yuan, C. Xia, and X. Zhang, “Wide damping region 

for LCL-type grid-connected inverter with an improved capacitor-current-

feedback method,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5247–

5259, Sep. 2015. 

[99] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, “Optimized controller design 

for  LCL -type grid-connected inverter to achieve high robustness against grid-

impedance variation,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1537–

1547, Mar. 2015. 



References 
 

99 
 

[100] Xuehua Wang, Chenlei Bao, Xinbo Ruan, Weiwei Li, and Donghua Pan, 

“Design considerations of digitally controlled LCL-filtered inverter with 

capacitor- current-feedback active damping,” IEEE J. Emerg. Sel. Top. Power 

Electron., vol. 2, no. 4, pp. 972–984, Dec. 2014. 

[101] C. Bao, X. Ruan, X. Wang, W. Li, D. Pan, and K. Weng, “Design of injected 

grid current regulator and capacitor-current-feedback active-damping for LCL-

type grid-connected inverter,” in Proc. IEEE Energy Conversion Congress and 

Exposition Conf., ECCE, 2012, pp. 579–586. 

[102] X. Wang, X. Ruan, C. Bao, D. Pan, and L. Xu, “Design of the PI regulator and 

feedback coefficient of capacitor current for grid-connected inverter with an 

LCL filter in discrete-time domain,” in Proc. IEEE Energy Conversion 

Congress and Exposition Conf., ECCE, 2012, pp. 1657–1662. 

[103] M. Wagner, T. Barth, C. Ditmanson, R. Alvarez, and S. Bernet, “Discrete-time 

optimal active damping of LCL resonance in grid connected converters by 

proportional capacitor current feedback,” in Proc. IEEE Energy Conversion 

Congress and Exposition Conf., ECCE, 2013, pp. 721–727. 

[104] H. Xiao, X. Qu, S. Xie, and J. Xu, “Synthesis of active damping for grid-

connected inverters with an LCL filter,” in Proc. IEEE Energy Conversion 

Congress and Exposition Conf., ECCE, 2012, pp. 550–556. 

[105] W. Gullvik, L. Norum, and R. Nilsen, “Active damping of resonance 

oscillations in LCL-filters based on virtual flux and virtual resistor,” in Proc. 

European Conf. on Power Electronics and Applications, 2007, pp. 1–10. 

[106] V. Miskovic, V. Blasko, T. M. Jahns, A. H. C. Smith, and C. Romenesko, 

“Observer-based active damping of LCL resonance in grid-connected voltage 

source converters,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3977–3985, Nov. 

2014. 

[107] J. Kukkola and M. Hinkkanen, “Observer-based state-space current control for 

a three-phase grid-connected converter equipped with an LCL filter,” IEEE 

Trans. Ind. Appl., vol. 50, no. 4, pp. 2700–2709, Jul. 2014. 

[108] V. Blasko and V. Kaura, “A novel control to actively damp resonance in input 

LC filter of a three-phase voltage source converter,” IEEE Trans. Ind. Appl., 

vol. 33, no. 2, pp. 542–550, Apr. 1997. 



References 
 

100 
 

[109] M. Liserre, A. Dell’Aquila, and F. Blaabjerg, “Stability improvements of an 

LCL-filter based three-phase active rectifier,” in Proc. 33rd Annu. IEEE Power 

Electron. Specialists Conf., PESC, 2002, pp. 1195–1201. 

[110] M. Malinowski and S. Bernet, “A simple voltage sensorless active damping 

scheme for three-phase PWM converters with an LCL filter,” IEEE Trans. Ind. 

Electron., vol. 55, no. 4, pp. 1876–1880, Apr. 2008. 

[111] M. Malinowski, W. Szczygiel, M. P. Kazmierkowski, and S. Bernet, 

“Sensorless operation of active damping methods for three-phase PWM 

converters,” in Proc. IEEE International Symposium on Ind. Electron. (ISIE), 

2005, pp. 775–780 vol. 2. 

[112] R. Pena-Alzola, M. Liserre, F. Blaabjerg, R. Sebastian, J. Dannehl, and F. W. 

Fuchs, “Systematic design of the lead-lag network method for active damping 

in LCL-filter based three phase converters,” IEEE Trans. Ind. Inform., vol. 10, 

no. 1, pp. 43–52, Feb. 2014. 

[113] J. He, Y. W. Li, D. Bosnjak, and B. Harris, “Investigation and active damping 

of multiple resonances in a parallel-inverter-based microgrid,” IEEE Trans. 

Power Electron., vol. 28, no. 1, pp. 234–246, Jan. 2013. 

[114] C. Yu et al., “A general active damping method based on capacitor voltage 

detection for grid-connected inverter,” in Proc. IEEE ECCE Asia Downunder 

(ECCE Asia), 2013, pp. 829–835. 

[115] Z. Xin, X. Wang, P. C. Loh, and F. Blaabjerg, “Digital realization of capacitor-

voltage feedback active damping for LCL-filtered grid converters,” in Proc. 

IEEE Energy Conversion Congress and Exposition Conf., ECCE, 2015, pp. 

2690–2697. 

[116] Z. Xin, X. Wang, P. C. Loh, and F. Blaabjerg, “SOGI-based capacitor voltage 

feedback active damping in LCL-filtered grid converters,” in Proc. 6th IEEE 

International Symposium on Power Electron. for Distributed Generation 

Systems (PEDG), 2015, pp. 1–6. 

[117] J. Xu, S. Xie, and T. Tang, “Active damping-based control for grid-connected 

LCL -filtered inverter with injected grid current feedback only,” IEEE Trans. 

Ind. Electron., vol. 61, no. 9, pp. 4746–4758, Sep. 2014. 

[118] C. P. Dick, S. Richter, M. Rosekeit, J. Rolink, and R. W. De Doncker, “Active 

damping of LCL resonance with minimum sensor effort by means of a digital 



References 
 

101 
 

infinite impulse response filter,” in Proc. European Conference on Power 

Electronics and Applications, 2007, pp. 1–8. 

[119] M. Hanif, V. Khadkikar, W. Xiao, and J. L. Kirtley, “Two degrees of freedom 

active damping technique for LCL filter-based grid connected PV systems,” 

IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2795–2803, Jun. 2014. 

[120] X. Wang, F. Blaabjerg, and P. C. Loh, “Grid-current-feedback active damping 

for LCL resonance in grid-connected voltage-source converters,” IEEE Trans. 

Power Electron., vol. 31, no. 1, pp. 213–223, Jan. 2016. 

 


	A_title
	B_Abstract
	C_Acknowledgement
	D_Table of Content
	E_Ch_1
	E_Ch_2
	E_Ch_3
	E_Ch_4
	E_Ch_5
	F_References

