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Preface

We research the determinants of matrices over group algebras. Firstly, we give an exten-
sion and a generalization of Dedekind’s theorem. Secondly, we give a further extension of
the above theorem. Thirdly, we give a generalization of Frobenius’ theorem. Fourthly,
we give Capelli elements of the group algebra of any finite group. Finally, we give
a natural interpretation of the transfers in group theory in terms of noncommutative
determinants.

Probably, readers think that ”the determinant” is the ordinary determinant which
is used for solving a system of linear equations. However, there are various types of
determinants, such as Study, Dieudonné, row, column, and double determinants. Our
main concern in this paper is these noncommutative determinants for matrices over
group algebras on representations.

To research the determinants of matrices on representations was important sub-
ject. In the late 19th century, Georg Ferdinand Frobenius and Julius Wilhelm Richard
Dedekind built a representation theory of finite groups in the process of obtaining the
irreducible factorizations of the group determinants. The group determinant Θ(G) is the
determinant of the regular representation L : CG → Mat(n,C) of G. The irreducible
factorizations of Θ(G) is the following.

Θ(G) =
∏
φ∈Ĝ

det

∑
g∈G

φ(g)xg

degφ

.

As a result, we obtain theorems on the representations of finite groups. However, Frobe-
nius and Dedekind’s method became obsolete after the abstraction of the representation
theory put forth by Issai Schur and Amalie Emmy Noether et al.

Nevertheless, Frobenius and Dedekind’s idea (method) remains in the quaternions.
In the early 20th, Eduard Study researched the determinant of a quaternionic matrix.
In this research, Study defined the Study determinant, which uses an injective alge-
bra homomorphism of quaternions. This homomorphism is a regular representation of
quaternions. So, the Study determinant is similar to the group determinant.

In Chapter 1, 2, and 3, we generalize Frobenius and Dedekind’s method. Specifically,
we consider the determinant of the regular representation

LH : CG→ Mat([G : H] ,CH)
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where H is a subgroup of G and [G : H] is the index of H in G. Let e be the unit
element. If H = {e}, we can regard the regular representation L as LH . That is, we can
regard the group determinant as a special case of determinants of regular representations
of associative algebras.

In Chapter 1, we research the eigenvalues of det ◦ LH when G is any finite abelian
group. However, note that the determinant does not appear explicitly in Chapter 1. We
define operators on the group algebra, and research the eigenvalues of LH by using the
operators. As a result, we give an extension and a generalization of a special case of
Frobenius’ theorem.

In the next chapter, we research the noncommutative determinant det ◦ LH when
G is a finite group and H is an abelian subgroup of G. Consequently, we give an
extension and a generalization of Dedekind’s theorem. The generalization in turn leads
to a corollary on irreducible representations of finite groups. In addition, if a finite
group has an index-two abelian subgroup, we define a conjugation of elements of the
group algebra by using the further extension of Dedekind’s theorem. In this process, we
see the comparison between the Study determinant and det ◦ LH everywhere.

Let L′ : Mat([G : H],CH) → Mat(n,C{e}) be a regular representation of Mat([G :
H],CH). Then we have

det ◦ L = det ◦ L′ ◦ LH .

In Chapter 3, we give a generalization of Frobenius’ theorem by using the above equation
on the determinant.

In the remaining chapters, we are inspired by the research of Professor Tôru Umeda.
He suggested that a transfer can be derived as a noncommutative determinant, and gave
Capelli identities for group determinants.

A transfer is defined by Schur as a group homomorphism from a group to an abelian
quotient group of a subgroup of finite index. In Chapter 4, we develop Umeda’s idea in
order to explain the properties of the transfers by using noncommutative determinants.
As a result, we give a natural interpretation of the transfers in group theory in terms of
noncommutative determinants. The determinants are a hybrid of the Study determinant
and Dieudonné determinant.

The Capelli identity is analogous to the product formula for the determinant in
the Weyl algebra. The identity leads to the Capelli element. It is known that the
Capelli elements is a central element in the universal enveloping algebra of gln. Umeda
is one of the pioneers in Capelli identities. In recent years, he give Capelli identities for
group determinants. There are Capelli identities for irreducible representations in the
background of the Capelli identities for group determinants. In the last Chapter, we give
a basis of the center of the group algebra of any finite group by using Capelli identities
for irreducible representations. These identities lead to Capelli elements of the group
algebra, and these elements construct a basis. These elements are defined by using row,
column, or double determinants.
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Chapter 1

An extension and a generalization
of Dedekind’s theorem

1.1 Introduction

In this chapter, we give factorizations of the group determinant for any given finite
abelian group G in the group algebra of subgroups. The factorizations are an extension
of Dedekind’s theorem. The extension leads to a generalization of Dedekind’s theorem
and a simple expression for inverse elements in the group algebra.

The group determinant Θ(G) is the determinant of a matrix whose elements are
independent variables xg corresponding to g ∈ G. Dedekind gave the following theorem
about the irreducible factorization of the group determinant for any finite abelian group.

Theorem 1.1.1 (Dedekind’s theorem [4]). Let G be a finite abelian group and Ĝ the
group of characters of G. Then we have

Θ(G) =
∏
χ∈Ĝ

∑
g∈G

χ(g)xg.

Frobenius gave the following theorem about the irreducible factorization of the group
determinant for any finite group; thus, Frobenius gave a generalization of Dedekind’s
theorem.

Theorem 1.1.2 (Frobenius’ theorem [4]). Let G be a finite group and Ĝ a complete set
of irreducible representations of G over C. Then we have

Θ(G) =
∏
φ∈Ĝ

det

∑
g∈G

φ(g)xg

degφ

.

The main results of this chapter are an extension and a generalization of Dedekind’s
theorem that are different from Frobenius’ theorem.
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1.1.1 Main results

We give an extension and a generalization of Dedekind’s theorem.
Let G be a finite abelian group, CG the group algebra of G over C, R = C[xg] =

C [xg; g ∈ G] the polynomial ring in {xg | g ∈ G} with coefficients in C, RG = R⊗CG ={∑
g∈GAgg |Ag ∈ R

}
the group algebra of G over R, H a subgroup of G, and [G : H] the

index of H in G. Then we have the following theorem that is an extension of Dedekind’s
theorem.

Theorem 1.1.3 (Extension of Dedekind’s theorem). Let G be a finite abelian group, e
the unit element of G, H a subgroup of G, and Ĥ the dual group of H. For every h ∈ H,
there exists a homogeneous polynomial Ah ∈ R such that degAh = [G : H] and

Θ(G)e =
∏
χ∈Ĥ

∑
h∈H

χ(h)Ahh.

If H = G, we can take Ah = xh for each h ∈ H.

Note that the equality in Theorem 1.1.3 is the equality in RH. Theorem 1.1.3 leads
to the following theorem.

Theorem 1.1.4 (Generalization of Dedekind’s theorem). Let G be a finite abelian group
and H a subgroup of G. For every h ∈ H, there exists a homogeneous polynomial Ah ∈ R
such that degAh = [G : H] and

Θ(G) =
∏
χ∈Ĥ

∑
h∈H

χ(h)Ah.

If H = G, we can take Ah = xh for each h ∈ H.

Theorem 1.1.4 is a generalization of Dedekind’s theorem. In fact, let H = G and
Ah = xh. Then we have Dedekind’s theorem.

Moreover, we obtain the following formula for inverse elements in the group algebra
CG from Theorem 1.1.3. However, only now the situation is that xg is a complex number
for any g ∈ G. Hence, we assume that

∑
g∈G xgg ∈ CG and Θ(G) = det (xgh−1)g,h∈G ∈

C.

Corollary 1.1.5. Let G be a finite abelian group, χ1 the trivial representation of G, and∑
g∈G xgg ∈ CG such that Θ(G) ̸= 0. Accordingly, we have∑

g∈G
xgg

−1

=
1

Θ(G)

∏
χ∈Ĝ\{χ1}

∑
g∈G

χ(g)xgg

 .

1.2 Irreducible factorization of group determinant

In this section, we recall the definition of the group determinant and its irreducible
factorization.
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1.2.1 Irreducible factorization of group determinant

Let G be a finite group and {xg | g ∈ G} independent commuting variables. Below, we
define the group determinant Θ(G) of G.

Definition 1.2.1. The group determinant Θ(G) of G is given by

Θ(G) = det
(
xgh−1

)
g,h∈G

where we give a numbering to the element of G.

Namely, the group determinant Θ(G) is a homogeneous polynomial of degree |G| in
{xg | g ∈ G}, where |G| is the order of G.

In general, the matrix
(
xgh−1

)
g,h∈G is a covariant under change of a numbering to

the element of G. However, the group determinant Θ(G) is an invariant.

Example 1.2.2. Let G = Z/3Z = {0, 1, 2}. Then we have

Θ(G) = det

x0 x2 x1
x1 x0 x2
x2 x1 x0

.
Dedekind proved the following theorem about the irreducible factorization of the

group determinant for any finite group.

Theorem 1.2.3 (Chapter 1, Theorem 1.1.1). Let G be a finite abelian group and Ĝ the
group of characters of G. Then we have

Θ(G) =
∏
χ∈Ĝ

∑
g∈G

χ(g)xg.

Example 1.2.4. Let G = Z/3Z = {0, 1, 2}. Then we have

Θ(G) = det

x0 x2 x1
x1 x0 x2
x2 x1 x0


= (x0 + x1 + x2)(x0 + x1ω + x2ω

2)(x0 + x1ω
2 + x2ω)

where ω is a primitive third root of unity.

1.3 An extension and a generalization of Dedekind’s the-
orem

In this section, we give an extension and a generalization of Dedekind’s theorem.
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1.3.1 Degree one representations

In this subsection, we describe two lemmas needed later.
Let G be a finite group, G the set of degree one representations, H a subgroup of G

and
GH =

{
χ ∈ G | χ(h) = 1, h ∈ H

}
.

Then, GH is a subgroup of G.
Let Ĝ be a complete set of irreducible representations of G. If G is an abelian group,

since the degree of irreducible representations of G is one, we have G = Ĝ.
The following lemmas are well known.

Lemma 1.3.1. Let G be a finite group and H a normal subgroup of H such that G/H
is an abelian group. Then we have

GH =
{
φ ◦ π | φ ∈ Ĝ/H

}
where π : G→ G/H is a natural projection.

Proof. Clearly,
{
φ ◦ π | φ ∈ Ĝ/H

}
⊂ GH . We show that GH ⊂

{
φ ◦ π | φ ∈ Ĝ/H

}
. Let

χ ∈ GH . We define the map φ : G/H → C× by φ(gH) = χ(g). It is easy to see that φ
is well defined and χ = φ ◦ π. This completes the proof.

Lemma 1.3.2. Let G be a finite abelian group, and suppose that g ∈ G is not the unit
element of G. Then, there exists χ ∈ Ĝ such that χ(g) ̸= 1.

Proof. From the structure theorem for finite abelian groups, there exist cyclic groups
Z/miZ (1 ≤ i ≤ r) and a group isomorphism

f : G→ Z/m1Z× Z/m2Z× · · · × Z/mrZ.

Therefore, for all g ∈ G, there exists ai ∈ Z/miZ such that

f(g) = (a1, a2, . . . , ar).

