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Preface

We research the determinants of matrices over group algebras. Firstly, we give an exten-
sion and a generalization of Dedekind’s theorem. Secondly, we give a further extension of
the above theorem. Thirdly, we give a generalization of Frobenius’ theorem. Fourthly,
we give Capelli elements of the group algebra of any finite group. Finally, we give
a natural interpretation of the transfers in group theory in terms of noncommutative
determinants.

Probably, readers think that ”the determinant” is the ordinary determinant which
is used for solving a system of linear equations. However, there are various types of
determinants, such as Study, Dieudonné, row, column, and double determinants. Our
main concern in this paper is these noncommutative determinants for matrices over
group algebras on representations.

To research the determinants of matrices on representations was important sub-
ject. In the late 19th century, Georg Ferdinand Frobenius and Julius Wilhelm Richard
Dedekind built a representation theory of finite groups in the process of obtaining the
irreducible factorizations of the group determinants. The group determinant ©(G) is the
determinant of the regular representation L : CG — Mat(n,C) of G. The irreducible
factorizations of O(G) is the following.

deg

0(G) = ] det [ D el9)z,

(PGG\ e

As a result, we obtain theorems on the representations of finite groups. However, Frobe-
nius and Dedekind’s method became obsolete after the abstraction of the representation
theory put forth by Issai Schur and Amalie Emmy Noether et al.

Nevertheless, Frobenius and Dedekind’s idea (method) remains in the quaternions.
In the early 20th, Eduard Study researched the determinant of a quaternionic matrix.
In this research, Study defined the Study determinant, which uses an injective alge-
bra homomorphism of quaternions. This homomorphism is a regular representation of
quaternions. So, the Study determinant is similar to the group determinant.

In Chapter 1, 2, and 3, we generalize Frobenius and Dedekind’s method. Specifically,
we consider the determinant of the regular representation

Ly :CG — Mat([G : H],CH)
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where H is a subgroup of G and [G : H] is the index of H in G. Let e be the unit
element. If H = {e}, we can regard the regular representation L as L. That is, we can
regard the group determinant as a special case of determinants of regular representations
of associative algebras.

In Chapter 1, we research the eigenvalues of det o Ly when G is any finite abelian
group. However, note that the determinant does not appear explicitly in Chapter 1. We
define operators on the group algebra, and research the eigenvalues of Ly by using the
operators. As a result, we give an extension and a generalization of a special case of
Frobenius’ theorem.

In the next chapter, we research the noncommutative determinant det o Ly when
G is a finite group and H is an abelian subgroup of G. Consequently, we give an
extension and a generalization of Dedekind’s theorem. The generalization in turn leads
to a corollary on irreducible representations of finite groups. In addition, if a finite
group has an index-two abelian subgroup, we define a conjugation of elements of the
group algebra by using the further extension of Dedekind’s theorem. In this process, we
see the comparison between the Study determinant and det o Ly everywhere.

Let L' : Mat(|G : H],CH) — Mat(n,C{e}) be a regular representation of Mat([G :
H],CH). Then we have

det o L =det o L' o L.

In Chapter 3, we give a generalization of Frobenius’ theorem by using the above equation
on the determinant.

In the remaining chapters, we are inspired by the research of Professor Toru Umeda.
He suggested that a transfer can be derived as a noncommutative determinant, and gave
Capelli identities for group determinants.

A transfer is defined by Schur as a group homomorphism from a group to an abelian
quotient group of a subgroup of finite index. In Chapter 4, we develop Umeda’s idea in
order to explain the properties of the transfers by using noncommutative determinants.
As a result, we give a natural interpretation of the transfers in group theory in terms of
noncommutative determinants. The determinants are a hybrid of the Study determinant
and Dieudonné determinant.

The Capelli identity is analogous to the product formula for the determinant in
the Weyl algebra. The identity leads to the Capelli element. It is known that the
Capelli elements is a central element in the universal enveloping algebra of gl,,. Umeda
is one of the pioneers in Capelli identities. In recent years, he give Capelli identities for
group determinants. There are Capelli identities for irreducible representations in the
background of the Capelli identities for group determinants. In the last Chapter, we give
a basis of the center of the group algebra of any finite group by using Capelli identities
for irreducible representations. These identities lead to Capelli elements of the group
algebra, and these elements construct a basis. These elements are defined by using row,
column, or double determinants.
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Chapter 1

An extension and a generalization
of Dedekind’s theorem

1.1 Introduction

In this chapter, we give factorizations of the group determinant for any given finite
abelian group G in the group algebra of subgroups. The factorizations are an extension
of Dedekind’s theorem. The extension leads to a generalization of Dedekind’s theorem
and a simple expression for inverse elements in the group algebra.

The group determinant O(G) is the determinant of a matrix whose elements are
independent variables x, corresponding to g € G. Dedekind gave the following theorem
about the irreducible factorization of the group determinant for any finite abelian group.

Theorem 1.1.1 (Dedekind’s theorem [4]). Let G be a finite abelian group and G the
group of characters of G. Then we have

0G) =[] D x(9)z,.

x€G 9EC

Frobenius gave the following theorem about the irreducible factorization of the group
determinant for any finite group; thus, Frobenius gave a generalization of Dedekind’s
theorem.

Theorem 1.1.2 (Frobenius’ theorem [4]). Let G be a finite group and G a complete set
of irreducible representations of G over C. Then we have

deg

O(G) = [] det | > w(g)zq

4,06@ gGG

The main results of this chapter are an extension and a generalization of Dedekind’s
theorem that are different from Frobenius’ theorem.



1.1.1 Main results

We give an extension and a generalization of Dedekind’s theorem.

Let G be a finite abelian group, CG the group algebra of G over C, R = Clzy| =
Clzg; g € G] the polynomial ring in {z4 | ¢ € G} with coefficients in C, RG = R® CG =
{deG Agg| Ag € R} the group algebra of G over R, H a subgroup of G, and [G : H]| the
index of H in G. Then we have the following theorem that is an extension of Dedekind’s
theorem.

Theorem 1.1.3 (Extension of Dedekind’s theorem). Let G be a finite abelian group, e
the unit element of G, H a subgroup of G, and H the dual group of H. For every h € H,
there exists a homogeneous polynomial Ay € R such that deg Ap, = [G : H] and

o@e =[] D_ x(h)Axh.

XeﬁhGH
If H =G, we can take Ay = xp, for each h € H.

Note that the equality in Theorem 1.1.3 is the equality in RH. Theorem 1.1.3 leads
to the following theorem.

Theorem 1.1.4 (Generalization of Dedekind’s theorem). Let G be a finite abelian group
and H a subgroup of G. For every h € H, there exists a homogeneous polynomial Ap, € R
such that deg Ay, = [G : H] and

oG =[] . x(h)An.

xell heH
If H = G, we can take Ay = xyp, for each h € H.

Theorem 1.1.4 is a generalization of Dedekind’s theorem. In fact, let H = G and
Ap, = xp. Then we have Dedekind’s theorem.

Moreover, we obtain the following formula for inverse elements in the group algebra
CG from Theorem 1.1.3. However, only now the situation is that x, is a complex number
for any g € G. Hence, we assume that ) 2,9 € CG and O(G) = det (vg-1)gneq €
C.

geG

Corollary 1.1.5. Let G be a finite abelian group, x1 the trivial representation of G, and
>_gec g9 € CG such that ©(G) # 0. Accordingly, we have

-1

1
dowg| = 0 11 > x(9)z49

9eC xeG\fa} \9€¢

1.2 Irreducible factorization of group determinant

In this section, we recall the definition of the group determinant and its irreducible
factorization.



1.2.1 Irreducible factorization of group determinant

Let G be a finite group and {z,| g € G} independent commuting variables. Below, we
define the group determinant ©(G) of G.

Definition 1.2.1. The group determinant ©(G) of G is given by

@(G) = det (:Egh_l)g,hEG

where we give a numbering to the element of G.

Namely, the group determinant ©(G) is a homogeneous polynomial of degree |G| in
{z4 | g € G}, where |G| is the order of G.

In general, the matrix (:cgh_l) is a covariant under change of a numbering to

g,heG
the element of G. However, the group determinant ©(G) is an invariant.

Example 1.2.2. Let G = Z/37 = {0,1,2}. Then we have

rog T2 I1
O(G) =det |1 x9 w2|.
T2 X1 To

Dedekind proved the following theorem about the irreducible factorization of the
group determinant for any finite group.

Theorem 1.2.3 (Chapter 1, Theorem 1.1.1). Let G be a finite abelian group and G the
group of characters of G. Then we have

0@ =[] D_ x(9)z,.

xeG 9€C

Example 1.2.4. Let G =7Z/3Z = {0,1,2}. Then we have

rog T2 I1
O(G)=det |1 x9 w2
T2 X1 To

= (2o + o1 + 22) (20 + T1w + T2w?) (xg + T1W? + 2ow)

where w is a primitive third root of unity.

1.3 An extension and a generalization of Dedekind’s the-
orem

In this section, we give an extension and a generalization of Dedekind’s theorem.

9



1.3.1 Degree one representations

In this subsection, we describe two lemmas needed later.

Let G be a finite group, G the set of degree one representations, H a subgroup of G
and

Gu={xe€G|x(h)=1,he H}.

Then, Gy is a subgroup of G.

Let G be a complete set of irreducible representations of G. If G is an abelian group,
since the degree of irreducible representations of G is one, we have G = G.

The following lemmas are well known.

Lemma 1.3.1. Let G be a finite group and H a normal subgroup of H such that G/H
1s an abelian group. Then we have

éH:{gDOTF“DECT/?I}
where ™ : G — G/H s a natural projection.

