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1 Introduction

Modular forms and zeta functions often appear in number theory. It is im-
portant to study locations of zeros for such complex-valued functions. For
the Eisenstein series Ek(z), which is perhaps the easiest example of modular
forms, a great deal is known about the locations of the zeros. In the 1960s,
Wohlfahrt [14] proved that all zeros of the Eisenstein series Ek(z) in the
standard fundamental domain for SL2(Z) lie on the arc for even 4 ≤ k ≤ 26.
In 1970, F.K.C. Rankin and Swinnerton-Dyer [11] showed this result for all
weight k ≥ 4. In 2007, Miezaki, Nozaki and Shigezumi [10] proved similar
results for Eisenstein series for Γ∗

0(2) and Γ∗
0(3). Shigezumi showed similar

results for Eisenstein series for Γ∗
0(5) and Γ∗

0(7) in 2007 [12], and for Poincaré
series for Γ∗

0(2) and Γ∗
0(3) in 2010 [13].

In 2008, Duke and Jenkins [2] constructed a canonical basis fk,m for the
space of weakly holomorphic modular forms for level 1. Let ∆ be the Ra-
manujan ∆ function and j be weight 0 modular function which is known
simply as the j-function. The basis fk,m is defined by

fk,m = ∆ℓEk′Fk,D(j)

where k = 12ℓ+k′, k′ ∈ {0, 4, 6, 8, 10, 14} and Fk,D(x) is a monic polynomial
in x of degree D = ℓ+m. The basis fk,m have the following form

fk,m(z) = q−m +O(qℓ+1).

They considered fk,m as a two-parameter family of weakly holomorphic mod-
ular forms that is a canonical basis for the space and proved almost all of the
basis elements have all of their zeros on a lower boundary of the standard
fundamental domain for SL2(Z). Similar results have been obtained for level
2 and 3 by Garthwaite and Jenkins in 2013 [4], and for level 4 by Haddock
and Jenkins in 2014 [6].

In 2004, J. Getz [5] generalized Rankin’s theorem [11], providing condi-
tions under which the zeros of other modular forms lie only on the arc. For
weakly holomorphic modular forms of level 1, we have the information of
the location of the zeros for the canonical basis fk,m by Jenkins’s theorem
[2]. However, we do not know where the zeros of general weakly holomorphic
modular forms exist. In this paper, we consider the locations of the zeros for

3



weakly holomorphic modular forms gk,m of level 1 defined by

gk,m(z) = fk,m(z) +
ℓ+m∑
j=1

ajfk−12j,m(z)∆(z)j,

where aj ∈ R. The result is given by the following theorem.

Main Theorem. (Theorem 2.1)
Let aj ∈ R,m ≥ 0 and ℓ + m ≥ 1. We define a weakly holomorphic form
gk,m(z) as above. If {aj}ℓ+m

j=1 satisfy a certain assumption (see p.8), then all
of the zeros of gk,m in the fundamental domain for SL2(Z) lie on the circle
|z| = 1.

Besides, we prove the transcendence of their zeros when the coefficients
aj are rational numbers and satisfy the assumption (Theorem 3.1 and Corol-
lary 3.1). Finally, we show similar results for the locations of the zeros of
weakly holomorphic modular forms of level 2 (Theorem 4.2, Theorem 4.3 and
Theorem 4.4).

This paper is organized as follows. In Section 2, we recall the definition
of weakly holomorphic modular forms and prove the location of the zeros
for level 1 case. In Subsection 2.3, we show the main theorem without de-
tailed computations of the numerical bounds for weakly holomorphic modular
forms. The proof of numerical bounds is given in Subsection 2.4. In Section
3, we recall some basic facts for imaginary quadratic fields and consider the
transcendence of zeros for level 1. In Section 4, similar results are obtained
for the locations of the zeros of weakly holomorphic modular forms of level
2. In Subsection 4.1, we construct a canonical basis for level 2 and give the
statements for several cases. We prove the theorems in Subsection 4.2, 4.3
and 4.4 for each case.
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2 Zeros of weakly holomorphic modular forms

of level 1

We recall the definition of weakly holomorphic modular forms and study the
location of their zeros in this section.

2.1 Definitions and statement of a result

Let k ∈ 2Z, N be a prime number or 1, and Γ0(N) =
{(

a b
c d

)
∈ SL2(Z)|c ≡ 0

(mod N)
}
. Put H = {x+ iy | x, y ∈ R and y > 0}, and q = e2πiz for z ∈ H.

A holomorphic function f on H is a weakly holomorphic modular form
of weight k with respect to Γ0(N) if f satisfies the following two conditions:

� f
(az + b

cz + d

)
= (cz+d)kf(z) for any

(
a b
c d

)
∈ Γ0(N).

� f(z) =
∑
n≥n0

a(n)qn and
1

zk
f
(
−1

z

)
=
∑
n≥n1

b(n)q
n
N

with a(n0) ̸= 0 and b(n1) ̸= 0.

We define f is holomorphic if n0 ≥ 0 and n1 ≥ 0, a cusp form if n0 ≥ 1
and n1 ≥ 1. We denote the space of holomorphic modular form of weight
k on Γ0(N) by Mk(N), the space of weakly holomorphic modular forms by
M !

k(N). Put Mk =Mk(1) and M
!
k =M !

k(1) in this paper.
Duke and Jenkins considered an explicit basis of M !

k which is indexed
by the order of the pole at ∞ in [2]. Let k = 12ℓ + k′ where ℓ ∈ Z and
k′ ∈ {0, 4, 6, 8, 10, 14}. For any integer m ≥ −ℓ, there exists a unique weakly
holomorphic modular form fk,m ∈M !

k which has an expansion

fk,m(z) = q−m +O(qℓ+1). (1)

For any f =
∑
a(n)qn ∈M !

k, we can write

f =
∑

n0≤n≤ℓ

a(n)fk,−n

when we know first few Fourier coefficients of f . Therefore we see that
{fk,m}m≥−ℓ form a natural basis of M !

k.
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We define three modular forms to construct the basis {fk,m}m≥−ℓ. Bernoulli
numbers Bk and σk−1(n) are each defined by

x

ex − 1
=

∞∑
j=0

Bj
xj

j!
, σk−1(n) =

∑
d|n

dk−1.

Then Ramanujan ∆ function, Eisenstein series Ek and j function are each
defined by

∆(z) = q

∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn,

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n (k ≥ 4), E0 = 1,

j(z) =
E4(z)

3

∆(z)
= q−1 + 744 +

∑
n≥1

c(n)qn.

Their weights are each 12, k, 0 and orders at ∞ are each 1, 0, −1. The
function fk,m is constructed by

fk,m = ∆ℓEk′Fk,D(j)

where Fk,D(x) is a monic polynomial in x of degree D = ℓ+m.
For the group SL2(Z), we use a fundamental domain in the upper half-

plane bounded by the lines ℜ(z) = −1
2
and ℜ(z) = 1

2
, the circles of radius 1

centered at z = 0. We include the boundary on the left half of this funda-
mental domain. The cusps of this fundamental domain can be taken to be
at ∞.

For any f ∈M !
k(f ̸= 0), the following valence formula holds.

k

12
= ord∞(f) +

1

2
ordi(f) +

1

3
ordρ(f) +

∑
τ∈F\{i,ρ}

ordτ (f).

Here ρ = −1
2
+ i

√
3

2
and F is the fundamental domain for SL2(Z). We know

that for any f ∈M !
k (f ̸= 0), the inequality

ord∞(f) ≤ ℓ

holds. Hence we note that there exists a unique fk,m ∈M !
k with the expansion

(1).
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Figure 1: A fundamental domain for SL2(Z).

The description of the zeros of a weakly holomorphic modular form f ∈
M !

k on H is clearly equivalent to the description of the zeros of f on F . Thus,
for the remainder of this paper, when we speak of a zero z0 of f ∈ M !

k, we
assume z0 ∈ F .

We define four constants by δ1 = 0.432207, δ2 = 0.024975, δ3 = 0.004807
and δ4 = 0.257348. Then we define γ(j) and Ak′ by

γ(j) =

{
δj3δ

ℓ−j
1 if 1 ≤ j ≤ ℓ,

δj2δ
ℓ
3 if ℓ+ 1 ≤ j ≤ ℓ+m.

Ak′ =



2.76009 if k′ = 0,

0.684214 if k′ = 4,

0.950549 if k′ = 6,

0.184724 if k′ = 8,

0.258108 if k′ = 10,

0.075404 if k′ = 14.

7



We note here, and will prove later in Subsection 2.4, that∣∣∣∣∣ ∆
(
eiθ
)

∆(x+ 0.65i)

∣∣∣∣∣ ≤ δ1,

|∆(x+ 0.65i)| ≤ δ2,∣∣∆ (eiθ)∣∣ ≤ δ3,

e−2πm(sin θ−0.65) ≤ δ4

and

∫ 1
2

− 1
2

∣∣∣∣∣ 1

∆ (x+ 0.65i)

Ek′
(
eiθ
)
E14−k′ (x+ 0.65i)

j (x+ 0.65i)− j (eiθ)

∣∣∣∣∣ dx ≤ Ak′ ,

for θ ∈ [1.9, 2π/3] and x ∈ [−1/2, 1/2]. Then we have the following theorem.

Theorem 2.1. Let k = 12ℓ + k′, where ℓ ∈ Z≥0 and k′ ∈ {0, 4, 6, 8, 10, 14}.
Let

gk,m(z) = fk,m(z) +
ℓ+m∑
j=1

ajfk−12j,m(z)∆(z)j,

where aj ∈ R,m ≥ 0 and ℓ+m ≥ 1. If {aj}ℓ+m
j=1 satisfy

ℓ+m∑
j=1

|aj|(3δj3 + δm4 γ(j)
jAk′) < 1− δm4 δ

ℓ
1Ak′ ,

then all of the zeros of gk,m in the fundamental domain for SL2(Z) lie on the
circle |z| = 1.

2.2 Generating functions and integration

We use the following generating function for fk,m to obtain the integral for-
mula as with [2].

Theorem 2.2. ([2, Theorem 2])
For any even integer k we have∑

m≥−ℓ

fk,m(z)q
m =

fk(z)f2−k(τ)

j(τ)− j(z)
,

where fk = ∆ℓEk′ with k = 12ℓ+ k′.
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This is equivalent to the following lemma.

Lemma 2.1. ([2, Lemma 2])
We have

fk,m(z) =
1

2πi

∮
C

∆ℓ(z)Ek′(z)E14−k′(τ)

∆1+ℓ(τ) (j(τ)− j(z))
q−m−1dq,

for C a (counterclockwise) circle centered at 0 in the q-plane with a suffi-
ciently small radius.

Changing variables q 7→ τ in the formula of Lemma 2.1 and deforming
the resulting contour by Cauchy’s theorem gives that for α > 1,

fk,m(z) =

∫ 1
2
+iα

− 1
2
+iα

∆ℓ(z)

∆1+ℓ(τ)

Ek′(z)E14−k′(τ)

j(τ)− j(z)
e−2πimτdτ.