For all xi ∈ N (1 ≤ i ≤ r) where we assume that 0 ∈ N, we define the map χ : G → C×

by
χ(g) = ξx1a11 ξx2a22 · · · ξxrarr

where ξi is a primitive mi-th root of unity(1 ≤ i ≤ r). Then, the map χ is a degree one
representation of G. Since g is not the unit element, there exists i ̸= 0 such that ai ̸= 0.
Let xi = 1 and xj = 0 (1 ≤ i ̸= j ≤ r). Then, χ is a degree one representation of G such
that χ(g) ̸= 1. This completes the proof.

Lemma 1.3.3. Let G be a finite group and H a normal subgroup of G such that G/H
is an abelian group. If g ̸∈ H, there exists χ ∈ GH such that χ(g) ̸= 1.

Proof. From Lemma 1.3.2, there exists φ ∈ Ĝ/H such that φ(gH) ̸= 1 where g ̸∈ H.
Let π : G → G/H be the natural projection. By Lemma 1.3.1, χ = φ ◦ π ∈ GH . This
completes the proof.
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1.3.2 Operators on group algebras

In this subsection, we define operators on group algebras that are used in the proof of
the main theorem.

Definition 1.3.4. Let G be a finite group and χ ∈ G. We define the map Tχ : RG→ RG
by

Tχ

∑
g∈G

Agg

 =
∑
g∈G

χ(g)Agg

where Ag ∈ R.

Let χ, χ′ ∈ G and α, β ∈ RG. It is easy to see that Tχ ◦ Tχ′ = Tχ◦χ′ and Tχ(αβ) =
Tχ(α)Tχ(β), where (χ ◦ χ′) (g) = χ(g)χ′(g).

We give a necessary and sufficient condition for Tχ-invariance for all χ ∈ GH .

Lemma 1.3.5. Let G be a finite group, H a normal subgroup of G such that G/H is
an abelian group and α ∈ RG. For all χ ∈ GH , Tχ(α) = α if and only if α ∈ RH.

Proof. Let α ∈ RH. Obviously, Tχ(α) = α for all χ ∈ GH . Let α =
∑

g∈GAgg.

If Tχ(α) = α for all χ ∈ GH , then we have χ(g)Agg = Agg for all g ∈ G. From this
condition and Lemma 1.3.3, if g ̸∈ H, there exists χ ∈ GH such that χ(g) ̸= 1. Therefore,
Ag = 0. Namely, α =

∑
h∈H Ahh. This completes the proof.

Let G be a finite abelian group, ĜH = GH , S a subgroup of Ĝ, and S|H the set of
restrictions of χ ∈ S on H.

Lemma 1.3.6. Let G be a finite abelian group, H a subgroup of G, and Ĝ = χ1ĜH ⊔
χ2ĜH ⊔ · · · ⊔ χkĜH . Then we have k = |H| and Ĥ = {χ1, χ2, . . . , χk}|H .

Proof. First, we show that k = |H|. From |G| = |Ĝ| = k|ĜH | and Lemma 1.3.1, we have

|ĜH | = |Ĝ/H| = |G|
|H| . Therefore, k = |H|. Next, we show that Ĥ = {χ1, χ2, . . . , χk}|H .

Since the restriction of elements of ĜH is the trivial representation on H, Ĝ|H =
{χ1, χ2, . . . , χk}|H ⊂ Ĥ. From |Ĥ| = |H|, we can show that χ1, χ2, . . . , χk are dif-
ferent on H. If χi(h) = χj(h) (1 ≤ i ̸= j ≤ k) for all h ∈ H,

(
χ−1
i ◦ χj

)
(h) = 1.

Therefore, χ−1
i ◦ χj ∈ ĜH . This is a contradiction for the left ĜH -coset decomposition

of Ĝ. Namely, we have χi ̸= χj . This completes the proof.

1.3.3 An extension and a generalization of Dedekind’s theorem

In this subsection, we give the extension and generalization of Dedekind’s theorem.

Lemma 1.3.7. Let G be a finite abelian group, e the unit element of G, and H a
subgroup of G. For every h ∈ H, there exists a homogeneous polynomial Ah ∈ R such
that degAh = [G : H] and ∏

χ∈ĜH

∑
g∈G

χ(g)xgg =
∑
h∈H

Ahh
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If H = G, we can take Ah = xh for each h ∈ H.

Proof. For all χ′ ∈ ĜH ,

Tχ′

 ∏
χ∈ĜH

∑
g∈G

χ(g)xgg

 =
∏
χ∈ĜH

∑
g∈G

(
χ′ ◦ χ

)
(g)xgg

=
∏
χ∈ĜH

∑
g∈G

χ(g)xgg.

From Lemma 1.3.5, we have
∏
χ∈ĜH

∑
g∈G χ(g)xgg ∈ RH. Clearly, degAh = |ĜH | =

[G : H]. If H = G, ĜH is the trivial group. This completes the proof.

Definition 1.3.8. Let F : RG→ R be the R-algebra homomorphism such that F (g) = 1
for all g ∈ G. We call the map F the fundamental RG-function.

Now, we give factorizations of the group determinant for any given finite abelian
group in the group algebra of subgroups. The factorizations are the extension of Dedekind’s
theorem.

Theorem 1.3.9 (Chapter 1, Theorem 1.1.3). Let G be a finite abelian group, e the unit
element of G, and H a subgroup of G. For every h ∈ H, there exists a homogeneous
polynomial Ah ∈ R such that degAh = [G : H] and

Θ(G)e =
∏
χ∈Ĥ

∑
h∈H

χ(h)Ahh.

If H = G, we can take Ah = xh for each h ∈ H.

Proof. Clearly,

Tχ

∏
χ∈Ĝ

∑
g∈G

χ(g)xgg

 =
∏
χ∈Ĝ

∑
g∈G

χ(g)xgg

for all χ ∈ Ĝ. From this, Ĝ = Ĝ{e} and Lemma 1.3.5, there exists C ∈ R such that∏
χ∈Ĝ

∑
g∈G

χ(g)xgg =
∏

χ∈Ĝ{e}

∑
g∈G

χ(g)xgg

= Ce.

Let F be the fundamental RG-function. By applying F to this equation and Theo-
rem 1.2.3, we have C = Θ(G). Namely, we have∏

χ∈Ĝ

∑
g∈G

χ(g)xgg = Θ(G)e.
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Let Ĝ = χ1ĜH ⊔ χ2ĜH ⊔ · · · ⊔ χkĜH . Then we have

∏
χ∈Ĝ

∑
g∈G

χ(g)xgg =

k∏
i=1

∏
χ∈χiĜH

∑
g∈G

χ(g)xgg

=

k∏
i=1

Tχi

 ∏
χ∈ĜH

∑
g∈G

χ(g)xgg

 .

There exists a homogeneous polynomial Ah ∈ R for each h ∈ H such that

k∏
i=1

Tχi

 ∏
χ∈ĜH

∑
g∈G

χ(g)xgg

 =

k∏
i=1

Tχi|H

(∑
h∈H

Ahh

)

=
∏
χ∈Ĥ

∑
h∈H

χ(h)Ahh

from Lemmas 1.3.6 and 1.3.7. This completes the proof.

As a corollary, we obtain the following formula for inverse elements in the group
algebra CG from Theorem 1.3.9. However, only now the situation is that xg is a com-
plex number for any g ∈ G. Hence, we assume that

∑
g∈G xgg ∈ CG and Θ(G) =

det (xgh−1)g,h∈G ∈ C.

Corollary 1.3.10 (Chapter 1, Corollary 1.1.5). Let G be a finite abelian group, χ1 the
trivial representation of G, and

∑
g∈G xgg ∈ CG such that Θ(G) ̸= 0. Then we have∑

g∈G
xgg

−1

=
1

Θ(G)

∏
χ∈Ĝ\{χ1}

∑
g∈G

χ(g)xgg

 .

We give factorizations of the group determinant for any given finite abelian group.
The factorizations are the generalization of Dedekind’s theorem.

Theorem 1.3.11 (Chapter 1, Theorem 1.1.4). Let G be a finite abelian group and H a
subgroup of G. For every h ∈ H, there exists a homogeneous polynomial Ah ∈ R such
that degAh = [G : H] and

Θ(G) =
∏
χ∈Ĥ

∑
h∈H

χ(h)Ah.

If H = G, we can take Ah = xh for each h ∈ H.

Proof. From Theorem 1.3.9 and the fundamental RG-function, we have

Θ(G) =
∏
χ∈Ĥ

∑
h∈H

χ(h)Ah.

This completes the proof.
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Chapter 2

Factorizations of group
determinant in group algebra for
any abelian subgroup

2.1 Introduction

In this chapter, we give an extension and generalization of Dedekind’s theorem over those
presented in Chapter 1. The generalization in turn leads to a corollary on irreducible
representations of finite groups. In addition, if a finite group has an index-two abelian
subgroup, we can define a conjugation of elements of the group algebra by using the
further extension of Dedekind’s theorem.

Let G be a finite group, Ĝ a complete set of irreducible representations of G over
C, and Θ(G) the group determinant of G. The group determinant Θ(G) is the determi-
nant of a matrix whose elements are independent variables xg corresponding to g ∈ G.
Dedekind proved the following theorem about the irreducible factorization of the group
determinant for any finite abelian group.

Theorem 2.1.1 (Chapter 1, Theorem 1.1.1). Let G be a finite abelian group. We have

Θ(G) =
∏
χ∈Ĝ

∑
g∈G

χ(g)xg.

Frobenius proved the following theorem about the irreducible factorization of the
group determinant for any finite group; thus, he gave a generalization of Dedekind’s
theorem.

Theorem 2.1.2 (Chapter 1, Theorem 1.1.2). Let G be a finite group. Then we have
the irreducible factorization

Θ(G) =
∏
φ∈Ĝ

det

∑
g∈G

φ(g)xg

degφ

.
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Let CG be the group algebra of G over C, R = C [xg; g ∈ G] the polynomial ring in

{xg | g ∈ G} with coefficients in C, RG = R ⊗ CG =
{∑

g∈GAgg |Ag ∈ R
}

the group

algebra of G over R, H an abelian subgroup of G, and [G : H] the index of H in G.
Chapter 1 gives the following extension and generalization of Dedekind’s theorem that
are different from the theorem by Frobenius.

Theorem 2.1.3 ([Chapter 1, Theorem 1.3.9]). Let G be a finite abelian group, e the
unit element of G, and H a subgroup of G. For every h ∈ H, there exists a homogeneous
polynomial ah ∈ R such that deg ah = [G : H] and

Θ(G)e =
∏
χ∈Ĥ

∑
h∈H

χ(h)ahh.

If H = G, we can take ah = xh for each h ∈ H.

Theorem 2.1.4 ([Chapter 1, Theorem 1.3.11]). Let G be a finite abelian group and H
a subgroup of G. For every h ∈ H, there exists a homogeneous polynomial ah ∈ R such
that deg ah = [G : H] and

Θ(G) =
∏
χ∈Ĥ

∑
h∈H

χ(h)ah.

If H = G, we can take ah = xh for each h ∈ H.

Here, we give a further extension of Theorem 2.1.3 and generalization of Theo-
rem 2.1.4.

2.1.1 Results

The following theorem is the further extension of Dedekind’s theorem.

Theorem 2.1.5 (Further extension of Dedekind’s theorem). Let G be a finite group, e
the unit element of G, and H an abelian subgroup of G. For every h ∈ H, there exists
a homogeneous polynomial ah ∈ R such that deg ah = [G : H] and

Θ(G)e =
∏
χ∈Ĥ

∑
h∈H

χ(h)ahh.