Proof. Clearly, {<p om |y € CT/?I} C Gpg. We show that G C {<p om |y € CT/TI} Let
X € Gg. We define the map ¢ : G/H — C* by p(gH) = x(g). It is easy to see that ¢
is well defined and x = ¢ o 7. This completes the proof. O

Lemma 1.3.2. Let G be a finite abelian group, and suppose that g € G is not the unit
element of G. Then, there exists x € G such that x(g) # 1.

Proof. From the structure theorem for finite abelian groups, there exist cyclic groups
Z/m;Z (1 < i <r)and a group isomorphism

f:G—=Z/miZ X Z]moZ X - X L/ m,Z.
Therefore, for all g € G, there exists a; € Z/m;Z such that

flg) = (@, az,...,a).
For all x; € N (1 <1 <r) where we assume that 0 € N, we define the map x : G — C*
by
Y(g) = flCng%anQ R s
T
where &; is a primitive m;-th root of unity(1 < i < r). Then, the map x is a degree one
representation of GG. Since g is not the unit element, there exists i # 0 such that a; # 0.

Let ; =1 and ; =0 (1 < ¢ # j <r). Then, x is a degree one representation of G such
that x(g) # 1. This completes the proof. O

Lemma 1.3.3. Let G be a finite group and H a normal subgroup of G such that G/H
is an abelian group. If g & H, there exists x € Gy such that x(g) # 1.

Proof. From Lemma 1.3.2, there exists ¢ € C?/?[ such that ¢(gH) # 1 where g ¢ H.
Let 7 : G — G/H be the natural projection. By Lemma 1.3.1, y = ¢ ow € Gg. This
completes the proof. ]
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1.3.2 Operators on group algebras

In this subsection, we define operators on group algebras that are used in the proof of
the main theorem.

Definition 1.3.4. Let G be a finite group and x € G. We define the map T, : RG — RG
by
T Z Agg | = Z x(9)Agg
geG geG
where Ay € R.

Let x,x" € G and , 8 € RG. It is easy to see that Ty o Ty = Tyoy and Ty (a) =

T\ ()T (B), where (x o X') (9) = x(9)x'(9)- N
We give a necessary and sufficient condition for T)-invariance for all x € G .

Lemma 1.3.5. Let G be a finite group, H a normal subgroup of G such that G/H is
an abelian group and o € RG. For all x € Gy, T\(«) = « if and only if « € RH.

Proof. Let o € RH. Obviously, Ty (o) = « for all x € Gy. Let a = deGAgg.

If T\ (o) = « for all x € Gy, then we have x(g)A,9 = Agg for all g € G. From this
condition and Lemma 1.3.3, if g & H, there exists x € Gy such that x(g) # 1. Therefore,
Ay =0. Namely, o =}, .y Aph. This completes the proof. O

Let G be a finite abelian group, éH = Gy, S a subgroup of @, and S|g the set of
restrictions of xy € S on H.

Lemma 1.3.6. Let G be a finite abelian group, H a subgroup of G, and G = XléH U
X2Gg U---UxrGr. Then we have k = |H| and H = {x1,X2,---, Xk }|z-

Proof. First, we show that k = |H|. From |G| = |G| = k|G p| and Lemma 1.3.1, we have
Gyl =|G/H| = % Therefore, k = |H|. Next, we show that H = {x1,X2,..., s}z

Since the restriction o/f elements /gf G g is the trivial representation on H, CA;] H =
{x1,Xx2,---sXk}lg € H. From |H| = |H|, we can show that xi,x2,...,xx are dif-
ferent on H. If x;(h) = xj(h) (1 < i # j < k) forall h € H, (x;'ox;)(h) = 1.
Therefore, X;l ox; € G . This is a contradiction for the left G -coset decomposition
of G. Namely, we have x; # x;. This completes the proof. O

1.3.3 An extension and a generalization of Dedekind’s theorem
In this subsection, we give the extension and generalization of Dedekind’s theorem.

Lemma 1.3.7. Let G be a finite abelian group, e the unit element of G, and H a
subgroup of G. For every h € H, there exists a homogeneous polynomial A, € R such

that deg A, = [G : H] and
IT D x@wzgg =" Ann
XeaH geG heH

11



If H = G, we can take Ap = xyp, for each h € H.

Proof. For all ' € Gy,

To | TT Do x@zeg | = T] D (X ox) (9)z49

xe@H geG XG@H geG

= T D x(9)agg.

XeéH geG

From Lemma 1.3.5,Awe have er@H > gec X(9)zgg € RH. Clearly, deg A, = G| =
[G: H]. If H= G, Gpg is the trivial group. This completes the proof. O

Definition 1.3.8. Let F' : RG — R be the R-algebra homomorphism such that F(g) =1
for all g € G. We call the map F the fundamental RG-function.

Now, we give factorizations of the group determinant for any given finite abelian
group in the group algebra of subgroups. The factorizations are the extension of Dedekind’s
theorem.

Theorem 1.3.9 (Chapter 1, Theorem 1.1.3). Let G be a finite abelian group, e the unit
element of G, and H a subgroup of G. For every h € H, there exists a homogeneous
polynomial Ap, € R such that deg A, = [G : H] and

o@e=[] D x(h)Axh.

xeh heH
If H = G, we can take Ap = xp, for each h € H.

Proof. Clearly,

T | T D x@zeg | = T] D x(9)29
for all x € G. From this, G = @{e} and Lemma 1.3.5, there exists C' € R such that

D x@zea= ] D x(9)zeg

xe@ 9eG XE@{E} geG
= Ce.

Let F' be the fundamental RG-function. By applying F' to this equation and Theo-
rem 1.2.3, we have C = ©(G). Namely, we have

11> x(9)zg9 = ©(G)e.

xeé g€G
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Let G = XléH UXQG\H L--- I_IXkéH. Then we have

k
D x@zea=1] TI D x(9)zeg

xea 9eG i=1 xExiéH 9€G
k
=117 | 11 D x(9)zag
i=1 velGy 9€G
There exists a homogeneous polynomial Ay, € R for each h € H such that
k k
HTXz' H Z xX(9)zq9 | = HTX”H (Z Ahh>
i=1 xeGp 9€G i=1 heH
= H Z x(h)Anh

xeil heH

from Lemmas 1.3.6 and 1.3.7. This completes the proof.

O]

As a corollary, we obtain the following formula for inverse elements in the group
algebra CG from Theorem 1.3.9. However, only now the situation is that z, is a com-
plex number for any ¢ € G. Hence, we assume that deG zgg € CG and O(G) =

det (Ith—l)g’hEG e C.

Corollary 1.3.10 (Chapter 1, Corollary 1.1.5). Let G be a finite abelian group, x1 the

trivial representation of G, and deG xq9 € CG such that ©(G) # 0. Then we have

-1

1
ngg = 0(G) H ZX(9)$99

9€@ x€G\{x1} \9€C

We give factorizations of the group determinant for any given finite abelian group.

The factorizations are the generalization of Dedekind’s theorem.

Theorem 1.3.11 (Chapter 1, Theorem 1.1.4). Let G be a finite abelian group and H a
subgroup of G. For every h € H, there exists a homogeneous polynomial Ay € R such

that deg Ay, = [G : H] and

0@ =[] D_ x(m)An.

Xef-\[hEH
If H = G, we can take Ap = xp, for each h € H.

Proof. From Theorem 1.3.9 and the fundamental RG-function, we have

0G) =[] D x(mAn.

yeil heH

This completes the proof.

13






Chapter 2

Factorizations of group
determinant in group algebra for
any abelian subgroup

2.1 Introduction

In this chapter, we give an extension and generalization of Dedekind’s theorem over those
presented in Chapter 1. The generalization in turn leads to a corollary on irreducible
representations of finite groups. In addition, if a finite group has an index-two abelian
subgroup, we can define a conjugation of elements of the group algebra by using the
further extension of Dedekind’s theorem.

Let G be a finite group, G a complete set of irreducible representations of G' over
C, and ©(G) the group determinant of G. The group determinant ©(G) is the determi-
nant of a matrix whose elements are independent variables x4 corresponding to g € G.
Dedekind proved the following theorem about the irreducible factorization of the group
determinant for any finite abelian group.

Theorem 2.1.1 (Chapter 1, Theorem 1.1.1). Let G be a finite abelian group. We have
0@ =[] D x(9)z,.
xeé g€G

Frobenius proved the following theorem about the irreducible factorization of the
group determinant for any finite group; thus, he gave a generalization of Dedekind’s
theorem.

Theorem 2.1.2 (Chapter 1, Theorem 1.1.2). Let G be a finite group. Then we have
the irreducible factorization

degp

0(@) = [] det [ D olg)z,

(pea geqG
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Let CG be the group algebra of G over C, R = C|z4; g € G] the polynomial ring in
{z4 | g € G} with coefficients in C, RG = R ® CG = {dec Agg| Ag € R} the group
algebra of G over R, H an abelian subgroup of G, and [G : H] the index of H in G.

Chapter 1 gives the following extension and generalization of Dedekind’s theorem that
are different from the theorem by Frobenius.

Theorem 2.1.3 ([Chapter 1, Theorem 1.3.9]). Let G be a finite abelian group, e the
unit element of G, and H a subgroup of G. For every h € H, there exists a homogeneous
polynomial aj, € R such that degap =[G : H] and

O(G)e = H Z x(h)aph.

xeh heH
If H = G, we can take ap, = xp, for each h € H.

Theorem 2.1.4 ([Chapter 1, Theorem 1.3.11]). Let G be a finite abelian group and H
a subgroup of G. For every h € H, there exists a homogeneous polynomial ap, € R such

that degay, = [G : H] and
0G) =[] D x(hax.
Xef] heH

If H = G, we can take ap, = xp, for each h € H.

Here, we give a further extension of Theorem 2.1.3 and generalization of Theo-
rem 2.1.4.

2.1.1 Results

The following theorem is the further extension of Dedekind’s theorem.