For brevity, we write

G(τ, z) =
∆ℓ(z)

∆1+ℓ(τ)

Ek′(z)E14−k′(τ)

j(τ)− j(z)
e−2πimτ ,

so that

fk,m(z) =

∫ 1
2
+iα

− 1
2
+iα

G(τ, z)dτ.

We now assume that z = eiθ for some θ ∈
(
π
2
, 2π

3

)
, and move the contour of

integration downward to a height α′. As we do so, each pole τ0 of G(τ, z) in
the region defined by

−1

2
≤ ℜ(τ) < 1

2
and α′ < ℑ(τ) < α

will contribute a term 2πi · Resτ=τ0G(τ, z) to the equation. The poles of
G(τ, z) occur only when τ = z or when τ is equivalent to z under the action
of SL2(Z). In moving the contour, then, the first nonzero contributions
occur at τ = z = eiθ and τ = −1/z = ei(π−θ), and these are the only poles for√
3/2 < α′ < α. The residues can be easily calculated using the alternative

formula

G(τ, z) =
e−2πimτ

−2πi

∆ℓ(z)Ek′(z)

∆ℓ(τ)Ek′(τ)

d
dτ

(j(τ)− j(z))

j(τ)− j(z)
.
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If
√
3/2 < α′ < sin θ, the result is the equation∫ 1

2
+iα′

− 1
2
+iα′

G(τ, z)dτ = fk,m(z)− e−2πimz − z−ke−2πim(−1/z).

We replace z with eiθ and multiply by eikθ/2e−2πm sin θ; simplifying, we find
that

eikθ/2e−2πm sin θfk,m
(
eiθ
)
− 2 cos

(
kθ

2
− 2πm cos θ

)
,

which is the quantity we are trying to bound, is equal to

eikθ/2e−2πm sin θ

∫ 1
2
+iα′

− 1
2
+iα′

G(τ, eiθ)dτ.

As α′ decreases, the next nonzero contribution occurs when τ = − 1
z+1

or
τ = z

z+1
. Since these points have real part −1/2 and 1/2, respectively, we

add a small circular arc to each of the vertical contours of integration in the
usual way. The result is a contribution of

e−πim

(2 cos(θ/2))k
e−πm(2 sin θ−tan(θ/2))

from this pole. However, if θ is close to π/2, the pole at − z
z−1

will be nearby.
To avoid this, we choose α′ so that the contribution from this pole appears
only if θ is not close to π/2. Specifically, if 1.9 ≤ θ < 2π/3, we choose

α′ = 0.65 < ℑ
(
− 1

eiθ + 1

)
,

so that the quantity we are bounding equals

e−πim

(2 cos(θ/2))k
e−πm(2 sin θ−tan(θ/2)) + eikθ/2e−2πm sin θ

∫ 1
2

− 1
2

G(x+ 0.65i, eiθ)dx.

Alternatively, if π/2 < θ < 1.9, we choose

α′ = 0.75 > ℑ
(
− 1

eiθ + 1

)
,

and the quantity we are bounding will equal

eikθ/2e−2πm sin θ

∫ 1
2

− 1
2

G(x+ 0.75i, eiθ)dx.

We deal with these cases separately.
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2.3 Proof of Theorem 2.1

Writing k = 12ℓ + k′, note that k′ determines the residue class of k modulo
12. Bearing in mind the valence formula, an examination of the possible
values of k′ implies that

ordi(f) ≥

{
1 if k ≡ 2 (mod 4),

0 if k ≡ 0 (mod 4),

and

ordρ(f) ≥


2 if k ≡ 2 (mod 6),

1 if k ≡ 4 (mod 6),

0 if k ≡ 0 (mod 6).

Again applying the valence formula for k = 12ℓ+ k′, there are at most ℓ+m
zeros on F − {ρ, i}. Thus if gk,m ∈ M !

k satisfies the hypotheses of Theorem
1.1, then to prove Theorem 1.1 it suffices to demonstrate that gk,m has ℓ+m
simple zeros in {eiθ : π

2
< θ < 2π

3
}.

An easy argument [5, Proposition 2.1] shows that for any weakly holo-
morphic modular form f of weight k with real coefficients, the quantity
eikθ/2f(eiθ) is real for θ ∈

[
π
2
, 2π

3

]
. Thus, we approximate eikθ/2gk,m(e

iθ) by
an elementary function having the required number of zeros on the arc.

Suppose ℓ ≥ 1 and m ≥ 1. Then we set

H(θ) = eikθ/2e−2πm sin θgk,m
(
eiθ
)
= H0,m(θ) +

ℓ+m∑
j=1

aje
12jiθ/2∆

(
eiθ
)j
Hj,m(θ),

where Hj,m(θ) = e(k−12j)iθ/2e−2πm sin θfk−12j,m

(
eiθ
)
. Since ℓ ≥ 1 and m ≥ 1,

we write

H(θ) = H0,m(θ) +
ℓ∑

j=1

aje
12jiθ/2∆

(
eiθ
)j
Hj,m(θ)

+
m∑
j=1

aj+ℓe
12(j+ℓ)iθ/2∆

(
eiθ
)j+ℓ

Hj+ℓ,m(θ).

We define the function Rj,m(θ) for θ ∈
[
π
2
, 2π

3

]
by

Hj,m(θ) = 2 cos

(
(k − 12j)θ

2
− 2πm cos θ

)
+Rj,m(θ).
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We seek a bound for the function Rj,m(θ). Details for the computation of
the numerical bounds that appear in this subsection are provided in the next
subsection. By the argument in Subsection 2.2,

|Rj,m(θ)| =

∣∣∣∣e(k−12j)iθ/2e−2πm sin θfk−12j,m

(
eiθ
)
− 2 cos

(
(k − 12j)θ

2
− 2πm cos θ

)∣∣∣∣
=

∣∣∣∣∣e(k−12j)iθ/2e−2πm sin θ

∫ 1
2
+α′

− 1
2
+α′

∆ℓ−j(z)

∆1+ℓ−j(τ)

Ek′(z)E14−k′(τ)

j(τ)− j(z)
e−2πimτdτ

∣∣∣∣∣
=

∣∣∣∣∣e−2πm sin θ

∫ 1
2
+α′

− 1
2
+α′

∆ℓ−j(z)

∆1+ℓ−j(τ)

Ek′(z)E14−k′(τ)

j(τ)− j(z)
e−2πimτdτ

∣∣∣∣∣ .
When 1.9 ≤ θ ≤ 2π/3, we have

|Rj,m(θ)| =
∣∣∣ e−iπm

(2 cos(θ/2))k
e−πm(2 sin θ−tan(θ/2))

+eikθ/2e−2πm sin θ

∫ 1
2

− 1
2

Gj(x+ 0.65i, eiθ)e−2πimτdx
∣∣∣,

where

Gj(τ, z) =
∆ℓ−j(z)

∆1+ℓ−j(τ)

Ek′(z)E14−k′(τ)

j(τ)− j(z)
.

Similarly, when π/2 ≤ θ < 1.9, we have

|Rj,m(θ)| =

∣∣∣∣∣eikθ/2e−2πm sin θ

∫ 1
2

− 1
2

Gj(x+ 0.75i, eiθ)e−2πimτdx

∣∣∣∣∣ .
Suppose 1.9 ≤ θ ≤ 2π/3. It holds that

|Rj,m(θ)| ≤
e−πm(2 sin θ−tan(θ/2))

(2 cos(θ/2))k
+ e−2πm(sin θ−0.65)

∫ 1
2

− 1
2

∣∣Gj(x+ 0.65i, eiθ)
∣∣ dx.

Looking at the first term,

1 ≤ 2 cos(θ/2) ≤
√
2

for θ ∈ [1.9, 2π/3], and

−π(2 sin θ − tan(θ/2)) < 0
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for these θ. Thus for m ≥ 0, we have∣∣∣∣e−πm(2 sin θ−tan(θ/2))

(2 cos(θ/2))k

∣∣∣∣ ≤ 1.

Considering the exponential term e−2πm(sin θ−0.65), it is bounded above by
0.257348 for θ ∈ [1.9, 2π/3]. We set δ4 = 0.257348.

We next seek a bound for
∫ 1

2

− 1
2

∣∣Gj(x+ 0.65i, eiθ)
∣∣ dx. This integral is

equal to∫ 1
2

− 1
2

∣∣∣∣∣ ∆
(
eiθ
)

∆(x+ 0.65i)

∣∣∣∣∣
ℓ−j ∣∣∣∣ 1

∆ (x+ 0.65i)

∣∣∣∣
∣∣∣∣∣Ek′

(
eiθ
)
E14−k′ (x+ 0.65i)

j (x+ 0.65i)− j (eiθ)

∣∣∣∣∣ dx.
First, we consider ∣∣∣∣∣ ∆

(
eiθ
)

∆(x+ 0.65i)

∣∣∣∣∣
ℓ−j

.

From computations in the next subsection, we have

0.002691 ≤
∣∣∆ (eiθ)∣∣ ≤ 0.004807.

We set δ3 = 0.004807. We compute that

0.011122 ≤ |∆(x+ 0.65i)| ≤ 0.024975.

We set δ2 = 0.024975. Putting this together, we have, for ℓ ≥ j,∣∣∣∣∣ ∆
(
eiθ
)

∆(x+ 0.65i)

∣∣∣∣∣
ℓ−j

≤ |0.432207|ℓ−j .

We set δ1 = 0.432207.
Next, we consider∫ 1

2

− 1
2

∣∣∣∣∣ 1

∆ (x+ 0.65i)

Ek′
(
eiθ
)
E14−k′ (x+ 0.65i)

j (x+ 0.65i)− j (eiθ)

∣∣∣∣∣ dx.
We will break our path of integration into small pieces, and consider j (τ) in
relation to j (z) on each. We can bound the quotient by∫ 1

2

− 1
2

∣∣∣∣∣ 1

∆ (x+ 0.65i)

Ek′
(
eiθ
)
E14−k′ (x+ 0.65i)

j (x+ 0.65i)− j (eiθ)

∣∣∣∣∣ dx ≤ Ak′ ,
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where

Ak′ =



2.76009 if k′ = 0,

0.684214 if k′ = 4,

0.950549 if k′ = 6,

0.184724 if k′ = 8,

0.258108 if k′ = 10,

0.075404 if k′ = 14.

Putting all of these pieces together, we see that

|Rj,m(θ)| ≤ 1 + δm4 δ
ℓ−j
1 Ak′

for 1 ≤ j ≤ ℓ and

|Rj+ℓ,m(θ)| ≤ 1 + δm4

∣∣∣∣ δ2
∆(eiθ)

∣∣∣∣j Ak′

for 1 ≤ j ≤ m.
Similarly, for θ ∈ [π/2, 1.9), we have

|Rj,m(θ)| ≤ e−2πm(sin θ−0.75)

∫ 1
2

− 1
2

∣∣Gj(x+ 0.75i, eiθ)
∣∣ dx.

e−2πm(sin θ−0.75) is bounded above by 0.29131.
It holds that

0.00178 ≤
∣∣∆ (eiθ)∣∣ ≤ 0.00270,

and
0.00721 ≤ |∆(x+ 0.75i)| ≤ 0.01112.

Putting this together, we have, for ℓ ≥ j,∣∣∣∣∣ ∆
(
eiθ
)

∆(x+ 0.75i)

∣∣∣∣∣
ℓ−j

≤ |0.3745|ℓ−j .