If H is normal and h is a conjugate of h′ on G, then ah = ah′.

Note that the equality in Theorem 2.1.5 is an equality in RH. Theorem 2.1.5 is
proved using an extension of the group determinant Θ(G : H). The group determinant
Θ(G : H) is an element of RH, and it is defined by using a left regular representation of
RH. The left regular representation is reviewed in Section 2.2. In addition, Section 2.2
gives two expressions for the regular representation and shows that composition of regular
representations is a regular representation. These expressions are helpful for describing
some of the properties of Θ(G : H).
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Above, we said that the group determinant is defined by using a left regular rep-
resentation. In more detail, we define a noncommutative determinant by using a left
regular representation and define the group determinant by using the noncommutative
determinant. We know that the noncommutative determinant is analogous to the Study
determinant [3]. The Study determinant is a quaternionic determinant, defined by using
the regular representation ψ of the quaternions. In Sections 2.3 and 2.4, we describe the
relationship between the noncommutative determinant and the Study determinant and
their properties.

In the next section, we define the extension of the group determinant Θ(G : H) and
give some properties of Θ(G : H).

In Section 2.6, we prove the further extension and generalization of Dedekind’s the-
orem. In particular, Theorem 2.1.5 leads to the following theorem that is the further
generalization of Dedekind’s theorem.

Theorem 2.1.6 (Further generalization of Dedekind’s theorem). Let G be a finite group
and H an abelian subgroup of G. For every h ∈ H, there exists a homogeneous polynomial
ah ∈ R such that deg ah = [G : H] and

Θ(G) =
∏
χ∈Ĥ

∑
h∈H

χ(h)ah.

If H is normal and h is a conjugate of h′ on G, then ah = ah′.

From Theorem 2.1.6, we have the following corollary on irreducible representations
of finite groups.

Corollary 2.1.7. Let G be a finite group and H an abelian subgroup of G. For all
φ ∈ Ĝ, we have

degφ ≤ [G : H].

In the last section, we define a conjugation of the group algebra of the group which
has an index two abelian subgroup. The conjugation comes from the noncommutative
determinant. By applying the conjugation, we arrive at an inverse formula of 2 × 2
matrix.

2.2 Regular representation

Here, we describe the left regular representation of the group algebra and give two
expressions for the representation. In addition, we show that a composition of regular
representations is a regular representation.

Let R be a commutative ring, G a group, H a subgroup of G of finite index, and RG
the group algebra of G over R whose elements are all possible finite sums of the form∑

g∈G agg, where ag ∈ R. We take a complete set T = {t1, t2, . . . , t[G:H]} of left coset
representatives of H in G, where [G : H] is the index of H in G.
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Definition 2.2.1 (Left regular representation). For all A ∈ Mat(m,RG), there exists a
unique LT (A) ∈ Mat(m[G : H], RH) such that

A(t1Im t2Im · · · t[G:H]Im) = (t1Im t2Im · · · t[G:H]Im)LT (A).

We call the map LT : Mat(m,RG) ∋ A 7→ LT (A) ∈ Mat(m[G : H], RH) the left regular
representation from Mat(m,RG) to Mat(m[G : H], RH) with respect to T .

Obviously, LT is an injective R-algebra homomorphism.

Example 2.2.2. Let G = Z/2Z = {0, 1}, H = {0}, and α = x0 + y1 ∈ RG. Then, we
have

α(0 1) = (0 1)

[
x0 y0
y0 x0

]
.

To give an expression for LT when H is a normal subgroup of G, we define the map
χ̇ by

χ̇(g) =

{
1 g ∈ H,

0 g /∈ H

for all g ∈ G and we denote (i, j) the m ×m block element of an (mn) × (mn) matrix
M by M(i,j). We can now prove the following theorem.

Lemma 2.2.3. Let H be a normal subgroup of G, LT : Mat(m,RG) → Mat(m[G :
H], RH) the left regular representation with respect to T , and A =

∑
t∈T tAt ∈ Mat(m,RG),

where At ∈ Mat(m,RH). Then we have

LT (A)(i,j) =
∑
t∈T

χ̇(t−1
i ttj)t

−1
i tAttj .

Proof. Let r = [G : H]. Then we have

(t1Im t2Im · · · trIm)

(∑
t∈T

χ̇
(
t−1
i ttj

)
t−1
i tAttj

)
1≤i≤r,1≤j≤r

=

(
r∑
i=1

∑
t∈T

χ̇(t−1
i tt1)tAtt1

r∑
i=1

∑
t∈T

χ̇(t−1
i tt2)tAtt2 · · ·

r∑
i=1

∑
t∈T

χ̇(t−1
i ttm)tAttr

)

=

(∑
t∈T

tAt

)
(t1Im t2Im · · · trIm).

This completes the proof.
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To get another expression for LT when H is a normal subgroup of G, we recall
the Kronecker product. Let A = (aij)1≤i≤m1,1≤j≤n1 be an m1 × n1 matrix and B =
(bij)1≤i≤m2,1≤j≤n2 be an m2×n2 matrix. The Kronecker product A⊗B is the (m1m2)×
(n1n2) matrix,

A⊗B =


a11B a12B · · · a1n1B
a21B a22B · · · a2n1B
...

...
. . .

...
am11B am12B · · · am1n1B

 .
Let e be the unit element of G and |G| the order of G. If G = {g1, g2, . . . , g|G|}

is a finite group. Then the restriction of the left regular representation LG : G →
Mat(|G|, R{e}) with respect to G is

LG(g)ij = χ̇(g−1
i ggj)e

from Lemma 2.2.3. We often assume that R{e} = R; thus, we often assume that
e = 1 ∈ R. So, we can see that LG is a matrix form of the left regular representation of
the group G.

Let

P =


t1Im

t2Im
. . .

t[G:H]Im

 .
Thus, we have the following lemma.

Lemma 2.2.4. Let H be a normal subgroup of G, LT the left regular representa-
tion from Mat(m,RG) to Mat(m[G : H], RH) with respect to T , LG/H the left reg-
ular representation from R(G/H) to Mat(|G/H|, R{eH}) with respect to G/H, and
A =

∑
t∈T tAt ∈ Mat(m,RG), where At ∈ Mat(m,RH). Accordingly, we have

LT (A) = P−1

(∑
t∈T

LG/H(tH)⊗ tAt

)
P.

Proof. From Lemma 2.2.3, we have(
P−1

(∑
t∈T

LG/H ⊗ tAt

)
P

)
(i,j)

= t−1
i Im

(∑
t∈T

(
LG/H(tH)

)
ij
tAt

)
tjIm

=
∑
t∈T

χ̇(t−1
i ttj)t

−1
i tAttj

= LT (A)(i,j).

This completes the proof.
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We now show that a composition of regular representations is a regular representa-
tion. Theorem 2.6.5 requires the following lemma.

Lemma 2.2.5. Let K ⊂ H ⊂ G be a sequence of groups, G = t1H ∪ t2H ∪ · · · ∪
t[G:H]H, H = u1K ∪ u2K ∪ · · · ∪ u[H:K]K, LT : Mat(m,RG) → Mat(m[G : H], RH) the
representation with respect to T , and LU : Mat(m[G : H], RH) → Mat(m[G : K], RK)
the representation with respect to U . Then there exists a unique representation LV from
Mat(m,RG) to Mat(m[G : K], R{e}) with respect to V such that

LV = LU ◦ LT

where V = {v1, v2, . . . , v[G:K]} is a complete set of the left coset representatives of K in
G

Proof. Let A ∈ Mat(m,RG), r = [G : H], and s = [H : K]. By definition, we have

A(t1Im t2Im · · · trIm) = (t1Im t2Im · · · trIm)LT (A),

LT (A)(u1Imr u2Imr · · · usImr) = (u1Imr u2Imr · · · usImr)LU (LT (A)).

Let (aij)1≤i≤r,1≤j≤r = LT (A) and (bij)1≤i≤s,1≤j≤s = LU (LT (A)), where aij ∈ Mat (m,RH)
and bij ∈ Mat (mr,RH). Then we have

(aij)1≤i≤r,1≤j≤rupImr =
s∑
q=1

uqbqp.

We obtain

aijup =

s∑
q=1

uq(bqp)ij .

Therefore, we have

(Ati)uj =

 r∑
p=1

tpapi

uj

=
r∑
p=1

tp(apiuj)

=
r∑
p=1

tp

 s∑
q=1

uq(bqj)pi


=

r∑
p=1

s∑
q=1

tpuq(bqj)pi.

On the other hand, obviously V = {tpuq | 1 ≤ p ≤ r, 1 ≤ q ≤ s} is a complete set of left
coset representatives of K in G. From

Atiuj =
r∑
p=1

s∑
q=1

tpuq(bqj)pi,
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we have

A(t1u1Im · · · tru1Im t1u2Im · · · tru2Im · · · trusIm)

= (t1u1Im · · · tru1Im t1u2Im · · · tru2Im · · · trusIm)LU (LT (A)).

This completes the proof.

2.3 Characteristics of image of representation when quo-
tient group is abelian

In this section, we assume that G/H is a finite abelian group. Let

LT (Mat(m,RG)) = {LT (A) |A ∈ Mat(m,RG)}

and

Jt = P−1
(
LG/H(tH)⊗ Im

)
P

for all t ∈ T . The following lemma will be used to show that B ∈ Mat(m[G : H], RH)
is an image of LT if and only if B commutes with Jt.

Lemma 2.3.1. Let G/H be a finite abelian group and LT the left regular representation
from Mat(m,RG) to Mat(m[G : H], RH) with respect to T . Then, the elements of
LT (Mat(m,RG)) and Jt for all t ∈ T are commutative.

Proof. SupposeA =
∑

t∈T tAt ∈ Mat(m,RG), whereAt ∈ Mat(m,RH). From Lemma 2.2.4,
we have LT (A) = P−1

(∑
t∈T LG/H(tH)⊗ tAt

)
. Therefore, we have

LT (A)Jt′ = P−1

(∑
t∈T

LG/H(tH)⊗ tAt

)
PP−1

(
L(t′H)⊗ Im

)
P

= P−1

(∑
t∈T

LG/H(tt
′H)⊗ tAt

)
P

= P−1

(∑
t∈T

LG/H(t
′tH)⊗ tAt

)
P

= Jt′LT (A)

for all t′ ∈ T . This completes the proof.

Now we are in a position to prove the following theorem.

Theorem 2.3.2. Let G/H be a finite abelian group and LT the left regular representation
from Mat(m,RG) to Mat(m[G : H], RH) with respect to T . We have

LT (Mat(m,RG)) = {B ∈ Mat(m[G : H], RH) | JtB = BJt, t ∈ T} .
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Proof. From Lemma 2.3.1, we have

LT (Mat(m,RG)) ⊂ {B ∈ Mat(m[G : H], RH) | JtB = BJt, t ∈ T} .

We will show that

{B ∈ Mat(m[G : H], RH) | JtB = BJt, t ∈ T} ⊂ LT (Mat(m,RG)).

For all B ∈ Mat(m[G : H], RH), there exists A ∈ Mat(m,RG) and Bij ∈ Mat(m,RH)
such that

B = LT (A) +B′

where

B′ =


0 B12 B13 · · · B1[G:H]

0 B22 B23 · · · B2[G:H]
...

...
...

. . .
...