Theorem 2.1.5 (Further extension of Dedekind’s theorem). Let G be a finite group, e
the unit element of G, and H an abelian subgroup of G. For every h € H, there exists
a homogeneous polynomial ap, € R such that degay, =[G : H| and

o@e=[] D x(hanh.

e heH

If H is normal and h is a conjugate of b’ on G, then ap = ay .

Note that the equality in Theorem 2.1.5 is an equality in RH. Theorem 2.1.5 is
proved using an extension of the group determinant ©(G : H). The group determinant
O(G : H) is an element of RH, and it is defined by using a left regular representation of
RH. The left regular representation is reviewed in Section 2.2. In addition, Section 2.2
gives two expressions for the regular representation and shows that composition of regular
representations is a regular representation. These expressions are helpful for describing
some of the properties of O(G : H).

16



Above, we said that the group determinant is defined by using a left regular rep-
resentation. In more detail, we define a noncommutative determinant by using a left
regular representation and define the group determinant by using the noncommutative
determinant. We know that the noncommutative determinant is analogous to the Study
determinant [3]. The Study determinant is a quaternionic determinant, defined by using
the regular representation 1 of the quaternions. In Sections 2.3 and 2.4, we describe the
relationship between the noncommutative determinant and the Study determinant and
their properties.

In the next section, we define the extension of the group determinant ©(G : H) and
give some properties of O(G : H).

In Section 2.6, we prove the further extension and generalization of Dedekind’s the-
orem. In particular, Theorem 2.1.5 leads to the following theorem that is the further
generalization of Dedekind’s theorem.

Theorem 2.1.6 (Further generalization of Dedekind’s theorem). Let G be a finite group
and H an abelian subgroup of G. For every h € H, there exists a homogeneous polynomial
ap € R such that degap, = [G : H| and

0@ =[] D x(han.

xel heH
If H is normal and h is a conjugate of h' on G, then ap = ay .

From Theorem 2.1.6, we have the following corollary on irreducible representations
of finite groups.

Corollary 2.1.7. Let G be a finite group and H an abelian subgroup of G. For all
p € G, we have

degp < [G: H].

In the last section, we define a conjugation of the group algebra of the group which
has an index two abelian subgroup. The conjugation comes from the noncommutative
determinant. By applying the conjugation, we arrive at an inverse formula of 2 x 2
matrix.

2.2 Regular representation

Here, we describe the left regular representation of the group algebra and give two
expressions for the representation. In addition, we show that a composition of regular
representations is a regular representation.

Let R be a commutative ring, G a group, H a subgroup of G of finite index, and RG
the group algebra of G over R whose elements are all possible finite sums of the form
deG agg, where ag € R. We take a complete set T' = {t1,t2,...,¢q.m)} of left coset
representatives of H in G, where [G : H]| is the index of H in G.

17



Definition 2.2.1 (Left regular representation). For all A € Mat(m, RG), there exists a
unique Lp(A) € Mat(m[G : H|, RH) such that

A1l tolm - tgmdn) = (ln 2l -+ Ygmalm)Lr(A).

We call the map Lp : Mat(m, RG) > A+~ Lp(A) € Mat(m|G : H|, RH) the left reqular
representation from Mat(m, RG) to Mat(m|[G : H], RH) with respect to T

Obviously, Lt is an injective R-algebra homomorphism.

Example 2.2.2. Let G =7/27Z = {0,1}, H = {0}, and o = 20 + y1 € RG. Then, we
have

To give an expression for Ly when H is a normal subgroup of G, we define the map
X by

v )1 geH,
X(9) = 0 g¢H

for all g € G and we denote (7, ) the m x m block element of an (mn) x (mn) matrix
M by M; j. We can now prove the following theorem.

Lemma 2.2.3. Let H be a normal subgroup of G, Ly : Mat(m, RG) — Mat(m|G :
H], RH) the left regular representation with respect toT, and A = Y, . tA; € Mat(m, RG),
where Ay € Mat(m, RH). Then we have

—1 1
)ij) = ZX tt5)t LAt

teT
Proof. Let r =[G : H]. Then we have

(tilm  tolm (ZX ) 1tAttj>

teT 1<i<r,1<5<r

= (ZZX(ti_lttl)tAttl ZZX(ti_ltt2>tAtt2 ... ZZ)‘((ti_lttm)tAttr>

i=1 teT i=1 teT i=1 teT
= (Z tAt> (t1ly tolm -+ tely).
teT
This completes the proof. O
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To get another expression for Ly when H is a normal subgroup of GG, we recall
the Kronecker product. Let A = (aij)i<i<m,,i<j<n, be an my x n; matrix and B =
(bij)1<i<ma,1<j<n, be an mg x ny matrix. The Kronecker product A® B is the (mima) x
(n1n2) matrix,

anB  ai2B -+ ain,B

anB  axpB -+ a,, B
A® B = . } )

am1lB am12B e amlnlB

Let e be the unit element of G and |G| the order of G. If G = {g1,92,---,9,q/}
is a finite group. Then the restriction of the left regular representation Lg : G —
Mat(|G|, R{e}) with respect to G is

Lc(9)i; = x(g; g95)e

from Lemma 2.2.3. We often assume that R{e} = R; thus, we often assume that
e =1 € R. So, we can see that Lg is a matrix form of the left regular representation of
the group G.
Let
t1 L,
tol,
P pu—
tic:H]Im

Thus, we have the following lemma.

Lemma 2.2.4. Let H be a normal subgroup of G, Lt the left reqular representa-
tion from Mat(m, RG) to Mat(m|[G : H], RH) with respect to T, Lg g the left reg-
ular representation from R(G/H) to Mat(|G/H|, R{eH}) with respect to G/H, and
A =3 crtA; € Mat(m, RG), where Ay € Mat(m, RH). Accordingly, we have

Lp(A) = P! (Z Le/p(tH) @ tAt) P.

teT
Proof. From Lemma 2.2.3, we have

(P—l (Z Len ® tAt> P) =t;'I, (Z (La/u(tH)),, tAt) tiln
(4,9

teT teT

= X(t; )ty A,
teT
= L1(A) @ )-

This completes the proof. O

19



We now show that a composition of regular representations is a regular representa-
tion. Theorem 2.6.5 requires the following lemma.

Lemma 2.2.5. Let K C H C G be a sequence of groups, G = t{H UtoH U --- U
tig:aH, H=u1K UugKU---Uug. K, Lt : Mat(m, RG) — Mat(m|G : H], RH) the
representation with respect to T, and Ly : Mat(m[G : H], RH) — Mat(m|[G : K|, RK)
the representation with respect to U. Then there exists a unique representation Ly from
Mat(m, RG) to Mat(m[G : K|, R{e}) with respect to V' such that

Ly =Ly oLy
where V.= {vy,vg, ..., U[G:K}} is a complete set of the left coset representatives of K in
G
Proof. Let A € Mat(m, RG),r =[G : H], and s = [H : K|. By definition, we have
Alt1Ly, toly, -+ tply) = (t1lm tolym -+ t-Ip)Lr(A),
LT(A)(UIImr Ul - UsIm'r) = (UIImr (DY PR UsImr)LU(LT(A))

Let (aij)lgigﬁlgjgr = LT(A) and (bij)1§i§3,1§j§5 = LU(LT(A)), where aij € Mat (m, RH)
and b;; € Mat (mr, RH). Then we have

(aZ])1<’L<T 1<]<rup mr E uq qp-

We obtain .
QijUp = Z Ug(bgp)ij
q=1

Therefore, we have

(At;)u; = (tham uj
r

tp(apiuy)

S
Il
—

= Z tg(bg;)
p—1
= Z Z tptg(bys)

On the other hand, obviously V = {tpuq |1 <p<r1l<q<s}isacomplete set of left
coset representatives of K in G. From

T S
Atguy = ) tyug(be)pis
p=1qg=1
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we have

A(tlullm e trulfm tﬂm[m e tr’UQIm e trusfm)
= (tlullm e tyurl,, tiusl,, oo+ tpuol,, - trusfm)LU(LT(A)).
This completes the proof. O

2.3 Characteristics of image of representation when quo-
tient group is abelian

In this section, we assume that G/H is a finite abelian group. Let
Ly (Mat(m, RG)) = {Lr(A) | A € Mat(m, RG)}

and
Jy =P (Lg/g(tH) ® I,) P

for all t € T. The following lemma will be used to show that B € Mat(m[G : H|, RH)
is an image of Ly if and only if B commutes with J;.

Lemma 2.3.1. Let G/H be a finite abelian group and Lt the left reqular representation
from Mat(m, RG) to Mat(m|G : H|, RH) with respect to T. Then, the elements of
Lr(Mat(m, RG)) and J; for allt € T are commutative.

Proof. Suppose A =, . tA; € Mat(m, RG), where A; € Mat(m, RH). From Lemma 2.2.4,
we have Lp(A) = P~ (3,cr Loy (tH) ® tA;). Therefore, we have

Ly(A)Jy = P71 (Z Le/n(tH) @ tAt> PP Y (LWH)®I,) P
teT

= p-! (ZLG/H (tt'H) ®tAt>

teT

—p-! (ZLG/H t'tH) ®tAt>
teT
= Jt’LT
for all ' € T. This completes the proof. O

Now we are in a position to prove the following theorem.

Theorem 2.3.2. Let G/H be a finite abelian group and Lt the left regular representation
from Mat(m, RG) to Mat(m|G : H|, RH) with respect to T. We have

Lr(Mat(m, RG)) = {B € Mat(m[G : H], RH) | J;B = BJ;,t € T} .
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Proof. From Lemma 2.3.1, we have

Lr(Mat(m, RG)) C {B € Mat(m|G : H|,RH) | J;B = BJy,t € T}.
We will show that

{B € Mat(m|G : H],RH) | J:B = BJ;,t € T} C Lr(Mat(m, RG)).