We can bound the quotient by∫ 1
2

− 1
2

∣∣∣∣∣ 1

∆ (x+ 0.75i)

Ek′
(
eiθ
)
E14−k′ (x+ 0.75i)

j (x+ 0.75i)− j (eiθ)

∣∣∣∣∣ dx ≤ A′
k′ ,
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where

A′
k′ =



2.8039 if k′ = 0,

1.97763 if k′ = 4,

1.1423 if k′ = 6,

1.63148 if k′ = 8,

0.82393 if k′ = 10,

0.696154 if k′ = 14.

Thus we have that

|Rj,m(θ)| ≤ 0.29131m0.3745ℓ−jA′
k′

for 1 ≤ j ≤ ℓ and

|Rj+ℓ,m(θ)| ≤ 0.29131m
∣∣∣∣0.01112∆ (eiθ)

∣∣∣∣j A′
k′

for 1 ≤ j ≤ m.
We note that the bound of |Rj+ℓ,m(θ)| for 1.9 ≤ θ ≤ 2π

3
is larger than for

π
2
≤ θ < 1.9 since |Rj+ℓ,m(θ)| > 1 for 1.9 ≤ θ ≤ 2π

3
. Therefore we also use

the bound of |Rj+ℓ,m(θ)| for 1.9 ≤ θ ≤ 2π
3
when π

2
≤ θ < 1.9.

We prove Theorem 2.1 using the bound for |Rj,m(θ)|. H(θ) is written by

H(θ) = H0,m(θ) +
ℓ∑

j=1

aje
12jiθ/2∆

(
eiθ
)j
Hj,m(θ)

+
m∑
j=1

aj+ℓe
12(j+ℓ)iθ/2∆

(
eiθ
)j+ℓ

Hj+ℓ,m(θ)

= 2 cos

(
kθ

2
− 2πm cos θ

)
+R0,m(θ)

+
ℓ∑

j=1

aje
12jiθ/2∆

(
eiθ
)j (

2 cos

(
(k − 12j) θ

2
− 2πm cos θ

)
+Rj,m(θ)

)

+
m∑
j=1

aj+ℓe
12(j+ℓ)iθ/2∆

(
eiθ
)j+ℓ

(
2 cos

(
(k − 12 (j + ℓ)) θ

2
− 2πm cos θ

)

+Rj+ℓ,m(θ)

)
.
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Thus
∣∣H(θ)− 2 cos

(
kθ
2
− 2πm cos θ

)∣∣ is bounded above by

|R0,m(θ)|+
ℓ∑

j=1

|aj| (2 + |Rj,m(θ)|)
∣∣∆ (eiθ)∣∣j

+
m∑
j=1

|aj+l| (2 + |Rj+ℓ,m(θ)|)
∣∣∆ (eiθ)∣∣j+ℓ

≤ 1 + δm4 δ
ℓ
1Ak′ +

ℓ∑
j=1

|aj|
(
2 + 1 + δm4 δ

ℓ−j
1 Ak′

)
δj3

+
m∑
j=1

|aj+l|

(
2 + 1 + δm4

∣∣∣∣ δ2
∆(eiθ)

∣∣∣∣j Ak′

)∣∣∆ (eiθ)∣∣j+ℓ

= 1 + δm4 δ
ℓ
1Ak′ +

ℓ+m∑
j=1

|aj|
(
3δj3 + δm4 γ

j(j)Ak′
)
.

Now suppose

ℓ+m∑
j=1

|aj|(3δj3 + δm4 γ(j)
jAk′) < 1− δm4 δ

ℓ
1Ak′ .

Then we have ∣∣∣∣H(θ)− 2 cos

(
kθ

2
− 2πm cos θ

)∣∣∣∣ < 2.

This inequality is enough to prove the theorem. To see this, note that as θ
increases from π/2 to 2π/3, the quantity

kθ

2
− 2πm cos θ

increases from π (3ℓ+ k′/4) to π (3ℓ+ k′/3 +D), where D = ℓ +m, hitting
D + 1 distinct consecutive integer multiples of π (this is independent of the
choice of k′). A short computation shows that if D ≥ |ℓ|, then the quantity
kθ
2
− 2πm cos θ is strictly increasing on this interval. Thus, there are exactly

D + 1 values of θ in the interval [π/2, 2π/3] where the function

2 cos

(
kθ

2
− 2πm cos θ

)
16



has absolute value 2, alternating between +2 and −2 as θ increases. Then
real-valued function H(θ) must have at least D distinct zeros as θ moves
through the interval (π/2, 2π/3). This accounts for all D nontrivial zeros of
gk,m.

2.4 Details of computing upper and lower bounds

We seek a bound for
∫ 1

2

− 1
2

∣∣Gj(x+ 0.65i, eiθ)
∣∣ dx. Firstly, we bound∣∣∣∣∆ℓ−j(z)

∆ℓ−j(τ)

∣∣∣∣ .
To do this we consider the upper and lower bounds for ∆(eiθ) and ∆(x +
0.65i). We can write the cusp form ∆ in term of Eisenstein series E4 and E6

such that

∆(z) =
E3

4(z)− E2
6(z)

1728
.

Here for a modular form f with Fourier series f =
∑
af (n)q

n, we will choose

a positive integer N and let f̃ be the truncation of the Fourier series of f up
to and including the qN term, and we let RNf = f − f̃ be the remaining tail
of the series. By the definition of Eisenstein series, we have

E4(z) = 1 + 240
∞∑
n=1

σ3(n)q
n.

For k ≥ 1, we can generously bound σk(n) =
∑

d|n d
k by n · nk = nk+1. If

|e2πiz| ≤ t, then we can bound R20E4(z) by

|R20E4(z)| ≤ 240
∞∑

n=21

σ3(n)t
n

≤ 240
30∑

n=21

σ3(n)t
n + 240

∞∑
n=31

n4tn.

Standard Taylor series methods involving derivatives of the geometric series
(1−x)−1 =

∑
xn taken at x = t allows us to bound the infinite series. Since

we have
∞∑

n=31

n4tn =
t4 + 11t3 + 11t2 + t

(1− t)5
−

30∑
n=1

n4tn,

17



it holds that

|R20E4(z)| ≤ 240
30∑

n=21

σ3(n)t
n + 240

(
t4 + 11t3 + 11t2 + t

(1− t)5
−

30∑
n=1

n4tn

)
.

The tail |R20E
3
4(z)| is bounded by

∣∣R20E
3
4(z)

∣∣ =

∣∣∣∣R20

(
Ẽ4(z) +R20E4(z)

)3∣∣∣∣
≤

∣∣∣R20Ẽ4

3
(z)
∣∣∣+ 3

∣∣∣Ẽ4(z)
∣∣∣2 |R20E4(z)|+ 3

∣∣∣Ẽ4(z)
∣∣∣ |R20E4(z)|2

+ |R20E4(z)|3 .

Therefore we compute explicit bounds on all of these terms for |q| = e−
√
3π

and we find |R20E4(z)| < 5.491887× 10−44,
∣∣∣R20Ẽ4

3
(z)
∣∣∣ < 7.905146× 10−34,

and
∣∣∣Ẽ4(z)

∣∣∣ < 2.081136. Thus it holds that∣∣R20E
3
4(z)

∣∣ < 7.905147× 10−34.

Similarly we compute the bound for R20E
2
6(z). By the definition of Eisenstein

series we have

E6(z) = 1− 504
∞∑
n=1

σ5(n)q
n.

We can bound R50E6(z) by

|R20E6(z)| ≤ 504
∞∑

n=21

σ5(n)t
n

≤ 504
30∑

n=21

σ5(n)t
n + 504

∞∑
n=31

n6tn

≤ 504
30∑

n=21

σ5(n)t
n

+504

(
t6 + 57t5 + 302t4 + 302t3 + 57t2 + t

(1− t)7
−

30∑
n=1

n6tn

)
.
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We have∣∣R20E
2
6(z)

∣∣ =

∣∣∣∣R20

(
Ẽ6(z) +R20E6(z)

)2∣∣∣∣
≤

∣∣∣R20Ẽ6

2
(z)
∣∣∣+ 2

∣∣∣Ẽ6(z)
∣∣∣ |R20E6(z)|+ |R20E6(z)|2 .

Therefore we compute explicit bounds on all of these terms for |e2πiz| = e−
√
3π

and we find |R20E6(z)| < 4.911666× 10−41,
∣∣∣R20Ẽ6

2
(z)
∣∣∣ < 7.905146× 10−34,

and
∣∣∣Ẽ6(z)

∣∣∣ < 3.506567. Thus it holds that∣∣R20E
2
6(z)

∣∣ < 7.905150× 10−34.

We can bound R20∆(z) by

|R20∆(z)| ≤ |R20E
3
4(z)|+ |R20E

2
6(z)|

1728
< 9.149478× 10−37.

We can do similar upper bound calculations for R20E
3
4(τ), R20E

2
6(τ) and

R20∆(τ), where τ = x + 0.65i and −1/2 ≤ x ≤ 1/2, using the addi-
tional fact that |e2πiτ | = e−1.3π. Since we have |R20E4(τ)| < 1.335417 ×
10−31,

∣∣∣R20Ẽ4

3
(τ)
∣∣∣ < 1.932892 × 10−21,

∣∣∣Ẽ4(τ)
∣∣∣ < 5.687301, |R20E6(τ)| <

1.195172 × 10−28,
∣∣∣R20Ẽ6

2
(τ)
∣∣∣ < 1.932889 × 10−21, and

∣∣∣Ẽ6(τ)
∣∣∣ < 14.83488,

it holds that ∣∣R20E
3
4(τ)

∣∣ < 1.932893× 10−21,

and ∣∣R20E
2
6(τ)

∣∣ < 1.932893× 10−21.

Thus it follows that

|R20∆(τ)| ≤ |R20E
3
4(τ)|+ |R20E

2
6(τ)|

1728
< 2.237145× 10−24.

To compute upper and lower bounds for |∆(z)|, we trivially bound the deriva-

tive of ∆̃(z) with respect to θ for θ ∈ [1.9, 2π/3] by∣∣∣∣ ddθ ∆̃(z)

∣∣∣∣ =

∣∣∣∣∣ ddθ
(

20∑
n=1

a(n)qn

)∣∣∣∣∣ =
∣∣∣∣∣−

20∑
n=1

2πneiθ · a(n)qn
∣∣∣∣∣

≤
20∑
n=1

2πn · a(n)tn ≤ 0.021938.
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If we evaluate ∆̃(z) at the points θ = 1.9 + n
10000

for 0 ≤ n ≤ 10000 ·
(2π/3− 1.9), the spacing between the points is small enough that on the

entire interval, ∆̃(z) cannot be below 0.021938 × 1
20000

= 1.0969 × 10−6 less

than its minimum value on these points. The minimum value of ∆̃(z) on these
points is at least 0.0026913 and the maximum value is at most 0.0048052.
Since we have |R20∆(z)| ≤ 9.149478 × 10−37, for θ ∈ [1.9, 2π/3], it follows
that

0.002691 ≤ |∆(z)| ≤ 0.004807.

