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Abstract. We study a topological analogue of idèlic class field theory for 3-
manifolds, in the spirit of arithmetic topology. We firstly introduce the notion
of a very admissible link K in a 3-manifold M , which plays a role analogous to

the set of primes of a number field. For such a pair (M,K), we introduce the
notion of idèles and define the idèle class group. Then, getting the local class
field theory for each knot in K together, we establish analogues of the global
reciprocity law and the existence theorem of idèlic class field theory.
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Chapter 4. Idèlic class field theory for 3-manifolds 15
4.1. Review of global class field theory for number fields 15
4.2. Very admissible links 17
4.3. The universal K-branched cover 21
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Notation and convention

We denote the empty set by ∅.
We denote the ring of integers by Z, the rational number field by Q, the real

number field by R, and the complex field by C.
The symbol Fq denotes the field with q-elements.
For a connected topological space X (respectively a field k), we denote the

maximal abelian covering of X (respectively the maximal abelian extension of k)
by Xab (respectively kab).

We write π1(X) for the fundamental group of X omitting a base point and
Hn(X) simply for the n-th homology group with coefficients in Z.

For a Galois covering h : Y → X (respectively a Galois extension F/k), we
denote the Galois group by Gal(Y/X) (respectively Gal(F/k)).

A branched cover of a 3-manifold means one branched over a link.
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CHAPTER 1

Introduction

In the middle of 20th century, J. Tate, M. Artin, and J. L. Verdier interpreted
class field theory for number fields as an analogue of 3-dimensional Poincare duality
in Galois/étale cohomology ([Tat63], [AV64]). The analogies between knots and
primes were initially pointed out by B. Mazur ([Maz64]). After a long silence,
M. Kapranov and A. Reznikov took up the analogies between 3-manifolds and
number rings again ([Kap95], [Rez97], [Rez00]), and M. Morishita investigated
the foundational analogies systematically ([Mor02], [Mor10], [Mor12]). This area
of mathematics is now called arithmetic topology.

It is known that there is an analogy between the Hurewicz isomorphism and
unramified class field theory, where the 1st homology group corresponds to the ideal
class group. In number theory, the Takagi-Artin class field theory describes abelian
ramified extensions of number fields by generalized ideal class groups, and Chevalley
introduced the notion of idèles by which global class field theory is obtained by
getting all local theories together. One of the most important open problems in
arithmetic topology is to study a topological analogue of idèlic class field theory.
This thesis addresses this problem and presents our attempt to construct idèlic
class field theory for 3-manifolds. This thesis is based on the papers [Nii14] and
[NU].

Now, we describe our main results in this thesis. Based on the local analogies in
the dictionary in §2.1, we first develop a local theory for each knot in a 3-manifold,
which is an analogue of local class field theory. Let K be a knot in a solid torus
VK . A topological analogue of the local reciprocity homomorphism is simply given
by the Hurewicz homomorphism

ρK : H1(∂VK) −→ Gal(∂V ab
K /∂VK).

Let M be an oriented, connected, closed 3-manifold. We introduce a certain
infinite components link K called a very admissible link of M , which may be re-
garded as an analogue of the set of primes in a number ring. We prove its existence
(Theorem 4.2.8). For such a pair (M,K), we introduce the idèle group IM,K as a
restricted product of H1(∂VK) over all the knots K in K. In addition, we introduce
the principal idèle group PM,K as the image of a natural homomorphism

∆ : H2(M,K) −→ IM,K.

We put Gal(M,K)ab = lim←−L
Gal(Xab

L /XL), where L runs over all the finite sublinks

of K, XL denotes M − L, and Xab
L denotes the maximal abelian covering of XL.

We regard it as an analogue of the Galois group of the maximal abelian exten-
sion of a number field. Getting ρK together over all K in K, we define a natural
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homomorphism
ρ̃M,K : IM,K −→ Gal(M,K)ab.

We prove Ker(ρ̃M,K) = Im(∆) (Theorem 4.4.3), which yields the global reci-
procity homomorphism ρM,K : CM,K → Gal(M,K)ab. The first part of our main
results is stated as follows.

Theorem A (The global reciprocity law for 3-manifolds. Cf. Theorem 4.4.6).
There is a canonical isomorphism

ρM,K : CM,K
∼=→ Gal(M,K)ab

called the global reciprocity map which satisfies the following properties:
(i) For any finite abelian cover h : N →M branched over a finite link L in K, ρM
induces an isomorphism

CM,K/h∗(CN,h−1(K)) ∼= Gal(N/M).

(ii) For each knot K in K, there is a commutative diagram:

H1(∂VK)

��

∼=
Hur

//

⟲

Gal(∂̃VK/∂VK)

��
CM,K ρM,K

// Gal(M,K)ab,

where the vertical maps are induced by the natural inclusions.

Next, we introduce the standard topology and the norm topology on the idèle
class group. The second part of our main results is stated as follows.

Theorem B (The existence theorem. Cf. Theorem 4.5.7). The correspondence

(h : N →M) 7→ h∗(CN,h−1(K))

gives a bijection between the set of (isomorphism classes of) finite abelian covers of
M branched over finite links L in K and the set of open subgroups of finite indices
in CM,K with respect to the standard topology. Moreover, the latter set coincides
with the set of open subgroups of CM,K with respect to the norm topology.

These theorems above may be regarded as an analogue of the fundamental
theorem of global class field theory for number fields.

We note that idèlic class field theory for 3-manifolds was initially studied by
A. Sikora ([Sik03], [Sik0s], [Sik11]). Our approach is different from his and ele-
mentary.

Here are the contents of this thesis. In Chapter 2, we review the basic analogies
in arithmetic topology. We give a description of the Hilbert ramification theory for
3-manifolds. In Chapter 3, we review the local class field theory for local fields, and
describe its analogue for 2-dimensional tori. In Chapter 4, we recall the idèlic global
class field theory for number fields, and we develop the idèlic class field theory for
3-manifolds.



CHAPTER 2

Basic analogies

In this chapter, we introduce some basic analogies in arithmetic topology. Next,
we present a new dictionaries which we develop in the later chapters of this thesis.
We review the Hilbert ramification theory in number theory, which discribes a
decomposition of a prime in a finite Galois extension of number fields. Based on
the analogies, we review an analogue of the Hilbert ramification theory for coverings
of 3-manifolds. We consult [Mor12] as a basic reference in this chapter.

2.1. M2KR dictionary

In this section, we introduce the analogies between knots and primes, 3-manifolds,
and number rings.

There is an analogy between the fundamental group of 1-dimensional sphere
S1 and of a finite field Fq. Let Fq be the separable closure of Fq, Ẑ be the profinite
completion of Z.

π1(S
1) = Gal(R/S1) ∼= Z π1(Spec(Fq)) = Gal(Fq/Fq) ∼= Ẑ

Furthermore, S1 is the Eilenberg-MacLane space K(Z, 1) and Spec(Fq) is re-

garded as an étale homotopical analogue K(Ẑ, 1).

S1 = K(Z, 1) Spec(Fq) = K(Ẑ, 1)

Secondly, we introduce some analogies between tori and local fields (see §3.2).

tubular neighborhood VK of knot K p-adic integers Spec(Op)
boundary of VK p-adic local field Spec(kp)

Finally, we introduce some analogies between 3-manifolds and number fields.
For a number field k, we denote the ring of integers of k by Ok.

3-manifold M number ring Spec(Ok)
knot K in M prime ideal p ∈ Spec(Ok)

link L = {K1, . . . ,Kr} set of primes {p1, . . . pr}
unbranched covering N →M unramified extension K/k
branched covering N →M ramified extension K/k
fundamental group π1(M) ètale fundamental group π1(Spec(Ok))
link group π1(M − L) π1(Spec(Ok)− S)
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1-cycles in M generate the singular cycle group Z1(M) of 1-cycles of M . The
boundaries ∂D of 2-chains D ∈ C2(M) generate the subgroup B1(M) of Z1(M).
The first homology group H1(M) is defined by the quotient group:

H1(M) = Z1(M)/B1(M).

2-chains D with ∂D = 0 form the 2nd homology group of M .
On the other hand, prime ideals of the integer ring Ok generate the ideal group

I(k). The principal ideals (a) generated by numbers a ∈ k× generate the subgroup
P (k) of I(k). The ideal class group is defined by the quotient group:

Cl(k) = I(k)/P (k).

Numbers a ∈ k× with (a) = Ok form the unit group O×
k . We have the following

dictionary.

1st cycle group Z1(M) ideal group I(k)
C2(M)→ Z1(M) k× → I(k)

D 7→ ∂D a 7→ (a)
1st boundary group B1(M) principal ideal group P (k)

1st homology group H1(M) = Z1(M)/B1(M) ideal class group Cl(k) = I(k)/P (k)

2nd homology group H2(M) unit group O×
k

There is also an analogy between Hurewics isomorphism and unramified class
field theory.

H1(M) ∼= Gal(Mab/M) Cl(k) ∼= Gal(kabur /k)

Here Mab (respectively kabur ) denotes the maximal abelian covering of M (re-
spectively the maximal unramified abelian extension of k).

The purpose of this thesis is to construct an idèlic theoretic form of class field
theory for 3-manifold and extended these analogies for branched covering.

2.2. Expanded dictionary (a preview)

In this section, we present a new dictionaries which we develop in the later
chapters of this thesis. Let M be a connnected oriented colosed 3-manifold. Let k
be a number field, p be a prime of k.

