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Abstract

Grain–size distributions (GSDs) of pyroclasts play a significant role of the explosive vol-

canic eruptions. To reconstruct the temporal change of the volcanic activity quantita-

tively, it is necessary to establish a methodology by using the spatial variations of GSDs

in pyroclastic fall deposits. The author carried out a theoretical study for the trans-

portation and sedimentation processes of pyroclasts. The author first defined the GSD

function to explain the temporal and the spatial variations of the GSD depending on

the particle size and surrounding environment. By using the GSD function, the author

formulated one–dimensional and two–dimensional theories, and established models. The

established models enable to estimate the eruption duration from the characteristic sedi-

mentary structure, and the temporal variation of the source GSD from the stratigraphic

variation of GSD in the deposit. The steady–state model enables to identify the cause of

the grading structure. The author applied the established models to the 2011 Shinmoe–

dake subplinian eruption. The estimated supply duration was similar to the observed

eruption duration. Then, we estimated the temporal change of the source GSD. Accord-

ing to the estimated source GSD and the observed eruption column height, the expected

change of the mass eruption rate was consistent to the geodetic volume change. In case

of the 2011 Shinmoe–dake subplinian eruption, it was suggested that the cause of the

reverse grading structure shown in the lower part of the deposit was caused not by the

effect of the steady–state transportation, but by the effect of the temporal change of the

eruption. It is expected that the established theory and models are applicable to apply

to various types of the fall deposits all over the world.
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Chapter 1

Introduction

A plinian eruption is a kind of the explosive volcanic activity in which the duration

of a single eruption extends from a few hours to about a day. Large amount of the

mixture of pyroclasts and gas is released owing to the eruption, which has a serious

effect on human lives and economy. Furthermore, there are some cases in that lava

effusion eruption and/or caldera forming eruption follow a plinian eruption. Thus, to

devise effective schemes of disaster prevention before the eruption, it is important to

figure out the mechanism of the temporal change of the volcanic activities in a single

eruption and the relationship among the pre–plinian phase, main plinian phase, and

post–plinian phase. Thanks to the recent geophysical observations, it has been reported

the relationship among the temporal variations of volcanic processes such as eruption

column height, crustal deformation, seismic tremor, and infrasonic tremor during a single

eruption (e.g., Shimbori et al., 2013; Kozono et al., 2013; Ueda et al., 2014; Ichihara

2016). In case of the 2011 Shinmoe–dake subplinian eruptions, Japan, it was reported

that seismic and infrasonic tremors, eruption column height, and magma discharge rate

during the eruption are correlated each other (Ichihara, 2016). Similarly, it is expected

that the grain–size distribution (GSD) of pyroclasts at the vent also temporally changes.

To take a temporal variation of GSD of ejecta at the vent during the eruption, two

observation methods can be thought: in–situ observation during the eruption by using

remote sensing and reconstruction from the pyroclastic fall deposit after the eruption.
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Recently, it has become possible to observe the GSD of ejecta directly by using remote

sensing. However, there are few observation examples to obtain the GSD of ejecta from in–

situ observations. Thus, it is necessary to develop a theory to reconstruct the temporal

variation of GSDs of ejecta and to provide the physical meanings of GSDs from the

pyroclastic fall deposits.

In terms of the GSD and the amount of pyroclasts, researchers have studied about

the dispersal of pyroclasts, stratigraphy, total grain–size distribution (TGSD), and total

amount of ejecta, and have understood their physical meanings. Total amount of pyro-

clasts is obtained from the horizontal distribution of the thickness of the pyroclastic fall

deposit, which corresponds to intensity of eruption (Pyle, 1989; Fierstein and Nathenson,

1992; Bonadonna et al., 1998; Bonadonna and Houghton, 2005, Bonadonna and Costa,

2012). TGSD of pyroclasts is also obtained from the horizontal distribution of pyroclasts.

TGSD retains fundamental information on fragmentation mechanisms (e.g., Kaminski

and Jaupart, 1998; Rust and Cashman, 2011) and is suggested the statistical relationship

to the eruption column height (Costa et al., 2016).

Dispersal of pyroclasts also has been related to volcanic activities. Eruption style is

defined by the characteristic values of the thickness of the pyroclastic fall deposit and GSD

(Walker, 1973, 1980). Total amount of pyroclasts, TGSD, and expansion rate of an um-

brella cloud are estimated by the horizontal variation of GSD in the entire sediment owing

to the theoretical study (Koyaguchi, 1994; Koyaguchi and Ohno, 2001). Distribution of

the thickness of the sediment is theoretically obtained from the simple assumptions of

tephra transportation (Suzuki, 1983). After Suzuki (1983), various tephra transport and

dispersal models (TTDMs) have been made to forecast ash dispersal (e.g., Folch, 2012).

On the other hand, theories of plume dynamics and clast transport have been developed

(e.g., Wilson, 1976; Sparks, 1986). Numerical study of the transport of lithic fragments

enables us to estimate the eruption column height from the dispersal of maximum lithic

(ML) fragments (Carey and Sparks, 1986). A numerical study on plume dynamics re-
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ported that GSD of pyroclasts influences on the maximum plume height and the rate of

ash injection into the atmosphere (Girault et al., 2014). In the case of a pyroclastic fall

deposit in the deep sea, it is possible to estimate the eruption duration from the strati-

graphic variations of the largest particle size and the smallest one (Ledbetter and Sparks,

1979).

Empirical, theoretical, and numerical studies shown above are helpful to reconstruct

the temporal variation of the volcanic activity. In fact, the temporal change of the erup-

tion column height has been reconstructed by extending the method of Carey and Sparks

(1986) to including stratigraphic variations of ML (e.g., Carey and Sigurdsson, 1987).