Similarly, we seek upper and lower bounds for |∆(τ)| where τ = x + 0.65i

and −1/2 ≤ x ≤ 1/2. We trivially bound the derivative of ∆̃(τ) with respect
to x for x ∈ [−1/2, 1/2] by∣∣∣∣ ddx∆̃(τ)

∣∣∣∣ =

∣∣∣∣∣ ddx
(

20∑
n=1

a(n)qn

)∣∣∣∣∣ =
∣∣∣∣∣−

20∑
n=1

2πin · a(n)qn
∣∣∣∣∣

≤
20∑
n=1

2πn · a(n)tn ≤ 0.040192.

We consider the minimum value of ∆̃(τ) at the points x = −1/2 + n
10000

for

0 ≤ n ≤ 10000. ∆̃(τ) cannot be below 0.040192 × 1
20000

= 2.0096 × 10−6

less than its minimum value on these points. The minimum value of ∆̃(τ)
on these points is at least 0.0111249 and the maximum value is at most
0.0249721. Since we have |R20∆(τ)| ≤ 2.237145× 10−24, for x ∈ [−1/2, 1/2],
it follows that

0.011122 ≤ |∆(τ)| ≤ 0.024975.

Therefore we can bound ∆(z)/∆(τ) by∣∣∣∣∆(z)

∆(τ)

∣∣∣∣ < 0.004807

0.011122

and it holds that ∣∣∣∣∆(z)

∆(τ)

∣∣∣∣ < 0.432207,

for θ ∈ [1.9, 2π/3] and τ = x+ 0.65i where −1/2 ≤ x ≤ 1/2.
We will also need to find upper bounds for |E4(z)| and |E6(z)| for θ ∈

[1.9, 2π/3]. We can calculate them in the same way as the bounds for |∆(z)|.
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The derivative of Ẽ4(z) with respect to θ for θ ∈ [1.9, 2π/3] is bounded above
by ∣∣∣∣ ddθ Ẽ4(z)

∣∣∣∣ =

∣∣∣∣∣ ddθ
(

20∑
n=1

σ3(n)q
n

)∣∣∣∣∣ =
∣∣∣∣∣−

20∑
n=1

2πneiθ · σ3(n)qn
∣∣∣∣∣

≤
20∑
n=1

2πn · σ3(n)tn ≤ 7.054822.

The function Ẽ4(z) cannot be above 7.054822 × 1
2000000

= 3.527411 × 10−6

more than its maximum value on the points θ = 1.9 + n
1000000

for 0 ≤ n ≤
1000000 · (2π/3− 1.9). The maximum value of Ẽ4(z) on these points is
at most 0.900254. Since we have |R20E4(z)| ≤ 5.491887 × 10−44, for θ ∈
[1.9, 2π/3], it follows that

|E4(z)| < 0.900258.

Similarly, the derivative of Ẽ6(z) with respect to θ for θ ∈ [1.9, 2π/3] is
bounded above by∣∣∣∣ ddθ Ẽ6(z)

∣∣∣∣ =

∣∣∣∣∣ ddθ
(

20∑
n=1

σ5(n)q
n

)∣∣∣∣∣ =
∣∣∣∣∣−

20∑
n=1

2πneiθ · σ5(n)qn
∣∣∣∣∣

≤
20∑
n=1

2πn · σ5(n)tn ≤ 17.8410.

The function Ẽ6(z) cannot be above 17.8410 × 1
2000000

= 8.9205 × 10−6

more than its maximum value on the points θ = 1.9 + n
1000000

for 0 ≤
n ≤ 1000000 · (2π/3− 1.9). The maximum value of Ẽ6(z) on these points
is at most 2.881542. Since we have |R20E6(z)| ≤ 4.911666 × 10−41, for
θ ∈ [1.9, 2π/3], it follows that

|E6(z)| < 2.881551.

We now consider ∫ 1
2

− 1
2

1

∆(τ)

E14−k′(τ)

j(τ)− j(z)
dx. (2)
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We note j(z) is real valued by [5, Proposition 2.1] and

1

j(τ)− j(z)
=

1

(ℜ (j(τ))− j(z)) + iℑ (j(τ))
.

We need information about the size of the real and imaginary parts of j(τ)
for values of x on each of several subintervals of [−1/2, 1/2] and the value
of j(z). For these computations, we work with the truncations j̃(z) and
j̃(τ), taking into account the growth of the real and imaginary parts of the
truncations and the error caused by ignoring the tail. We can express j(z)
in terms of Eisenstein series of weight 4 and the Ramanujan ∆ function as

j(z) =
E3

4(z)

∆(z)
.

We use this representation to bound R20j(z). Observe that if we truncate
j(z), then the tail satisfies

|R20j(z)| =
∣∣∣j(z)− j̃(z)

∣∣∣
=

∣∣∣∣E3
4(z)

∆(z)
− j̃(z)

∣∣∣∣
=

∣∣∣∣∣
(
j̃(z) +

E3
4(z)− j̃(z)∆̃(z)

∆̃(z)

)
∆̃(z)

∆(z)
− j̃(z)

∣∣∣∣∣
≤

∣∣∣j̃(z)∣∣∣ ∣∣∣∣∣∆̃(z)−∆(z)

∆(z)

∣∣∣∣∣+
∣∣∣Ẽ3

4(z)− j̃(z)∆̃(z)
∣∣∣+ |R20E

3
4(z)|

|∆(z)|

=
∣∣∣j̃(z)∣∣∣ ∣∣∣∣R20∆(z)

∆(z)

∣∣∣∣+
∣∣∣Ẽ3

4(z)− j̃(z)∆̃(z)
∣∣∣+ |R20E

3
4(z)|

|∆(z)|
.

We compute explicit bounds on all of these terms for θ ∈ [1.9, 2π/3], and
have

|R20j(z)| < 10505.2 · 9.149478× 10−37

0.002691
+

6.859820× 10−29 + 7.905147× 10−34

0.002691
< 2.549558× 10−26.
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Similarly, for x ∈ [−1/2, 1/2], it holds that

|R20j(τ)| < 16535.7 · 2.237145× 10−24

0.011122
+

5.684342× 10−14 + 1.932893× 10−21

0.011122
< 5.110903× 10−12.

We also bound the derivatives of the truncations of j(z) and the real
and imaginary parts of j(τ). Doing so allows us to evaluate the functions
at equally spaced points as before to get maximum and minimum values for
j(z) and the real and imaginary parts of j(τ).

We take the derivative of j̃(τ) with respect to x, and for both the real
and imaginary parts we achieve a bound of∣∣∣∣ ddxℜ(j̃(τ))

∣∣∣∣ , ∣∣∣∣ ddxℑ(j̃(τ))
∣∣∣∣ ≤

∣∣∣∣∣ ddx
(

20∑
n=−1

a(n)qn

)∣∣∣∣∣ =
∣∣∣∣∣−

20∑
n=−1

2πin · a(n)qn
∣∣∣∣∣

≤
20∑

n=−1

2πn · a(n)tn ≤ 234470,

for x ∈ [−1/2, 1/2]. The bound on the derivative of j̃(z) with respect to θ is
quite manageable as well. We have∣∣∣∣ ddθ j̃(z)

∣∣∣∣ =

∣∣∣∣∣ ddθ
(

20∑
n=−1

a(n)qn

)∣∣∣∣∣ =
∣∣∣∣∣−

20∑
n=−1

2πneiθ · a(n)qn
∣∣∣∣∣

≤
20∑

n=−1

2πn · a(n)tn ≤ 10505.2,

for θ ∈ [1.9, 2π/3]. We again compute values of j̃(z) at a sampling of
points and use these bounds to find upper and lower bounds of j(z) for
θ ∈ [1.9, 2π/3]. We have

0 ≤ j(z) ≤ 271.1,

for θ ∈ [1.9, 2π/3].

We also need upper bounds for the derivatives of Ẽ4(τ) and Ẽ6(τ) with
respect to x for x ∈ [−1/2, 1/2]. They are bounded above by∣∣∣∣ ddxẼ4(τ)

∣∣∣∣ =

∣∣∣∣∣ ddx
(

20∑
n=1

σ3(n)q
n

)∣∣∣∣∣ =
∣∣∣∣∣−

20∑
n=1

2πin · σ3(n)qn
∣∣∣∣∣

≤
20∑
n=1

2πn · σ3(n)tn ≤ 33.7302,
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and ∣∣∣∣ ddxẼ6(τ)

∣∣∣∣ =

∣∣∣∣∣ ddx
(

20∑
n=1

σ5(n)q
n

)∣∣∣∣∣ =
∣∣∣∣∣−

20∑
n=1

2πin · σ5(n)qn
∣∣∣∣∣

≤
20∑
n=1

2πn · σ5(n)tn ≤ 124.801,

for x ∈ [−1/2, 1/2].
We break our path of integration (2) into pieces, and consider j(τ) in rela-

tion to j(z) on each. Since it is clear that e2πiτ = e−1.3π (cos (2πx) + i sin (2πx)),
we have ℜ (j (x+ 0.65i)) = ℜ (j (−x+ 0.65i)) while ℑ (j (x+ 0.65i))
= −ℑ (j (−x+ 0.65i)). Similar equations hold for ∆(τ) and E14−k′(τ). Thus
we have∣∣∣∣ 1

∆(x+ 0.65i)

E14−k′(x+ 0.65i)

j(x+ 0.65i)− j(z)

∣∣∣∣ = ∣∣∣∣ 1

∆(−x+ 0.65i)

E14−k′(−x+ 0.65i)

j(−x+ 0.65i)− j(z)

∣∣∣∣ ,
for x ∈ [−1/2, 1/2]. With this in mind, we restrict our calculations to x ∈
[−1/2, 0] and use symmetry for x ∈ [0, 1/2]. Using the upper bounds for the
derivatives, the values at sampling points and the upper bounds for the tails,
we can obtain bounds for ℜ (j(τ)), ℑ (j(τ)), |E4(τ)|, |E6(τ)| and |∆(τ)| for
x on each of several subintervals of [−1/2, 1/2]. Their bounds are showed by
the following tables.