First, for a knot K in M , let VK be a tubular neighborhood of K. Then, the
natural inclusion ∂VK → VK induces the homomorphism vK : H1(∂VK)→ H1(VK),
which is an analogue of p-adic valuations (§3.2).

K-adic valuation vK : H1(∂VK)→ Z p-adic valuation vp : k×p → Z

Secondly, in §4.2.3, we introduce the notion of a very admissible link K in M ,
which may be regarded as the set of all primes of k. For anM equipped with a very
admissible link K, we present the notion of a universal K-branched cover in §4.3,
which is an analogue of an algebraic closure of a number field. We also present an
analogy between a base point of M and a geometric point of a number field in §4.3.

Thirdly, in §4.4, we introduce analogues of the idèle group, the principal idèle
group, the idèle class group. We present an analogue of the Galois group of the max-
imal abelian extension Gal(kab/k), which is defined by lim←−L

Gal(Xab
L /XL) where L
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3-manifold with very admissible link (M,K) number ring SpecOk

universal K-branched cover hK : M̃K →M algebraic closure k/k
base point bM : {pt} ↪→M geometric point x : SpecΩ→ SpecOk

runs through all the finite links of K and XL denotes M −L. We give an analogue
of the global reciprocity map.

idèle group IM,K idèle group Ik
∆ : H2(M,K)→ IM,K ∆ : k× → Ik

principal idèle group PM,K := Im∆ principal idèle group Pk := Im∆
idèle class group CM,K := IM,K/PM,K idèle class group Ck := Ik/Pk

Gal(M,K)ab := lim←−L
Gal(Xab

L /XL) Gal(kab/k) = lim←−F
Gal(F/k)

global reciprocity map global reciprocity map
ρM,K : CM,K → Gal(M,K)ab ρk : Ck → Gal(kab/k)

Finally, in §4.6, we present an analogy between the linking number and the
Legendre symbol. We introduce an analogue of the norm residue symbol.

linking number lk(K1,K2) (mod 2) Legendre symbol

(
p

q

)
norm residue symbol ( , h) norm residue symbol ( , F/k)

2.3. Review of Hilbert theory for number fields

Let k/Q be a finite Galois extension with degree n. Let Sp = {p1, . . . , pr} be
a set of prime ideals in Ok over p. Then, the Galois group Gal(k/Q) acts on Sp

transitively. We call the stabilizer Dpi of pi the decomposition group of pi:

Dpi := {g ∈ Gal(k/Q) | g(pi) = pi}.
Since we have the bijection Gal(k/Q)/Dpi

∼= Sp, #Dpi = n/r is independent
of pi. Indeed, if pj = g(pi) (g ∈ Gal(k/Q)), we have Dpj = gDpig

−1. Since
g ∈ Gal(k/Q) induces an isomorphism ĝ : kpi

∼= kg(pi), ĝ is in Gal(kpi
/Qp) if

g ∈ Dpi , where kpi (respectively kg(pi)) is the pi-adic local field (respectively the
g(pi)-adic local field), and the correspondence g 7→ ĝ induces the isomorphism

Dpi
∼= Gal(kpi/Q).

The subfield of k corresponding to Dpi is called the decomposition field of pi and is
denoted by Zpi . Furthermore, g ∈ Dpi induces the isomorphism ḡ of Fpi := Ok/pi
over Fp defined by ḡ(x mod pi) := g(x) mod pi, for x ∈ Ok. The map g 7→ ḡ
induces the homomorphism

Dpi −→ Gal(Fpi/Fp),

whose kernel is called the inertia group of pi and is denoted by Ipi :

Ipi := {g ∈ Dpi | ḡ = idFpi
}.

If pj = g(pi) (g ∈ Gal(k/Q)), we obtain Ipj = gIpig
−1 and hence #Ipi is

independent of pi. Set e = ep := #Ipi . The subfield k corresponding to Ipi is called
the inertia field of pi and denoted by Tpi :
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k Tpi Zpi Q

{1} e
Ipi

f
Dpi

r
Gal(k/Q) .

By the isomorphismDpi
∼= Gal(kpi/Qp), we see that the homomorphismDpi →

Gal(Fpi/Fp) is surjective. Thus, we have the following exact sequence:

1 −→ Ipi −→ Dpi −→ Gal(Fpi/Fp) −→ 1.

Then we have the equalities

#Dpi = ef, #Ipi = e, #Gal(Fpi/Fp) =: f.

Suppose k/Q is an abelian extension. Then Dpi
and Ipi

, are independent of pi
lying over p and so we denote them by Dp and Ip respectively.

Theorem 2.3.1 ([Mor12]). Let the notations be as above and suppose k/Q is
an abelian extension. Then there is an exact sequence

1 −→ Ip −→ Dp −→ Gal(Fpi/Fp) −→ 1

and the equality

n = efr.

2.4. Hilbert theory for 3-manifolds

In this section, we review the Hilbert ramification theory for 3-manifolds ac-
cording to [Mor12] Chap.5. We also show a relation between the linking number
and the decomposition law of a knot in a finite abelian covering, which generalizes
a result in [Mor12].

Let M be an integral homology 3-sphere, namely M be a oriented closed 3-
manifold and Hi(M) ∼= Hi(S

3) for each i ∈ Z, and let h : N →M be a finite Galois
covering of connected oriented closed 3-manifolds branched over a link L ⊂M . Let
XL :=M − L, YL := N − h−1(L), and let n denote the covering degree of YL over
XL so that n = #Gal(YL/XL) = #Gal(N/M). Let K be a knot in M which is a
component of L or disjoint from L, and suppose h−1(K) = K1 ∪ · · · ∪ Kr. Then
Gal(N/M) acts transitively on the set of knots SK := {K1, . . . ,Kr } lying over K.
We call the stabilizer DKi of Ki the decomposition group of Ki:

DKi := { g ∈ Gal(N/M) | g(Ki) = Ki }.
Since we obtain the bijection Gal(N/M)/DKi

∼= SK for each i, #DKi = n/r is
independent of Ki.

Since each g ∈ Gal(N/M) induces a homeomorphism g|∂VKi
: ∂VKi → ∂Vg(Ki),

g|∂VKi
is a covering transformation of ∂VKi over ∂VK , so we have the following

isomorphism,

DKi
∼= Gal(∂VKi/∂VK).

The Fox completion of the subcovering space of YL over XL corresponding to DKi

is called the decomposition covering space of Ki and this space is denoted by ZKi.
The map g 7→ ḡ := g|∂VKi

induces the homomorphism

DKi → Gal(Ki/K)

whose kernel is called the inertia group of Ki and is denoted by IKi :

IKi := { g ∈ DKi | ḡ = idKi }.
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If Kj = g(Ki) (g ∈ Gal(N/M)), we obtain IKj = gIKig
−1 and hence #IKi is

independent of Ki. Set e = eK := #IKi . The Fox completion of the subcovering
space of YL over XL corresponding to IKi is called the inertia covering space of Ki

and denoted by TKi :

N // TKi
// ZKi

// M

{1} e
IKi

f
DKi

r
Gal(N/M) .

By the isomorphism DKi
∼= Gal(∂VKi/∂VK), we see that the homomorphism

DKi → Gal(Ki/K) is surjective:

1 −→ IKi −→ DKi −→ Gal(Ki/K) −→ 1.

Then we have the equalities

#DKi = ef, #IKi = e, #Gal(Ki/K) =: f,

where f is called the covering degree of K.
Suppose h : N →M is an abelian covering. ThenDKi

and IKi
, are independent

of Ki lying over K and so we denote them by DK and IK respectively.

Theorem 2.4.1 ([Mor12]). Let the notations be as above and suppose h : N →
M is an abelian covering. Then there is an exact sequence

1 −→ IK −→ DK −→ Gal(Ki/K) −→ 1

and the equality
n = efr.

Finally, let us extend the relation between linking number and the decomposi-
tion law of a knot in a finite abelian covering.

Proposition 2.4.2. Let L := K1∪· · ·∪Kr be an r-component link in an integral
homology 3-sphere M . For given integers ni ≥ 2, let ψ : π1(XL)→ Z/n1Z× · · · ×

Z/nrZ be the homomorphism sending a each meridian of Ki to (0, . . . , 0,
i

1̌, 0, . . . , 0).
Let YL → XL be the covering corresponding to Ker(ψ), whose covering degree is
n := n1n2 · · ·nr, and let h : N → M denotes its Fox completion. Then, for a knot
K in M disjoint from L, the covering degree of K in h : N → M coincides with
the order of (lk(K,K1) mod n1, . . . , lk(K,Ki) mod ni, . . . , lk(K,Kr) mod nr) in
Z/n1Z× · · · × Z/nrZ.

proof. Let K ′ be a component of h−1(K). Since IK′ = IK = {1}, by Theorem
2.3.1, the covering degree of K in h : N → M is the order of a generator σK of
Gal(K ′/K) ∼= DK in Gal(N/M), where σK corresponds to a loop K. Since [K] is
sent to (lk(K,K1) mod n1, . . . , lk(K,Kr) mod nr) by the natural homomorphism
H1(XL) → Gal(N/M) ∼= Z/n1Z × · · · × Z/nrZ given by the Hurewicz map and
Galois theory, our assertion follows. 2

In particular, suppose K is not a component of L, so that K is unbranched in
N . Then the equality fr = n implies that K is decomposed completely in N (i.e.
decomposed into an n-component link) if and only if for each i, lk(Ki,K) ≡ 0 mod
ni.