For all B € Mat(m|[G : H], RH), there exists A € Mat(m, RG) and B;; € Mat(m, RH)
such that

B=Lp(A)+ B

where
0 B2 Bis -+ Bygu
B 0 Ba Bys -+ B
0 Big:uz Big:mis -+ Ble:mjc:n

From Lemma 2.3.1, we have B'J; = J;B'. For all p € {2,3,...,[G : H|}, there exists
t € T such that Jy, 1) = thmtl_l and Jy(; 1) = 0 for all i # p. Therefore, we have

Btzptpjmtl_1 = (B,Jt)(qyl)
= (Ji1B')(g1)

for all ¢ € {1,2,...,[G : H]}. Thus, we have B = Lp(A) € Ly(Mat(m,RG)). This
completes the proof. O

Theorem 2.3.2 is similar to a property of a left regular representation of the quater-
nions H. Let C + jD € Mat(m,H), where C, D € Mat(m,C), and C the complex
conjugation matrix of C. Then we have (C + jD)(I, jlm) = (Im jIn)Y(C + jD),

where
$(C +jD) = [g :ﬂ.

Hence, ¢ : Mat(m,H) > C + jD — (C + jD) € Mat(2m, C) is a left regular represen-
tation. The following is known for the image of ¢ [3].

¢(Mat(m,H)) = { B € Mat(2m,C) | JB = BJ}

where



2.4 Noncommutative determinant and some properties

In this section, we give a noncommutative determinant and describe its properties. This
determinant is analogous to the Study determinant. Hence, we will define the determi-
nant by using the regular representation of the group algebra.

Before defining the noncommutative determinant, we explain that we do not have to
distinguish between the left and right inverses. Let H be an abelian subgroup of G.

Lemma 2.4.1 (Invertibility). For all A,B € Mat(m,RG), AB = I, if and only if
BA=1,,.

Proof. Let AB = I,,. We have Ly(A)Lr(B) = I, jc.x)- The elements of Ly (A) and the
elements of Lr(B) are elements of a commutative ring. Hence, Lt (B)L7(A) = Lyq.q]-
Therefore, Ly (BA — I,,,) = 0. Since Ly is an injective, we have BA = I,,,. O

The noncommutative determinant is as follows.

Definition 2.4.2. Let H be an abelian subgroup of G and L be a left reqular representa-
tion from Mat(m, RG) to Mat(m[G : H|, RH). We define the map Det : Mat(m, RG) —
RH by

Det = det o L.

Let T" = {t|,t},...,¢,} be another complete set of left coset representatives of H in
G. Then, there exists Q € Mat(m, RH) such that Ly = Q~'LyQ. Therefore, we have

Det = det o Ly
=det o LT’-

Thus, Det is an invariant under a change of the left regular representation; hence, Det
is well-defined.
Det has the following properties.

Theorem 2.4.3. For all A, B € Mat(m, RG),
(1) Det(AB) = Det(A)Det(B).
(2) A € Mat(m, RG) is invertible if and only if Det(A) € RH is invertible.

Proof. Det is a multiplicative map, because L7 and det are multiplicative maps. There-
fore, the equation (1) holds. Now let us prove (2). If A is invertible, there exists
B € Mat(m, RG) such that AB = I;,. Hence, L7(A)L7(B) = ILyG.n], LT(A) is invert-
ible. Conversely, if Det(A) is invertible, there exists B € Mat(m[G : H], RH) such that
L1 (A)B = Iyjc.m)- Therefore,

Atiln tolm - tamlnm)B=(t1ln tolnm - Yemln)lneG:m-
Thus, A is invertible. O
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Next let us define characteristic polynomial of A € Mat(m, KG).

Definition 2.4.4 (Characteristic polynomial). Let H be an abelian subgroup of G and
L be a left regular representation from Mat(m, RG) to Mat(m|[G : H],RH). For all
A € Mat(m, RG), we define ®4(X) by

®4(X) = Det(X I, — A)
= det(X Iyg.) — L1(A))

where X is an independent variable such that Ly(XB) = XLp(B) and aX = Xa for
any B € Mat(m, RG) and o € RH.

We have the following lemma.

Lemma 2.4.5. Let H be a normal abelian subgroup of G and ®4(X) the characteristic
polynomial of A over RH. Then we have ®,-1,4,(X) = ®4(X) for all g € G.

Proof. Since f, : G/H > t;H — gt;H € G/H is a bijection for all g € G, for all g € G,
there exists P € Mat(m[G : H], RH) such that

g(tljm tolyy, -+ ZL/[G:H}Im) = (tllm tolpy - t[G:H]Im)P‘
Therefore, we have
q)g*lAg(X) = det (XIm[GH] - LT(gilAg))
= det (X Lyjgsn) — P~ Lr(A)P)
= 04(X).

Here, we should remark that P~*Ly(A)P € Mat(m|G : H], RH), since H is a normal
subgroup of GG. This completes the proof. O

We denote the center of the ring R by Z(R). The following corollary will be used in
the proof of Theorem 2.6.5.

Corollary 2.4.6. Let H be a normal abelian subgroup of G and
(I)A(X) _ Xm[G:H] + am[G:H}_le[G:H}—l T dag

the characteristic polynomial of A over RH. Then we have a; € Z(RG)NRH for all 0 <
i <m|G : H]—1. In particular, ag = Det(A) and a,,q.q1—1 = Tr(L(A)) € Z(RG)NRH.

Next let us prove a Cayley-Hamilton type theorem for ® 4(X).
Theorem 2.4.7 (Cayley-Hamilton type theorem). Let
O4(X) = XM 4 XMEHT 4 g
be the characteristic polynomial of A over RH. We have
D4(A) = A™OH) gy ATEHITL Ly gl
= 0.
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Proof. From the Cayley-Hamilton theorem for commutative rings,

Lyp(A)mEH] 4 am[G:H]flLT(A)m[G:H]il +--+aplyn =0

and A(tlfm tQIm s t[G;H]Im) = (tlfm t2Im cee t[g;H}Im)LT(A), we have
Pa(A) (1L tolm - tgmIm) = (tiln tolm -+t Im)0
=0 0 --- 0
Thus, we have ®4(A) = 0. This completes the proof. O

The noncommutative determinant Det is analogous to the Study determinant. There-
fore, these determinant have similar properties.

The Study determinant Sdet is defined by det o4 : Mat(m,H) — C. The Study
determinant has the following properties [3]. For all A, B € Mat(m, H),

(1) SdetAB = SdetA SdetB.
(2) A € Mat(m,H) is invertible if and only if SdetA # 0.
(3) SdetA € R. Hence, SdetA is a central element of H.

That is, Theorem 2.4.3 and Corollary 2.4.6 are similar to the above properties.

2.5 Extension of the group determinant in the group alge-
bra for any abelian subgroup

Here, we extend the group determinant in the group algebra for any subgroup and show
that the extension determines invertibility in Mat(m, RG). First, let us recall the group
determinant.

Let G be a finite group, {z4 | g € G} be independent commuting variables, and
R = Clzg;9 € G] the polynomial ring in {z, | g € G} with coeflicients in C. The
group determinant ©(G) € R is the determinant of a |G| x |G| matrix (z4,4), e, Where
Tgn = 24,1 for g,h € G, and is thus a homogeneous polynomial of degree |G| in x,.

Now let us extend the group determinant in the group algebra for any abelian sub-
group.

Definition 2.5.1 (Extension of the group determinant). Let G be a finite group, H an
abelian subgroup of G, a = 3 ;249 € RG, and L : RG — Mat(|G : H], RH) a left
regular representation. We define

O(G: H) = (det o L)(«).
We call ©(G : H) an extension of the group determinant in the group algebra RH .

If H = {e}, we know that ©(G : H) = ©(G)e. Thus, we can prove the following
lemma.
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Lemma 2.5.2. Let G be a finite group, O(G) the group determinant of G, o = deG Zgg €
RG, and L : RG — Mat(|G|, R{e}) a left reqular representation. We have

O(G : {e}) = (det o L)(«)
= 0(G)e.

Proof. Let Lg be the left regular representation from RG to Mat(|G|, R{e}) with respect
to G. From Lemma 2.2.3, we have

Lo [ D wgg | =D X9, 995)299; ' 995
geG ij geG
_ Jage gilggi=e,
0 g;lgg #e

Therefore, we have

Lo(a) = (fE —16> )
() 9i9; 1<i<|G|,1<5<|G]

This completes the proof. O

Let us explain how the extension of the group determinant determines invertibility.
Now the situation is that x, is an element of R for any g € G. Hence, we assume that
> _gec Tgg € RG and O(G) = det (zgp-1)gnec € R. Accordingly, we get the following
theorem from Theorem 2.4.3.

Theorem 2.5.3. Let o=} . x49 € RG. Then o is invertible if and only if ©(G : H)
1s 1nvertible.

Obviously, (G : {e}) = ©(G)e is invertible if and only if O(G) # 0. Therefore, we
get the following corollary.

Corollary 2.5.4. Let a = dec g9 € RG. Then o is invertible if and only if ©(G) #
0.

2.6 Factorizations of the group determinant in the group
algebra for any abelian subgroup

In this section, we give factorizations of the group determinant in the group algebra
of abelian subgroups. The factorizations compose a further extension of Dedekind’s
theorem upon the one presented in Chapter 1. This extension in turn leads to a further
generalization of Dedekind’s theorem. Moreover, the generalization leads to a corollary
on irreducible representations of finite groups.

First, we give a number of lemmas that will be needed later. The following theorem
is well known.
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Theorem 2.6.1 ([15, Theorem 4.4.4]). Let G be a finite group, G = {p1,p2,...,¢s}
a complete set of inequivalent irreducible representations of G, d; = deg y;, and Lg the
left reqular representation of G. We have

Lg ~dip1 ®dopa @ - D dsps.