ℜ (j(τ)) ℑ (j(τ)) |E4(τ)| |E6(τ)| |∆(τ)|
−0.50 ≤ x ≤ −0.49 > 593 ≥ 0 < 2.462 < 5.329 > 0.0249
−0.49 ≤ x ≤ −0.48 > 584.4 > 81.01 < 2.473 < 5.363 > 0.0249
−0.48 ≤ x ≤ −0.47 > 569.9 > 162.5 < 2.488 < 5.420 > 0.0248
−0.47 ≤ x ≤ −0.46 > 548.9 > 244.9 < 2.510 < 5.498 > 0.0246
−0.46 ≤ x ≤ −0.45 > 520.7 > 328.7 < 2.537 < 5.596 > 0.0245
−0.45 ≤ x ≤ −0.44 > 484.4 > 414.2 < 2.571 < 5.713 > 0.0243
−0.44 ≤ x ≤ −0.43 > 439.1 > 501.7 < 2.610 < 5.848 > 0.0241
−0.43 ≤ x ≤ −0.42 > 383.2 > 591.3 < 2.654 < 6.000 > 0.0238
−0.42 ≤ x ≤ −0.41 > 315.4 > 683.0 < 2.704 < 6.166 > 0.0235
−0.41 ≤ x ≤ −0.40 > 233.9 > 776.6 < 2.760 < 6.346 > 0.0232
−0.40 ≤ x ≤ −0.39 > 21, < 234 > 871.5 < 2.820 < 6.537 > 0.0229
−0.39 ≤ x ≤ −0.38 > 21, < 234 > 966.9 < 2.885 < 6.738 > 0.0225
−0.38 ≤ x ≤ −0.37 < 21.0 > 1061 < 2.954 < 6.948 > 0.0222
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ℜ (j(τ)) ℑ (j(τ)) |E4(τ)| |E6(τ)| |∆(τ)|
−0.37 ≤ x ≤ −0.36 < −112.8 > 1153 < 3.027 < 7.166 > 0.0218
−0.36 ≤ x ≤ −0.35 < −270.0 > 1241 < 3.104 < 7.389 > 0.0214
−0.35 ≤ x ≤ −0.34 < −451.9 > 1321 < 3.185 < 7.618 > 0.0209
−0.34 ≤ x ≤ −0.33 < −660.7 > 1389 < 3.270 < 7.851 > 0.0205
−0.33 ≤ x ≤ −0.32 < −898.4 > 1442 < 3.357 < 8.086 > 0.0201
−0.32 ≤ x ≤ −0.31 < −1166 > 1473 < 3.447 < 8.323 > 0.0196
−0.31 ≤ x ≤ −0.30 < −1466 > 1444 < 3.540 < 8.561 > 0.0192
−0.30 ≤ x ≤ −0.29 < −1797 > 1368 < 3.635 < 8.798 > 0.0187
−0.29 ≤ x ≤ −0.28 < −2158 > 1239 < 3.731 < 9.034 > 0.0183
−0.28 ≤ x ≤ −0.27 < −2546 > 1048 < 3.829 < 9.269 > 0.0178
−0.27 ≤ x ≤ −0.26 < −2957 > 783.7 < 3.929 < 9.500 > 0.0174
−0.26 ≤ x ≤ −0.25 < −3384 > 436.4 < 4.029 < 9.728 > 0.0170
−0.25 ≤ x ≤ −0.24 < −3817 > −3.3, < 437 < 4.129 < 9.951 > 0.0165
−0.24 ≤ x ≤ −0.23 < −4242 < −3.212 < 4.229 < 10.17 > 0.0161
−0.23 ≤ x ≤ −0.22 < −4645 < −543.1 < 4.329 < 10.39 > 0.0157
−0.22 ≤ x ≤ −0.21 < −5007 < −1189 < 4.428 < 10.59 > 0.0153
−0.21 ≤ x ≤ −0.20 < −5304 < −1943 < 4.527 < 10.79 > 0.0149
−0.20 ≤ x ≤ −0.19 < −5513 < −2805 < 4.623 < 10.99 > 0.0146
−0.19 ≤ x ≤ −0.18 < −5559 < −3767 < 4.718 < 11.17 > 0.0142
−0.18 ≤ x ≤ −0.17 < −5341 < −4816 < 4.810 < 11.35 > 0.0139
−0.17 ≤ x ≤ −0.16 < −4929 < −5932 < 4.900 < 11.51 > 0.0136
−0.16 ≤ x ≤ −0.15 < −4301 < −7087 < 4.986 < 11.67 > 0.0133
−0.15 ≤ x ≤ −0.14 < −3445 < −8248 < 5.069 < 11.82 > 0.0130
−0.14 ≤ x ≤ −0.13 < −2352 < −9373 < 5.149 < 11.96 > 0.0127
−0.13 ≤ x ≤ −0.12 < −1209 < −10413 < 5.223 < 12.09 > 0.0125
−0.12 ≤ x ≤ −0.11 > −1030, < 508 < −11319 < 5.294 < 12.21 > 0.0123
−0.11 ≤ x ≤ −0.10 > 508.2 < −12037 < 5.359 < 12.32 > 0.0121
−0.10 ≤ x ≤ −0.09 > 2231 < −12515 < 5.420 < 12.42 > 0.0119
−0.09 ≤ x ≤ −0.08 > 4098 < −12574 < 5.474 < 12.51 > 0.0117
−0.08 ≤ x ≤ −0.07 > 6054 < −12089 < 5.523 < 12.58 > 0.0116
−0.07 ≤ x ≤ −0.06 > 8033 < −11241 < 5.566 < 12.65 > 0.0114
−0.06 ≤ x ≤ −0.05 > 9964 < −10033 < 5.603 < 12.71 > 0.0113
−0.05 ≤ x ≤ −0.04 > 11770 < −8490 < 5.633 < 12.76 > 0.0112
−0.04 ≤ x ≤ −0.03 > 13374 < −6651 < 5.657 < 12.79 > 0.0112
−0.03 ≤ x ≤ −0.02 > 14706 < −4574 < 5.674 < 12.82 > 0.0111
−0.02 ≤ x ≤ −0.01 > 15706 < −2330 < 5.684 < 12.83 > 0.0111
−0.01 ≤ x ≤ −0.00 > 16325 ≤ 0 < 5.688 < 12.84 > 0.0111
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We consider

1

j(τ)− j(z)
=

1

(ℜ (j(τ))− j(z)) + iℑ (j(τ))
.

We note that since j(z) is real, if we have the bound |ℑ(j(z))| > b > 0 for a
subinterval, it follows that∣∣∣∣ 1

j(τ)− j(z)

∣∣∣∣ < ∣∣∣∣ 1

(ℜ (j(τ))− j(z)) + ib

∣∣∣∣ .
If ℜ(j(τ)) > a1 > 271.1, then this is bounded by∣∣∣∣ 1

j(τ)− j(z)

∣∣∣∣ < ∣∣∣∣ 1

(a1 − 271.1) + ib

∣∣∣∣ .
If ℜ(j(τ)) < −a2 < 0, then this is bounded by∣∣∣∣ 1

j(τ)− j(z)

∣∣∣∣ < ∣∣∣∣ 1

(a2 − 0) + ib

∣∣∣∣ .
If ℜ(j(τ)) ∈ [0, 271.1] for some τ , then this is bounded by∣∣∣∣ 1

j(τ)− j(z)

∣∣∣∣ < ∣∣∣∣ 1

(0− 0) + ib

∣∣∣∣ .
Since ℑ(j(z)) may be equal to 0,

∣∣∣ 1
j(τ)−j(z)

∣∣∣ is bounded by∣∣∣∣ 1

(593− 271.1) + 0

∣∣∣∣ , ∣∣∣∣ 1

(3817− 0) + 0

∣∣∣∣ and

∣∣∣∣ 1

(16325− 271.1) + 0

∣∣∣∣ ,
for −0.50 ≤ x ≤ −0.49, −0.25 ≤ x ≤ −0.24 and −0.01 ≤ x ≤ 0, re-
spectively. Moreover, we note that Ek′ is written in term of E4 and E6 for
k′ ∈ {0, 4, 6, 8, 10, 14}. Thus we can bound Ek′ using the bounds of E4 and
E6. Therefore we can bound the integral∫ 1

2

− 1
2

∣∣∣∣∣ 1

∆ (x+ 0.65i)

Ek′
(
eiθ
)
E14−k′ (x+ 0.65i)

j (x+ 0.65i)− j (eiθ)

∣∣∣∣∣ dx. (3)
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For example, when k′ = 0, (3) is bounded above by

2 · 0.01 ·

(
2.4622 · 5.329

0.0249 ·
√
(593− 271.1)2 + 02

+
2.4732 · 5.363

0.0249 ·
√
(584.4− 271.1)2 + 81.012

+
2.4882 · 5.420

0.0248 ·
√

(569.9− 271.1)2 + 162.52
+

2.5102 · 5.498
0.0246 ·

√
(548.9− 271.1)2 + 244.92

+
2.5372 · 5.596

0.0245 ·
√

(520.7− 271.1)2 + 328.72
+

2.5712 · 5.713
0.0243 ·

√
(484.4− 271.1)2 + 414.22

+
2.6102 · 5.848

0.0241 ·
√

(439.1− 271.1)2 + 501.72
+

2.6542 · 6.000
0.0238 ·

√
(383.2− 271.1)2 + 591.32

+
2.7042 · 6.166

0.0235 ·
√

(315.4− 271.1)2 + 683.02
+

2.7602 · 6.346
0.0232 ·

√
(0− 0)2 + 776.62

+
2.8202 · 6.537

0.0229 ·
√

(0− 0)2 + 871.52
+

2.8852 · 6.738
0.0225 ·

√
(0− 0)2 + 966.92

+
2.9542 · 6.948

0.0222 ·
√

(0− 0)2 + 10612
+

3.0272 · 7.166
0.0218 ·

√
(112.8− 0)2 + 11532

+
3.1042 · 7.389

0.0214 ·
√

(270.0− 0)2 + 12412
+

3.1852 · 7.618
0.0209 ·

√
(451.9− 0)2 + 13212

+
3.2702 · 7.851

0.0205 ·
√

(660.7− 0)2 + 13892
+

3.3572 · 8.086
0.0201 ·

√
(898.4− 0)2 + 14422

+
3.4472 · 8.323

0.0196 ·
√
(1166− 0)2 + 14732

+
3.5402 · 8.561

0.0192 ·
√
(1466− 0)2 + 14442

+
3.6352 · 8.798

0.0187 ·
√
(1797− 0)2 + 13682

+
3.7312 · 9.034

0.0183 ·
√
(2158− 0)2 + 12392

+
3.8292 · 9.269

0.0178 ·
√
2546− 0)2 + 10482

+
3.9292 · 9.500

0.0174 ·
√
2957− 0)2 + 783.72

+
4.0292 · 9.728

0.0170 ·
√
3384− 0)2 + 436.42

+
4.1292 · 9.951

0.0165 ·
√
(3817− 0)2 + 02

+
4.2292 · 10.17

0.0161 ·
√

(4242− 0)2 + 3.2122
+

4.3292 · 10.39
0.0157 ·

√
(4645− 0)2 + 543.12

+
4.4282 · 10.59

0.0153 ·
√
(5007− 0)2 + 11892

+
4.5272 · 10.79

0.0149 ·
√
(5304− 0)2 + 19432
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+
4.6232 · 10.99

0.0146 ·
√
(5513− 0)2 + 28052

+
4.7182 · 11.17

0.0142 ·
√

(5559− 0)2 + 37672

+
4.8102 · 11.35

0.0139 ·
√
(5341− 0)2 + 48162

+
4.9002 · 11.51

0.0136 ·
√

(4929− 0)2 + 59322

+
4.9862 · 11.67

0.0133 ·
√
(4301− 0)2 + 70872

+
5.0692 · 11.82

0.0130 ·
√

(3445− 0)2 + 82482

+
5.1492 · 11.96

0.0127 ·
√
(2352− 0)2 + 93732

+
5.2232 · 12.09

0.0125 ·
√

(1209− 0)2 + 104132

+
5.2942 · 12.21

0.0123 ·
√

(0− 0)2 + 113192
+

5.3592 · 12.32
0.0121 ·

√
(508.2− 271.1)2 + 120372

+
5.4202 · 12.42

0.0119 ·
√
(2231− 271.1)2 + 125152

+
5.4742 · 12.51

0.0117 ·
√

(4098− 271.1)2 + 125742

+
5.5232 · 12.58

0.0116 ·
√
(6054− 271.1)2 + 120892

+
5.5662 · 12.65

0.0114 ·
√

(8033− 271.1)2 + 112412

+
5.6032 · 12.71

0.0113 ·
√
(9964− 271.1)2 + 100332

+
5.6332 · 12.76

0.0112 ·
√

(11770− 271.1)2 + 84902

+
5.6572 · 12.79

0.0112 ·
√
(13374− 271.1)2 + 66512

+
5.6742 · 12.82

0.0111 ·
√

(14706− 271.1)2 + 45742

+
5.6842 · 12.83

0.0111 ·
√
(15706− 271.1)2 + 23302

+
5.6882 · 12.84

0.0111 ·
√

(16325− 271.1)2 + 02

)

< 2.76009.