0 B[G:H]2 B[G:H]3 · · · B[G:H][G:H]

 .
From Lemma 2.3.1, we have B′Jt = JtB

′. For all p ∈ {2, 3, . . . , [G : H]}, there exists
t ∈ T such that Jt(p,1) = tpImt

−1
1 and Jt(i,1) = 0 for all i ̸= p. Therefore, we have

BqptpImt
−1
1 = (B′Jt)(q,1)

= (JtB
′)(q,1)

= 0

for all q ∈ {1, 2, . . . , [G : H]}. Thus, we have B = LT (A) ∈ LT (Mat(m,RG)). This
completes the proof.

Theorem 2.3.2 is similar to a property of a left regular representation of the quater-
nions H. Let C + jD ∈ Mat(m,H), where C,D ∈ Mat(m,C), and C the complex
conjugation matrix of C. Then we have (C + jD)(Im jIm) = (Im jIm)ψ(C + jD),
where

ψ(C + jD) =

[
C −D
D −C

]
.

Hence, ψ : Mat(m,H) ∋ C + jD 7→ ψ(C + jD) ∈ Mat(2m,C) is a left regular represen-
tation. The following is known for the image of ψ [3].

ψ(Mat(m,H)) =
{
B ∈ Mat(2m,C) | JB = BJ

}
where

J =

[
0 −Im
Im 0

]
.
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2.4 Noncommutative determinant and some properties

In this section, we give a noncommutative determinant and describe its properties. This
determinant is analogous to the Study determinant. Hence, we will define the determi-
nant by using the regular representation of the group algebra.

Before defining the noncommutative determinant, we explain that we do not have to
distinguish between the left and right inverses. Let H be an abelian subgroup of G.

Lemma 2.4.1 (Invertibility). For all A,B ∈ Mat(m,RG), AB = Im if and only if
BA = Im.

Proof. Let AB = Im. We have LT (A)LT (B) = Im[G:H]. The elements of LT (A) and the
elements of LT (B) are elements of a commutative ring. Hence, LT (B)LT (A) = Im[G:H].
Therefore, LT (BA− Im) = 0. Since LT is an injective, we have BA = Im.

The noncommutative determinant is as follows.

Definition 2.4.2. Let H be an abelian subgroup of G and L be a left regular representa-
tion from Mat(m,RG) to Mat(m[G : H], RH). We define the map Det : Mat(m,RG) →
RH by

Det = det ◦ L.

Let T ′ = {t′1, t′2, . . . , t′m} be another complete set of left coset representatives of H in
G. Then, there exists Q ∈ Mat(m,RH) such that LT = Q−1LT ′Q. Therefore, we have

Det = det ◦ LT
= det ◦ LT ′ .

Thus, Det is an invariant under a change of the left regular representation; hence, Det
is well-defined.

Det has the following properties.

Theorem 2.4.3. For all A,B ∈ Mat(m,RG),

(1) Det(AB) = Det(A)Det(B).

(2) A ∈ Mat(m,RG) is invertible if and only if Det(A) ∈ RH is invertible.

Proof. Det is a multiplicative map, because LT and det are multiplicative maps. There-
fore, the equation (1) holds. Now let us prove (2). If A is invertible, there exists
B ∈ Mat(m,RG) such that AB = Im. Hence, LT (A)LT (B) = Im[G:H], LT (A) is invert-
ible. Conversely, if Det(A) is invertible, there exists B ∈ Mat(m[G : H], RH) such that
LT (A)B = Im[G:H]. Therefore,

A(t1Im t2Im · · · t[G:H]Im)B = (t1Im t2Im · · · t[G:H]Im)Im[G:H].

Thus, A is invertible.
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Next let us define characteristic polynomial of A ∈ Mat(m,KG).

Definition 2.4.4 (Characteristic polynomial). Let H be an abelian subgroup of G and
L be a left regular representation from Mat(m,RG) to Mat(m[G : H], RH). For all
A ∈ Mat(m,RG), we define ΦA(X) by

ΦA(X) = Det(XIm −A)

= det(XIm[G:H] − LT (A))

where X is an independent variable such that LT (XB) = XLT (B) and αX = Xα for
any B ∈ Mat(m,RG) and α ∈ RH.

We have the following lemma.

Lemma 2.4.5. Let H be a normal abelian subgroup of G and ΦA(X) the characteristic
polynomial of A over RH. Then we have Φg−1Ag(X) = ΦA(X) for all g ∈ G.

Proof. Since fg : G/H ∋ tiH 7→ gtiH ∈ G/H is a bijection for all g ∈ G, for all g ∈ G,
there exists P ∈ Mat(m[G : H], RH) such that

g(t1Im t2Im · · · t[G:H]Im) = (t1Im t2Im · · · t[G:H]Im)P.

Therefore, we have

Φg−1Ag(X) = det (XIm[G:H] − LT (g
−1Ag))

= det (XIm[G:H] − P−1LT (A)P )

= ΦA(X).

Here, we should remark that P−1LT (A)P ∈ Mat(m[G : H], RH), since H is a normal
subgroup of G. This completes the proof.

We denote the center of the ring R by Z(R). The following corollary will be used in
the proof of Theorem 2.6.5.

Corollary 2.4.6. Let H be a normal abelian subgroup of G and

ΦA(X) = Xm[G:H] + am[G:H]−1X
m[G:H]−1 + · · ·+ a0

the characteristic polynomial of A over RH. Then we have ai ∈ Z(RG)∩RH for all 0 ≤
i ≤ m[G : H]−1. In particular, a0 = Det(A) and am[G:H]−1 = Tr(L(A)) ∈ Z(RG)∩RH.

Next let us prove a Cayley-Hamilton type theorem for ΦA(X).

Theorem 2.4.7 (Cayley-Hamilton type theorem). Let

ΦA(X) = Xm[G:H] + am[G:H]−1X
m[G:H]−1 + · · ·+ a0

be the characteristic polynomial of A over RH. We have

ΦA(A) = Am[G:H] + am[G:H]−1A
m[G:H]−1 + · · ·+ a0Im

= 0.
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Proof. From the Cayley-Hamilton theorem for commutative rings,

LT (A)
m[G:H] + am[G:H]−1LT (A)

m[G:H]−1 + · · ·+ a0Im = 0

and A(t1Im t2Im · · · t[G:H]Im) = (t1Im t2Im · · · t[G:H]Im)LT (A), we have

ΦA(A)(t1Im t2Im · · · t[G:H]Im) = (t1Im t2Im · · · t[G:H]Im)0

= (0 0 · · · 0)

Thus, we have ΦA(A) = 0. This completes the proof.

The noncommutative determinant Det is analogous to the Study determinant. There-
fore, these determinant have similar properties.

The Study determinant Sdet is defined by det ◦ ψ : Mat(m,H) → C. The Study
determinant has the following properties [3]. For all A,B ∈ Mat(m,H),

(1) SdetAB = SdetA SdetB.

(2) A ∈ Mat(m,H) is invertible if and only if SdetA ̸= 0.

(3) SdetA ∈ R. Hence, SdetA is a central element of H.

That is, Theorem 2.4.3 and Corollary 2.4.6 are similar to the above properties.

2.5 Extension of the group determinant in the group alge-
bra for any abelian subgroup

Here, we extend the group determinant in the group algebra for any subgroup and show
that the extension determines invertibility in Mat(m,RG). First, let us recall the group
determinant.

Let G be a finite group, {xg | g ∈ G} be independent commuting variables, and
R = C[xg; g ∈ G] the polynomial ring in {xg | g ∈ G} with coefficients in C. The
group determinant Θ(G) ∈ R is the determinant of a |G|× |G| matrix (xg,h)g,h∈G, where

xg,h = xgh−1 for g, h ∈ G, and is thus a homogeneous polynomial of degree |G| in xg.
Now let us extend the group determinant in the group algebra for any abelian sub-

group.

Definition 2.5.1 (Extension of the group determinant). Let G be a finite group, H an
abelian subgroup of G, α =

∑
g∈G xgg ∈ RG, and L : RG → Mat([G : H], RH) a left

regular representation. We define

Θ(G : H) = (det ◦ L)(α).

We call Θ(G : H) an extension of the group determinant in the group algebra RH.

If H = {e}, we know that Θ(G : H) = Θ(G)e. Thus, we can prove the following
lemma.
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Lemma 2.5.2. Let G be a finite group, Θ(G) the group determinant of G, α =
∑

g∈G xgg ∈
RG, and L : RG→ Mat(|G|, R{e}) a left regular representation. We have

Θ(G : {e}) = (det ◦ L)(α)
= Θ(G)e.

Proof. Let LG be the left regular representation from RG to Mat(|G|, R{e}) with respect
to G. From Lemma 2.2.3, we have

LG

∑
g∈G

xgg


ij

=
∑
g∈G

χ̇(g−1
i ggj)xgg

−1
i ggj

=

{
xge g−1

i ggj = e,

0 g−1
i ggj ̸= e.

Therefore, we have

LG(α) =
(
xgig−1

j
e
)
1≤i≤|G|,1≤j≤|G|

.

This completes the proof.

Let us explain how the extension of the group determinant determines invertibility.
Now the situation is that xg is an element of R for any g ∈ G. Hence, we assume that∑

g∈G xgg ∈ RG and Θ(G) = det (xgh−1)g,h∈G ∈ R. Accordingly, we get the following
theorem from Theorem 2.4.3.

Theorem 2.5.3. Let α =
∑

g∈G xgg ∈ RG. Then α is invertible if and only if Θ(G : H)
is invertible.

Obviously, Θ(G : {e}) = Θ(G)e is invertible if and only if Θ(G) ̸= 0. Therefore, we
get the following corollary.

Corollary 2.5.4. Let α =
∑

g∈G xgg ∈ RG. Then α is invertible if and only if Θ(G) ̸=
0.

2.6 Factorizations of the group determinant in the group
algebra for any abelian subgroup

In this section, we give factorizations of the group determinant in the group algebra
of abelian subgroups. The factorizations compose a further extension of Dedekind’s
theorem upon the one presented in Chapter 1. This extension in turn leads to a further
generalization of Dedekind’s theorem. Moreover, the generalization leads to a corollary
on irreducible representations of finite groups.

First, we give a number of lemmas that will be needed later. The following theorem
is well known.

26



Theorem 2.6.1 ([15, Theorem 4.4.4]). Let G be a finite group, Ĝ = {φ1, φ2, . . . , φs}
a complete set of inequivalent irreducible representations of G, di = degφi, and LG the
left regular representation of G. We have

LG ∼ d1φ1 ⊕ d2φ2 ⊕ · · · ⊕ dsφs.

Let Mul(G,R) be the set of multiplicative maps from G to R and χ ∈ Mul(G,R).

We define F
(m)
χ : Mat(m,RG) → Mat(m,RG) by

F (m)
χ

∑
g∈G

xij(g)g


1≤i≤m,1≤j≤m

 =

∑
g∈G

χ(g)xij(g)g


1≤i≤m,1≤j≤m

where xij(g) ∈ R. Now we have the following lemmas.

Lemma 2.6.2. Let G be an abelian group, χ ∈ Mul(G,R), and A =
∑

g∈GAgg ∈
Mat(m,RG), where Ag ∈ Mat(m,R). If detA =

∑
g∈G agg, where ag ∈ R, we have

det

∑
g∈G

χ(g)Agg

 =
∑
g∈G

χ(g)agg.

Hence, we have
det ◦ F (m)

χ = F (1)
χ ◦ det .