CHAPTER 3

Local class field theory for tori

In this chapter, we review the local class field theory for local fields and describe
its analogue for 2-dimensional tori.

3.1. Review of local class field theory for local fields

We consult [Neu99] as a reference for this section. Let k be a number field
of finite degree over the rational number field Q. We denote the ring of integers
of k by Ok. A prime p of k is a class of equivalent valuations of k. Finite primes
belong to the maximal ideals of Ok. Infinite primes fall into two classes, real primes
and complex primes. Here real primes correspond to the embeddings k → R, and
complex primes correspond to the pairs of conjugate non-real embeddings k → C.
For a finite prime p, let vp be the corresponding additive valuation of k, and |a|p :=

(Np)−vp(a) for a ∈ k where Np = #(Ok/p). For a real prime p with corresponding
embedding ι : k → R, let |a|p := |ι(a)| for a ∈ k, and complex prime p with
corresponding ι : k → C, let |a|p := |ι(a)|2 for a ∈ k.

Let p be a finite prime of k, and let kp be the local field obtained as the
completion of a number field k with respect to the metric | · |p. Then kp is a non-
archimedean local field, which is a finite extension of the p-adic field Qp for a prime
number p. Let vp : kp → Z be the discrete normalized valuation. We denote by Op

the valuation ring and by p the unique maximal ideal of Op. Let Fp be the residue
field Op/p, which is a finite extension of Fp = Z/pZ. We have O×

p = Ker(vp). The
valuation map vp yields the following splitting exact sequence:

(1) 1 −→ O×
p −→ k×p

vp−→ Z −→ 0.

Let kabp be the maximal abelian extension of kp. When kp is non-archimedean,
we denote the maximal unramified extension of kp by kurp . A main theorem of local
class field theory for the non-archimedean local field kp is stated as follows.

Theorem 3.1.1 (Local class field theory). There is a homomorphism,

ρkp
: kabp −→ Gal(kabp /kp)

called the local reciprocity map, which satisfies the following conditions.
(i). For any finite abelian extension F/kp, the homomorphism ρkp

induces the
following isomorphism

ρkp
: k×p /NF/kp

(F×) −→ Gal(F/kp)

where NF/kp
denotes the norm map for F/kp.

12
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(ii). There is commutative diagram with exact horizontal sequences:

1 // O×
p

//

��

k×p //

��

Z //

��

0

1 // Gal(kabp /kurp ) // Gal(kabp /kp) // Gal(Fp/Fp) // 1

By the above theorem, there is an isomorphism Gal(kurp /kp)
∼= Gal(Fp/Fp) ∼= Ẑ,

where Ẑ denotes the profinite completion of Z.

Theorem 3.1.2. There is a bijection between the set of finite unramified ex-
tensions of kp and the set of open subgroups of finite indices in k×p containing O×

p .

The local theory of an infinite prime p : k
p̃
↪→ C→ R≥0;x 7→ |p̃(x)| is described

as follows. If p is real, then vp : k× → R;x 7→ log |p̃(x)| yields an exact sequence

1 → {±1} → R× vp→ R → 0. By taking Hausdorffication with respect to the local
norm topology, we obtain an exact sequence 1 → {±1} → {±1} → 0 → 0. If p

is complex, then we have an exact sequence 1 → S1 → C× vp→ R → 0, and obtain
an exact sequence 1 → 1 → 1 → 0 → 0 of trivial terms in a similar way. We
put O×

p = {±1} or 1 according as p is real or complex. In both cases, there are
commutative diagrams similar to the case of finite primes.

3.2. Local class field theory for tori

Let K be a fixed knot in an orientable 3-manifold M and let VK be a tubular
neighborhood of K. Then, the boundary of the tubular neighborhood ∂VK is a
2-dimensional torus. The inclusion ∂VK → VK induces the homomorphism vK :
H1(∂VK) → H1(VK). This homomorphism vK is an analogue of p-adic valuation.
The meridian µ ∈ H1(∂VK) of K is the generator of Ker(vK) corresponding to the
orientation of K. A longitude λ ∈ H1(∂VL) of K is an element satisfying that µ
and λ form a basis of H1(∂VK). We denote the image of λ ∈ H1(VK) also by λ.
We fix a longitude of K.

We have the following exact sequence:

0 −→ ⟨µ⟩ −→ H1(∂VK)
vK−→ H1(VK) = ⟨λ⟩ −→ 0.

This exact sequence is an analogue of (1).
According to the local dictionary, ∂VK and VK is an analogues of p-adic local

field kp and the integer ring Op. In our context, the local theory for tori is nothing
but the Galois theory for the covers of ∂VK . For each manifold X, we denote the

universal covering of X by X̃. Then we have the following theorem.

Theorem 3.2.1 (Local class field theory for tori). There is a canonical isomor-
phism

ρK : H1(∂VK) −→ Gal(∂V ab
K /∂VK)

which satisfies the following conditions.
(i). For any finite abelian covering h : Y → ∂VK , the homomorphism ρK induces
the isomorphism

ρY/∂VK
: H1(∂VL)/h∗(H1(Y )) ∼= Gal(Y/∂VK).
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(ii). There is a commutative diagram with exact horizontal sequences:

0 // ⟨µ⟩ //

ρK |⟨µ⟩
��

H1(∂VK)
vK //

ρK

��

⟨λ⟩ //

��

0

1 // Gal(∂̃VK/∂ṼK) // Gal(∂̃VK/∂VK) // Gal(ṼK/VK) // 1.

Theorem 3.2.2. There is a bijection between the set of finite unbranched cov-
ers of VK branched over K and the set of subgroups of finite indices in H1(∂VK)
containing ⟨µ⟩.

proof. These theorem is nothing but Galois theory for covering spaces. 2

Summing up all the results above, we have the following dictionarry.

K-adic valuation vK : H1(∂VK)→ Z p-adic valuation vp : k×p → Z



CHAPTER 4

Idèlic class field theory for 3-manifolds

In this chapter, we present an analogue of idèlic class field theory. First, we
review the idelic class field theory for number fields in §4.1. In §4.2, we introduce
the notion of a very admissible link K in a 3-manifold M which is regarded as an
analogous object of the set of all the primes in a number field. After that, we
introduce the definitions of the idèle group, the principal idèle group, and the idèle
class group, and we construct an analogue of the grobal reciprocity law of idèlic class
field theory. Moreover, we introduce certain topologies on our idèle class group, and
present an analogue of the exsistence theorem of class field theory.

4.1. Review of global class field theory for number fields

In this section, we review the idelic class field theory for number fields, whose
analogue will be described in the later section. We define the notions of the idele
groups, the principal idele groups, and the idele class groups, together with the
global reciprocity map. Then we state the fundamental theorem of global class
field theory. Finally, we recall the notion of the norm residue symbol. We consult
[Neu99] and [KKS11] as basic references for this section.

4.1.1. the idèle class groups. Let k be a number field. We define the idèle
group Ik of k by the following restricted product of k×p with respect to the local

unit group O×
p over all finite and infinite primes p of k:

Ik :=
∏⨿
p

k×p =
{
(ap)p ∈

∏
p

k×p | vp(ap) = 0 for almost all finite primes p
}
.

This group is the restricted products with respect to the local topology on k×p (see

§4.1.2) and the family of open subgroups {O×
p ⊂ k×p }. Since we have vp(a) = 0

for a ∈ k× and for almost all finite primes p, k× is embedded into Ik diagonally.
We define the principal idèle group Pk by the image of the diagonal embedding
∆ : k× → Ik. Then, we denote the idèle class group of k by

Ck := Ik/Pk.

Let I(k) and Cl(k) denote the ideal group and the ideal class group of k respec-
tively. Consider the natural homomorphism φ : Ik → I(k); (ap)p 7→

∏
p p

vp(ap).

We define the unit idele group Uk by Ker(φ), which is equal to
∏

pO∗
p. We have

Proposition 4.1.1. The homomorphism φ induces a natural isomorphism

Ik/(Uk · Pk) ∼= Cl(k).

15
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4.1.2. Topologies of idèle class groups. The idèle class group Ck admits
the standard topology and the norm topology.

First, we introduce the definition of standard topology which is the quotient
topology of the restricted product topology on the idèle group Ik of the local topolo-
gies, defined as follows.

We firstly define the local topology on a local field k×p . For a local field kp, the

multiplicative group k×p equips the norm topology, so that it is a topological group,

and the family of NkP/kp
(k×P) is a fundamental system of neighborhoods of 0, where

kP/kp runs through all the finite abelian extensions of kp. Then, we consider on
O×

p the relative topology of the local norm topology of k×p , and re-define the local

topology on k×p as the unique topology such that the inclusion O×
p → k×p is open

and continuous.
Next, for each finite set of primes T which includes all the infinite primes, we

consider the product topology on G(T ) =
∏

p∈T k
×
p ×

∏
p/∈T O

×
p . Then, we define

the standard topology on Ik so that each subgroup H ⊂ Ik is open if and only if
H ∩G(T ) is open for every T .