However, this method deals with only ML dispersal, the physical meanings of the spatial

variations of the GSD of pyroclasts remain poorly understood. While it is thought that

stratigraphic variations of GSDs in pyroclastic fall deposits may have significant informa-

tion on the temporal change of volcanic activity, there are few models for reconstruction.

Aim of this study is to develop a theory on the transportation and sedimentation of pyro-

clasts to reconstruct the temporal variations of volcanic activity, especially the temporal

variation of the GSD at the source position.

In part I, the author developed new models on the transportation and sedimenta-

tion processes in vertical one–dimensional region and in vertical and horizontal two-

dimensional region. In Chapter 2, the author defined the basic theory on the evolution

of GSD during the transportation and sedimentation processes. The author defined the

GSD function and gave fundamental equations about the transportation during the fall

process and the accumulation during the sedimentation process by using GSD function.

In Chapter 3, the author developed one–dimensional models. The author formulated a

fundamental equation in which GSDs are related between at the one–dimensional source

position and at the sedimentation surface. By using the fundamental equations, the au-

thor developed models on the simple source conditions: the constant source (CS) model.

This model is simple but is strongly helpful to decode physical information on a volcanic
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activity. In Chapter 4, the author developed two–dimensional models. The author for-

mulated an equation that describes GSD relationship between at the two–dimensional

source position and at the sedimentation surface, which depends on the expansion style

of ash cloud and downwind velocity. Furthermore, the author constrained on the grading

structure of the pyroclastic fall deposit in the constant source (CS) model.

In Part II, the author applied the established models to the 2011 Shinmoe–dake sub-

plinian eruption. In Chapter 5, the author introduced overviews of the eruption and

materials which we used. In Chapter 6, the author applied one–dimensional models to

the eruption. As an application of the CS model, the author estimated the source du-

ration and compared to observed eruption duration. As an application of the constant

height (CH) model, the author converted the stratigraphic variation of GSDs in the pyro-

clastic fall deposit to the temporal variation of GSDs at the one–dimensional source. In

Chapter 7, the author applied two–dimensional models to the eruption. As an application

of the CS model, the author identified the cause of the reverse grading structure in the

pyroclastic fall deposit. As an application of the CH model, the author converted the

stratigraphic variation of GSDs in the pyroclastic fall deposit to the temporal variation of

GSDs at the two–dimensional source. In Chapter 8, the author discussed the relationship

among estimated temporal variation of GSDs at the two–dimensional source. Then the

author discussed the advantages of our models and remaining problems. At the end of

this article, the author mentioned future studies.
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Part I

Development of models
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Chapter 2

Basic theory

Definitions of the grain–size distribution (GSD) function

In order to describe temporal and spatial variation of the grain–size distribution (GSD)

quantitatively, we define the grain–size distribution (GSD) function. The number of

particles at (x, y, z) and time t with radius a in unit volume is defined as f (a, x, y, z, t)

no./(m3· m) (Figs. 2.1 and 2.2). Total number of particles at (x, y, z) and time t with

entire range of particle sizes in unit volume, ftot (x, y, z, t) no./m3 is defined by the size

integration of f (Fig. 2.2), then

ftot (x, y, z, t) =

∫ ∞

0

f (a, x, y, z, t) da. (2.1)

Similarly, the number of particles at (x, y) and time t with radius a in unit area is defined

as F (a, x, y, t) no./(m2· m) corresponding to the spatial integration of f , then

F (a, x, y, t) =

∫ ∞

0

f (a, x, y, z, t) dz. (2.2)

Total number of particles at (x, y) and time t with entire range of particle sizes in unit

volume, Ftot (x, y, t) no./m
2 is defined by the size integration of F , then

Ftot (x, y, t) =

∫ ∞

0

F (a, x, y, t) da

=

∫ ∞

0

∫ ∞

0

f (a, x, y, z, t) dzda. (2.3)

GSD function is converted from the distribution of the number of particles to distri-

butions of volume and mass of particles. If we give the volume of a particle with radius a
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as V ∗ (a) m3/no., which only depends on the particle size, the distribution of the volume

of particles at (x, y, z) and time t with a radius a in unit volume, V (a, x, y, z, t) m3/(m3·

m) is

V (a, x, y, z, t) = f (a, x, y, z, t)× V ∗ (a) . (2.4)

And if we give density of a particle with a radius a, ρs (a) kg/m
3, which only depends on

the particle size, the mass of particles at (x, y, z) and time t with radius a in unit volume,

m (a, x, y, z, t) kg/(m3· m) is

m (a, x, y, z, t) = V (a, x, y, z, t)× ρs (a)

= f (a, x, y, z, t)× V ∗ (a)× ρs (a) . (2.5)

We focus on the GSD functions at the source height and the sedimentation surface.

We identify the coordinates between at the source height (x′, y′, z′ = H (x′, y′, t′) , t′) and

at the sedimentation surface (x, y, z = h (x, y, t) , t), where H (x′, y′, t′) m is the source

height at (x′, y′) and time t′, and h (x, y, t) m is the thickness of the sediment at (x, y)

and time t. We redefine the GSD at the source height (the source GSD) as fsrc and the

GSD at the sedimentation surface (the settling GSD) as fstl (Fig. 2.3), then

fsrc (a, x
′, y′, t′) = f (a, x′, y′, z′ = H (x′, y′, t′) , t′) , (2.6)

fstl (a, x, y, t) = f (a, x, y, z = h (x, y, t) , t) . (2.7)

The source GSD fsrc and the sediment GSD fstl are related by giving the settings of

moving manner during the transportation of the particles.