Let Mul(G, R) be the set of multiplicative maps from G to R and x € Mul(G, R).
We define F'™ : Mat(m, RG) — Mat(m, RG) by

Fi S wi(9)9 =D x(@zij(9)g

9€G ) 1<igmi<i< 1<i<m,1<j<m

where z;;(g) € R. Now we have the following lemmas.

Lemma 2.6.2. Let G be an abelian group, x € Mul(G,R), and A = deG Agg €
Mat(m, RG), where Ay € Mat(m, R). If det A = deG agg, where ag € R, we have

det | Y x(9)4g9 | = x(9)agg.

geG geqG
Hence, we have
det o F)Em) = F>(<1) odet.

Proof. Let A = (deG al-j(g)g> L <i<mi<i<m’ where a;;(g) € R. Then we have

det A = Z sgn(o) H Z Ao (i)i(9)g

oESM i=1geG

Therefore, we have

> x(9)agg = F{V(det A)
geG

= F;EU H Z aa(i)i(g)g

i=1geG
From x € Mul(G, R), we have

FO S sen(@) [ [T aoil@)g | = S seno) | TTDS aowil@)x(9)g

c€Sm i=1geG c€Sm 1=1geG

=det | Y ai;(9)x(9)g

geG

— det (F§m> (A)).

1<i,j<m
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This completes the proof. ]

Lemma 2.6.3. Let G be an abelian group, H a subgroup of G, L a left regular represen-
tation from Mat(m, RG) to Mat(m[G : H],RH), and ) _, . tA; € Mat(m, RG), where
A; € Mat(m, RH). We have

(det o L) <ZtAt> =[] det (Z x(tH)tAt>.

teT xeG/H teT

Proof. From Lemma 2.2.4 and Theorem 2.6.1,

(det o L) (Z tAt> = det < (Z Le/n(tH) ®tAt> P)

teT tel

= det <Z Lg/H(tH) & tAt>

teT

= J] det (ZX (tH) ®tAt>

XEG/H teT

= [ det (Z X(tH)tAt> .

xeGTH teT

This completes the proof. O
Lemma 2.6.4. Let G be an abelian group, H a subgroup of G, L1 a left reqular repre-

sentation from Mat(m, RG) to Mat(m[G : H|, RH), and L2 a left reqular representation
from RG to Mat([G : H|, RH). Then the following diagram is commutative.

VRG\LQ

Mat(m, RG) Mat([G : H], RH)
\LLl idet
Mat(m[G : H],RH) %~ RH

Proof. Let A=}, . tA; and det A = ), tas, where A; € Mat(m, RH) and a; € RH.
From Lemma 2.6.3, we have

(det o Ly)(A) = [ det (Z X(tH)tAt>.

xeG/H teT
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and

We regard x :

(det o Ly odet) (A) = (det o Lo) (Z ta,t)

teT

= 1] (Zx(tH)tat>.

xeG/H \ET

G/H — Ras x:G>g— x(gH) € R. Accordingly, we have

I det (Z X(tH)tAt) = [] (det o F{™)(4)

X€G/H ter X€G/H
= ] WM odet)(4)
x€G/H
= H F)El) (Ztat)
XECT/E teT
= H Zx(tH)tat
Gy €T

by Lemma 2.6.2. This completes the proof.

O

Now we are ready to state and prove the further extension of Dedekind’s theorem.

Theorem 2.6.5 (Chapter 2, Theorem 2.1.5). Let G be a finite group and H be an
abelian subgroup of G. For every h € H, there exists a homogeneous polynomial ap, € R
such that dega, =[G : H| and

O(G)e = H Z x(h)aph.

XEH heH

If H is normal and h is a conjugate of h' on G, then ap = ay .

Proof. Let L; be a left regular representation from RG to Mat(|G : H|,RH), Lo a
left regular representation from Mat (|G : H|, RH) to Mat(|G|, R{e}), L3 a left regular

representation from RH to Mat(|H|, R{e}), and (det o L) (deG xgg> = > hem anh,

where aj, € R.

From Lemmas 2.2.5 and 2.5.2, we have

(det 0o Lyo Ly) [ Y 249 | = O(G)e.
geG
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On the other hand, we have

(det o Lz odet o Ly) Z Tgg (det o Lg) (Z ahh>

geG heH
1] (zxm)ahh)
veii \heH

by Lemma 2.6.3. From Lemma 2.6.4, we can build the following commutative diagram.

RG — o RH _
Mat([G : H], RH) Mat (| H|, R{e})
Lo ldet
det

Mat (|G|, R{e})

R{e}

Gle = H Z x(h)aph.

xef heH

Therefore, we have

If H is a normal subgroup of G, we have

(det o Ly) Z zgg | = Z aph € Z(RG)
geG heH

by Corollary 2.4.6. Hence, a;, = ajps when h is a conjugate A’ on GG. This completes the
proof. ]

Now we are in a position to state and prove the further generalization of Dedekind’s
theorem. Let F': RG — R be the R-algebra homomorphism such that F(g) = 1 for all
g € G. We call the map F' the fundamental RG-function.

Theorem 2.6.6 (Chapter 2, Theorem 2.1.6). Let G be a finite group and H an abelian
subgroup of G. For every h € H, there exists a homogeneous polynomial ap € R such

that degap, = [G : H] and
=11 Y. x(Wan
el heH
If H is normal and h is a conjugate of b’ on G, then ap = ay .

Proof. From Theorem 2.6.5 and the fundamental RG-function, we have

=1II D x(h)ax

xeil heH

This completes the proof. O
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From Theorems 2.1.2 and 2.6.6, we have the following corollary.

Corollary 2.6.7 (Chapter 2, Corollary 2.1.7). Let G be a finite group and H an abelian
subgroup of G. For all p € G, we have

degp < [G: H].
Remark that Corollary 2.6.7 follows from Frobenius reciprocity[12].

2.7 Conjugate of the group algebra of the groups which
have an index two abelian subgroup

In this section, we define a conjugation of elements of the group algebra of the group
which has an index-two abelian subgroup.

First, we recall the conjugation of elements of H. Let z = z+jy € H. The conjugation
of z is defined as Z = x — jy. The conjugation has the following properties.

zZw=wz (weH).
(5) z =z if and only if z € R.

We refer to the above for definition of the conjugation of elements of the group algebra.

Let R be a commutative ring, G a group, H an index-two abelian subgroup of G,
T = {e,t} a complete set of left coset representatives of H in G, Lr the left regular
representation from RG to Mat(2, RH) with respect to T, and A = o+t € RG. We
have

Ly(A) = [a Bt ]

B ttat

and

_ X —« tot
@A(X) = det |: 5 X —t_lat]

=X?—(a+t'at)X +at tat — Btpt.
We notice that
(X = (a+1B))(X — (t at —15))

= X2 —(trat —tB)X — (a+tB)X + (a+tB)(t tat — 1B)
—(a+ttat) X + ot Lat — atB + (tBt Hat — (t6t)3
—(a+ttat) X + at Lat — atB + a(tft 1)t — B(tA)
= X2 (a+trat) X +attat — Bt
= & 4(X).
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Therefore, we define the conjugate of A = o+ t3 by
A=t"tat—18.
The following theorem follows from Corollary 2.4.6 and a direct calculation:
Theorem 2.7.1. For all A,B € RG,
(1) (det o L7)(A) = AA.

We give the inverse formula of 2 X 2 matrix by conjugation.

Theorem 2.7.2. Let A,B,C,D € RG. Then we have
71 J—
A B D B, _ S la =g
e o] -le pfea-m] ]

o pB| _[AD+BC AB+ BA
v @ |CD+DC DA+ CB|’

where

and we assume that oo — By is invertible.

a B8] [A B|[D B
v @ |C D||C D|-
From (3,7 € Z(RG), these elements «, @, 3,7 are interchangeable. Therefore, we can

use the inverse formula for 2 x 2 matrix whose elements are in commutative ring. This
completes the proof. ]

Proof. We have
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Chapter 3

Generalization of Frobenius’
theorem for group determinants

3.1 Introduction

In this chapter, we give a generalization of Frobenius’ theorem. In addition, the gener-
alization leads to a corollary on irreducible representations of finite groups.

Let G be a finite group, G a complete set of irreducible representations of G over
C, and R = Clz,y] = Clzg; g € G] the polynomial ring in {z,| g € G} with coefficients
in C. The group determinant O(G) € R is the determinant of a matrix whose elements
are independent variables x, corresponding to g € G. Frobenius proved the following
theorem about the irreducible factorization of the group determinant.

Theorem 3.1.1 (Chapter 1, Theorem 1.1.2). Let G be a finite group. Then we have
the irreducible factorization

deg

0(G) = [] det | D wlg9)z,

el geG

Frobenius built a representation theory of finite groups in the process of obtaining
Theorem 3.1.1. Here, we give a generalization of Theorem 3.1.1, i.e., a generalization
of Frobenius’ theorem. The theorem is as follows. However, we will explain Fig.p] in
Section 3.4.

Theorem 3.1.2 (Generalization of Frobenius’ theorem). Let G be a finite group, H
a subgroup of G, L a left reqular representation from RG to Mat([G : H],RH), o =
> gecTq9 € RG, and L(a) = 2,y Cph, where Cp € Mat([G : H], R{e}). Then, we

have

deg v
0(G) = [ det (Z ¥(h) ®c,f[G:H1> .

¢€ﬁ heH
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Theorem 3.1.2 leads to the following corollary.

Corollary 3.1.3. Let G be a finite group and H a subgroup of G. For all ¢ € @, we
have

degp < [G: H] xmax{degwl¢eﬁ}.