We set A0 = 2.76009. For k′ ∈ {4, 6, 8, 10, 14}, constants Ak′ which bound
(3) is obtained by similar calculation.

Similarly, when π
2
≤ θ < 1.9 and τ = x + 0.75i, we have the bounds A′

k′

in Subsection 2.3.
We completed our proof of Theorem 2.1.

28



3 Transcendence of zeros

In this section, we consider transcendence of zeros of gk,m. We have the
following theorem.

Theorem 3.1. Let z0 be a zero of gk,m(z) = fk,m(z)+
∑ℓ+m

j=1 ajfk−12j,m(z)∆(z)j

in the fundamental domain for SL2(Z) lying on the circle |z| = 1. Let aj ∈ Q.

Then z0 is transcendental if it is not equal to i or ρ = −1
2
+

√
3i
2
.

For the proof of Theorem 3.1, we use the following lemma of Schneider.

Lemma 3.1. [9, Corollary 3.4] If z ∈ H and j(z) is algebraic, then either z is
transcendental or z is imaginary quadratic, i.e. Q(z) is a degree 2 extension
of Q, with z /∈ R.

We can prove Theorem 3.1 as with [7]. We now consider some properties
from class field theory and complex multiplication discussed in [1]. Let D be
a negative integer so that K = Q(

√
D) is an imaginary quadratic field. An

oder D of K is a subring of K containing 1 that is a free Z-module of rank
2. A proper fractional of D is a nonzero fractional ideal A of D such that

D = {α ∈ K : αA ⊂ A}.

We consider many nice properties for the set of all proper fractional ideals
of K forms a multiplicative group.

We set a polynomial P (x) = ax2 + bx + c of negative discriminant D =
b2 − 4ac with integer coefficients such that a > 0 and gcd(a, b, c) = 1. If
z ∈ H is a root of P (x), as seen in [1, Lemma 7.5], D = [1, az] is an order of
K and Λ = [1, z] is a proper fractional ideal of D.

To see the structure of D, we note that since z ∈ H is a root of the

polynomial ax2 + bx+ c, by the quadratic formula, z = −b+
√
D

2a
. Therefore

[1, az] =

[
1,

−b+
√
D

2

]
=

{
i
√
D
2

if b ≡ 0 (mod 2),
1+

√
D

2
if b ≡ 1 (mod 2).

Since D = b2 − 4ac, we have that b is even if and only if D ≡ 0 (mod 4).
Similarly, b is odd if and only if D ≡ 1 (mod 4). Thus the following lemma
holds as with [7].
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Lemma 3.2. [7, Lemma 2.2] Let a, b, c ∈ Z such that a > 0, gcd(a, b, c) = 1,
and D = b2 − 4ac < 0. If z ∈ H is a root of the polynomial ax2 + bx + c,
then the lattice [1, z] is a proper fractional ideal of the order D = [1, az] of
K = Q(

√
D). Moreover,

D =

{
i
√
D
2

if D ≡ 0 (mod 4),
1+

√
D

2
if D ≡ 1 (mod 4).

We find that the order D does not depend on z, but instead on the
discriminantD of the reduced integer polynomial that has z as a root. Recall,
if Λ is a lattice of C we define j(Λ) = j(z), where z ∈ H and Λ = [1, z]. The
choice of z ∈ H is well defined. By Lemma 3.2, we see that we can map a point
z ∈ H to the proper fractional ideal Λ = [1, z] of D, where j([1, z]) = j(z).

The following lemma follows from [1, Theorem 11.1 and Proposition 13.2],
and is the last result we need before the proof of Theorem 3.1 as with [7].

Lemma 3.3. [7, Lemma 2.3] If A is a proper fractional ideal of an order D
of an imaginary quadratic field K, then j(A) is an algebraic over Q. If B is
any other proper fractional ideal of D, then K(j(A)) = K(j(B)) and j(A)
and j(B) are conjugate over K. Furthermore, the degree of j(A) is the class
number of D.

Let gk,m(z) satisfy the assumption of Theorem 3.1. Then we can write

gk,m(z) = fk,m(z) +
ℓ+m∑
j=1

ajfk−12j,m(z)∆(z)j

= ∆(z)ℓEk′(z)Fk,L(j(z)),

where Fk,L(j(z)) is a monic polynomial in j(z) of degree L = ℓ + m with
rational number coefficients. By Kohnen [8], the only possible zeros of Ek′(z)
are i and ρ. Also, we see from the valence formula that ∆(z) is never zero
on H. Thus, the only zeros of gk,m(z) in F other than i, ρ are the zeros of
Fk,L(j(z)).

Suppose z0 ∈ F such that Fk,L(j(z0)) = 0. Since Fk,L(x) is a polynomial
with rational number coefficients, j(z0) is algebraic. Thus from Lemma 3.1,
z0 is either transcendental or imaginary quadratic.

If z0 is imaginary quadratic, then z0 is a root of a polynomial P (x) = ax2+
bx+ c, where gcd(a, b, c) = 1, a > 0, and the discriminant D0 = b2− 4ac < 0.
Let K = Q(

√
D0).
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We consider the order D = [1, az0] of K. From Lemma 3.2, the lattice
[1, z0] is a proper fractional ideal of D, and the order D has the form

D =


[
1, i

√
D0

2

]
if D0 ≡ 0 (mod 4),[

1, 1+
√
D0

2

]
if D0 ≡ 1 (mod 4).

Thus by Lemma 6.3, if A is any other proper fractional ideal of D, j(z0) =
j([1, z0]) and j(A) are conjugate.

We consider the point z1 ∈ C defined by

z1 =


i
√

|D0|
2

if D0 ≡ 0 (mod 4),
1+i

√
|D0|

2
if D0 ≡ 1 (mod 4).

Then z1 ∈ F and we have [1, z1] = D. Thus by definition [1, z1] is a proper
fractional ideal of D, and so j(z0) and j(z1) are conjugate.

We take an automorphism σ ofK(j(D)) such that σ(j(z0)) = j(z1). Since
σ acts as the identity on Q and Fk,L is a polynomial with rational number
coefficients, we have that

0 = σ(0)

= σ(Fk,L(j(z0)))

= Fk,L(σ(j(z0)))

= Fk,L(j(z1)).

Thus z1 is also a zero of Fk,L and hence a zero of gk,m. Since z1 ∈ F , by
Theorem 2.1 we have that z1 must lie on the arc of the unit circle given by{

eiθ :
π

2
≤ θ ≤ 2π

3

}
.

Suppose D0 ≡ 0 (mod 4), so that D0 = −4n for some positive integer n.
Then z1 = i

√
n, but since z1 must lie on the unit circle we must have n = 1.

Thus, D0 = −4. Since z0 ∈ H, we have by the quadratic formula that

z0 =
−b+ 2i

2a
.

But z0 ∈ F , and so ℑ(z0) ≥
√
3
2
. Thus a = 1, and so

z0 = − b
2
+ i.
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But again by Theorem 2.1 we have that z0 must lie on the unit circle, so
b = 0 and z0 = i.

.If D0 ≡ 1 (mod 4), then D0 = −4n + 1 for some positive integer n.
Hence,

z1 =
−1 + i

√
4n− 1

2
,

and thus |z1|2 = n. Again, since z1 must lie on the unit circle we must have
n = 1. Therefore D0 = −3. Since z0 ∈ H, we have that

z0 =
−b+ i

√
3

2a

by the quadratic formula. And again since z0 ∈ F , we have a = 1 so that

z0 = − b
2
+ i

√
3

2
.

But again by Theorem 2.1 we have that z0 must lie on the unit circle, so
b = 1 and z0 = ρ. Thus, we completed Theorem 3.1.

We have the following corollary by Theorem 2.1 and Theorem 3.1.

Corollary 3.1. Let k = 12ℓ+ k′, where ℓ ∈ Z≥0 and k′ ∈ {0, 4, 6, 8, 10, 14}.
Let

gk,m(z) = fk,m(z) +
ℓ+m∑
j=1

ajfk−12j,m(z)∆(z)j,

where aj ∈ Q,m ≥ 0 and ℓ+m ≥ 1. If {aj}ℓ+m
j=1 satisfy

ℓ+m∑
j=1

|aj|(3δj3 + δm4 γ(j)
jAk′) < 1− δm4 δ

ℓ
1Ak′ ,

then all of zeros of gk,m in the fundamental domain for SL2(Z) are transcen-

dental or equal to i or ρ = −1
2
+

√
3i
2
.
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4 Zeros of weakly holomorphic modular form

of level 2

In this section, we consider zeros of weakly holomorphic modular form of
level 2.

4.1 Definitions and statement of results

Let M ♯
k(2) be the subspace of M !

k(2) consisting of forms which are holo-
morphic away from the cusp at ∞. Garthwaite and Jenkins considered a
canonical basis of M ♯

k(2) in [4]. Let k = 4ℓ+ k′ where ℓ ∈ Z and k′ ∈ {0, 2}.
For any integer m ≥ −ℓ, there exists a unique weakly holomorphic modular
form fk,m ∈M ♯

k(2) which has an expansion

fk,m(z) = q−m +O(qℓ+1).

We define three modular forms of level 2 to construct fk,m(z). Let

ψ(z) =

(
η(z)

η(2z)

)24

= q−1 − 24 + 276q + · · · ∈M ♯
0(2)

be the Hauptmodul for Γ0(2). This form has integer coefficients, has a pole at
∞, and vanishes at 0. Moreover, by the above argument ψ(z) is real-valued
on the lower boundary of the fundamental domain.

Next, let

F2(z) = 2E2(2z)− E2(z) = 1 + 24
∑
n

 ∑
d|n,d odd

d

 qn

be the unique normalized holomorphic modular form of weight 2 and level
2. Here E2(z) is the weight 2 Eisenstein series E2(z) = 1− 24

∑∞
n=1 σ(n)q

n.
The form F2(z) has integer coefficients and a single zero at the elliptic point
−1

2
+ i

2
.

Additionally, we define the Eisenstein series S4(z) ∈M4(2) as

S4(z) =
E4(z)− E4(2z)

240
= q + 8q2 + 28q3 + · · · .
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It is easily checked that S4 has integral Fourier coefficients and vanishes at
∞. It does not vanish at the cusp at 0, as there are no cusp forms of weight
4 and level 2.