Secondly, we introduce the definition of the norm topology on idèle class group.
For a finite abelian extension F/k, the norm map NF/k : CF → Ck is defined as

follows. Let p be a prime of k and F×
p :=

∏
P|p F

×
P . Each αp ∈ F×

p defines a

kp-linear automorphism αp : F×
p → F×

p ;x 7→ αpx, and the norm of αp is defined

by NFp/kp
(αp) = det(αp). It induces a homomorphism NFp/kp

: F×
p → k×p , and

the norm homomorphism NF/k : IF → Ik on the idèle groups. Since NF/k sends
the principal idèles to principal idèles, it also induces the norm homomorphism
NF/k : CF → Ck on the idèle class groups. For a number field k, the idèle class
group Ck equips the norm topology, so that it is a topological group, and the
family of NF/k(CF ) is a fundamental system of neighborhoods of 0, where F/k
runs through all the finite abelian extensions of k.

There is a relation between the standard topology and the norm topology.

Proposition 4.1.2. A subgroup H ⊂ Ck is open and of finite index with respect
to the standard topology if and only if it is open with respect to the norm topology.

4.1.3. Global class field theory for number fields. A main theorem of
global class field theory for a number field k is stated as follows.

Theorem 4.1.3 (Global class field theory). There is a canonical surjective
homomorphism

ρk : Ck −→ Gal(kab/k)

called the global reciprocity map satisfying the following properties:
(i) For any finite abelian extension F/k, the homomorphism ρk induces the following
isomorphism

ρF/k : Ck/NF/k(CF ) −→ Gal(F/k)

where NF/k denotes the norm map for F/k.
(ii) For a prime p of k, there is a commutative diagram:

k×p
ρkp //

ιp

��

Gal(kabp /kp)

��
Ck ρk

// Gal(kab/k)
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where ιp is the map induced by the natural inclusion k×p → Ik.

Theorem 4.1.4 (The existence theorem). The correspondence

F 7→ N = NF/k(CF )

gives a bijection between the set of finite abelian extensions F/k in C and the set
of open subgroups N of finite indices in Ck with respect to the standard topology.
Moreover, the latter set coincides with the set of open subgroups of Ck with respect
to the norm topology.

4.1.4. The norm residue symbols. In this section, we introduce the norm

residue symbol for number fields. We also explain the Legendre symbol

(
p

q

)
.

Definition 4.1.5. For a finite abelian extension F/k, the norm residue symbol
( , F/k) : Ck ↠ Gal(F/k) is defined as the composite of ρk : Ck ↠ Gal(kab/k) and
Gal(kab/k) ↠ Gal(F/k). For this map, we have Ker( , F/k) = NF/k(CF ).

The relation with Legendre’s quadratic residue symbol can be seen as follows:
Let p and q be distinct primes in k = Q, and let F = Q(

√
q) be the quadratic

extension of Q ramified at q. Then [KKS11] Lemma 5.19 states the following
equivalences:(

q

p

)
= 1 ⇐⇒

iff
(p) = p1p2 with two primes p1, p2 in OF (decomposed),(

q

p

)
= −1 ⇐⇒

iff
(p) is a prime in OF (inert).

On the other hand, under the identification Gal(F/k) ∼= {±1}, there are the
following equivalences:

((p), F/k) = 1 ⇐⇒
iff

(p) ∈ NF/k(CF/k) ⇐⇒
iff

(p) is decomposed in F/k.

Therefore, we have

(
q

p

)
= ((p),Q(

√
q)/Q) in {±1}.

4.2. Very admissible links

In this section, we introduce the notion of a very admissible link of a 3-manifold
M , which may be regarded as an analogue of the set of primes in a number ring.
We first recall the notion of tame knots and finite/infinite tame links. Next, we
study several properties about infinite tame links, which will be used later. Finally,
we define the notion of a very admissible link of M and prove a theorem on the
existence of very admissible links.

4.2.1. Infinite tame links. We first recall the definition of a tame knot and
links. We fix a connected, oriented, closed 3-manifold M . We may assume that M
is an orientable 3-dimensional C∞-manifold. We fix a finite C∞-triangulation T on
M .

Proposition 4.2.1. For a knot K : S1 → M , the following conditions are
equivalent.
(1). There is a self-homeomorphism h of M such that h(K) is a subcomplex of
some refinement of T .
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(2). There is a self-homeomorphism h of M such that h(K) is a C∞-submanifold
of M .
(3). There is a tubular neighborhood of K, that is, a topological embedding ιK :
S1 ×D2 →M with ιK(S1 × 0) = K.

Furthermore, we note that (♯) if a neighborhood V of K is given, then h in (i)
and (ii) can be taken so that it has a support in V (i.e., it coincides with identity
map on M − V ).

proof. (1) =⇒ (2) : We may assume that K itself is a subcomplex of some
refinement T ′ of T . For each 0-simplex v of T ′ on K, by a self-homeomorphism of
M with support in a small neighborhood of v, we can modify K so that K is C∞

in a neighborhood of v. Doing the similar for every v, we obtain (2).
(2) =⇒ (3): We may assume that K itself is a C∞-submanifold of M . A tubular
neighborhood of V is the total space of a D2-bundle on K ∼= S1. Since M is
oriented, V is orientable and hence is the trivial bundle. Hence (3).
(3) =⇒ (1): We use [Moi52] Theorem 5: Let M be a metrized 3-manifold with
a fix triangulation T and let K be a closed subset of M . Suppose that there is
a neighborhood V of K in M and a topological embedding ι : V → M so that
ι(K) is a subcomplex of a refinement of T . Then, there is a self-homeomorphism
h :M →M such that h(K) is a subcomplex of a refinement of T . In addition, for a
given ε > 0, there is some h with its support in the ε-neighborhood of K. Moreover,
we can take h as closer to id as we want · · · (∗). If we apply this theorem to our
M with a metric, T,K, V := ιK(S1 ×D2), and the inclusion ι, then we obtain (1).

By noting (∗) and the construction in (1)=⇒ (2), we see (♯). 2

A knot K inM is said to be tame if it satisfies the above equivalent conditions.

Proposition 4.2.2. For a finite link L : ⊔S1 → M , the following conditions
are equivalent.
(1). There is a self-homeomorphism h of M such that h(L) is a subcomplex of some
refinement of T .
(2). There is a self-homeomorphism h of M such that h(L) is a C∞-submanifold
of M .
(3). Each component K : S1 →M of L is tame.

proof. The non-trivial part of this equivalence is to prove that (3) implies (1).
We can prove it by (3) =⇒ (1) for the knot case and the condition (♯) on the support
of a self-homeomorphism h. 2

A finite link L in M is said to be tame if it satisfies the above equivalent
conditions. A finite link consisting of tame components always equips a tubular
neighborhood as a link.

A link L inM is called an infinite tame link if it consists of countably infinitely
many tame components. An infinite tame link L equips a tubular neighborhood as
a link if and only if it has no accumulation point. We do not eliminate the cases
with accumulation points.

For a tame knot K inM , we denote by VK a tubular neighborhood of K, which
is unique up to ambient isotopy. For a link L in M consisting of countably many
tame components, we consider the formal (or infinitesimal) tubular neighborhood
VL := ⊔K⊂LVK , where K runs through all the components of L. We fix a longitude
for each K. For a finite branched cover h : N → M and for each component of
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h−1(K) in N , we fix a longitude which is a component of the preimage of that of
K.

4.2.2. Lemmas on infinite tame links. We study several properties on an
infinite tame link. Let K be an infinite tame link in M .

Proposition 4.2.3 (the Sielpinski theorem, [Eng89] Theorem 6.1.27). If a
compact Hausdorff connected space X and a countable family {Xi}i∈N of pairwise
disjoint closed subsets satisfy X = ∪iXi, then at most one of Xi is non-empty.

By virtue of Proposition 4.2.3, the notion of a component of K makes sense in
a natural way, that is, each connected component of its image is the image of some
S1 in the domain.

The set of finite sublinks of K is a directed set with respect to the inclusions. In
addition, if we take an inclusion sequence · · · ⊂ Li ⊂ Li+1 ⊂ · · · of finite sublinks
of K indexed by i ∈ N, then K = ∪iLi and any finite sublink L of K is contained
in some Li.

For each finite sublink L of K, we put XL = M − L. Then H1(XL)’s form an
inverse system indexed by L ⊂ K with respect to the natural surjections induced
by the inclusion maps of the exteriors. We put XK =M −K.

Lemma 4.2.4. There is a natural isomorphism H1(XK) ∼= lim←−L
H1(XL).

proof. We have a Milnor exact sequence ([Mil62]) 0 → lim←−
1

L
H2(XL) →

H1(XK)→ lim←−H1(XL)→ 0. Since H2(XL) is a surjective system and satisfies the

Mittag-Leffer condition, we have lim←−
1

L
H2(XL) = 0. Thus H1(XK) ∼= lim←−L

H1(XL).
2

Let L and L′ be finite sublinks of K with L ⊂ L′. Then, the natural surjection
C∗(M,L) → C∗(M,L′) induces the natural injection j∗ : H∗(M,L) → H∗(M,L′).
We obtain the following proposition.