Proof. Let A =
(∑

g∈G aij(g)g
)
1≤i≤m,1≤j≤m

, where aij(g) ∈ R. Then we have

detA =
∑
σ∈Sm

sgn(σ)

 m∏
i=1

∑
g∈G

aσ(i)i(g)g



Therefore, we have ∑
g∈G

χ(g)agg = F (1)
χ (detA)

= F (1)
χ

 m∏
i=1

∑
g∈G

aσ(i)i(g)g

 .

From χ ∈ Mul(G,R), we have

F (1)
χ

∑
σ∈Sm

sgn(σ)

 m∏
i=1

∑
g∈G

aσ(i)i(g)g

 =
∑
σ∈Sm

sgn(σ)

 m∏
i=1

∑
g∈G

aσ(i)i(g)χ(g)g


= det

∑
g∈G

aij(g)χ(g)g


1≤i,j≤m

= det
(
F (m)
χ (A)

)
.
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This completes the proof.

Lemma 2.6.3. Let G be an abelian group, H a subgroup of G, L a left regular represen-
tation from Mat(m,RG) to Mat(m[G : H], RH), and

∑
t∈T tAt ∈ Mat(m,RG), where

At ∈ Mat(m,RH). We have

(det ◦ L)

(∑
t∈T

tAt

)
=

∏
χ∈Ĝ/H

det

(∑
t∈T

χ(tH)tAt

)
.

Proof. From Lemma 2.2.4 and Theorem 2.6.1,

(det ◦ L)

(∑
t∈T

tAt

)
= det

(
P−1

(∑
t∈T

LG/H(tH)⊗ tAt

)
P

)

= det

(∑
t∈T

LG/H(tH)⊗ tAt

)

=
∏

χ∈Ĝ/H

det

(∑
t∈T

χ(tH)⊗ tAt

)

=
∏

χ∈Ĝ/H

det

(∑
t∈T

χ(tH)tAt

)
.

This completes the proof.

Lemma 2.6.4. Let G be an abelian group, H a subgroup of G, L1 a left regular repre-
sentation from Mat(m,RG) to Mat(m[G : H], RH), and L2 a left regular representation
from RG to Mat([G : H], RH). Then the following diagram is commutative.

RG
L2

((QQQ
QQQQ

Mat(m,RG)

L1

��

det
55lllllll

Mat([G : H], RH)

det

� �

Mat(m[G : H], RH)
det // RH

Proof. Let A =
∑

t∈T tAt and detA =
∑

t∈T tat, where At ∈ Mat(m,RH) and at ∈ RH.
From Lemma 2.6.3, we have

(det ◦ L1)(A) =
∏

χ∈Ĝ/H

det

(∑
t∈T

χ(tH)tAt

)
.
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and

(det ◦ L2 ◦ det ) (A) = (det ◦ L2)

(∑
t∈T

tat

)

=
∏

χ∈Ĝ/H

(∑
t∈T

χ(tH)tat

)
.

We regard χ : G/H → R as χ : G ∋ g 7→ χ(gH) ∈ R. Accordingly, we have

∏
χ∈Ĝ/H

det

(∑
t∈T

χ(tH)tAt

)
=

∏
χ∈Ĝ/H

(det ◦ F (m)
χ )(A)

=
∏

χ∈Ĝ/H

(F (1)
χ ◦ det )(A)

=
∏

χ∈Ĝ/H

F (1)
χ

(∑
t∈T

tat

)

=
∏

χ∈Ĝ/H

∑
t∈T

χ(tH)tat

by Lemma 2.6.2. This completes the proof.

Now we are ready to state and prove the further extension of Dedekind’s theorem.

Theorem 2.6.5 (Chapter 2, Theorem 2.1.5). Let G be a finite group and H be an
abelian subgroup of G. For every h ∈ H, there exists a homogeneous polynomial ah ∈ R
such that deg ah = [G : H] and

Θ(G)e =
∏
χ∈Ĥ

∑
h∈H

χ(h)ahh.

If H is normal and h is a conjugate of h′ on G, then ah = ah′.

Proof. Let L1 be a left regular representation from RG to Mat([G : H], RH), L2 a
left regular representation from Mat([G : H], RH) to Mat(|G|, R{e}), L3 a left regular

representation from RH to Mat(|H|, R{e}), and (det ◦ L1)
(∑

g∈G xgg
)
=
∑

h∈H ahh,

where ah ∈ R. From Lemmas 2.2.5 and 2.5.2, we have

(det ◦ L2 ◦ L1)

∑
g∈G

xgg

 = Θ(G)e.
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On the other hand, we have

(det ◦ L3 ◦ det ◦ L1)

∑
g∈G

xgg

 = (det ◦ L3)

(∑
h∈H

ahh

)

=
∏
χ∈Ĥ

(∑
h∈H

χ(h)ahh

)

by Lemma 2.6.3. From Lemma 2.6.4, we can build the following commutative diagram.

RG
L1

**TTT
TTTT

TT RH
L3

((PP
PPP

P

Mat([G : H], RH)

L2

��

det
66llllll

Mat(|H|, R{e})

det

��

Mat(|G|, R{e}) det // R{e}

Therefore, we have

Θ(G)e =
∏
χ∈Ĥ

∑
h∈H

χ(h)ahh.

If H is a normal subgroup of G, we have

(det ◦ L1)

∑
g∈G

xgg

 =
∑
h∈H

ahh ∈ Z(RG)

by Corollary 2.4.6. Hence, ah = ah′ when h is a conjugate h′ on G. This completes the
proof.

Now we are in a position to state and prove the further generalization of Dedekind’s
theorem. Let F : RG → R be the R-algebra homomorphism such that F (g) = 1 for all
g ∈ G. We call the map F the fundamental RG-function.

Theorem 2.6.6 (Chapter 2, Theorem 2.1.6). Let G be a finite group and H an abelian
subgroup of G. For every h ∈ H, there exists a homogeneous polynomial ah ∈ R such
that deg ah = [G : H] and

Θ(G) =
∏
χ∈Ĥ

∑
h∈H

χ(h)ah.

If H is normal and h is a conjugate of h′ on G, then ah = ah′.

Proof. From Theorem 2.6.5 and the fundamental RG-function, we have

Θ(G) =
∏
χ∈Ĥ

∑
h∈H

χ(h)ah.

This completes the proof.
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From Theorems 2.1.2 and 2.6.6, we have the following corollary.

Corollary 2.6.7 (Chapter 2, Corollary 2.1.7). Let G be a finite group and H an abelian
subgroup of G. For all φ ∈ Ĝ, we have

degφ ≤ [G : H].

Remark that Corollary 2.6.7 follows from Frobenius reciprocity[12].

2.7 Conjugate of the group algebra of the groups which
have an index two abelian subgroup

In this section, we define a conjugation of elements of the group algebra of the group
which has an index-two abelian subgroup.

First, we recall the conjugation of elements ofH. Let z = x+jy ∈ H. The conjugation
of z is defined as z = x− jy. The conjugation has the following properties.

(1) Sdetz = zz.

(2) z = z.

(3) z + z and zz = zz ∈ R = Z(H).

(4) zw = w z (w ∈ H).

(5) z = z if and only if z ∈ R.
We refer to the above for definition of the conjugation of elements of the group algebra.

Let R be a commutative ring, G a group, H an index-two abelian subgroup of G,
T = {e, t} a complete set of left coset representatives of H in G, LT the left regular
representation from RG to Mat(2, RH) with respect to T , and A = α + tβ ∈ RG. We
have

LT (A) =

[
α tβt
β t−1αt

]
and

ΦA(X) = det

[
X − α tβt
β X − t−1αt

]
= X2 − (α+ t−1αt)X + αt−1αt− βtβt.

We notice that

(X − (α+ tβ))(X − (t−1αt− tβ))

= X2 − (t−1αt− tβ)X − (α+ tβ)X + (α+ tβ)(t−1αt− tβ)

= X2 − (α+ t−1αt)X + αt−1αt− αtβ + (tβt−1)αt− (tβt)β

= X2 − (α+ t−1αt)X + αt−1αt− αtβ + α(tβt−1)t− β(tβt)

= X2 − (α+ t−1αt)X + αt−1αt− βtβt

= ΦA(X).
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Therefore, we define the conjugate of A = α+ tβ by

A = t−1αt− tβ.

The following theorem follows from Corollary 2.4.6 and a direct calculation:

Theorem 2.7.1. For all A,B ∈ RG,

(1) (det ◦ LT )(A) = AA.

(2) A = A.

(3) A+A and AA = AA ∈ Z(RG).

(4) AB = B A.

(5) A = A if and only if A ∈ Z(RG).

We give the inverse formula of 2× 2 matrix by conjugation.

Theorem 2.7.2. Let A,B,C,D ∈ RG. Then we have[
A B
C D

]−1

=

[
D B

C D

]
(αα− βγ)−1

[
α −β
−γ α

]
where [

α β
γ α

]
=

[
AD +BC AB +BA

CD +DC DA+ CB

]
,

and we assume that αα− βγ is invertible.

Proof. We have [
α β
γ α

]
=

[
A B
C D

] [
D B

C D

]
.

From β, γ ∈ Z(RG), these elements α, α, β, γ are interchangeable. Therefore, we can
use the inverse formula for 2× 2 matrix whose elements are in commutative ring. This
completes the proof.
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Chapter 3

Generalization of Frobenius’
theorem for group determinants

3.1 Introduction

In this chapter, we give a generalization of Frobenius’ theorem. In addition, the gener-
alization leads to a corollary on irreducible representations of finite groups.

Let G be a finite group, Ĝ a complete set of irreducible representations of G over
C, and R = C[xg] = C[xg; g ∈ G] the polynomial ring in {xg | g ∈ G} with coefficients
in C. The group determinant Θ(G) ∈ R is the determinant of a matrix whose elements
are independent variables xg corresponding to g ∈ G. Frobenius proved the following
theorem about the irreducible factorization of the group determinant.

Theorem 3.1.1 (Chapter 1, Theorem 1.1.2). Let G be a finite group. Then we have
the irreducible factorization

Θ(G) =
∏
φ∈Ĝ

det

∑
g∈G

φ(g)xg

degφ

.

Frobenius built a representation theory of finite groups in the process of obtaining
Theorem 3.1.1. Here, we give a generalization of Theorem 3.1.1, i.e., a generalization
of Frobenius’ theorem. The theorem is as follows. However, we will explain F[G:H] in
Section 3.4.

Theorem 3.1.2 (Generalization of Frobenius’ theorem). Let G be a finite group, H
a subgroup of G, L a left regular representation from RG to Mat([G : H], RH), α =∑

g∈G xgg ∈ RG, and L(α) =
∑

h∈H Chh, where Ch ∈ Mat([G : H], R{e}). Then, we
have

Θ(G) =
∏
ψ∈Ĥ

det

(∑
h∈H

ψ(h)⊗ C
F[G:H]

h

)degψ

.
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Theorem 3.1.2 leads to the following corollary.

Corollary 3.1.3. Let G be a finite group and H a subgroup of G. For all φ ∈ Ĝ, we
have

degφ ≤ [G : H]×max
{
degψ | ψ ∈ Ĥ

}
.

Theorem 3.1.2 is obtained by using left regular representations of the group algebra.
In Section 3.3, we review the left regular representation and properties of the left regular
representation needed for proving Theorem 3.1.2. The last section proves a generalization
of Theorem 3.1.1.