We now use these forms to construct a basis for M ♯
k(2). We can write

fk,m(z) = Sℓ
4(z)Fk′(z)F (ψ(z)),

where F (x) is a polynomial with integer coefficients of degree n+ℓ = n+⌊k
4
⌋.

Similar sequences of modular forms for many levels appear in [3].
For the group Γ0(2), we use a fundamental domain in the upper half-

plane bounded by the lines ℜ(z) = −1
2
and ℜ(z) = 1

2
, the circles of radius

1
2
centered at z = −1

2
and z = 1

2
. We include the boundary on the left half

of this fundamental domain. The cusps of this fundamental domain can be
taken to be at ∞ and at 0.

Figure 2: A fundamental domain for Γ0(2).
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Garthwaite and Jenkins proved the following theorem [4].

Theorem 4.1. [4, Theorem 1] Let fk,m(z) be as above. If ℓ ≥ 0 and m ≥
14ℓ+8, or if ℓ < 0 and n ≥ 15|ℓ|+8, then at least ⌊

√
3
2
n+ k

6
⌋ of the n+ ⌊k

4
⌋

nontrivial zeros of fk,m(z) in the fundamental domain for Γ0(2) lie on the
lower boundary of the fundamental domain.

We define gk,m(z) to generalize Theorem 4.1. It is defined by

gk,m(z) = fk,m(z) +
ℓ+m∑
j=1

ajfk−4j,m(z)S4(z)
j,

where aj ∈ R,m ≥ 1 and ℓ ≥ 1. The main results for level 2 of this paper
are the following three theorems.

Theorem 4.2. Let k = 4ℓ + k′, where ℓ ≥ 1 and k′ ∈ {0, 2}. Let gk,m(z) =

fk,m(z) +
∑ℓ+m

j=1 ajfk−4j,m(z)S4(z)
j, where aj ∈ R and m ≥ 1. Suppose

δ5 = 62.574,

δ6 = 2.444141,

δ7 = 0.87063,

δ8 = 0.73041,

A = 21.8151

and γ2(j) =

{
δj7δ

ℓ−j
5 if 1 ≤ j ≤ ℓ,

δj6δ
ℓ
7 if ℓ+ 1 ≤ j ≤ ℓ+m.

If {aj}ℓ+m
j=1 satisfy

ℓ+m∑
j=1

|aj|(2δj7 + δm8 γ2(j)
jA) < 2− δm8 δ

ℓ
5A,

then at least ⌊
√
3
2
n + k

6
⌋ of the n + ⌊k

4
⌋ nontrivial zeros of fk,m(z) in the

fundamental domain for Γ0(2) lie on the lower boundary of the fundamental
domain.

Theorem 4.3. Let fk,m(z) be as above. If ℓ ≥ 0 and m ≥ 3ℓ+5, or if ℓ < 0
and n ≥ 8|ℓ| + 5, then at least ⌊n

2
+ k

12
⌋ of the n + ⌊k

4
⌋ nontrivial zeros of

fk,m(z) in the fundamental domain for Γ0(2) lie on the lower boundary of the
fundamental domain.
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Theorem 4.4. Let k = 4ℓ + k′, where ℓ ≥ 1 and k′ ∈ {0, 2}. Let gk,m(z) =

fk,m(z) +
∑ℓ+m

j=1 ajfk−4j,m(z)S4(z)
j, where aj ∈ R and m ≥ 1. Suppose

δ9 = 1.6326,

δ10 = 0.15165,

δ11 = 0.066968,

δ12 = 0.81268,

B = 5.50471

and γ3(j) =

{
δj11δ

ℓ−j
9 if 1 ≤ j ≤ ℓ,

δj10δ
ℓ
11 if ℓ+ 1 ≤ j ≤ ℓ+m.

If {aj}ℓ+m
j=1 satisfy

ℓ+m∑
j=1

|aj|(2δj11 + δm12γ3(j)
jB) < 2− δm12δ

ℓ
9B,

then at least ⌊n
2
+ k

12
⌋ of the n + ⌊k

4
⌋ nontrivial zeros of fk,m(z) in the fun-

damental domain for Γ0(2) lie on the lower boundary of the fundamental
domain.

Proofs of these theorems is given by Subsection 4.2, 4.3 and 4.4, respec-
tively.

4.2 Generalization of a theorem of Garthwaite and
Jenkins

In this subsection, we prove Theorem 4.2. An easy argument [4] shows that
for any weakly holomorphic modular form f of weight k and level 2 with
real coefficients, the quantity eikθ/2f(−1

2
+ 1

2
eiθ) is real for θ ∈

[
π
6
, π
2

]
. In [4],

Garthwaite and Jenkins proved that∣∣∣∣eikθ/2e−πm sin θf

(
−1

2
+

1

2
eiθ
)
− (−1)m2 cos

(
kθ

2
− πm cos θ

)∣∣∣∣ < 2,

for ℓ ≥ 0 and m ≥ 14ℓ + 8, or ℓ < 0 and n ≥ 15|ℓ| + 8. They showed the
inequality in term of several bounds for weakly holomorphic modular forms
of level 2. In Subsection 2.4, we computed bounds for weakly holomorphic
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modular forms of level 1. Now we can improve the bounds for level 2 by the
similar technique.

Suppose ℓ ≥ 1 and m ≥ 1. Then we set

H(θ) = eikθ/2e−πm sin θgk,m

(
−1

2
+

1

2
eiθ
)

= H0,m(θ) +
ℓ+m∑
j=1

aje
4jiθ/2S4

(
−1

2
+

1

2
eiθ
)j

Hj,m(θ),

where Hj,m(θ) = e(k−4j)iθ/2e−πm sin θfk−4j,m

(
−1

2
+ 1

2
eiθ
)
. Since ℓ ≥ 1 and

m ≥ 1, we write

H(θ) = H0,m(θ) +
ℓ∑

j=1

aje
4jiθ/2S4

(
−1

2
+

1

2
eiθ
)j

Hj,m(θ)

+
m∑
j=1

aj+ℓe
4(j+ℓ)iθ/2S4

(
−1

2
+

1

2
eiθ
)j+ℓ

Hj+ℓ,m(θ).

We define the function Rj,m(θ) for θ ∈
[
π
6
, π
2

]
by

Hj,m(θ) = (−1)m2 cos

(
(k − 4j)θ

2
− πm cos θ

)
+Rj,m(θ).

We seek a bound for the function Rj,m(θ). Details for the computation of the
numerical bounds that appear in this subsection are provided by the similar
technique of Subsection 2.4. By [4], we find that

|Rj,m(θ)| =
∣∣∣e(k−4j)iθ/2e−πm sin θfk−4j,m

(
−1

2
+

1

2
eiθ
)

−(−1)m2 cos

(
(k − 4j)θ

2
− πm cos θ

) ∣∣∣
=

∣∣∣∣∣e(k−4j)iθ/2e−πm sin θ

∫ 1
2

− 1
2

Sℓ−j
4

(
−1

2
+ 1

2
eiθ
)

Sℓ−j
4 (x+ i

5
)

Fk′
(
−1

2
+ 1

2
eiθ
)
F2

(
x+ i

5

)
Fk′
(
x+ i

5

)
×

ψ
(
x+ i

5

)
ψ
(
x+ i

5

)
− ψ

(
−1

2
+ 1

2
eiθ
)e−2πimτdx

∣∣∣∣∣
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= e−πm(sin θ− 2
5)

∣∣∣∣∣
∫ 1

2

− 1
2

Sℓ−j
4

(
−1

2
+ 1

2
eiθ
)

Sℓ−j
4 (x+ i

5
)

Fk′
(
−1

2
+ 1

2
eiθ
)
F2

(
x+ i

5

)
Fk′
(
x+ i

5

)
×

ψ
(
x+ i

5

)
ψ
(
x+ i

5

)
− ψ

(
−1

2
+ 1

2
eiθ
)dx∣∣∣∣∣

We consider the exponential term e−πm(sin θ− 2
5). It holds that e−πm(sin θ− 2

5) <
0.73041 for θ ∈

[
π
6
, π
2

]
. We set δ8 = 0.73041.

First, we consider ∣∣∣∣∣S4

(
−1

2
+ 1

2
eiθ
)

S4

(
x+ i

5

) ∣∣∣∣∣
ℓ−j

.

We compute

0.03 ≤
∣∣∣∣S4

(
−1

2
+

1

2
eiθ
)∣∣∣∣ ≤ 0.87063.

We set δ7 = 0.87063. From [4], we have that

0.014 ≤
∣∣∣∣S4

(
x+

i

5

)∣∣∣∣ ≤ 2.44141.

We set δ6 = 2.44141. Putting this together, we have, for ℓ− j ≥ 0,∣∣∣∣∣S4

(
−1

2
+ 1

2
eiθ
)

S4

(
x+ i

5

) ∣∣∣∣∣
ℓ−j

≤ |62.574|ℓ−j ,

and for ℓ− j < 0,∣∣∣∣∣S4

(
−1

2
+ 1

2
eiθ
)

S4

(
x+ i

5

) ∣∣∣∣∣
ℓ−j

≤

(
δ6∣∣S4

(
−1

2
+ 1

2
eiθ
)∣∣
)|ℓ−j|

.

We set δ5 = 62.574.
Next, we consider the term∣∣∣∣∣Fk′

(
−1

2
+ 1

2
eiθ
)
F2

(
x+ i

5

)
Fk′
(
x+ i

5

) ∣∣∣∣∣ .
If k′ = 2, this is

∣∣F2

(
−1

2
+ 1

2
eiθ
)∣∣, which is bounded above by 8.00067. If

k′ = 0, this is
∣∣F2

(
x+ i

5

)∣∣, which is bounded above by 12.50005. Therefore
the contribution is bounded above by 12.50005.
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Finally, we consider∫ 1
2

− 1
2

∣∣∣∣∣ ψ
(
x+ i

5

)
ψ
(
x+ i

5

)
− ψ

(
−1

2
+ 1

2
eiθ
)∣∣∣∣∣ dx.

From [4], We can bound the Hauptmodul quotient by∫ 1
2

− 1
2

∣∣∣∣∣ ψ
(
x+ i

5

)
ψ
(
x+ i

5

)
− ψ

(
−1

2
+ 1

2
eiθ
)∣∣∣∣∣ dx ≤ 1.74520.

Thus ∣∣∣∣∣Fk′
(
−1

2
+ 1

2
eiθ
)
F2

(
x+ i

5

)
Fk′
(
x+ i

5

) ∫ 1
2

− 1
2

ψ
(
x+ i

5

)
ψ
(
x+ i

5

)
− ψ

(
−1

2
+ 1

2
eiθ
)du∣∣∣∣∣

is bounded above by

12.50005 · 1.74520 = 21.8151.

We set A = 21.8151.
Putting all of these pieces together, we see that, for 1 ≤ j ≤ ℓ,

|Rj,m(θ)| < δm8 δ
ℓ−j
5 A,

for 1 ≤ j ≤ m,

|Rj+ℓ,m(θ)| < δm8

(
δ6∣∣S4

(
−1

2
+ 1

2
eiθ
)∣∣
)j

A.