Lemma 4.2.5. There is a natural isomorphism

Hn(M,K) ∼= lim−→
L

Hn(M,L),

where L runs through all the finite sublinks of K and the transition maps are the
natural map j∗’s.

proof. By Sielpinski’s theorem (Proposition 4.2.3), the singular chain groups
satisfy Cn(K) = lim−→L⊂K Cn(L) for each n ∈ N. The exact sequence 0 → Cn(L) →
Cn(M) → Cn(M,L) → 0 yields the exact sequence 0 → Cn(K) → Cn(M) →
lim−→Cn(M,L) → 0. The exact sequence 0 → Cn(K) → Cn(M) → Cn(M,K) → 0

induces the natural isomorphism Cn(M,K) → lim−→L⊂K Cn(M,L). By taking the

long exact sequences and using the five lemma, we obtain the natural isomorphism
Hn(M,K) ∼= lim−→L⊂KHn(M,L). 2

4.2.3. Very admissible links.

Definition 4.2.6. Let M be a closed, oriented, connected 3-manifold. Let K
be a link in M consisting of countably many (finite or infinite) tame components.
We say K is an admissible link of M if the components of K generates H1(M). We
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say K is a very admissible link of M if for any finite cover h : N → M branched
over a finite link in K, the components of the link h−1(K) generates H1(N).

For each K in K, we denote the meridian of K by µK and fix a longitude λK
of K.

Lemma 4.2.7. Let M be a closed, oriented, connected 3-manifold and let L be
a link in M consisting of countably many tame components. Then there is a link L
in M containing L, consisting of countably many tame components, and satisfying
that for any finite cover h : N → M branched over a finite sublink of L, H1(N) is
generated by the components of the preimage h−1(L).

proof. The set of all the finite branched covers of M branched over finite
sublinks of L is countable, and can be written as {hi : Ni →M}i∈N, where h0 =
idM . Indeed, for each finite sublink L′ ⊂ L, finite branched covers of M branched
over L′ corresponds to subgroups of π1(M −L′) of finite indices. Since π1(M −L′)
is finitely generated group, such subgroups are countable.

We construct an inclusion sequence L0 ⊂ L1 ⊂ . . . ⊂ Li ⊂ . . . of links consisting
of countably many tame components as follows. First, we put L0 = L. Next, for
i ∈ N>0, let Li−1 be given. We claim that there is a link Li in M including Li−1,
consisting of countably many tame components, and satisfying that the components
of the preimage h−1

i (Li) generates H1(Ni). By putting L := ∪iLi, we obtain an
expected link.

The claim above can be deduced immediately from the following assertion:

For any finite branched cover h : N → M and the preimage L̃ of any link in M

consisting of countably many tame components, there is a finite link L′ in N − L̃
consisting of tame components and the image h(L′) being also a link.

Note that N is again a closed, oriented, connected 3-manifold. We may assume
that N is a C∞-manifold. On the space C∞(S1, N) of maps, since S1 is compact,
the well-known two topologies called the compact open topology (the weak topology)
and the Whitney topology (the strong topology) coincide. It is completely metrizable
space and satisfies the Baire property, that is, for any countable family of open
and dense subsets, their intersection is again dense. (We refer to [Hir94] for the
terminologies and the general facts stated here.)

Let {Kj}j denote the set of components of L̃. Since Fj := {K ∈ C∞(S1, N) |
K ∩Kj = ∅} is open and dense, by the Baire property, the intersection F := ∩jFj

is dense. Put H1(N) = ⟨a1, . . . , ar⟩, and let A1 denote the set of tame knots
K ∈ C∞(S1, N) satisfying [K] = a1 whose image h(K) in M is also a tame knot.
Then A1 is open and non-empty. Therefore A1 ∩ F is non-empty, and we can take

an element K ′
1 of it. For 1 ≤ k ≤ r, if we replace L̃ by L̃ ∪K ′

1 ∪ . . . ∪K ′
k and do a

similar construction for ak+1 successively, then we complete the proof. 2

Theorem 4.2.8. Let M be a closed, oriented, connected 3-manifold, and L a
link in M . Then, there is a very admissible link K containing L.

proof. We construct an inclusion sequence of links {Ki}i as follows: First, we
take a link K0 which includes L and generates H1(M). Next, for i ∈ N>0, let Ki−1

be given, and let Ki be a link obtained from Ki−1 by Lemma 4.2.7. Then the union
K := ∪Ki is a very admissible link. 2

Links L and K in the Lemma and Theorem above may be taken smaller than
in the constructions. It may be interesting to ask whether they can be finite. Let
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M be a 3-dimensional sphere S3. The unknot is a very admissible link. If L is
the trefoil knot, by taking branched 2-cover, we see that K is greater than L. We
expect that K has to be infinite. Next, let M be a 3-manifold, and L a minimum
admissible link (L can be empty). For an integral homology 3-sphere M , we have
K = L = ∅. For a lens space M = L(p, 1) or M = S2×S1, we can take a knot (the
core loop) K = L = K.

In the later sections of this thesis, we assume that a very admissible link K is
an infinite link. However, our arguments are applicable also for finite K.

Remark 4.2.9. According to [Mor12], counterparts of infinite primes are ends
of 3-manifolds. In this thesis, since we deal with closed manifolds, the counterpart
of the set of infinite primes is empty.

4.3. The universal K-branched cover

Class field theory deals with all the abelian extensions of a number field k in a
fixed algebraic closure k of k. For a 3-manifold M equipped with an infinite (very
admissible) link K, we introduce the notion of the universal K-branched cover,
which is an analogue of an algebraic closure of a number field. We also discuss the
role of base points.

In the following, we discuss an analogue of an/the algebraic closure of a number
field. If we say branched covers, unless otherwise mentioned, we consider branched
covers endowed with base points, that is, we fix base points in all spaces that are
compatible with covering maps. For a space X, we denote by bX the base point.

First, we recall the notion of an isomorphism of branched covers. For covers
h : N → M and h′ : N ′ → M branched over L, we say they are isomorphic
(as branched covers endowed with base points) and denote by h ∼= h′ if there is

a (unique) homeomorphism f : (N, bN )
∼=→ (N ′, bN ′) such that h = h′ ◦ f . Let

h : YL → XL and h′ : Y ′
L → XL denote the restrictions to the exteriors. Then,

h ∼= h′ is equivalent to that h∗(π1(YL, bYL
)) = h′∗(π1(Y

′
L, bYL′ )) in π1(XL, bXL

).
Such notion is extended to the class of branched pro-covers, which are objects

obtained as inverse limits of finite branched covers.
Next, we introduce an analogue notion of an algebraic closure of a number

field. For a finite link L in a 3-manifold, a branched pro-cover hL : M̃L → M is a

universal L-branched cover ofM if it satisfies a certain universality: hL : M̃L →M
is a minimal object such that any finite cover of M branched over L factor through
it. It is unique up to the canonical isomorphisms, and it can be obtained by

Fox completion of a universal cover of the exterior hL : X̃L → XL. (Note that
Fox completion is defined for a spread of locally connected T1-spaces in general.
([Fox57]))

Now, let M be a 3-manifold equipped with an infinite (very admissible) link

K. A branched pro-cover hK : M̃K → M is a universal K-branched cover of M if

it satisfies a certain universality: hK : M̃K →M is a minimal object such that any
finite cover of M branched over a finite link L in K factor through it.

It can be obtained as the inverse limit of a family of universal L-branched

covers, as follows: For each finite link L in K, let hL : M̃L → M be a universal
L-branched cover of M . By the universality, for each L ⊂ L′, we have a unique

map fL,L′ : M̃L′ → M̃L such that hL′ = hL ◦fL,L′ . Thus {hL}L⊂K forms an inverse
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system. By putting M̃K = lim←−L⊂K M̃L, we obtained a universal K-branched cover

hK : M̃K →M as the composite of the natural map M̃K → M̃L and hL.
For the universalK-branched cover, the inverse limit π1(XK) of the fundamental

groups of exteriors π1(XL) (L ⊂ K) acts on it in a natural way. The finite branched
covers of M obtained as quotients of hK by subgroups of π1(XK) form a complete
system of representatives of the isomorphism classes of covers of M branched over
links in K.

Therefore, in the later section of this thesis, if we take (M,K), we silently fix a
universal K-branched cover, call it “the” universal K-branched cover, and restrict
our argument to the branched subcovers obtained as its quotients.

Finally, we discuss an analogue of a base point. The following facts explain the
role of base points in branched covers:

Proposition 4.3.1. (1) For (M,K), we fix a universal K-branched cover hK.
Then, for a branched cover h : N → M whose base point is forgotten, taking a

branched pro-cover f : M̃K → N such that h ◦ f = hK is equivalent to fixing a base
point in N such that h(bN ) = bM .
(2) Let h : N → M be a branched cover. Then, a base point of a universal K-
branched cover hK defines a branched pro-cover f : M̃K → N such that hK = h ◦ f .

An analogue of a base point in a 3-manifold is a geometric point of a number
field. Let Ω be a sufficiently large field which includes Q, for instance, Ω = C.
Then, for a number field k, choosing a geometric point x : SpecΩ → SpecOk is
equivalent to choosing an inclusion k ↪→ Ω. Moreover, choosing base points in a
cover h : N → M which are compatible with the covering map is an analogue of
choosing inclusion k ⊂ F ↪→ Ω for an extension F/k. For an algebraic closure k/k
and an extension F/k of a number field k, we have following facts:

Proposition 4.3.2. (1) If we fix k/k in Ω, taking an inclusion F ↪→ k is
equivalent to taking an inclusion F ↪→ Ω.
(2) For an extension F/k in Ω, an inclusion k ↪→ Ω defines F ↪→ k.