3.2 Group determinant

Let G be a finite group, {xg | g ∈ G} be independent commuting variables, and R =
C[xg] = C[xg; g ∈ G] the polynomial ring in {xg | g ∈ G} with coefficients in C. The
group determinant Θ(G) is the determinant of the |G| × |G| matrix (xg,h)g,h∈G, where

xg,h = xgh−1 for g, h ∈ G, and it is thus a homogeneous polynomial of degree |G| in xg.
Frobenius proved the following theorem about the factorization of the group determinant.

Theorem 3.2.1 (Chapter 3, Theorem 3.1.1). Let G be a finite group. Then we have
the irreducible factorization

Θ(G) =
∏
φ∈Ĝ

det

∑
g∈G

φ(g)xg

degφ

.

The above equation holds from the following theorem.

Theorem 3.2.2 ([15, Theorem 4.4.4]). Let G be a finite group, {φ1, φ2, . . . , φs} a com-
plete set of inequivalent irreducible representations of G, di = degφi, and LG the left
regular representation of G. Then,

LG ∼ d1φ1 ⊕ d2φ2 ⊕ · · · ⊕ dsφs.

3.3 Preparation for the main result

Here, we review the left regular representation of the group algebra and describe some
of the properties of the left regular representation that will be needed later.

Let R be a commutative ring, G a group, H a subgroup of G of finite index, and RG
the group algebra of G over R whose elements are all possible finite sums of the form∑

g∈G agg, where ag ∈ R. We take a complete set T = {t1, t2, . . . , t[G:H]} of left coset
representatives of H in G, where [G : H] is the index of H in G.
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Definition 3.3.1 (Left regular representation). For all A ∈ Mat(m,RG), there exists a
unique LT (A) ∈ Mat(m[G : H], RH) such that

A(t1Im t2Im · · · t[G:H]Im) = (t1Im t2Im · · · t[G:H]Im)LT (A).

We call the map LT : Mat(m,RG) ∋ A 7→ LT (A) ∈ Mat(m[G : H], RH) the left regular
representation from Mat(m,RG) to Mat(m[G : H], RH) with respect to T .

Obviously, LT is an injective R-algebra homomorphism.
To give an expression for LT when H is a normal subgroup of G, we will use

the Kronecker product. Let A = (aij)1≤i≤m1,1≤j≤n1 be an m1 × n1 matrix and B =
(bij)1≤i≤m2,1≤j≤n2 an m2 × n2 matrix. The Kronecker product A ⊗ B is the (m1m2) ×
(n1n2) matrix

A⊗B =


a11B a12B · · · a1n1B
a21B a22B · · · a2n1B
...

...
. . .

...
am11B am12B · · · am1n1B

 .
Let

P =


t1Im

t2Im
. . .

t[G:H]Im

 .
Now, we have the following lemma.

Lemma 3.3.2 ([21, Lemma 12]). Let H be a normal subgroup of G, LT the left regular
representation from Mat(m,RG) to Mat(m[G : H], RH) with respect to T , LG/H the left
regular representation from R(G/H) to Mat(|G/H|, R{eH}) with respect to G/H, and
A =

∑
t∈T tAt ∈ Mat(m,RG), where At ∈ Mat(m,RH). Accordingly, we have

LT (A) = P−1

(∑
t∈T

LG/H(tH)⊗ tAt

)
P.

Let K ⊂ H ⊂ G be a sequence of groups, H = u1K ∪ u2K ∪ · · · ∪ u[H:K]K and
U = {u1, u2, . . . , u[H:K]}. We can now prove the following lemma.

Lemma 3.3.3 ([21, Lemma 13]). Let LT : Mat(m,RG) → Mat(m[G : H], RH) the
representation with respect to T and LU : Mat(m[G : H], RH) → Mat(m[G : K], RK)
the representation with respect to U . Then there exists a unique representation LV from
Mat(m,RG) to Mat(m[G : K], R{e}) with respect to V such that

LV = LU ◦ LT

where V = {v1, v2, . . . , v[G:K]} is a complete set of left coset representatives of K in G
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The following lemma connects the left regular representation with the group deter-
minant.

Lemma 3.3.4 ([21, Lemma 24]). Let G be a finite group, Θ(G) the group determinant
of G, α =

∑
g∈G xgg ∈ RG, and L : RG→ Mat(|G|, R{e}) a left regular representation.

We have

(det ◦ L)(α) = Θ(G)e.

3.4 Generalization of Frobenius’ theorem

Here, we prove the generalization of Frobenius’ theorem. In addition, the proof leads to
a corollary on irreducible representations of finite groups.

We define Fm : Mat(m,RG) → Mat(m,R) by

Fm

∑
g∈G

xij(g)g


1≤i≤m,1≤j≤m

 =

∑
g∈G

xij(g)


1≤i≤m,1≤j≤m

where xij(g) ∈ R. We denote Fm(A) by A
Fm for all A ∈ Mat(m,RG).

Let G be a finite group and K a normal subgroup of G and H. The lemmas will be
needed later.

Lemma 3.4.1. Let H be a normal subgroup of G, L a left regular representation from
Mat(m,RG) to Mat(m[G : H], RH), and A =

∑
t∈T tAt, where At ∈ Mat(m,RH). We

have

(det ◦ Fm[G:H] ◦ L)(A) =
∏

φ∈Ĝ/H

det

(∑
t∈T

φ(tH)⊗AFm
t

)
.

Proof. Let L ∼ φ′
1 ⊕φ′

2 ⊕ · · · ⊕φ′
s′ where φ

′
i is an irreducible representation of G. From

Lemma 3.3.2 and Theorem 3.2.2, we find that

(det ◦ Fm[G:H] ◦ L)(A)

= det

(
P−1

(∑
t∈T

LG/H(tH)⊗ tAt

)
P

)Fm[G:H]

= det

∑
t∈T



φ′
1(tH)

φ′
2(tH)

. . .

φ′
s′(tH)

⊗AFm
t




=
∏

φ∈Ĝ/H

det

(∑
t∈T

φ(tH)⊗AFm
t

)degφ

.

This completes the proof.
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Lemma 3.4.2. Let L : Mat(m,RG) → Mat(m[G : H], RH) be a left regular rep-
resentation, A =

∑
v∈V vBv, and L(A) =

∑
u∈U uCu, where Bv ∈ Mat(m,RK) and

Cu ∈ Mat(m[G : H], RK). We have

∏
φ∈Ĝ/K

det

(∑
v∈V

φ(vK)⊗BFm
v

)degφ

=
∏

ψ∈Ĥ/K

det

(∑
u∈U

ψ(uK)⊗ C
Fm[G:H]
u

)degψ

.

Proof. From Lemmas 3.3.3 and 3.4.1, we have∏
φ∈Ĝ/K

det

(∑
v∈V

φ(vK)⊗BFm
v

)degφ

= (det ◦ Fm[G:K] ◦ LV )(A)

= (det ◦ Fm[G:K] ◦ LU ◦ LT )(A)
= (det ◦ Fm[G:K] ◦ LU ◦ L)(A)

= (det ◦ Fm[G:K] ◦ LU )

(∑
u∈U

uCu

)

=
∏

ψ∈Ĥ/K

det

(∑
u∈U

ψ(uK)⊗ C
Fm[G:H]
u

)degψ

.

This completes the proof.

The following is the proof of the generalization of Frobenius’ theorem.

Theorem 3.4.3 (Chapter 3, Theorem 3.1.2). Let G be a finite group, Θ(G) the group
determinant of G, H a subgroup of G, L a left regular representation from RG to
Mat([G : H], RH), α =

∑
g∈G xgg ∈ RG, and L(α) =

∑
h∈H Chh, where Ch ∈ Mat([G :

H], R{e}). We have

Θ(G) =
∏
ψ∈Ĥ

det

(∑
h∈H

ψ(h)⊗ C
F[G:H]

h

)degψ

.

Proof. For all v ∈ V , there exists Bv ∈ Mat(m,R{e}) such that

Θ(G) = (Θ(G)e)F1

=
∏

φ∈Ĝ/{e}

det

(∑
v∈V

φ(vK)⊗BF1
v

)degφ

=
∏

ψ∈Ĥ/{e}

det

(∑
u∈U

ψ(u{e})⊗ C
F[G:H]
u

)degψ

=
∏
φ∈Ĥ

det

(∑
h∈H

ψ(h)⊗ C
F[G:H]
u

)degψ
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from Lemmas 3.3.4, 3.4.1 and 3.4.2.

The polynomial ring R is a unique factorization domain. Therefore, we have the
following corollary from Theorems 3.2.1 and 3.4.3.

Corollary 3.4.4 (Chapter 3, Corollary 3.1.3). Let G be a finite group and H a subgroup
of G. For all φ ∈ Ĝ, we have

degφ ≤ [G : H]×max
{
degψ | ψ ∈ Ĥ

}
.

Proof. We have

degφ = deg

det

∑
g∈G

φ(g)xg


≤ max

{
deg

(
det

(∑
h∈H

ψ(h)⊗ C
F[G:H]
u

))
| ψ ∈ Ĥ

}
= max

{
degψ × [G : H] | ψ ∈ Ĥ

}
= [G : H]×max

{
degψ | ψ ∈ Ĥ

}
.

This completes the proof.

Remark that Corollary 3.4.4 follows from Frobenius reciprocity[12].
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Chapter 4

Proof of some properties of
transfer using noncommutative
determinants

4.1 Introduction

A transfer is defined by Issai Schur [14] as a group homomorphism from a group to an
abelian quotient group of a subgroup of finite index. In finite group theory, transfers play
an important role in transfer theorems. Transfer theorems include, for example, Alperin’s
theorem [1, Theorem 4.2], Burnside’s theorem [8, Hauptsatz], and Hall-Wielandt’s the-
orem [6, Theorem 14.4.2].

On the other hand, Eduard Study defined the determinant of a quaternionic matrix
[3]. The Study determinant uses a regular representation from Mat(n,H) to Mat(2n,C),
where H is the quaternions. Similarly, we define a noncommutative determinant. It is
similar to the Dieudonné determinant [2].

Tôru Umeda suggested that a transfer can be derived as a noncommutative deter-
minant [16, Footnote 7]. In this paper, we develop his ideas in order to explain the
properties of the transfers by using noncommutative determinants. As a result, we give
a natural interpretation of the transfers in group theory in terms of noncommutative
determinants.

Let G be a group, H a subgroup of G of finite index, K a normal subgroup of H,
and the quotient group H/K of K in H an abelian group. The transfer of G into H/K
is a group homomorphism VG→H/K : G→ H/K. The definition of the transfer VG→H/K

uses the left (or right) coset representatives of H in G. We can show that a transfer has
the following properties.

(1) A transfer is a group homomorphism from G to H/K.

(2) A transfer is an invariant under a change of coset representatives.
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(3) A transfer by left coset representatives equals a transfer by right coset representa-
tives.

Let R be a commutative ring with unity and RG the group algebra of G over R whose
elements are all possible finite sums of the form

∑
g∈G xgg, xg ∈ R. The noncommutative

determinant uses a left (or right) regular representation from RG to Mat(m,RH), where
m is the index of H in G. We can show that the noncommutative determinant has the
following properties.

(1′) The determinant is a multiplicative map from RG to R(H/K).

(2′) The determinant is an invariant under a change of a regular representation.

(3′) Any left regular representation is equivalent to any right regular representation.

Here, our objective is to obtain the properties of transfers (1), (2), and (3) by using
the properties of noncommutative determinants (1′), (2′), and (3′).