Theorem 3.1.2 is obtained by using left regular representations of the group algebra.
In Section 3.3, we review the left regular representation and properties of the left regular
representation needed for proving Theorem 3.1.2. The last section proves a generalization
of Theorem 3.1.1.

3.2 Group determinant

Let G be a finite group, {z4 | g € G} be independent commuting variables, and R =
Clzg4] = Clzg; 9 € G] the polynomial ring in {z, | g € G} with coefficients in C. The
group determinant ©(G) is the determinant of the |G| x |G| matrix (xgvh)g,heG’ where
Tyn = g1 for g,h € G, and it is thus a homogeneous polynomial of degree |G| in z.
Frobenius proved the following theorem about the factorization of the group determinant.

Theorem 3.2.1 (Chapter 3, Theorem 3.1.1). Let G be a finite group. Then we have
the irreducible factorization

deg

O(G) = ] det [ D el9)zy

@eé geCG
The above equation holds from the following theorem.

Theorem 3.2.2 ([15, Theorem 4.4.4]). Let G be a finite group, {©1, 92, ...,s} a com-
plete set of inequivalent irreducible representations of G, d; = degy;, and Lg the left
reqular representation of G. Then,

Lg ~ dip1 ®dapa @ -+ © dsips.

3.3 Preparation for the main result

Here, we review the left regular representation of the group algebra and describe some
of the properties of the left regular representation that will be needed later.

Let R be a commutative ring, G a group, H a subgroup of G of finite index, and RG
the group algebra of G over R whose elements are all possible finite sums of the form
deG agg, where ag € R. We take a complete set T' = {t1,t2,...,¢q.m)} of left coset
representatives of H in G, where [G : H] is the index of H in G.
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Definition 3.3.1 (Left regular representation). For all A € Mat(m, RG), there exists a
unique Lp(A) € Mat(m[G : H|, RH) such that

A(tllm tg[m s t[G:H]Im) = (tlfm tz[m v t[G’;H]Im)LT<A)-

We call the map Lt : Mat(m, RG) 3 A — Lp(A) € Mat(m[G : H], RH) the left reqular
representation from Mat(m, RG) to Mat(m|[G : H], RH) with respect to T

Obviously, Lt is an injective R-algebra homomorphism.

To give an expression for Ly when H is a normal subgroup of G, we will use
the Kronecker product. Let A = (aij)i<i<mi,1<j<n; b€ an mp X n; matrix and B =
(bij)1<i<ma,1<j<n, an mg X ng matrix. The Kronecker product A ® B is the (mima) X
(n1ng) matrix

anB  apB -+ a1, B
ang GQQB s agnlB

A®B= . . .
amllB am12B ce amlnlB

Let
tIIm
tol,,
P =
t[G:H]Im

Now, we have the following lemma.

Lemma 3.3.2 ([21, Lemma 12]). Let H be a normal subgroup of G, L the left reqular
representation from Mat(m, RG) to Mat(m[G : H], RH) with respect to T, L g the left
reqular representation from R(G/H) to Mat(|G/H|, R{eH}) with respect to G/H, and
A =3 crtA; € Mat(m, RG), where Ay € Mat(m, RH). Accordingly, we have

Lp(A) = P! (Z Log(tH) ® tAt> P.

teT

Let K C H C G be a sequence of groups, H = u1 K UugK U -+ Uug.gK and
U = {u1,u,...,uy.x)}- We can now prove the following lemma.

Lemma 3.3.3 ([21, Lemma 13]). Let Ly : Mat(m, RG) — Mat(m[G : H|,RH) the
representation with respect to T and Ly : Mat(m|[G : H|, RH) — Mat(m[G : K], RK)
the representation with respect to U. Then there exists a unique representation Ly from
Mat(m, RG) to Mat(m|[G : K], R{e}) with respect to V such that

LV = LU o LT
where V = {v1,va,...,viq:x]} 95 a complete set of left coset representatives of K in G
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The following lemma connects the left regular representation with the group deter-
minant.

Lemma 3.3.4 ([21, Lemma 24]). Let G be a finite group, ©(G) the group determinant
of G, a=3 cqr99 € RG, and L : RG — Mat(|G|, R{e}) a left regular representation.
We have

(det o L)(cx) = O(G)e.

3.4 Generalization of Frobenius’ theorem

Here, we prove the generalization of Frobenius’ theorem. In addition, the proof leads to
a corollary on irreducible representations of finite groups.
We define F,, : Mat(m, RG) — Mat(m, R) by

Fo | | Y #ii(9)g = [ D=9
9€C 1<i<m,1<j<m 9ed 1<i<m,1<j<m

where z;;(g) € R. We denote F,,(A) by Af™ for all A € Mat(m, RG).
Let G be a finite group and K a normal subgroup of G and H. The lemmas will be
needed later.

Lemma 3.4.1. Let H be a normal subgroup of G, L a left reqular representation from
Mat(m, RG) to Mat(m[G : H], RH), and A =Y, . tA;, where Ay € Mat(m, RH). We

have
(det © Frygim o L)(A) = [] det (Z <p(tH)®Afm>.
oG/l teT

Proof. Let L ~ ¢} @ ¢y @ - -- @& ¢, where ) is an irreducible representation of G. From
Lemma, 3.3.2 and Theorem 3.2.2, we find that

(det e} Fm[G:H] o} L)(A)

Fm[G:H]
= det (P—l (Z Le/n(tH) ® tAt> P)

teT
p1(tH)
/
@y (tH)
=det [ Y 2 ® AFm
teT
¢y (tH)

degp

= H det < <p(tH)®Afm> .
oGl teT

This completes the proof. O
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Lemma 3.4.2. Let L : Mat(m,RG) — Mat(m[G : H|,RH) be a left regular rep-
resentation, A = 3 i, vB,, and L(A) = > .y uCy, where B, € Mat(m, RK) and
Cy € Mat(m|[G : H|, RK). We have

B deg ¢ - Focurn degv
H det ng(vK)@va = H det Z@ZJ(UK)@CH .

oeGR vev VEHIR uel

Proof. From Lemmas 3.3.3 and 3.4.1, we have

deg
I det (Z o(vK) ® Bfm> = (det o F,g.x) © Lv)(A)

oeG/K veV
= (det o Fiq.x) © Ly o L1)(A)
= (det o a0 Ly o L)(A)

= (det o Fyja.i) © Lu) <Z uCu)

uelU
deg v
— I det (Z D(uK) ® Cfm[@m) .
¢GW uelU
This completes the proof. O

The following is the proof of the generalization of Frobenius’ theorem.

Theorem 3.4.3 (Chapter 3, Theorem 3.1.2). Let G be a finite group, O(G) the group
determinant of G, H a subgroup of G, L a left regular representation from RG to
Mat([G : H], RH), o =3 cq2q9 € RG, and L(a) = 3 ey Cph, where Cp, € Mat([G :
H], R{e}). We have

deg
O(G) = ] det (Z W(h) ®05[G:H]> .

weﬁ heH
Proof. For all v € V, there exists B, € Mat(m, R{e}) such that
0(G) = (6(G)e)™

degp
= H det(Zcp(vK)@Bfl>

@EG//—\{e} veV
deg 1
— ] det (Z d(ule}) ® Cy [G“H])
weH//{\e} uelU
deg 1
= I det (Z p(h) ® cf[G:H]>
pch heH
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from Lemmas 3.3.4, 3.4.1 and 3.4.2. O

The polynomial ring R is a unique factorization domain. Therefore, we have the
following corollary from Theorems 3.2.1 and 3.4.3.

Corollary 3.4.4 (Chapter 3, Corollary 3.1.3). Let G be a finite group and H a subgroup
of G. For all p € G, we have

degyp < [G: H] xmax{degwlweﬁ}.

Proof. We have

degp = deg [ det | > o(g)z,
geG

< max {deg <det (Z p(h) ®C’5[G:H]>> | € ﬁ}

heH
:max{degw < [G:H]|ve ff}

:[G:H]xmax{deng\wEﬁ}.

This completes the proof. O

Remark that Corollary 3.4.4 follows from Frobenius reciprocity[12].
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Chapter 4

Proof of some properties of
transfer using noncommutative
determinants

4.1 Introduction

A transfer is defined by Issai Schur [14] as a group homomorphism from a group to an
abelian quotient group of a subgroup of finite index. In finite group theory, transfers play
an important role in transfer theorems. Transfer theorems include, for example, Alperin’s
theorem [1, Theorem 4.2], Burnside’s theorem [8, Hauptsatz], and Hall-Wielandt’s the-
orem [6, Theorem 14.4.2].

On the other hand, Eduard Study defined the determinant of a quaternionic matrix
[3]. The Study determinant uses a regular representation from Mat(n, H) to Mat(2n, C),
where H is the quaternions. Similarly, we define a noncommutative determinant. It is
similar to the Dieudonné determinant [2].

Toéru Umeda suggested that a transfer can be derived as a noncommutative deter-
minant [16, Footnote 7]. In this paper, we develop his ideas in order to explain the
properties of the transfers by using noncommutative determinants. As a result, we give
a natural interpretation of the transfers in group theory in terms of noncommutative
determinants.

Let G be a group, H a subgroup of G of finite index, K a normal subgroup of H,
and the quotient group H/K of K in H an abelian group. The transfer of G into H/K
is a group homomorphism Vi, /i : G — H/K. The definition of the transfer Vi, i/ i
uses the left (or right) coset representatives of H in G. We can show that a transfer has
the following properties.

(1) A transfer is a group homomorphism from G to H/K.

(2) A transfer is an invariant under a change of coset representatives.

39



(3) A transfer by left coset representatives equals a transfer by right coset representa-
tives.

Let R be a commutative ring with unity and RG the group algebra of G over R whose
elements are all possible finite sums of the form geG Tg9, g € R. The noncommutative
determinant uses a left (or right) regular representation from RG to Mat(m, RH ), where
m is the index of H in G. We can show that the noncommutative determinant has the
following properties.