Transportation of solid particles depends on the properties of the particles and sur-

rounding gas, which has a highly variable. In case of the pyroclasts ejected by the volcanic

eruption, properties of solid particle such as size and density depend on the mechanism of

the magma fragmentation (e.g., Kaminski and Jaupart, 1998). Atmospheric properties are

different depending on the location of the volcano, season, height, and time. It is difficult
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to evaluate the transportation of the particles uniquely under the complex settings. To

understand a pure effect of the simple transportation, we assume that the transportation

of the particles during the fallout process is induced by the gravitational force and the

advection owing to the wind. For the sake of simplicity, we don’t consider the diffusion

process to understand the pure size segregation effect during the transportation process

depending on the particle size. We assume that the fall velocity of particles always reaches

the terminal fall velocity (TFV) and has only vertical component, then the absolute value

of the TFV is defined as vt m/s. The TFV of a particle with a radius a can be estimated

from fluid mechanics by

vt =

[
8ga (ρs − ρl)

3ρsCd

]
, (2.8)

where g is the acceleration due to the gravity, ρl is density of the surrounding atmosphere,

and Cd is an experimentally determined drag coefficient (Kunii and Levenspiel, 1969). The

particle Reynolds number Re is defined as

Re =
2aρlvt
µ

, (2.9)

where µ is the dynamic viscosity of the atmosphere (Kunii and Levenspiel, 1969). For

spherical particles, the TFV can be determined by the relation between the drag coefficient

Cd and the particle Reynolds number Re (Kunii and Levenspiel, 1969; Bonadonna and

Phillips, 2003), then

Cd =


24
Re

for Re < 6,
10

Re0.5
for 6 ≤ Re < 500,

0.43 for 500 ≤ Re < 200, 000.

(2.10)

From Equations (2.8) to (2.10), the TFV is rewritten as

vt =


2ga2(ρs−ρl)

9µ
for Re < 6,

2a
[
4g2(ρs−ρl)

2

225ρlµ

] 1
3

for 6 ≤ Re < 500,[
6.2ga(ρs−ρl)

ρl

] 1
2

for 500 ≤ Re < 200, 000.

(2.11)

We give constant density of particles ρs for the entire range of particle sizes, then the

TFV depends on the particle size a, atmospheric conditions ρl and µ and the particle

Reynolds number Re.
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We define transportation distance in time ∆t as ∆x, ∆y, and ∆z for each axes. These

values depend on the TFV of a particle and wind velocity. We give wind velocity v, then

u (x, y, z, t) = v (x, y, z, t) x̂, (2.12)

v (x, y, z, t) = v (x, y, z, t) ŷ, (2.13)

w (x, y, z, t) = v (x, y, z, t) ẑ, (2.14)

where u, v, and w are components of the wind velocity in x–direction, y–direction, and

z–direction, respectively, and x̂, ŷ, and ẑ are unit vectors of x–coordinate, y–coordinate,

and z–coordinate, respectively. The velocities of particles are

∆x (x, y, z, t)

∆t
= u (x, y, z, t) , (2.15)

∆y (x, y, z, t)

∆t
= v (x, y, z, t) . (2.16)

∆z (a, x, y, z, t)

∆t
= w (x, y, z, t)− vt (a, x, y, z, t) . (2.17)

As shown in Equations (2.15) to (2.17), the first term in the right hand side is advection

term and the second term in the right hand side is fallout term. It is possible to formulate

the relationship between the source GSD function fsrc and the settling GSD function

fstl if we give settings of input parameters, such as a source height H and atmospheric

conditions ρl, µ, and v.

Descriptions of physical quantities

We define fluxes of falling particles with a radius a corresponding to the total amount

of falling particles with a radius a through the test plane in unit time, then

jn (a, x, y, z, t) = f (a, x, y, z, t)× {v (x, y, z, t)− vt (a, x, y, z, t) ẑ} , (2.18)

jv (a, x, y, z, t) = f (a, x, y, z, t)× {v (x, y, z, t)− vt (a, x, y, z, t) ẑ}
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×V ∗ (a) , (2.19)

jm (a, x, y, z, t) = f (a, x, y, z, t)× {v (x, y, z, t)− vt (a, x, y, z, t) ẑ}

×V ∗ (a)× ρs (a) , (2.20)

where jn, jv, and jm are the number flux of falling particles with radius a, the volumetric

flux of falling particles with radius a, and the mass flux of falling particles with radius a,

respectively (Fig. 2.4). Similarly, fluxes of falling particles for the entire range of particle

sizes corresponding to the total amount of the falling particle through the test plane in

unit time for the entire range of particle sizes, then

Jn (x, y, z, t) =

∫ ∞

0

f (a, x, y, z, t)× {v (x, y, z, t)− vt (a, x, y, z, t) ẑ} da, (2.21)

Jv (x, y, z, t) =

∫ ∞

0

f (a, x, y, z, t)× {v (x, y, z, t)− vt (a, x, y, z, t) ẑ}

×V ∗ (a) da, (2.22)

Jm (x, y, z, t) =

∫ ∞

0

f (a, x, y, z, t)× {v (x, y, z, t)− vt (a, x, y, z, t) ẑ}

×V ∗ (a)× ρs (a) da, (2.23)

where Jn, Jv, and Jm are the number flux of falling particles, the volumetric flux of

falling particles, and the mass flux of falling particles, respectively (Fig. 2.4).