4.2 Definition of the transfer

Here, we define the left and right transfer of G into H/K.
Let G = t1H ∪ t2H ∪ · · · ∪ tmH. That is, we take a complete set {t1, t2, . . . , tm} of

left coset representatives of H in G. We define g = ti for all g ∈ tiH.

Definition 4.2.1 (Left transfer). We define the map VG→H/K : G→ H/K by

VG→H/K(g) =

m∏
i=1

{(
gti
)−1

gti

}
K.

We call the map VG→H/K the left transfer of G into H/K.

Next, we define the right transfer of G into H/K. Let G = Hu1 ∪Hu2 ∪ · · · ∪Hum.
That is, we take a complete set {u1, u2, . . . , um} of right coset representatives of H in
G. We define g̃ = ui for all g ∈ Hui.

Definition 4.2.2 (Right transfer). We define the map ṼG→H/K : G→ H/K by

ṼG→H/K(g) =
m∏
i=1

{
uig (ũig)

−1
}
K.

We call the map ṼG→H/K the right transfer of G into H/K.

The definitions of the left and right transfers use the coset representatives of H in G.
But, we can show that the left and right transfers are invariant under a change of coset
representatives. Furthermore, we can show that a transfer is a group homomorphism
from G to H/K and a transfer by left coset representatives equals a transfer by right
coset representatives.
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4.3 Definition of the noncommutative determinant

Here, we define the noncommutative determinant.
First, we define the left regular representation of RG. We take a complete set T =

{t1, t2, . . . , tm} of left coset representatives of H in G.

Definition 4.3.1 (Left regular representation). For all α ∈ RG, there exists a unique
LT (α) ∈ Mat(m,RH) such that

α(t1 t2 · · · tm) = (t1 t2 · · · tm)LT (α).

We call the map LT : RG ∋ α 7→ LT (α) ∈ Mat(m,RH) the left regular representation
with respect to T .

Obviously, LT is an R-algebra homomorphism.
Let T ′ = {t′1, t′2, . . . , t′m} be another complete set of left coset representatives of H in

G. Then, there exists P ∈ Mat(m,RH) such that LT = P−1LT ′P .

Example 4.3.2. Let G = Z/2Z = {0, 1}, H = {0}, and α = x0 + y1 ∈ RG. Then, we
have

α(0 1) = (0 1)

[
x0 y0
y0 x0

]
.

To get an expression for LT , we define the map χ̇ by

χ̇(g) =

{
1 g ∈ H,

0 g /∈ H

for all g ∈ G.

Lemma 4.3.3. Let α =
∑

g∈G xgg. Then, we have

LT (α)ij =
∑
g∈G

χ̇
(
t−1
i gtj

)
xgt

−1
i gtj .

Proof. We have

(t1 t2 · · · tm)

∑
g∈G

χ̇
(
t−1
i gtj

)
xgt

−1
i gtj


1≤i≤m,1≤j≤m

=

 m∑
i=1

∑
g∈G

χ̇(t−1
i gt1)xggt1

m∑
i=1

∑
g∈G

χ̇(t−1
i gt2)xggt2 · · ·

m∑
i=1

∑
g∈G

χ̇(t−1
i gtm)xggtm


=

∑
g∈G

xgg

 (t1 t2 · · · tm).

This completes the proof.
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From Lemma 4.3.3, we have

LT (g)ij = χ̇
(
t−1
i gtj

)
t−1
i gtj

=

{
t−1
i gtj t−1

i gtj ∈ H,

0 t−1
i gtj ̸∈ H.

From t−1
i gtj ∈ H if and only if gtj = ti, we have

LT (g)ij =

{(
gtj
)−1

gtj t−1
i gtj ∈ H,

0 t−1
i gtj ̸∈ H.

As for the definition of the noncommutative determinant, let ψ : Mat(m,RH) →
Mat (m,R (H/K)) be a map such that

ψ ((xij))1≤i≤m,1≤j≤m = (xijK)1≤i≤m,1≤j≤m .

Obviously, ψ is an R-algebra homomorphism.

Definition 4.3.4. We define the map Det : Mat(m,RG) → R (H/K) by

Det = det ◦ ψ ◦ LT .

Since there is P such that LT = P−1LT ′P , we have

Det = det ◦ ψ ◦ LT
= det ◦ ψ ◦ LT ′ .

Thus, the determinant is an invariant under a change of left regular representations,
so the determinant Det is well-defined. If K is the commutator subgroup of H, the
determinant is similar to the Dieudonné determinant.

Obviously, the map Det is a multiplicative map. That is, Det(αβ) = Det(α)Det(β)
for all α, β ∈ RG. Therefore, we obtain properties (1′) and (2′).

Remark 4.3.5. In general, that α ∈ RG is invertible is not equivalent to that Det(α) ∈
R(H/K) is invertible. For example, let R = C, Z/2Z =

{
0, 1
}
, dihedral group D3 =

⟨a, b |a3 = b2 = e, ab = ba−1⟩ where e is the unit element of D3, G = Z/2Z×D3, H = D3

and K = [D3, D3] the commutator subgroup of H. Then α =
(
0, e
)
+
(
0, a
)
+
(
0, a2

)
is

not invertible. But, Det(α) = 9K is invertible.

4.4 Proof of the properties

Here, we prove the transfer properties by using the noncommutative determinant’s prop-
erties.
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For all g ∈ G and for all t ∈ T , there exists a unique tj ∈ T such that t−1
i gtj ∈ H.

Therefore, there exists sgn(g) ∈ {−1, 1} such that

Det(g) = det (ψ (LT (g)))

= sgn(g)

m∏
i=1

{(
gti
)−1

gti

}
K

= sgn(g)VG→H/K(g).

Thus, we have

sgn(gh)VG→H/K(gh) = Det(gh)

= Det(g)Det(h)

= sgn(g)sgn(h)VG→H/K(g)VG→H/K(h).

Hence, we obtain

sgn(gh) = sgn(g)sgn(h),

VG→H/K(gh) = VG→H/K(g)VG→H/K(h).

Therefore, from property (1′) that Det is a multiplicative map, the left transfer
VG→H/K is a group homomorphism (Assuming, that is, R = F2, and we do not consider
the signature).

Next, we show that the left transfer is an invariant under a change of coset repre-
sentatives by using property (2′) that the determinant is an invariant under a change of
regular representations. That is, we show that

m∏
i=1

{(
gti
)−1

gti

}
K =

m∏
i=1

{(
gt′i

)−1
gt′i

}
K

where we define g = t′i for all g ∈ t′iH. From property (2′), there exists sgn′(g) ∈ {−1, 1}
such that

m∏
i=1

{(
gti
)−1

gti

}
K = sgn(g)Det(g)

= sgn(g)sgn′(g)
m∏
i=1

{(
gt′i

)−1
gt′i

}
K.

Therefore, we have sgn(g)sgn′(g) = 1 and

m∏
i=1

{(
gti
)−1

gti

}
K =

m∏
i=1

{(
gt′i

)−1
gt′i

}
K.

Hence, the left transfer is an invariant under a change of coset representatives.
Now let us prove property (3) that VG→H/K = ṼG→H/K from property (3′) that any

left regular representation is equivalent to any right regular representation.
Let G = Hu1∪Hu2∪· · ·∪Hum. That is, we take a complete set U = {u1, u2, . . . , um}

of right coset representatives of H in G.
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Definition 4.4.1. For all α ∈ RG, there exists RU (α) ∈ Mat(m,RH) such that
u1
u2
...
um

α = RU (α)


u1
u2
...
um

 .

We call the map RU : RG ∋ α 7→ RU (α) ∈ Mat(m,RH) the right regular representation.

The same as the left transfer, we can show that the following lemma.

Lemma 4.4.2. Let α =
∑

g∈G xgg. Then, we have

RU (α)ij =
∑
g∈G

χ̇(uigu
−1
j )xguigu

−1
j .

Therefore, there exists s̃gn(g) ∈ {−1, 1} such that

(det ◦ ψ ◦RU ) (g) = s̃gn(g)ṼG→H/K(g)

and ṼG→H/K is an invariant under a change of coset representatives of H in G. We have
properties (1) and (2).

Since T is a complete set of left coset representatives of H in G, we can take a com-
plete set of T−1 = {t−1

1 , t−1
2 , . . . , t−1

m } of right coset representatives of H in G. Therefore,

RT−1(α)ij =
∑
g∈G

χ̇
(
t−1
i g(t−1

j )−1
)
xgt

−1
i g(t−1

j )−1

= LT (α)ij .

We obtain property (3′). As a result,

(det ◦ ψ ◦RU ) (g) = (det ◦ ψ ◦ LT ) (g).

Therefore, we have

s̃gn(g) = sgn(g),

ṼG→H/K = VG→H/K .

We obtain property (3).
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Chapter 5

Capelli elements of the group
algebra

5.1 Introduction

The Capelli identity is analogous to the product formula for the determinant in the Weyl
algebra. The identity leads to the Capelli element. It is known that the Capelli element
is a central element in the universal enveloping algebra of gln.

In recent years, An Huang gave Capelli-type identities associated with the quater-
nions and the octonions [7]. Inspired by his results, Tôru Umeda gave Capelli identities
for group determinants [17]. There are Capelli identities for irreducible representations
in the background of the Capelli identities for group determinants.

In this paper, we give a basis of the center of the group algebra of any finite group by
using Capelli identities for irreducible representations. These identities lead to Capelli
elements of the group algebra. These elements construct a basis.

First, we explain our motivation.

5.1.1 Motivation

Let G be a finite group, Ĝ a complete set of irreducible representations of G over C,
CG =

{∑
g∈G xgg | xg ∈ C

}
the group algebra, and Z(CG) the center of CG. The

following theorem is easily proved from Schur’s orthogonal relations.

Theorem 5.1.1. Let χφ be the character of φ ∈ Ĝ. The setTr

∑
g∈G

φ(g)g

 | φ ∈ Ĝ

 =

∑
g∈G

χφ(g)g | φ ∈ Ĝ


is a basis of Z(CG) where we omit the numbering of the element of the basis.

At this point, we have a simple question. Is the set
{
det
(∑

g∈G φ(g)g
)
| φ ∈ Ĝ

}
a

basis of Z(CG)? Our main result gives an answer.
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5.1.2 Main result

Let z be a complex variable, |G| the order of G, φ ∈ Ĝ, m = degφ, α = |G|
m , ui(z) =

α(m − i) − z, u(i)(z) = um(z)um−1(z) · · ·um−i+1(z), det the column determinant, and
the Capelli element for φ of the group algebra

C
φ
(z) = det

∑
g∈G

φ(g)g + α



m− 1

m− 2
. . .

0


− zIm

 ∈ C[z]⊗ CG.

Then we can prove the following relation.

Theorem 5.1.2. We have

C
φ
(z) = u(m)(z) + Tr

∑
g∈G

φ(g)g

u(m−1)(z).

The above relation leads to the following corollary.

Corollary 5.1.3. Suppose kφ ∈ C such that u(m−1)(kφ) ̸= 0. Then,{
C
φ
(kφ) | φ ∈ Ĝ

}
is a basis of Z(CG).

This is our answer. We provide some sections for the details.

5.2 Capelli identity and Capelli element

Here, we review the Capelli identity and the Capelli element.

5.2.1 Column determinant

First, we explain the column determinant. Let R be an associative algebra.

Definition 5.2.1 (Column determinant). Let A = (aij)1≤i,j≤m ∈ Mat(m,R). We define
the column determinant of A by

detA =
∑
σ∈Sm

sgn(σ)aσ(1)1aσ(2)2 · · · aσ(m)m.