(1') The determinant is a multiplicative map from RG to R(H/K).
(2') The determinant is an invariant under a change of a regular representation.
(3') Any left regular representation is equivalent to any right regular representation.

Here, our objective is to obtain the properties of transfers (1), (2), and (3) by using
the properties of noncommutative determinants (1), (2'), and (3').

4.2 Definition of the transfer

Here, we define the left and right transfer of G into H/K.
Let G = t1H UtoH U--- Uty H. That is, we take a complete set {t1,ta,...,t,} of
left coset representatives of H in G. We define g =t; for all g € t;H.

Definition 4.2.1 (Left transfer). We define the map Vo, g/ : G — H/K by

Vosu/r(g) = ﬁ {(E)_l gti} K.

=1
We call the map Vg, /i the left transfer of G into H/K.

Next, we define the right transfer of G into H/K. Let G = Hu; U Hug U -+ - U Huy,.
That is, we take a complete set {u1,ug,...,un} of right coset representatives of H in
G. We define g = u; for all g € Hu,.

Definition 4.2.2 (Right transfer). We define the map VG%H/K :G — H/K by
Vasnelg) = [T {wis (w9) '} K.
i=1
We call the map ‘7G—>H/K the right transfer of G into H/K .

The definitions of the left and right transfers use the coset representatives of H in G.
But, we can show that the left and right transfers are invariant under a change of coset
representatives. Furthermore, we can show that a transfer is a group homomorphism
from G to H/K and a transfer by left coset representatives equals a transfer by right
coset representatives.
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4.3 Definition of the noncommutative determinant

Here, we define the noncommutative determinant.
First, we define the left regular representation of RG. We take a complete set T =
{t1,ta,...,tm} of left coset representatives of H in G.

Definition 4.3.1 (Left regular representation). For all « € RG, there exists a unique
Lp(«) € Mat(m, RH) such that

Oé(tl t2 s tm) = (tl tQ e tm)LT(Oz).

We call the map Ly : RG 5 a — Lp(a) € Mat(m, RH) the left reqular representation
with respect to T'.

Obviously, Lt is an R-algebra homomorphism.
Let T" = {t},t},...,t),} be another complete set of left coset representatives of H in
G. Then, there exists P € Mat(m, RH) such that Ly = P~ L/ P.

Example 4.3.2. Let G = 7Z/2Z = {0,1}, H = {0}, and o = 20 + y1 € RG. Then, we
have

a@ T)=@ 1) Bg zg]

To get an expression for L7, we define the map x by

x(g) = {1 g €M,

0 g¢H
for all g € G.
Lemma 4.3.3. Let a =} . 2q9. Then, we have
Lr(a)ij = Y X (t; 'gt;) w4t; ' gt;-
geG
Proof. We have
(1 to o tm) [ DX (7 gty) ety gty
9€G@ 1<i<m 1<j<m
m m m
= | DD X gt)aggty DD Xt gta)zggts oo D0 Xt gtm)Tggtm
i=1 geG i=1 geG i=1 geG
= Z Lgg (tl to - tm)-
geG
This completes the proof. O
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From Lemma 4.3.3, we have

Lr(g)ij = X (¢ 'gt;) t; ' gt;
titet; t7'gt; e W,
0 t'gt; ¢ H.
From t; 'gt; € H if and only if gf; = t;, we have
gt; gt; t. gt; € H,
Lr(g)i; = (41:) T
0 tz’ gt]’ Q H.

As for the definition of the noncommutative determinant, let ¢ : Mat(m, RH) —
Mat (m, R (H/K)) be a map such that

Y (@i)1<icmagiem = @i K)1<icm1<j<m
Obviously, 1 is an R-algebra homomorphism.
Definition 4.3.4. We define the map Det : Mat(m, RG) — R(H/K) by
Det = det oo L.
Since there is P such that Ly = P~'Lsv P, we have

Det =det oo L
= det OwOLTI.

Thus, the determinant is an invariant under a change of left regular representations,
so the determinant Det is well-defined. If K is the commutator subgroup of H, the
determinant is similar to the Dieudonné determinant.

Obviously, the map Det is a multiplicative map. That is, Det(af) = Det(a)Det(5)
for all a, 8 € RG. Therefore, we obtain properties (1’) and (2/).

Remark 4.3.5. In general, that o € RG is invertible is not equivalent to that Det(a) €
R(H/K) is invertible. For ezample, let R = C, Z/2Z = {0,1}, dihedral group D3 =
(a,bla® = b? = e,ab = ba~') where e is the unit element of D3, G = Z/27Z x D3, H = D3
and K = [Ds, D3] the commutator subgroup of H. Then o = (6, e) + (6, a) + (6, a2) 18
not invertible. But, Det(a) = 9K is invertible.

4.4 Proof of the properties

Here, we prove the transfer properties by using the noncommutative determinant’s prop-
erties.
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For all g € G and for all ¢ € T', there exists a unique t; € T" such that ti_lgtj € H.
Therefore, there exists sgn(g) € {—1,1} such that

Det(g) = det (¢ (L1(9g)))
= sgn(o) [[{ (t) " ot:} K
i=1
= sgn(9)Ven/k(9)-
Thus, we have
sgn(gh)Va_m/k (gh) = Det(gh)
= Det(g)Det(h)
= sgn(g)sgn(h)Vo bk (9)Vasn/k (h).
Hence, we obtain
sgn(gh) = sgn(g)sgn(h),
VG’—>H/K(9h) = VG—>H/K(9)VG—>H/K(h)-

Therefore, from property (1’) that Det is a multiplicative map, the left transfer
VG- m/K is a group homomorphism (Assuming, that is, R = F2, and we do not consider
the signature).

Next, we show that the left transfer is an invariant under a change of coset repre-
sentatives by using property (2') that the determinant is an invariant under a change of
regular representations. That is, we show that

[T {7 o}~ LT { ()"}

where we define g = ¢ for all g € ¢;H. From property (2'), there exists sgn’(g) € {—1,1}
such that

11 {(E)_1 gti} K = sgn(g)Det(g)

= san(opsan () ][ (57) "ot} ¢

Therefore, we have sgn(g)sgn’(g) = 1 and

m m 1
H{(giﬁi)_lgti}K:H{@t;) gt;}K.
i=1 i—
Hence, the left transfer is an invariant under a change of coset representatives.
Now let us prove property (3) that Vo, g/ = 17@_, m/K from property (3') that any
left regular representation is equivalent to any right regular representation.
Let G = HuiUHugU- - -UHu,,. That is, we take a complete set U = {uy,us,. .., un}
of right coset representatives of H in G.
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Definition 4.4.1. For all o € RG, there exists Ry («) € Mat(m, RH) such that

Ui U
Uz U2
a = Ry(a)

U, Um

We call the map Ry : RG > a— Ry () € Mat(m, RH) the right reqular representation.
The same as the left transfer, we can show that the following lemma.
Lemma 4.4.2. Let o = deG xgg. Then, we have
Ry(a)ij = Z X(uigujfl)xguigujfl.
geCG

Therefore, there exists sgn(g) € {—1, 1} such that
(det oo Ry) (9) = sgn(9) Vo iy (9)

and TN/G_> H/K 1s an invariant under a change of coset representatives of H in GG. We have
properties (1) and (2).

Since T' is a complete set of left coset representatives of H in G, we can take a com-
plete set of 771 = {tl_l, ty L .t} of right coset representatives of H in G. Therefore,

Rps(@) = D% (57007 ) gty Mgt
geG
= LT(O[)Z']‘.
We obtain property (3'). As a result,
(det oo Ry) (g) = (det o) o L7) (g).
Therefore, we have
sgu(g) = sgn(g),
Vasu/k = Voon/k-

We obtain property (3).
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Chapter 5

Capelli elements of the group
algebra

5.1 Introduction

The Capelli identity is analogous to the product formula for the determinant in the Weyl
algebra. The identity leads to the Capelli element. It is known that the Capelli element
is a central element in the universal enveloping algebra of gl,,.

In recent years, An Huang gave Capelli-type identities associated with the quater-
nions and the octonions [7]. Inspired by his results, Téru Umeda gave Capelli identities
for group determinants [17]. There are Capelli identities for irreducible representations
in the background of the Capelli identities for group determinants.

In this paper, we give a basis of the center of the group algebra of any finite group by
using Capelli identities for irreducible representations. These identities lead to Capelli
elements of the group algebra. These elements construct a basis.

First, we explain our motivation.

5.1.1 Motivation

Let G be a finite group, G a complete set of irreducible representations of G over C,
CG = {deG xgg | x4 € (C} the group algebra, and Z(CG) the center of CG. The

following theorem is easily proved from Schur’s orthogonal relations.

Theorem 5.1.1. Let x,, be the character of ¢ € G. The set

Tr( > gy | le€Gp=0> xo9)glpeC

geG geG

is a basis of Z(CG) where we omit the numbering of the element of the basis.

At this point, we have a simple question. Is the set {det (deG go(g)g) | p € é} a

basis of Z(CG)? Our main result gives an answer.
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5.1.2 Main result

Let z be a complex variable, |G| the order of G, ¢ € CAJ, m = degyp, a = il ui(z) =

a(m —1) — z, uD(2) = upm(2)tm_1(2) - - Um—ip1(2), det the column determinant, and
the Capelli element for ¢ of the group algebra
m—1
—o m — 2
C7"(z) = det ng(g)g+a ) —zI, | € Clz] ® CG.
geG -

Then we can prove the following relation.

Theorem 5.1.2. We have
CP(z) =u™(2) + T | Y 0(g)g |u™V(z).
geG

The above relation leads to the following corollary.