When particles arrive at the sedimentation surface with the height h (x, y, t), the

accumulation rate of the sediment dh/dt corresponds to the vertical volumetric component

of the flux of falling particle (Fig. 2.5), then

dh (x, y, t)

dt
=

−Jv (x, y, z = h (x, y, t) , t) ẑ

φPF (x, y, z = h (x, y, t) , t)

=
1

φPF (x, y, z = h (x, y, t) , t)

×
∫ ∞

0

fstl (a, x, y, t)

×{w (x, y, z = h (x, y, t) , t)− vt (a, x, y, z = h (x, y, t) , t)}
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×V ∗ (a) da, (2.24)

where φPF is the volumetric fraction of particles in the sediment at (x, y) and time t

corresponding to the packing fraction of the sediment.

Assumptions of models

To give an account of the temporal and the spatial variation of the GSD function, we

give assumptions:

(a) There is no external supply and sink terms.

(b) Particle interactions such as break up and aggregation during the fallout process

are negligible.

(c) Parameters of the surrounding atmosphere such as the dynamic viscosity, the density

of the atmosphere, and wind velocity are homogeneous and constant during the

entire processes.

(d) The vertical component of the wind velocity in Equation (2.14) is negligible.

(e) The coordinate of the ground surface corresponding to the height at the beginning

of the sedimentation is given as (x, y, z = 0).

Assumptions (a) and (b) imply that the number of particles is conserved through the

fallout process. Assumptions (c) and (d) imply that the density of the surrounding atmo-

sphere ρl, the dynamic viscosity of the atmosphere µ, and wind velocity v are the same

at any coordinate in atmosphere, then TFV and wind velocities in Equations (2.11) to

(2.14) are

vt (a, x, y, z, t) = vt (a) , (2.25)

v (x, y, z, t) x̂ = ū = const., (2.26)

v (x, y, z, t) ŷ = v̄ = const., (2.27)
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v (x, y, z, t) ẑ = w̄ = 0, (2.28)

where vt (a) is a constant TFV through the fallout process which only depends on the

particle size, and ū, v̄, and w̄ are components of the constant wind velocity in x–direction,

y–direction, and z–direction, respectively.

In the above assumptions, it is possible to relate the departure time t′ at the source

height and the arrival time t at the sedimentation surface (Fig. 2.6), then

t = t′ + ta, (2.29)

ta =
H (x′, y′, t′)− h (x, y, t)

vt (a)
, (2.30)

where ta is the fall time of particle with a radius a from the source height H (x′, y′, t′) to

the sedimentation surface h (x, y, t). From Equations (2.15) to (2.17) and (2.25) to (2.30),

coordinates between at the source height (x′, y′) and at the sedimentation surface (x, y)

are related, then

x = x′ + ūta, (2.31)

y = y′ + v̄ta. (2.32)

For the sake of simplicity, we assume that the source height H (x′, y′, t′) is much higher

than the thickness of the thickness h (x, y, t), then the fall time of particle with a radius

a, ta in Equation (2.30) is approximated as

ta (a, x
′, y′, t′) ≈ H (x′, y′, t′)

vt (a)
, (2.33)

then Equations (2.29), (2.31), and (2.32) are rewritten as

t = t′ +
H (x′, y′, t′)

vt (a)
, (2.34)

x = x′ + ū
H (x′, y′, t′)

vt (a)
, (2.35)
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y = y′ + v̄
H (x′, y′, t′)

vt (a)
. (2.36)

The settling GSD function in Equation (2.7) is also approximated as

fstl (a, x, y, t) ≈ f (a, x, y, z = 0, t) . (2.37)

The quantitative relationship between the source GSD function fsrc (a, x
′, y′, t′) and the

settling GSD function fstl (a, x, y, t) is formulated by giving settings in each of the following

chapters.
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Figure 2.1: A schematic illustration of a coordinate system. We focus on the grain–size
distributions (GSDs) in unit volume f and in unit area F .
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Figure 2.2: An example of the GSD plot. A GSD function is defined as the number of
particles with a radius a in unit volume or in unit area. The total number of particles in
unit volume or in unit area is given by size integration of the GSD function.
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Figure 2.3: A schematic illustration of definitions on the source GSD function fsrc and
the settling GSD function fstl. fstl is related to fsrc by giving the moving manner.
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Figure 2.4: Schematic illustrations of fluxes of falling particles. A flux is defined as the
amount of particles through the test plane in unit time.
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Figure 2.5: Schematic illustrations of the sedimentation process. Accumulation rate corre-
sponds to the volumetric flux of the settling particles given by the settling GSD function.
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Figure 2.6: A schematic illustration of the time relationship. The relationship between
the departure time at the source height, t′ and the arrival time at the sedimentation
surface, t is given by the terminal fall velocity of particles with a radius a.
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Chapter 3

One–dimensional models

To figure out the fundamental descriptions in the transportation and sedimentation

processes, we carried out the theoretical study in the vertical one–dimensional space. In

this chapter, we focus on the size segregation effect during the fall process. The size

segregation effect is induced by the difference of the TFV of particles (Fig. 3.1).