In addition, we have SpecOk = {finite primes} ∪ Spec k, and (Spec k)(Ω) =
{Ω-rational points of Spec k} := Hom(SpecΩ,Spec k) ∼= Hom(k,Ω). Accordingly,
choosing a geometric point (an injection) k ↪→ Ω is an analogue of choosing a
base point in the exterior of K in M . If k/Q is Galois, we have a non canonical
isomorphism {the choices of a geometric point of k} = Hom(k,Ω) ∼= Gal(k/Q).
This map depends on the fact that an inclusion of Q into a field is unique. In
order to state an analogue for (M,K), we need to fix an analogue of k/Q. If we fix
a Galois branched cover hM : M → S3 whose base point is forgotten, an infinite
link K in S3 such that h−1(K) = K, and a base point b0 in S3, then we have a
non-canonical map {the choices of base points in M} ∼= Gal(M/S3).

Thereby, we obtained the following dictionary:

3-manifold with very admissible link (M,K) number ring SpecOk

universal K-branched cover hK : M̃K →M algebraic closure k/k
base point bM : {pt} ↪→M geometric point x : SpecΩ→ SpecOk

In this thesis, since we consider only regular (Galois) covers, we can forget base
points. Then weaker equivalence classes of branched covers should be considered.
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4.4. Idèle class group for 3-manifolds

In this section, we develop the idèlic class field theory for 3-manifolds, and
present the global reciprocity law over a 3-manifold equipped with a very admissible
link.

Let M be a closed, oriented, connected 3-manifold. Let K be a link in M
consisting of countably many tame components with a formal tubular neighborhood
VK = ⊔K⊂KVK . For a sublink L of K, we put VL = ⊔K⊂LVK .

Definition 4.4.1 (idèle group). We define the idèle group of (M,K) by the re-
stricted product ofH1(∂VK) with respect to the subgroups {µK}K⊂K = {Ker(vK)}K⊂K:

IM,K :=
∏⨿
K∈K

H1(∂VK) =
{
(aK)K ∈

∏
K

H1(∂VK) | vK(aK) = 0 for almost all K
}
.

This is the restricted product with respect to the local topology on H1(∂VK)
(see later) and the family of open subgroups {µK ⊂ H1(∂VK)}K .

For each finite link L, let Gal(Xab
L /XL) denote the Galois group of the maximal

abelian cover over its exterior XL. Then Gal(Xab
L /XL)’s form an inverse system

in a natural way. We put Gal(M,K)ab := lim←−L
Gal(Xab

L /XL) and regard it as an

analogue of Gal(kab/k) = lim←−F
Gal(F/k), where F runs finite abelian extensions of

k. We have Gal(M,K)ab ∼= H1(XK) by Lemma 4.2.4 and the Hurewicz isomorphism
πab
1 (XK) ∼= H1(XK).

For a finite link L and a knot K ⊈ L in K, take an ambient isotopy h fixing K
and L so that h(VK) ⊂ XL if needed. Then the composite ∂VK → h(∂VK) → XL

with the inclusion induces a natural map H1(∂VK)→ H1(XL) commuting with the
Hurewicz maps.

H1(∂VL)
Hur

∼= //

��

Gal(∂̃VK/∂VK)

��
H1(XL)

Hur

∼= // Gal(Xab
L /XL).

Let ρK,L : H1(∂VK)→ Gal(Xab
L /XL) denote their composite, and we consider

the map ρL : IM,K → Gal(Xab
L /XL) : (aK)K 7→

∑
K⊂K ρK,L(aK) where K runs

through all the knots in K. This sum makes sense, because it is actually a finite
sum for each (aK)K ∈ IM,K, by the definition of the restricted product. Since (ρL)L
is compatible with the inverse system, the following homomorphism is induced

ρ̃M,K : IM,K −→ Gal(M,K)ab.

If K is an admissible link, then this map is surjective.
We give a definition of the principal idèle group and idèle class group by intro-

ducing the natural homomorphism ∆ : H2(M,K)→ IM,K in the following.
For each finite sublink L of K, let V ′

L be a (usual) tubular neighborhood of L
and put X◦

L = M − Int(V ′
L). The inclusions (M,L) → (M,V ′

L) and (X◦
L, ∂X

◦
L) →

(M,V ′
L) induce isomorphisms H2(M,L) ∼= H2(M,V ′

L)
∼= H2(X

◦
L, ∂X

◦
L). We denote

by ∂L the homomorphism H2(M,L) → H1(∂VL) given as the composite of ∂∗ :
H2(M,L) ∼= H2(X

◦
L, ∂X

◦
L) → H1(∂X

◦
L) and a natural isomorphism H1(∂X

◦
L) =

H1(∂V
′
L)
∼= H1(∂VL). We also consider the homomorphism H1(∂VL) ∼= H1(∂V

′
L)→
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H1(XL). For each finite sublinks L and L′ of K with L ⊂ L′, there is a commutative
diagran

H2(M,L′)
∂L′ // H1(∂VL′)

pr

��
H2(M,L)

∂L //

j∗

OO

H1(∂VL).

where pr denotes the projection to the L-components. Thus, a natural map form
lim−→L⊂KH2(M,L) to lim←−L⊂KH1(∂VL) =

∏
K⊂KH1(∂VK) is induced. Since longitu-

dinal component does not added by j∗, the image of this map is induced in IM,K.
Thus, we obtain the natural homomorphism ∆ : H2(M,K) → IM,K. If M is a
rational homology sphere, then ∂L is injective for each finite sublink L of K, and
so is ∆.

Definition 4.4.2. We define the principal idèle group by PM,K := Im(∆ :
H2(M,K)→ IM,K), and the idèle class group by CM,K := IM,K/PM,K.

Theorem 4.4.3. There is an equality PM,K = Ker(ρ̃M,K). Furthermore, the
homomorphism ρM,K induces a natural isomorphism

ρM,K : CM,K ∼= Gal(M,K)ab.

proof. The assertion Im(∆) ⊂ Ker(ρ̃M,K) holds in a natural way. Indeed, for
any x ∈ H2(M,K), there is some L0 ⊂ K and some x0 ∈ H2(M,L0) such that x is
the image of x0 under the natural injective map j : H2(M,L0) → H2(M,K). For
any finite link L with L0 ⊂ L ⊂ K, there is a commutative diagram

H2(M,K) ∆ // IM,K
ρ̃M,K //

��

Gal(M,K)ab

��

// 0

H2(M,L)
∂L //

j

OO

H1(∂VL) // H1(XL) // 0

and the image of x0 in H1(XL) is zero. Thus the image of x in Gal(M,K)ab is zero,
and ∆(x) ∈ Ker(ρ̃M,K) holds.

We prove Ker(ρ̃M,K) ⊂ Im∆ in the following. Let (aK)K ∈ Ker(ρ̃M,K). Then
there is a finite sublink L ⊂ K such that the longitudinal component of (aK)K is
zero outside L and that components of L generates H1(M). Let a denote the image
of (aK)K in H1(∂VL). The image of a in H1(XL) coincides with that of (aK)K and
hence it is zero. By the exact sequence H2(M,L) → H1(∂VL) → H1(XL) → 0,
there is some A ∈ H2(M,L) with ∂A = a. We put (a′K)K = ∆(j(A)). Then it is
sufficient to prove (aK)K = (a′K)K .

Let L′ be any finite link with L ⊂ L′ ⊂ K, and let b and b′ denote the images
of (aK)K and (a′K)K in H1(∂VL′) respectively. Then it is sufficient to prove b = b′.
Note that b is the image of A under H2(M,L) → H2(M,L′) → H1(∂VL′). Now b
and b′ are both included in H1(∂VL) ⊕ ⟨µK⟩K⊂L′−L, their images in H1(XL′) are
zero, and their images in H1(∂VL) are a.
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H2(M,L′)
∂L′ // H1(∂VL′) //

pr

��

H1(XL′)

ι∗

��
H2(M,L)

∂L //

j

OO

H1(∂VL) // H1(XL)

We put c := b′ − b. Then we have c ∈ ⟨µK⟩K⊂L′−L. We regard Z2(M,L) and
Z2(M,L′) as subgroups of C2(M) with Z2(M) ⊂ Z2(M,L) ⊂ Z2(M,L′) ⊂ C2(M),
and denote by ∂ the boundary map on C∗(M). Since the image of c in H1(XL′) is
zero, there is some C ∈ Z2(M,L′) with ∂L′([C]) = c.

Let V ′
L′ be a tubular neighborhood of L′. Then ∂∗ : H2(M,L′)→ H1(L

′) factors
as H2(M,L′) → H1(∂VL′) → H1(∂V

′
L′) → H1(V

′
L′) → H1(L

′) with ⟨µK⟩K⊂L′ =
Ker(H1(∂VL′) → H1(L

′)). Since ∂L′([C]) ∈ ⟨µK⟩K⊂L′−L, we have ∂∗[C] = 0, and
we can regard C ∈ Z2(M).

Let I : H2(M) × H1(M) → Z denote the intersection form of M . It is a
bilinear form defined by counting the intersection points of transversely intersecting
representatives with signs. By the universal coefficient theorem, H2(M) is torsion-
free, and I is right-non-degenerate.