Hence, we have det

[
a b
c d

]
= ad− cb.
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5.2.2 Weyl algebra

The Capelli identity is analogous to the product formula for the determinant in the Weyl
algebra. Next, we explain the Weyl algebra C[xij , ∂kl | 1 ≤ i, j, k, l ≤ m].

Let xij (1 ≤ i, j ≤ m) be variables, ∂ij = ∂
∂xij

(1 ≤ i, j ≤ m) partial differential

operators, and α ∈ C. We assume that these variables and operators are related as
follows.

For all 1 ≤ i, j, k, l ≤ m, we have

[xij , xkl] = 0, [∂ij , ∂kl] = 0, [∂ij , xkl] = αδikδjl

where δ is the Kronecker delta. Usually, we take α = 1. Here, we will not assume that
α = 1. The Weyl algebra is generated by these variables and operators.

5.2.3 Capelli identity

Next, we explain the Capelli identity. Let

X = (xij)1≤i≤m,1≤j≤m , ∂ = (∂ij)1≤i≤m,1≤j≤m ,

Π = tX∂, ♮m = diag(m− 1,m− 2, . . . , 0).

The Capelli identity is as follows.

Theorem 5.2.2 (Capelli identity). We have

det (Π + α♮m) = detX det ∂.

Example 5.2.3. Let m = 2 and α = 1. We have

det

[
x11∂11 + x21∂21 + 1 x11∂12 + x21∂22
x12∂11 + x22∂21 x21∂12 + x22∂12

]
= det

[
x11 x12
x21 x22

]
det

[
∂11 ∂12
∂21 ∂22

]
.

5.2.4 Capelli element

The Capelli element is a characteristic polynomial of Π. Let z be a variable.

Definition 5.2.4 (Capelli element). We define the Capelli element C(z) by

C(z) = det (Π + α♮m − zIm).

The Capelli identity is conjugation invariant.

Theorem 5.2.5. For all P ∈ GL(m,C), we have

det
(
PΠP−1 + α♮m − zIm

)
= C(z).

The following theorem plays an important role in what follows.

Theorem 5.2.6. For all 1 ≤ i, j ≤ m, we have

[Πij , C(z)] = 0.

Theorem 5.2.5 and 5.2.6 are obtained only by the following relations.
For all 1 ≤ i, j, k, l ≤ m, [Πij ,Πkl] = α(δjkΠil − δilΠkj).
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5.3 Capelli identity for irreducible representations

Here, we explain the Capelli identities for irreducible representations.
Let G be a finite group, xg (g ∈ G) variable and ∂g =

∂
∂xg

(g ∈ G) partial differential
operator. We assume that the following relations hold.

For all g, h ∈ G,

[xg, xh] = 0, [∂g, ∂h] = 0, [∂g, xh] = δgh.

Then, we have the Weyl algebra C[xg, ∂h]. Next, we construct Weyl subalgebras of the
Weyl algebra by using irreducible unitary representations of G.

Let |G| be the cardinality of the set G (that is, |G| is the order of the group G), φ a
unitary matrix form of an irreducible representation of G,

αm =
|G|
m
, Xφ =

∑
g∈G

φ(g)xg, ∂φ =
∑
g∈G

φ(g)∂g, Πφ = tXφ∂φ

where φ(g) is the complex conjugate matrix of φ(g). Then, we have the following
relations.

For all 1 ≤ i, j, k, l ≤ m,

[Xφ
ij , X

φ
kl] = 0, [∂φij , ∂

φ
kl] = 0, [∂φij , X

φ
kl] = αmδikδjl.

This leads us to the following identity.

Theorem 5.3.1 (Capelli identity for irreducible representations). We have

det (Πφ + αm♮m) = detXφ det ∂φ.

Let Cφ(z) = det (Πφ + αm♮m − zIm) be the Capelli element. From Theorem 5.2.5,
the Capelli element is invariant under a change of a matrix form of the irreducible
representation. This enables us to redefine the Capelli element as follows.

Definition 5.3.2 (Capelli element for irreducible representations). Let φ ∈ Ĝ and
m = degφ. We define Cφ(z) by

Cφ(z) = det (Πφ + αm♮m − zIm).

We call Cφ(z) the Capelli element for φ.

5.4 Capelli element of the group algebra

Let CG =
{∑

g∈G xgg | xg ∈ C
}
the group algebra of G, G̃ a complete set of irreducible

unitary matrix representations of G, φ ∈ G̃, and

Eφ =
∑
g∈G

φ(g)g ∈ Mat(degφ,CG).

From Schur’s orthogonal relations, we have the following lemmas.
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Lemma 5.4.1. {Eφij | 1 ≤ i, j ≤ degφ,φ ∈ G̃} is a basis of CG.

Lemma 5.4.2. Let φ,ψ ∈ G̃, where φ is not equivalent to ψ. For all 1 ≤ i, j ≤ degφ
and 1 ≤ s, t ≤ degψ, we have

EφijE
φ
kl = αdegφδjkE

φ
il , Eφ

ijE
ψ
st = 0.

In particular, we have

[Eφij , E
φ
kl] = αdegφ(δ

φ
jkEil − δilE

φ
kj), (5.1)

[Eφij , E
ψ
kl] = 0. (5.2)

Let
C
φ
(z) = det (Eφ + αm♮m − zIm) ∈ C[z]⊗ CG.

Recall that Theorems 5.2.5 and 5.2.6 are obtained only by the relations [Πij ,Πkl] =
α(δjkΠil − δilΠkj). Hence, C

φ
(z) is conjugation invariant from the relations (5.1), and

we have

[Eφij , C
φ
(z)] = 0

for any 1 ≤ i, j ≤ degφ.
Using the above conjugation invariance, we redefine C

φ
(z).

Definition 5.4.3 (Capelli element of the group algebra). Let φ ∈ Ĝ. We define the
Capelli element for φ of the group algebra by

C
φ
(z) = det (Eφ + αm♮m − zIm).

From Lemma 5.4.1, conjugation invariance of C
φ(z)

, and relations (5.1) and (5.2), we
can prove the following Lemma.

Lemma 5.4.4. For all φ ∈ Ĝ, C
φ
(z) ∈ Z(CG[z]). That is, C

φ
(z) is a central element

of the group algebra.

Let ui(z) = αm(m − i) − z, u(i)(z) = um(z)um−1(z) · · ·um−i+1(z), E
φ
ij(uj(z)) =

Eφij + δijuj(z), and [m] = {1, 2, . . . ,m}. The following is the main theorem.

Theorem 5.4.5 (Chapter 5, Theorem 5.1.2). We have

C
φ
(z) = u(m)(z) + Tr(Eφ)u(m−1)(z).

Proof. From the definition of C
φ
(z), we have

C
φ
(z) =

∑
σ∈Sm

sgn(σ)Eφσ(1)1(u1(z))E
φ
σ(2)2(u2(z)) · · ·E

φ
σ(m)m(um(z))

=
∑
σ∈Sm

sgn(σ)(Eφσ(1)1 + δσ(1)1u1(z)) · · · (E
φ
σ(m)m + δσ(m)mum(z))

=
∑
σ∈Sm

sgn(σ)
∑

∅≠T⊂[m]

∏
t∈T

Eφσ(t)t

∏
s∈[m]\T

δσ(s)sus(z) + u(m)(z)
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where
∏
t∈T E

φ
σ(t)t = Eφσ(t1)t1E

φ
σ(t2)t2

· · ·Eφσ(t|T |)t|T |
and T = {t1 < t2 < · · · < t|T |}. We fix

T = {t1 < t2 < · · · < t|T |}(̸= ∅) ⊂ [m]. From Lemma 5.4.2, we have∑
σ∈Sm

sgn(σ)
∑
T⊂[m]

∏
t∈T

Eφσ(t)t

∏
s∈[m]\T

δσ(s)sus(z)

= α|T |−1
m

∑
σ∈Sm

sgn(σ)δσ(t2)t1δσ(t3)t2 · · · δσ(t|T |)t|T |−1
Eφσ(t1)t|T |

∏
s∈[m]\T

δσ(s)sus(z)

= (−αm)|T |−1Eφt|T |t|T |

∏
s∈[m]\T

us(z).

Therefore, there exists ai ∈ C[z] (1 ≤ i ≤ m) such that

C
φ
(z) =

m∑
i=1

aiE
φ
ii + u(m)(z).

We show that ap = aq for all p, q ∈ [m]. From Lemma 5.4.2, we have

EφpqC
φ
(z) = Eφpq

(
m∑
i=1

aiE
φ
ii + u(m)(z)

)

=

m∑
i=1

aiδiqαmE
φ
pi + u(m)(z)Eφpq

= aqαmE
φ
pq + u(m)(z)Eφpq,

C
φ
(z)Eφpq =

(
m∑
i=1

aiE
φ
ii + u(m)(z)

)
Eφpq

=
m∑
i=1

aiδipαmE
φ
iq + u(m)(z)Eφpq

= apαmE
φ
pq + u(m)(z)Eφpq.

From Lemma 5.4.4, we have ap = aq for all p, q ∈ [m]. We calculate a1. From C
φ
(z) =∑

T⊂[m](−αm)|T |−1Eφt|T |t|T |

∏
s∈[m]\T us(z), we have

a1E
φ
11 = (−αm){1}−1Eφ11

∏
s∈[m]\{1}

us(z)

= u(m−1)(z)Eφ11.

This completes the proof.

In addition, we have the following corollary.

Corollary 5.4.6 (Chapter 5, Corollary 5.1.3). Suppose kφ ∈ C such that u(m−1)(kφ) ̸=
0. Then, {

C
φ
(kφ) | φ ∈ Ĝ

}
is a basis of Z(CG).
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5.5 Relationship between column, row and double deter-
minant

In this last section, we explain the relationship between column, row, and double deter-
minants. The row and double determinants are as follows.

Definition 5.5.1 (Row determinant). Let A = (aij)1≤i,j≤m ∈ Mat(m,R). We define
the row determinant of A is defined as

rdetA =
∑
σ∈Sm

sgn(σ)a1σ(1)a2σ(2) · · · amσ(m).

Definition 5.5.2 (Double determinant). Let A = (aij)1≤i,j≤m ∈ Mat(m,R). The double
determinant of A is defined as

DetA =
1

m!

∑
σ,τ∈Sm

sgn(στ)aσ(1)τ(1)aσ(2)τ(2) · · · aσ(m)τ(m).

Reference [10] describes that the relationship between column, row, and double de-
terminants. Let

♮∗ =


0

1
. . .

m− 1

 , ♮σ =


σ(m)

σ(m− 1)
. . .

σ(1)

 (σ ∈ Sm),

and E ∈ Mat(m,R), where we assume that [Eij , Ekl] = δjkEil − δilEkj for all 1 ≤
i, j, k, l ≤ m. We can prove the following theorem.

Theorem 5.5.3 ([10]). For all σ ∈ Sm, we have

det (E + ♮m − zIm) = rdet(E + ♮∗ − zIm)

= Det(E + ♮σ − (z + 1)Im).

The above has the following implication.

Corollary 5.5.4. Let C
φ
(z) be the Capelli element for φ of the group algebra. For all

σ ∈ Sm, we have

C
φ
(z) = rdet(Eφ + αm♮

∗ − zIm)

= Det(Eφ + αm♮σ − (z + 1)Im).
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