Definitions of the grain–size distribution (GSD) function in the one–dimensional
model

In the one–dimensional model, GSD function is generally defined as f (a, z, t). As

shown in Equations (2.6) and (2.7), the source GSD function fsrc and the settling GSD

function fstl in the one–dimensional descriptions are defined as

fsrc (a, t
′) = f (a, z′ = H (t′) , t′) , (3.1)

fstl (a, t) = f (a, z = h (t) , t) . (3.2)

As shown in Equation (2.37), the settling GSD function fstl is approximated as

fstl (a, t) ≈ f (a, z = 0, t) . (3.3)

The source height is defined as H (t′), and the height of the sedimentation surface at

time t is defined as h (t). As shown in Equation (2.33), the fall time from the source

height with departure time t′ to the sedimentation surface with the arrival time t with a

radius a particles, ta is

ta (a, t
′) =

H (t′)

vt (a)
, (3.4)
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then the relationship between the departure time and the arrival time in Equation (2.34)

is

t = t′ + ta (a, t
′)

= t′ +
H (t′)

vt (a)
, (3.5)

Descriptions of physical quantities

In the one–dimensional models, fluxes of falling particles in Equations (2.18) to (2.20)

are

jn (a, z, t) = f (a, z, t)× vt (a) , (3.6)

jv (a, z, t) = f (a, z, t)× vt (a)× V ∗ (a) , (3.7)

jm (a, z, t) = f (a, z, t)× vt (a)× V ∗ (a)× ρs (a) , (3.8)

where jn, jv, and jm are absolute values of the number flux, the volumetric flux, and the

mass flux of falling particles with a radius a, respectively. Similarly, fluxes in Equations

(2.21) to (2.23) in one–dimensional models are

Jn (z, t) =

∫ ∞

0

f (a, z, t)× vt (a) da, (3.9)

Jv (z, t) =

∫ ∞

0

f (a, z, t)× vt (a)× V ∗ (a) da, (3.10)

Jm (z, t) =

∫ ∞

0

f (a, z, t)× vt (a)× V ∗ (a)× ρs (a) da, (3.11)

where Jn, Jv, and Jm are absolute values of vertical components of the number, the

volumetric flux, and the mass flux of falling particles, respectively.

The accumulation rate of the sediment in Equation (2.24) is rewritten as

dh (t)

dt
=

1

φPF (z = h (t) , t)
Jv (z = h (t) , t)
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≈ 1

φPF (z = 0, t)
Jv (z = 0, t)

=
1

φPF (z = 0, t)

∫ ∞

0

fstl (a, t) vt (a)V
∗ (a) da. (3.12)

In the following sections, we give settings of the supply to apply the theory to a practical

sediment.
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Figure 3.1: A schematic illustration of the vertical one–dimensional fall and sedimentation
processes. In the vertical one–dimensional region, particles are supplied from the bottom
of the ash cloud which is referred as the source. The GSD of the falling particles temporally
varies owing to the size segregation effect induced by the difference of the terminal fall
velocity. The temporal variation of the settling GSD is assumed as a function of the
source GSD.
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3.1 Conservation of the number

In this section, we formulate the relationship between the source GSD function fsrc

and the settling GSD function fstl under the situation of the variable source GSD and

the source height. We give the source GSD function fsrc (a, t
′) and the source height

H (t′) as temporally variable values in the one–dimensional description. Conservation

of the number is developed from two aspects satisfying a fundamental equation on the

relationship between the departure time t′ and the arrival time t in the one–dimensional

transportation and sedimentation processes shown in Equation (3.5).

We first focus on the conservation of the number of particles with a radius a. The

numbers of particles at the source position and at the sedimentation surface are related

(Fig. 3.3), then

jn (a, z = 0, t) dadt = jn (a, z
′ = H (t′) , t′) dadt′, (3.13)

fstl (a, t) vt (a) dadt = fsrc (a, t
′) vt (a) dadt

′, (3.14)

fstl (a, t) = fsrc (a, t
′)

(
∂t′

∂t

)
a

, (3.15)

with (
∂t′

∂t

)
a

=
1∣∣∣1 + 1

vt(a)
dH(t′)
dt′

∣∣∣ . (3.16)

Second, we focus on the conservation of the number of particles which settle at time

t. The particles which settle at z = 0 and time t are a group of particles with a radius a

which depart at z = H (t′) and time t′ satisfying Equation (3.5) (Fig. 3.4). The GSD at

the sedimentation surface is given as

fstl (a, t) =

∫ ∞

0

fsrc (a, t
′) δ (G (t′)) dt′, (3.17)

with

G (t′) = t− t′ − H (t′)

vt (a)
, (3.18)
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where δ is delta function, and G is time relation function. The characteristic of the Dirac’s

delta function gives a solution of Equation (3.17), then

fstl (a, t) =
∑
i

fsrc (a, ζi (a, t))∣∣∣1 + 1
vt(a)

dH(ζi(a,t))
dt′

∣∣∣ , (3.19)

G (t′) = 0 for t′ = ζi (a, t) , (3.20)

where ζ is solution of the function G (t′) = 0, and i indicates multiple solutions. Equation

(3.19) implies that the settling GSD function fstl can be converted to the source GSD

function fsrc by assuming the temporal variation of the source height H.

We develop models by giving the setting about the source height H in the followings.

Constant height (CH) case

When we give the constant source height (CH) case with time (Fig. 3.5), the time

difference of the source height is

dH (t′)

dt′
= 0. (3.21)

The differential relation between the departure time t′ and the arrival time t is(
∂t′

∂t

)
a

= 1. (3.22)

Thus, Equation (3.19) is

fstl (a, t) = fsrc (a, t
′) . (3.23)

Characteristics in the CH case is discussed in Chapter 3.2.

Linear height increase (LHI) case

When we give the source height which increases its height linearly (Fig. 3.6), then

H (t′) = H0 + bt′, (3.24)

H (t′)

dt′
= b, (3.25)

28



where H0 is the initial source height and b (> 0) is an increase rate of the source height.