Now H1(M) is generated by components of L by assumption. Since ∂L′([C]) ∈
⟨µ⟩K⊂L′−L, we have ∂L([C]) = 0 by regarding C ∈ Z2(M,L), and each component
Ki of L satisfies I([C], [Ki]) = 0. This implies [C] = 0 and hence c = ∂L′([C]) = 0.
Therefore we have b = b′, and ∆ : H2(M,K)→ Ker ρ̃M,K is a surjection. 2

Theorem 4.4.3 expands the M2KR-dictionary as follows, k is a number field.

idèle group IM,K idèle group Ik
∆ : H2(M,K)→ IM,K ∆ : k× → Ik

principal idèle group PM,K := Im∆ principal idèle group Pk := Im∆
idèle class group CM,K := IM,K/PM,K idèle class group Ck := Ik/Pk

Let h : N → M be a finite branched cover branched over a finite link L
in K. Then the preimage h−1(K) of K is a link in N , and the covering map h
induces the norm maps h∗ : IN,h−1(K) → IM,K, h∗ : PN,h−1(K) → PM,K, and
h∗ : CN,h−1(K) → CM,K. They satisfy the transitivity (functoriality) in a natural

way. If K is very admissible, then so is h−1(K).

Definition 4.4.4. We define the unit idèle group of (M,K) by the meridian
group

UM,K := {(aK)K ∈ IM,K | vK(aK) = 0 in H1(VK), for all K in K} ,

that is, a subgroup of the “infinite linear combinations”
∑

K⊂KmKµK (mK ∈ Z)
of the meridians of K with Z-coefficients.

Proposition 4.4.5. LetM be a closed, oriented, connected 3-manifold equipped
with an admissible link K, and L be a finite link in K. We write UM,K = UL⊕UnonL,
where UL is the subgroup generated by the meridians of L, and UnonL := Ker(prL :
UM,K ↠ UL). Then there is an isomorphism

IM,K/(PM,K + UnonL) ∼= H1(XL).
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Especially, if we put L = ∅, there is an isomorphism

IM,K/(PM,K + UM,K) ∼= H1(M).

Moreover, if M is an integral homology 3-sphere, there is an isomorphism

IM,K = PM,K ⊕ UM,K.

In the proofs, we abbreviate M,K by M , and N,h−1(K) by N for simplicity.

proof. For a map φL : IM → H1(XL), we prove KerφL = PM + UnonL. Con-
sider the composite φL : IM ↠ IM/PM = CM

∼= Gal(M,K)ab ∼= lim←−L′ H1(XL′) ↠
H1(XL). For each L ⊂ L′ ⊂ K, it factorizes as φL : IM ↠

φL′
H1(XL′) ↠

pr
H1(XL).

For the meridian µK of K in IM , the Mayer–Vietoris exact sequence proves the
equality Ker(pr : H1(XL′) ↠ H1(XL)) = ⟨φL′(µK) | K ⊂ L′ − L⟩. Hence we
have UnonL mod PM

∼= lim←−L′⟨φL′(µK) | K ⊂ L′ − L⟩ = lim←−L′ Ker(pr : H1(XL′) ↠
H1(XL)) ∼= Ker(lim←−L′ H1(XL′) ↠ H1(XL)) ∼= Ker(IM/PM ↠ H1(XL)). Therefore

KerφL = PM + UnonL holds. 2

This lemma is an analogue of Proposition 4.1.1.

Theorem 4.4.6 (The global reciprocity law for 3-manifolds ). Let M be a closed,
oriented, connected 3-manifold equipped with a very admissible link K. Then, there
is a canonical isomorphism called the global reciprocity map

ρM,K : CM,K
∼=→ Gal(M,K)ab

which satisfies the following properties:
(i) For any finite abelian cover h : N →M branched over a finite link L in K, ρM
induces an isomorphism

CM,K/h∗(CN,h−1(K)) ∼= Gal(N/M).

(ii) For each knot K in K, there is a commutative diagram:

H1(∂VK)

��

∼=
Hur

//

⟲

Gal(∂̃VK/∂VK)

��
CM,K ρM,K

// Gal(M,K)ab,

where the vertical maps are induced by the natural inclusions.

proof. Since there are isomorphisms

CM/h∗(CN ) ∼= (IM/PM )/h∗(IN/PN ) ∼= IM/(PM + h∗(IN )),

we consider the natural surjection φ′ : IM ↠
φL

H1(XL) ↠ H1(XL)/h∗(H1(YL)).

Since K is very admissible, there is a surjection IN ↠ H1(YL), and hence a surjec-
tion h∗(IN ) ↠ h∗(H1(YL)). Then, we have a following commutative diagram.

h∗(IN )

⟳

// //
� _

�

h∗(H1(YL))� _

�
IM φL

// // H1(XL)
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Since KerφL = PM +UnonL < PM + h∗(IN ), we have Kerφ′ = KerφL + h∗(IN ) =
PM + h∗(IN ), and hence IM/(PM + h∗(IN )) ∼= H1(XL)/h∗(H1(YL)) ∼= Gal(N/M).
2

4.5. The topologies on idèle class group and the existence theorems

In this section, we introduce the standard topology and the norm topology on
the idèle class group, and we show an analogue of the existence theorem in number
theory.

4.5.1. The standard topology and the existence theorem. We intro-
duce the standard topology on the idèle class group of a 3-manifold, and prove the
existence theorem.

Let M be a closed, oriented, connected 3-manifold equipped with a very ad-
missible link K. For each group π1(∂VK) ∼= H1(∂VK) = ⟨µK⟩⊕⟨λK⟩ ∼= Z⊕Z of the
boundary of a tubular neighborhood of each knot K in K, we define an analogue
of the local topology of k×p . Here µK and λK denote the meridian and the fixed
longitude of K respectively. We first consider the local norm topology on H1(∂VK),
whose open subgroups correspond to the finite abelian covers of ∂VK . This topol-
ogy is equal to the Krull topology, whose open subgroups are the subgroups of
finite indices. Then we consider the relative topology on the local inertia group
⟨µK⟩ < H1(∂VK), and re-define the local topology on H1(∂VK) as the unique topol-
ogy such that the inclusion ι : ⟨µK⟩ ↪→ H1(∂VK) is open and continuous. For this
topology, under the identification Z ∼= ⟨µK⟩ ↪→ H1(∂VK) = ⟨µK⟩ ⊕ ⟨λK⟩ ∼= Z⊕ Z,
the open subgroup of H1(∂VK) has the form ⟨(a, 0), (b, c)⟩ with some a, b, c ∈ Z,
a ̸= 0. Then, the local existence theorem is stated as the 1-1 correspondence
between the open subgroups of finite indices and the finite abelian covers.

With this local topology, IM,K is the restricted product with respect to the
open subgroups ⟨µK⟩ < H1(∂VK), and IM,K equips the restricted product topology
as follows. For each finite link L in K, let G(L) :=

∏
K⊂LH1(∂VK)×

∏
K ̸⊂L⟨µK⟩,

and consider the product topology on G(L). Then a subgroup H < IM,K is open if
and only if H ∩G(L) is open for every L.

Definition 4.5.1. We endow CM,K with the quotient topology of the restricted
product topology of IM,K and call it the standard topology.

We study a factorization of IM,K ↠ CM,K which helps us to deal with open
subgroups of CM,K. We fix a finite sublink L0 of K whose components generate
H1(M). For each sublink L ⊂ K, we put JL :=

∏
K⊂L0

H1(∂VK)×
∏

K⊂L−L0
⟨µK⟩.

Note that JK = G(L0) is an open subgroup of IM,K.
For finite sublinks L and L′ with L0 ⊂ L ⊂ L′ ⊂ K, the natural maps form the

following commutative diagram.

JL′

⟳

// //

pr

����

H1(XL′)

����
JL // // H1(XL)

The natural map Ker(JL′ ↠ H1(XL′)) → Ker(JL ↠ H1(XL)) is surjective. In-
deed, let x ∈ Ker(JL ↠ H1(XL)) and let x also denote its image by JL ↪→
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JL⊕
∏

K⊂L′−L⟨µK⟩ = JL′ ;x 7→ x+0. Since Ker(H1(XL′) ↠ H1(XL)) is generated
by the meridians of L′ − L, there is some a ∈

∏
K⊂L′−L⟨µK⟩ such that the images

of x and a in H1(XL′) coincide. If we put y = x−a, then y ∈ Ker(JL′ ↠ H1(XL′))
and its image in JL is x. Since {Ker(JL ↠ H1(XL))}L forms a surjective system
with respect to the natural maps and satisfies the Mittag-Leffler condition, we have
a natural surjection JK = lim←−pr,L

JL ↠ CM,K.

For each knot K ′ in K with K ′ ̸⊂ L0, we take an element xK′ ∈ JK satisfying
λK′ − xK′ ∈ PM,K = ker ρM,K. Put Q := ⟨λK′ − xK′ | K ′ ̸⊂ L0⟩ < IM,K. Then
JK ↪→ IM,K ↠ CM,K factors through I ′ := IM,K/Q ∼= (

∏
K⊂K Z)× (

∏
K⊂L0

Z).
Let I ′ be endowed with the quotient topology of the standard topology of IM,K.

Since JK is open, the induced group isomorphism JK
∼=→ I ′ is a homeomorphism.