We prove Theorem 4.2 using the bound for |Rj,m(θ)|. When ℓ ≥ 1 and
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m ≥ 1, we can write

H(θ) = H0,m(θ) +
ℓ∑

j=1

aje
4jiθ/2S4

(
−1

2
+

1

2
eiθ
)j

Hj,m(θ)

+
m∑
j=1

aj+ℓe
4(j+ℓ)iθ/2S4

(
−1

2
+

1

2
eiθ
)j+ℓ

Hj+ℓ,m(θ)

= (−1)m2 cos

(
kθ

2
− πm cos θ

)
+R0,m(θ)

+
ℓ∑

j=1

aje
4jiθ/2S4

(
−1

2
+

1

2
eiθ
)j (

(−1)m2 cos

(
(k − 4j) θ

2
− πm cos θ

)
+Rj,m(θ)

)
+

m∑
j=1

aj+ℓe
4(j+ℓ)iθ/2S4

(
−1

2
+

1

2
eiθ
)j+ℓ

×
(
(−1)m2 cos

(
(k − 4 (j + ℓ)) θ

2
− πm cos θ

)
+Rj+ℓ,m(θ)

)
.

Thus
∣∣H(θ)− (−1)m2 cos

(
kθ
2
− πm cos θ

)∣∣ is bounded above by

|R0,m(θ)|+
ℓ∑

j=1

|aj| (2 + |Rj,m(θ)|)
∣∣∣∣S4

(
−1

2
+

1

2
eiθ
)∣∣∣∣j

+
m∑
j=1

|aj+l| (2 + |Rj+ℓ,m(θ)|)
∣∣∣∣S4

(
−1

2
+

1

2
eiθ
)∣∣∣∣j+ℓ

≤ δm8 δ
ℓ
5A+

ℓ∑
j=1

|aj|
(
2 + δm8 δ

ℓ−j
5 A

)
δj7

+
m∑
j=1

|aj+l|

2 + δm8

∣∣∣∣∣ δ6

S4

(
−1

2
+ 1

2
eiθ
)∣∣∣∣∣

j

A

∣∣∣∣S4

(
−1

2
+

1

2
eiθ
)∣∣∣∣j+ℓ

= δm8 δ
ℓ
5A+

ℓ+m∑
j=1

|aj|
(
2δj7 + δm8 γ

j
2(j)A

)
.
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Now suppose
ℓ+m∑
j=1

|aj|
(
2δj7 + δm8 γ

j
2(j)A

)
< 2− δm8 δ

ℓ
5A.

Then we have ∣∣∣∣H(θ)− (−1)m2 cos

(
kθ

2
− πm cos θ

)∣∣∣∣ < 2.

This inequality is enough to prove Theorem 4.2 by the same argument as
Theorem 2.1. We completed the proof of Theorem 4.2.

4.3 Improving assumption for a theorem of Garthwaite
and Jenkins

The assumption for coefficients aj of Theorem 4.2 is very strict. In this
subsection, we consider more manageable assumption for aj and the proof
of Theorem 4.3 is given. For −1

2
+ 1

2
eiθ, if θ is close to 0, −1

2
+ 1

2
eiθ is also

close to 0. Then S4(z) and S4(τ) have more large values. To avoid this, we
restrict the interval θ ∈

[
π
6
, π
2

]
to θ ∈

[
π
3
, π
2

]
and change the integral contour

from τ = x+ i
5
to τ = x+ 2

5
i.

Suppose θ ∈
[
π
3
, π
2

]
. We consider to bound∣∣∣∣ekiθ/2e−πm sin θfk,m

(
−1

2
+

1

2
eiθ
)
− (−1)m2 cos

(
kθ

2
− πm cos θ

)∣∣∣∣
= e−πm(sin θ− 2

5)

∣∣∣∣∣
∫ 1

2

− 1
2

Sℓ
4

(
−1

2
+ 1

2
eiθ
)

Sℓ
4(x+

2
5
i)

Fk′
(
−1

2
+ 1

2
eiθ
)
F2

(
x+ 2

5
i
)

Fk′
(
x+ 2

5
i
)

×
ψ
(
x+ 2

5
i
)

ψ
(
x+ 2

5
i
)
− ψ

(
−1

2
+ 1

2
eiθ
)dx∣∣∣∣∣

We consider the exponential term e−πm(sin θ− 2
5). It holds that e−πm(sin θ− 2

5) <
0.81268 for θ ∈

[
π
3
, π
2

]
. We set δ12 = 0.81268.

First, we consider ∣∣∣∣∣S4

(
−1

2
+ 1

2
eiθ
)

S4

(
x+ 2

5
i
) ∣∣∣∣∣

ℓ

.
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We compute

0.03 ≤
∣∣∣∣S4

(
−1

2
+

1

2
eiθ
)∣∣∣∣ ≤ 0.066968.

We set δ11 = 0.066968. It holds that

0.014 ≤
∣∣∣∣S4

(
x+

2

5
i

)∣∣∣∣ ≤ 0.15165.

We set δ10 = 0.15165. Putting this together, we have, for ℓ ≥ 0,∣∣∣∣∣S4

(
−1

2
+ 1

2
eiθ
)

S4

(
x+ 2

5
i
) ∣∣∣∣∣

ℓ

≤ |1.6326|ℓ ,

and for ℓ < 0, ∣∣∣∣∣S4

(
−1

2
+ 1

2
eiθ
)

S4

(
x+ 2

5
i
) ∣∣∣∣∣

ℓ

≤

(
δ11∣∣S4

(
−1

2
+ 1

2
eiθ
)∣∣
)|ℓ|

.

We set δ9 = 1.6326.
Next, we consider the term∣∣∣∣∣Fk′

(
−1

2
+ 1

2
eiθ
)
F2

(
x+ 2

5
i
)

Fk′
(
x+ 2

5
i
) ∣∣∣∣∣ .

If k′ = 2, this is
∣∣F2

(
−1

2
+ 1

2
eiθ
)∣∣, which is bounded above by 1.7929. If

k′ = 0, this is
∣∣F2

(
x+ 2

5
i
)∣∣, which is bounded above by 3.1542. Therefore

the contribution is bounded above by 3.1542.
Finally, we consider∫ 1

2

− 1
2

∣∣∣∣∣ ψ
(
x+ 2

5
i
)

ψ
(
x+ 2

5
i
)
− ψ

(
−1

2
+ 1

2
eiθ
)∣∣∣∣∣ dx.

and it is bounded above by 1.74520.
Thus∣∣∣∣∣Fk′

(
−1

2
+ 1

2
eiθ
)
F2

(
x+ 2

5
i
)

Fk′
(
x+ 2

5
i
) ∫ 1

2

− 1
2

ψ
(
x+ 2

5
i
)

ψ
(
x+ 2

5
i
)
− ψ

(
−1

2
+ 1

2
eiθ
)du∣∣∣∣∣

42



is bounded above by

3.1542 · 1.74520 = 5.50471.

We set B = 5.50471.
Putting all of these pieces together, we see that for ℓ ≥ 0,

e−πm(sin θ− 2
5)

∣∣∣∣∣
∫ 1

2

− 1
2

Sℓ
4

(
−1

2
+ 1

2
eiθ
)

Sℓ
4(x+

2
5
i)

Fk′
(
−1

2
+ 1

2
eiθ
)
F2

(
x+ 2

5
i
)

Fk′
(
x+ 2

5
i
)

×
ψ
(
x+ 2

5
i
)

ψ
(
x+ 2

5
i
)
− ψ

(
−1

2
+ 1

2
eiθ
)dx∣∣∣∣∣

< 0.81268m |1.6326|ℓ (5.50471).

Note that (0.81268m)(5.50471) < 2 if m ≥ 5, and (0.81268m)(1.6326) < 1 if
m ≥ 3. Hence, the integral is less than our desired bound 2 if ℓ ≥ 0 and
m ≥ 3ℓ+ 5. Similarly, for ℓ < 0, we find that our integral is bounded by 2 if
m ≥ 8 |ℓ|+ 5. Therefore, we completed the proof of Theorem 4.3.

4.4 Generalization for improved assumption

Finally, we prove Theorem 4.4 in this subsection. By the bounds of Subsec-
tion 4.3, we see that

|Rj,m(θ)| < δm12δ
ℓ−j
9 B

for 1 ≤ j ≤ ℓ and that

|Rj+ℓ,m(θ)| < δm12

(
δ10∣∣S4

(
−1

2
+ 1

2
eiθ
)∣∣
)j

B

for 1 ≤ j ≤ m.
We prove Theorem 4.4 using the bound for |Rj,m(θ)|. When ℓ ≥ 1 and
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m ≥ 1, we can write

H(θ) = H0,m(θ) +
ℓ∑

j=1

aje
4jiθ/2S4

(
−1

2
+

1

2
eiθ
)j

Hj,m(θ)

+
m∑
j=1

aj+ℓe
4(j+ℓ)iθ/2S4

(
−1

2
+

1

2
eiθ
)j+ℓ

Hj+ℓ,m(θ)

= (−1)m2 cos

(
kθ

2
− πm cos θ

)
+R0,m(θ)

+
ℓ∑

j=1

aje
4jiθ/2S4

(
−1

2
+

1

2
eiθ
)j (

(−1)m2 cos

(
(k − 4j) θ

2
− πm cos θ

)
+Rj,m(θ)

)
+

m∑
j=1

aj+ℓe
4(j+ℓ)iθ/2S4

(
−1

2
+

1

2
eiθ
)j+ℓ

×
(
(−1)m2 cos

(
(k − 4 (j + ℓ)) θ

2
− πm cos θ

)
+Rj+ℓ,m(θ)

)
.

Thus
∣∣H(θ)− (−1)m2 cos

(
kθ
2
− πm cos θ

)∣∣ is bounded above by

|R0,m(θ)|+
ℓ∑

j=1

|aj| (2 + |Rj,m(θ)|)
∣∣∣∣S4

(
−1

2
+

1

2
eiθ
)∣∣∣∣j

+
m∑
j=1

|aj+l| (2 + |Rj+ℓ,m(θ)|)
∣∣∣∣S4

(
−1

2
+

1

2
eiθ
)∣∣∣∣j+ℓ

≤ δm12δ
ℓ
9B +

ℓ∑
j=1

|aj|
(
2 + δm12δ

ℓ−j
9 B

)
δj11

+
m∑
j=1

|aj+l|

2 + δm12

∣∣∣∣∣ δ10

S4

(
−1

2
+ 1

2
eiθ
)∣∣∣∣∣

j

A

∣∣∣∣S4

(
−1

2
+

1

2
eiθ
)∣∣∣∣j+ℓ

= δm12δ
ℓ
9B +

ℓ+m∑
j=1

|aj|
(
2δj11 + δm12γ

j
2(j)B

)
.
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Now suppose
ℓ+m∑
j=1

|aj|
(
2δj11 + δm12γ

j
3(j)B

)
< 2− δm12δ

ℓ
9B.

Then we have ∣∣∣∣H(θ)− (−1)m2 cos

(
kθ

2
− πm cos θ

)∣∣∣∣ < 2.

This inequality is enough to prove Theorem 4.4 by the same argument as
Theorem 2.1 and Theorem 4.2. We completed the proof of Theorem 4.4.
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