The differential relation between the departure time t′ and the arrival time t is(
∂t′

∂t

)
a

=
1

1 + b
vt(a)

. (3.26)

Thus, Equation (3.19) is

fstl (a, t) = fsrc (a, t
′)× 1

1 + b
vt(a)

. (3.27)

Equation (3.27) suggests that the settling GSD function fstl becomes dilute compared to

the source GSD function fsrc in the LHI case (Fig. 3.6).
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Figure 3.2: A schematic illustration of the conservation of the number in the settings of
the unsteady source GSD fsrc and the source height H. The flux at the source height
colored with blue equals to that at the sedimentation surface colored with red.
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Figure 3.3: Cross-section surface of Figure (3.2) with a radius a. The number of par-
ticles with a radius a released at a height H within a duration ∆t′ is conserved at the
sedimentation surface within the duration ∆t.
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Figure 3.4: Cross-section surface of Figure (3.2) at time t. The departure time t′ depends
on the particle radius a restricted by Equation (3.5).

32



Figure 3.5: A schematic illustration of the constant height (CH) case. In the CH case,
the time interval at the source height ∆t′ equals to that at sedimentation surface ∆t.
Thus, the number of particles observed at the sedimentation surface corresponds to that
supplied from the source height linearly.
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Figure 3.6: A schematic illustration of the linear height increase (LHI) case. The total
number of particles is conserved between at the source height and at the sedimentation
surface. In the LHI case, the number of particles observed at the sedimentation surface
seems to become dilute relative to that at the source position owing to the increase of the
source height.
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3.2 Constant source (CS) model

Derivation

As a simple application of our theory, we consider the particle transportation in an

idealistic eruption event in which the source GSD and the source height are constant

during the source duration, tsrc ( 0 ≤ t′ ≤ tsrc), which is referred as the CS model. In

the CS model, the source GSD function can take finite non–zero values only during the

source duration tsrc (Fig. 3.7). The source GSD function fsrc is expressed by rectangular

function of time:

fsrc (a, t
′) = fCS

src (a)× ⊓ (τ ′) , (3.28)

τ ′ =
t′

tsrc
, (3.29)

⊓ (τ ′) =

{
1 for 0 ≤ τ ′ ≤ 1,

0 for 1 < τ ′,
(3.30)

where fCS
src is the source GSD function in the CS model, τ ′ is dimensionless time scaled by

the source duration, and ⊓ is rectangular function. From Equations (3.23) and (3.28), the

relationship of GSD functions between at the source position and at the sedimentation

surface is given by

fstl (a, t) da = fCS
src (a)× ⊓

(
t− ta
tsrc

)
da. (3.31)

Here, fstl (a, t) is non–zero for

ta (a) ≤ t ≤ tsrc + ta (a) , (3.32)

otherwise fstl (a, t) = 0, where ta (a) is given by Equation (3.31).

The maximum and the minimum sizes at the sedimentation surface, a1 and a2 is

determined in the following (Fig. 3.7). If time t is less than the time at which the

largest particle aM released at the end of eruption reaches the ground, t ≤ tM + tsrc,

then the maximum size a1 in the deposits equals the largest size aM at the source, where
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tM is the travel time of the largest particle size with a radius aM . On the contrary, if

tM + tsrc ≤ t ≤ tm+ tsrc, where tm is the travel time of the smallest particle with a radius

am, then the maximum size decreases with time, which is determined by the settling

velocity vt (a) and available time t− tsrc; that is, t− tsrc = H/vt (a). The minimum size

decreases with time because smaller sized particles reach the ground at a later time.

From Equation (2.11), we give simple TFV as power–law function of the particle size:

vt (a) = cap, (3.33)

where c and p are constants which are determined by the particle Reynolds number. Thus,

we have

a1 (t) =

aM for tM ≤ t ≤ tM + tsrc,

aM

(
tM

t−tsrc

) 1
p

for tM + tsrc ≤ t ≤ tm + tsrc,
(3.34)

a2 (t) =

{
aM
(
tM
t

) 1
p for tM ≤ t ≤ tm,

am for tm ≤ t ≤ tm + tsrc,
(3.35)

tM =
H

vt (aM)
, (3.36)

tm =
H

vt (am)
. (3.37)

From Equation (3.10), the volume flux of settling particles is expressed by the CS case as

Jv (z = 0, t) =
4

3
πc

∫ a1(t)

a2(t)

ap+3fCS
src (a) da, (3.38)

with the use of Equation (3.31). Equation (3.38) indicates that when fCS
src , H, and tsrc are

given, the volume flux of settling particles is obtained. The dependence of Jv (z = 0, t)

on H and tsrc are induced in a1 and a2 through Equations (3.34) to (3.35). The temporal

variation of the sediment thickness is also calculated from Equations (3.12) and (3.38),

then

dh (t)

dt
=

1

φPF (t)
Jv (z = 0, t)
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=
4

3
πc

1

φPF (t)

∫ a1(t)

a2(t)

ap+3fCS
src (a) da, (3.39)

h (t) =

∫ t

tM

dh (t)

dt
dt

=

∫ t

tM

1

φPF (t)
Jv (z = 0, t) dt

=
4

3
πc

∫ t

tM

1

φPF (t)

∫ a1(t)

a2(t)

ap+3fCS
src (a) dadt. (3.40)

The case of the power–law source GSDs

GSDs of pyroclasts may by determined as a power–law distribution (Hartmann, 1969;

Turcotte, 1968; Alibidirov and Dingwell, 1996; Kaminski and Jaupart, 1998; Kueppers et

al., 2006):

fcum (R ≥ a) ∝ a−D, (3.41)

where fcum (R ≥ a) is the number of particles with a radius larger than a, R is a radius

of particle larger than a , and D is the power–law exponent of the TGSD. The value of