Corollary 5.1.3. Suppose k, € C such that u(mfl)(kw) # 0. Then,
{7, 1 € G}

is a basis of Z(CQ).

This is our answer. We provide some sections for the details.

5.2 Capelli identity and Capelli element

Here, we review the Capelli identity and the Capelli element.

5.2.1 Column determinant

First, we explain the column determinant. Let R be an associative algebra.

Definition 5.2.1 (Column determinant). Let A = (aij)i<ij<m € Mat(m, R). We define
the column determinant of A by

det A = Z SgN(0)ag(1)100(2)2 * * * Qo(m)m-

gESm

b

Hence, we have det [a
c d

]:ad—cb.
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5.2.2 Weyl algebra

The Capelli identity is analogous to the product formula for the determinant in the Weyl
algebra. Next, we explain the Weyl algebra Clz;j, 0 | 1 <4, 4, k, 1 < m)].

Let x;; (1 < i,j < m) be variables, 0;; = 8%” (1 < i,57 < m) partial differential
operators, and o € C. We assume that these variables and operators are related as
follows.

For all 1 <14,7,k,1 < m, we have

[ij, ] = 0, [04, O] = 0, [0, Tia] = dirdyy
where ¢ is the Kronecker delta. Usually, we take @ = 1. Here, we will not assume that
a = 1. The Weyl algebra is generated by these variables and operators.
5.2.3 Capelli identity
Next, we explain the Capelli identity. Let
X = ({L‘l]) 6 = WYij)1<i<m,1<5<
T ="X0, i = diag(m — 1,m —2,...,0).

It i R

The Capelli identity is as follows.
Theorem 5.2.2 (Capelli identity). We have

det (IT + af,) = det X det 0.
Example 5.2.3. Let m =2 and a = 1. We have

11011 + 21091 + 1 211012 +3321322} — det [5611 3312] dot [311 512]

det
212011 + 22021 721012 + 222012 To1 T22 Oo1 022

5.2.4 Capelli element
The Capelli element is a characteristic polynomial of II. Let z be a variable.
Definition 5.2.4 (Capelli element). We define the Capelli element C(z) by
C(z) = det (II + alyy, — 21y).

The Capelli identity is conjugation invariant.

Theorem 5.2.5. For all P € GL(m,C), we have
det (PHP_1 + Al — 2I) = C(2).

The following theorem plays an important role in what follows.

Theorem 5.2.6. For all1 <i,5 < m, we have
11,5, C(2)] = 0.
Theorem 5.2.5 and 5.2.6 are obtained only by the following relations.
For all 1 <, j,k,1 < m, [II;j, ] = o660y — 65llk;).
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5.3 Capelli identity for irreducible representations

Here, we explain the Capelli identities for irreducible representations.

Let G be a finite group, z, (g € G) variable and 9, = 8%(] (9 € G) partial differential
operator. We assume that the following relations hold. ‘

For all g,h € G,

[:Eg7xh] = 07 [aq»ah] = Oa [ag,xh] = Ogh-

Then, we have the Weyl algebra C|z,, 0p]. Next, we construct Weyl subalgebras of the
Weyl algebra by using irreducible unitary representations of G.

Let |G| be the cardinality of the set G (that is, |G| is the order of the group G), ¢ a
unitary matrix form of an irreducible representation of G,

U = Ti' X? =Y olg)rg, 7= ¢(g)d,, II°="X%%
geG geG

where ©(g) is the complex conjugate matrix of ¢(g). Then, we have the following
relations.
Forall 1 <4, 5,k 1 <m,

[X;‘;,X;g] =0, [8;’},823] =0, [8;’},X;§] = mdikdji.
This leads us to the following identity.
Theorem 5.3.1 (Capelli identity for irreducible representations). We have
det (IT% + ayp i) = det X% det 9.

Let C¥(z) = det (II¥ + aumbim — 2I,) be the Capelli element. From Theorem 5.2.5,
the Capelli element is invariant under a change of a matrix form of the irreducible
representation. This enables us to redefine the Capelli element as follows.

Definition 5.3.2 (Capelli element for irreducible representations). Let ¢ € G and
m = degp. We define C¥(z) by

C?(z) = det (II? + ambim — 2In).
We call C?(z) the Capelli element for .

5.4 Capelli element of the group algebra

Let CG = {deG zqg | xg € C} the group algebra of G, Ga complete set of irreducible

unitary matrix representations of G, ¢ € é, and

E? = ¢(g)g € Mat(deg ¢, CG).
geG

From Schur’s orthogonal relations, we have the following lemmas.
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Lemma 5.4.1. {E7 |1 <4,j <degp,p € G} is a basis of CG.

Lemma 5.4.2. Let p, ¢ € é, where ¢ is not equivalent to ¥. For all 1 < 1,7 < degyp
and 1 < s,t < deg, we have

© e ¥ oY _
ELEp = Qdeg 0k Ly ELEg =0.
In particular, we have

[EZ., Ef] = O‘degnp(é}ngil — 5Z~1E,fj), (5.1)
[Ef, E}j] = 0. (5.2)
Let B
C?(z) = det (E¥ + amby — 2I,,) € Clz] ® CG.
Recall that Theorems 5.2.5 and 5.2.6 are obtained only by the relations [I1;;, [I] =
a(0;, 1T — 6, 11y;). Hence, éw(z) is conjugation invariant from the relations (5.1), and
we have
(B,C7(2)] = 0

for any 1 < 4,7 < deg .

Using the above conjugation invariance, we redefine C*(z).

Definition 5.4.3 (Capelli element of the group algebra). Let ¢ € G. We define the
Capelli element for ¢ of the group algebra by

C¥(2) = det (E¥ + amlim — 2Im).
)

From Lemma 5.4.1, conjugation invariance of 690@
can prove the following Lemma.

Lemma 5.4.4. For all ¢ € G, C(2) € Z(CG[2]). That is, C*(2) is a central element
of the group algebra.

, and relations (5.1) and (5.2), we

Let u,(2) = a(m — i) — 2, () = (2 (2) - unoier(2), B uy(2)) =
E;’} + d;ju;(z), and [m] = {1,2,...,m}. The following is the main theorem.

Theorem 5.4.5 (Chapter 5, Theorem 5.1.2). We have
C%(2) = u™ (2) + Te(E¥)u™ "V (2).

Proof. From the definition of C*(z), we have

To(2) = Y sen(0) B2y (w1 (2) B gppua(2)) -+ EF (i (2))

UES’m

= Z sgn(a)(E(f(l)l + 60(1)1“1 (2))-- (Ef(m)m + 50’(m)mum(z))

oESM
= Z Sgn(a) Z H E;p(t)t H 60(5)5“8(2) + u(m) (Z)
UESm @#Tc[m] teT SE[’H’L]\T
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where HtGT ot ) Ef(tl)h E;D(tg)tQ o Ef(t‘ﬂ)tﬂ"\ and T' = {tl <ty <o < t‘T|}' We fix

T ={ti <ty <-- <ty }(#0) C[m]. From Lemma 5.4.2, we have

ngn Z HE“’ H Oor(

oESM m] teT [m\T
T|—
a1 Z Sgn(a)éo(tg)tléa(tg)tg"'5a(t|T‘)t‘T‘_1Ef(t1)t‘Tl T does)sus(2)
0ESm s€[m\T
:(—am)m_lEﬁT‘tlT‘ H us(2).
se[m\T

Therefore, there exists a; € C[z] (1 <14 < m) such that

ZazEw—i—u (2).

We show that a, = a, for all p,q € [m]. From Lemma 5.4.2, we have

EST(z (Z G B + ™) >>

= Z aiéiqamE; + (™ (z)E;fq

= agan B, + ™ (2) B,

5w(Z)E¢ = (Z a; BY 4+ u™( )) B

Z aiSipam Bf + u™ (2) Ef,
=1

= aposz;fq + u(m)(z)E]fq.
From Lemma 5.4.4, we have a, = a, for all p,q € [m]. We calculate a;. From C*(z) =

ZTC[m](_am)lT‘ilEzTT‘t‘Tl HSE[m]\T US(Z), we have

wBf = (—am) VB T u2)
s€[m]\{1}
= u(m_l)(z)Efl.

This completes the proof. O

In addition, we have the following corollary.

Corollary 5.4.6 (Chapter 5, Corollary 5.1.3). Suppose ky, € C such that u(™= (k) #
0. Then,

{C°k,) 10 € G}
is a basis of Z(CG).
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5.5 Relationship between column, row and double deter-
minant

In this last section, we explain the relationship between column, row, and double deter-
minants. The row and double determinants are as follows.

Definition 5.5.1 (Row determinant). Let A = (a;j)1<ij<m € Mat(m,R). We define
the row determinant of A is defined as

rdetA = Z SgN(0)a15(1)A20(2) " * Amo(m)-

oESM
Definition 5.5.2 (Double determinant). Let A = (ai;)1<i,j<m € Mat(m, R). The double
determinant of A is defined as
1
DetA = W Z Sgn(UT)ao'(l)T(l)aa(2)7’(2) © Qg (m)T(m)-

' 0, TESm

Reference [10] describes that the relationship between column, row, and double de-
terminants. Let

= ;o= (UESm),
m—1 o(1)

and E € Mat(m, R), where we assume that [E;;, Ey] = 6jEy — 6yEy; for all 1 <
1,7, k,1 < m. We can prove the following theorem.

Theorem 5.5.3 ([10]). For all 0 € Sy, we have

det (E + ty, — 2Ip) = rdet(E + 1" — 21,,)
= Det(E + 8, — (2 4+ 1)1,).
The above has the following implication.

Corollary 5.5.4. Let év(z) be the Capelli element for ¢ of the group algebra. For all
0 € Sy, we have

C%(2) = rdet(E? + aml* — zI1,)
= Det(E¥ + ambs — (2 + 1)I).
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