Proposition 4.5.2. Let CM,K be endowed with the standard topology. If M is
a rational homology 3-sphere, then an open subgroup of CM,K is of finite index.

proof. Put P ′ = Ker(I ′ ↠ CM,K). Then we have I ′/(
∏

K⟨µK⟩+P ′) ∼= H1(M).
The assumption on M means that H1(M) is a finite group, and hence

∏
K⟨µK⟩+

P ′ < I ′ is of finite index. Recall G(L0) = JK ∼= I ′ as topological groups. If V is
an open subgroup of I ′, then V ∩

∏
K⟨µK⟩ <

∏
K⟨µK⟩ is of finite index. Let U be

an open subgroup of CM,K and let V denote the preimage of U in I ′. Then V is
an open subgroup of I ′ containing P ′. Therefore V < I ′ is of finite index, and so is
U < CM,K. 2

Theorem 4.5.3 (The existence theorem 1/2). Let CM,K be endowed with the
standard topology. Then the correspondence

(h : N →M) 7→ h∗(CN,h−1(K))

gives a bijection between the set of (isomorphism classes of) finite abelian covers of
M branched over finite links L in K and the set of open subgroups of finite indices
in CM,K with respect to the standard topology.

proof. For each finite link L with L0 ⊂ L ⊂ K, let CovL denote the set of finite
abelian covers h : N → M branched over sublinks of L, and let OL denote the set
of open subgroups of finite indices in CM,K containing Ker(CM,K ↠ H1(XL)).

Let U be an open subgroup of CM,K of finite index and let V denote the
preimage of U by I ′ ↠ CM,K. Since V is an open subgroup of I ′ of finite index,
there is some finite link L with L0 ⊂ L ⊂ K such that V contains a subgroup∏

K ̸⊂L⟨µK⟩ ×
∏

K⊂L aK⟨µK⟩ (aK ∈ N) and hence contains
∏

K ̸⊂L⟨µK⟩ ×
∏

K⊂L 0.

Therefore, U contains the image of
∏

K ̸⊂L⟨µK⟩ ×
∏

K⊂L 0, which coincides with

Ker(CM,K ↠ H1(XL)). Thus the union ∪LOL coincides with the set of all the
open subgroups of finite indeces in CM,K.

Conversely, if U is a subgroup of CM,K of finite index containing Ker(CM,K ↠
H1(XL)) for a finite link L with L0 ⊂ L ⊂ K, then U is open.

For each finite link L with L0 ⊂ L ⊂ K, we have a natural bijection CovL → OL

by the Galois correspondence. In addition, for each finite links L and L′ with
L0 ⊂ L ⊂ L′ ⊂ K, the inclusions CovL ⊂ CovL′ and OL ⊂ OL′ are compatible
with the Galois correspondences.

The union ∪LCovL is the set of all the finite abelian covers branched over
finite sublinks of K. Since the inductive limit of bijective maps is again bijective,
we obtain the desired bijection. 2
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4.5.2. The norm topology and the existence theorem. We introduce
the norm topology on the idèle class group, and present the existence theorem.

Let M be a closed, oriented, connected 3-manifold equipped with a very ad-
missible link K as before. In the proofs, we use the abbreviations CM = CM,K and
CN = CN,h−1(K) for a branched cover h : N →M .

Definition 4.5.4. We define the norm topology on CM to be the topology of
topological group generated by the family V :=

{
h∗(CN,h−1(K))

}
, where h : N →M

runs through all the finite abelian covers of M branched over finite links in K.

Lemma 4.5.5. V is a fundamental system of neighborhoods of 0.

proof. For any V1, V2 ∈ V, it is suffice to prove ∃V3 ∈ V such that V3 ⊂ V1∩V2.
However, we prove V3 := V1 ∩ V2 ∈ V.

Let hi : Ni →M be a finite abelian cover branched over Li in K for i = 1, 2. Let
L := L1∪L2, and let GL := Gal(Xab

L /XL) denote the Galois group of the maximal
abelian cover over the exterior XL = M − Int(VL). Then, if a cover h : N →M is
unbranched outside L, the map CM ↠ Gal(N/M) factors through the natural map
φL : CM ↠ GL.

Let Gi := Ker(GL ↠ Gal(Ni/M)) < GL for i = 1, 2, and let G3 := G1 ∩ G2.
Since G3 is also a subgroup of GL of finite index, the ordinary Galois theory
for branched covers gives a cover h3 : N3 → M such that G3 = Ker(GL ↠
Gal(N3/M)). (This cover h3 should be called the “composition cover” of h1 and
h2, because it is an analogue of the composition field k1k2 of k1 and k2 in number
theory.)

Now, Theorem 4.4.6 (the global reciprocity law) implies hi∗(CNi) = φ−1
L (Gi)

for i = 1, 2, 3, and therefore h3∗(CN3) = φ−1
L (G3) = φ−1

L (G1 ∩ G2) = φ−1
L (G1) ∩

φ−1
L (G2) = h1∗(CN1

) ∩ h2∗(CN2
). 2

Proposition 4.5.6. Let CM,K be endowed with the norm topology. A subgroup
V of CM,K is open if and only if it is closed and of finite index.

proof. Let V be an open subgroup of CM . The coset decomposition of CM

by V proves that V is closed. Lemma 4.5.5 gives a finite abelian branched cover
h : N →M such that h∗(CN ) < V . Then Theorem 4.4.6 implies (h∗(CN ) : V )(V :
CM ) = (h∗(CN ) : CM ) = #Gal(N/M), and hence V is of finite index.

The converse is also clear by the coset decomposition. 2

Now we present the existence theorem for 3-manifolds with respect to both the
standard topology and the norm topology, which is the counter part of Theorem
4.1.3 (2).

Theorem 4.5.7 (The existence theorem). Let M be a closed, oriented, con-
nected 3-manifold equipped with a very admissible link K. Then the correspondence

(h : N →M) 7→ h∗(CN,h−1(K))

gives a bijection between the set of (isomorphism classes of) finite abelian covers of
M branched over finite links L in K and the set of open subgroups of finite indices
in CM,K with respect to the standard topology. Moreover, the latter set coincides
with the set of open subgroups of CM,K with respect to the norm topology.
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proof. The former part is done by Theorem 4.5.3. We prove the theorem for
the norm topology. For a finite abelian cover h : N → M branched over a finite
link in K, the isomorphism CM/h∗(CN ) ∼= Gal(N/M) in Theorem 4.4.6 (the global
reciprocity law) gives the following bijections.

{C ′ | h∗(CN ) < C ′ < CM} ←→ {H | H < CM/h∗(CN ) ∼= Gal(N/M)}
←→ {subcovers of h}

(Injectivity) For covers h1 and h2, this bijections proves that h1∗(CN1) < h2∗(CN2)
⇐⇒
iff

h2 is a subcover of h1, and hence h1∗(CN1) = h2∗(CN2) ⇐⇒
iff

h2 = h1.

(Surjectivity) For an open subgroup C ′ < CM , Lemma 4.5.5 gives a cover h : N →
M such that h∗(CN ) < C ′, and then the above bijection gives a cover h′ which
corresponds to C ′. 2

Corollary 4.5.8. If M is a rational homology 3-sphere, the standard topology
and the norm topology on CM,K coincide.

proof. By Proposition 4.5.2, it follows immediately from the existence theo-
rem. 2

4.6. The norm residue symbols

In this section, we introduce the norm residue symbol for 3-manifolds, as an
analogue of the norm residue symbol for number fields. We also explain that they

generalize the linking number lk(K1,K2) and the Legendre symbol

(
p

q

)
.

Definition 4.6.1. Let M be a 3-manifold equipped with a very admissible
link K. For a finite abelian cover h : N → M branched over a finite link L in K,
the norm residue symbol ( , h) : CM,K ↠ Gal(N/M) is defined as the composite
of ρM,K : CM,K ↠ Gal(M,K)ab and Gal(M,K)ab ↠ Gal(N/M). For this map, we
have Ker( , h) = h∗(CN,h−1(K)).

The relation with the linking number can be seen as follows: Let h2 : N →M
be the double cover of M = S3 branched over a knot K2 in a two component link
K1 ⊔ K2. We identify Gal(N/M) ∼= Z/2Z. Then, for a longitude λ1 of K1 in
CM,K, we have (λ1, h2) = lk(K1,K2) (mod 2). Moreover, there are the following
equivalences:

(λ1, h2) = 0 ⇐⇒
iff

h−1(K1) = K ′
1 ⊔K ′′

1 with knots K ′
1,K

′′
1 in N (decomposed),

(λ1, h2) = 1 ⇐⇒
iff

h−1(K1) = K̃1 is a knot in N (inert).

Thus, we have obtained an extension of the dictionary of analogies.

linking number lk(K1,K2) (mod 2) Legendre symbol

(
p

q

)
norm residue symbol ( , h) norm residue symbol ( , F/k)

Let p and q be distinct odd primes and q∗ := (−1)
q−1
2 q. Then the quadratic

reciprocity law

(
q∗

p

)
=

(
p

q

)
follows from Artin’s global reciprocity law (Theorem

4.1.3) (See [KKS11] Chapter 5). Similarly, for knots K1 and K2 in S3, we can
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give an alternative proof of lk(K1,K2) ≡ lk(K2,K1) mod 2 by using our global
reciprocity law (Theorem 4.4.6). This fact extends an analogy described in [Mor12]
Chapters 4 and 5.

In the proof of the existence theorem for number fields (Theorem 4.1.4), the
norm residue symbol plays an essential role ([Neu99]). By using the norm residue
symbol for 3-manifolds, we can also give a parallel proof for the existence theorem
for 3-manifolds (Theorem 4.5.7), although it becomes a little more complicated-
looking than our proof in this thesis.
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