D in TGSD of pyroclasts is usually 3 ≤ D ≤ 4 (Kaminski and Jaupart, 1998; Girault et

al., 2014). As an application of the CS model, we formulate the case of the power–law

distribution as the source GSD function:

fCS
src (a) = na−q

∝ ∂fcum (R ≥ a)

∂a
, (3.42)

where q (> 0) is the power–law exponent of the source GSD function corresponding to

q = D + 1, and n is constant. The value of q in TGSD of pyroclasts is usually 4 ≤ q ≤ 5

from the realistic D value. The size range of particles is given between the largest particle

size aM to the smallest particle size am. From Equations (3.39) and (3.42), the volume

flux of settling particles is given by

Jv (z = 0, t) =
4

3
πcn

∫ a1(t)

a2(t)

ap−q+3da. (3.43)
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We give constant packing fraction, then

φPF (t) = φPF = const., (3.44)

dh (t)

dt
=

1

φPF

Jv (z = 0, t)

=
4πcn

3φPF

∫ a1(t)

a2(t)

ap−q+3da

=


C
A

[
{a1 (t)}A − {a2 (t)}A

]
for A ̸= 0,

C ln
(

a1(t)
a2(t)

)
for A = 0,

(3.45)

A ≡ p− q + 4, (3.46)

B ≡ −q + 4

p
, (3.47)

C ≡ 4πcn

3φPF

, (3.48)

where constants A, B, and C are related to characteristics of the power–law source GSD

function, TFV, the particle volume, and packing fraction. The accumulation rate is

obtained depending on the time as follows:

I) tM + tsrc ≤ tm

1) tM ≤ t ≤ tM + tsrc

dh (t)

dt
=


C
A
aM

A
[
1−

(
tM
t

)B+1
]

for A ̸= 0,

C
p
ln
(

t
tM

)
for A = 0,

(3.49)

2) tM + tsrc ≤ t ≤ tm

dh (t)

dt
=


C
A
aM

AtM
B+1

[(
1

t−tsrc

)B+1

−
(
1
t

)B+1
]

for A ̸= 0,

C
p
ln
(

t
t−tsrc

)
for A = 0,

(3.50)

3) tm ≤ t ≤ tm + tsrc

dh (t)

dt
=


C
A
aM

A

[(
1

t−tsrc

)B+1

− αm
A

]
for A ̸= 0,

C
p
ln
[

1
αm

p

(
tM

t−tsrc

)]
for A = 0,

(3.51)
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II) tm ≤ tM + tsrc

1) tM ≤ t ≤ tm

dh (t)

dt
=


C
A
aM

A
[
1−

(
tM
t

)B+1
]

for A ̸= 0,

C
p
ln
(

t
tM

)
for A = 0,

(3.52)

2) tm ≤ t ≤ tM + tsrc

dh (t)

dt
=

{
C
A
aM

A
(
1− αm

A
)

for A ̸= 0,

C ln
(

1
αm

)
for A = 0,

(3.53)

3) tM + tsrc ≤ t ≤ tm + tsrc

dh (t)

dt
=


C
A
aM

A

[(
1

t−tsrc

)B+1

− αm
A

]
for A ̸= 0,

C
p
ln
[

1
αm

p

(
tM

t−tsrc

)]
for A = 0,

(3.54)

αm =
am
aM

, (3.55)

where αm is dimensionless size of the smallest particle scaled by the radius of the largest

particle.

From Equations (3.34) to (3.37), (3.40), and (3.45) to (3.54), the total thickness of

the sediment htot is given by

htot =

∫ tm+tsrc

tM

dh (t)

dt
dt

=


C
A
aM

Atsrc
(
1− αm

A
)

for A ̸= 0, B ̸= 0,

Ctsrc ln
(

1
αm

)
for A = 0,

C
p
aM

ptsrc (1− αm
p) for B = 0.

(3.56)

Total thickness htot corresponds to the total amount of particles supplied at the source

position
∫ tsrc
0

∫ aM
am

fCS
src (a)⊓ (τ ′) vt (a)V

∗ (a) dadt′. The above result can be interpreted in

terms of the volume fraction at the source, φsrc given by:

φsrc =

∫ aM

am

fCS
src (a)V

∗ (a) da

=

{
4πn

3(−q+4)
a−q+4
M (1− αm

−q+4) for q ̸= 4,

4πn
3

ln
(

1
αm

)
for q = 4.

(3.57)
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Thus, we have

htot = ϕsrcheff , (3.58)

heff =


vt (aM) tsrc

pB
AφPF

1−αm
A

1−αm
pB for A ̸= 0, B ̸= 0,

vt (aM) tsrc
pB
φPF

1
1−αm

−p for A = 0,

vt (aM) tsrc
1

pφPF

1−αm
p

ln ( 1
αm

)
for B = 0,

(3.59)

where heff is the characteristic length which indicates the effective thickness of total

supplied particles at the source position.

It should be noted that particles with size a can exist only within the limited strati-

graphic interval represented by the settling time interval t given by Equation (3.32). The

stratigraphic interval can be calculated from of Equation (3.45) for the time interval in

which particles with a radius a settle on the transient sedimentation surface. The time

interval begins from the time at which the first–released particles with size a reach the

sedimentation surface, to the time at which particles released last with the size a reach

the sedimentation surface. The former time ta equals the travel time of the size a given

by Equation (3.4). The latter time is given by ta+ tsrc. Thus, the stratigraphic interval in

which size a particles are present, ha is given depending on the time relationship among

tM , ta, tm, and tsrc as follows:

ha =

∫ ta+tsrc

ta

dh (t)

dt
dt, (3.60)

i) tM < tM + tsrc < ta < ta + tsrc < tm < tm + tsrc

ha =


C
AB

aM
AtM

{(
tM

ta+tsrc

)B
+
(

tM
ta−tsrc

)B
− 2

(
tM
ta

)B}
for A ̸= 0, B ̸= 0,

C
p

[
ta ln

{
1−

(
tsrc
ta

)2}
+ tsrc ln

(
ta+tsrc
ta−tsrc

)]
for A = 0,

C
p
aM

ptM ln
(

ta2

ta2−tsrc2

)
for B = 0,

(3.61)

ii) tM < ta < tM + tsrc < ta + tsrc < tm < tm + tsrc

ha =


C
A
aM

A

[
(tM + tsrc − ta) +

tM
B

{
1 +

(
tM

ta+tsrc

)B
− 2

(
tM
ta

)B}]
for A ̸= 0, B ̸= 0,

C
p

[
(ta − tM − tsrc) + ta ln

{
tM (ta+tsrc)

ta2

}
+ tsrc ln

(
ta+tsrc

tM

)]
for A = 0,

C
p

[
(tM + tsrc − ta) + ta ln

{
ta2

tM (ta+tsrc)

}]
for B = 0,

(3.62)
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iii) tM < ta < tM + tsrc < tm < ta + tsrc < tm + tsrc,

iv) tM < ta < tm < tM + tsrc < ta + tsrc < tm + tsrc

ha =



C

A
aM

A
[
tsrc
(
1− αm

A
)
+ (tM − ta) + αm

A (tm − ta)

+
tM
B

{
1 +

(
tM
tm

)B

− 2

(
tM
ta

)B
}]

for A ̸= 0, B ̸= 0,

C

p

[
(tsrc + ta − tm) p ln

(
1

αm

)
+ (2ta − tM − tm)

+2ta ln

(
tM
ta

)
+ tm ln

(
tm
tM

)] for A = 0,

C

p
aM

p {tsrc (1− αm
p) + (tM − ta) + αm

p (tm − ta)

+tM ln

(
ta

2

tmtM

)} for B = 0,

(3.63)

v) tM < tM + tsrc < ta < tm < ta + tsrc < tm + tsrc

ha =



C

A
aM

A
[
αm

A (tm − ta − tsrc)

+
tM
B

{(
tM

ta − tsrc

)B

+

(
tM
tm

)B

− 2

(
tM
ta

)B
}]

for A ̸= 0, B ̸= 0,

C

p

[
(tsrc + ta − tm) p ln

(
1

αm

)
+ (ta + tsrc − tm)

+ta ln

{
tM (ta − tsrc)

ta
2

}
+ tm ln

(
tm
tM

)
+tsrc ln

(
tM

ta − tsrc

)] for A = 0,

C

p
aM

p

[
αc

p (tm − ta − tsrc) + tM ln

{
ta

2

tm (ta − tsrc)

}]
for B = 0.

(3.64)

The thickness ratio of ha to htot defined as γa is obtained as follows:

γa =
ha

htot

, (3.65)

i) tM < tM + tsrc < ta < ta + tsrc < tm < tm + tsrc

γa =


ε0B+1

B(1−αm
A)

{(
1

εa+1

)B
+
(

1
εa−1

)B
− 2

(
1
εa

)B}
for A ̸= 0, B ̸= 0,

1

pln( 1
αm

)

[
εa ln

{
1−

(
1
εa

)2}
+ ln

(
εa+1
εa−1

)]
for A = 0,

ε0
1−αm

p ln
(

εa2

εa2−1

)
for B = 0,

(3.66)

41



ii) tM < ta < tM + tsrc < ta + tsrc < tm < tm + tsrc

γa =



1

1− αm
A
[(1 + εM − εa)

+
εM

B+1

B

{(
1

εM

)
+

(
1

εa + 1

)B

− 2

(
1

εa

)B
}]

for A ̸= 0, B ̸= 0,

1

pln( 1
αm

)

[
(εa − εM − 1) + εa ln

{
εM (εa+1)

εa2

}
+ ln

(
εa+1
εM

)]
for A = 0,

1
1−αm

p

[
(1 + εM − εa) + εa ln

{
εa2

εM (εa+1)

}]
for B = 0,

(3.67)

iii) tM < ta < tM + tsrc < tm < ta + tsrc < tm + tsrc,

iv) tM < ta < tm < tM + tsrc < ta + tsrc < tm + tsrc

γa =



1 +
1

1− αm
A

[
(εM − εa) + αm

A (εm − εa)

+
εM

B+1

B

{(
1

εM

)B

+

(
1

εm

)B

− 2

(
1

εa

)B
}]

for A ̸= 0, B ̸= 0,

(1 + εa − εm) +
1

pln
(

1
αm

) {(2εa − εM − εm)

+2εa ln

(
εM
εa

)
+ εm ln

(
εm
εM

)} for A = 0,

1 + 1
1−αm

p

{
(εM − εa) + αm

p (εm − εa) + εM ln
(

εa2

εmεM

)}
for B = 0,

(3.68)

v) tM < tM + tsrc < ta < tm < ta + tsrc < tm + tsrc

γa =



1

1− αm
A

[
αm

A (εm − εa − 1)

+
εM

B+1

B

{(
1

εa − 1

)B

+

(
1

εm

)B

− 2

(
1

εa

)B
}]

for A ̸= 0, B ̸= 0,

(1 − +εaεm) +
1

pln
(

1
αm

) [(1 + εa − εm)

+εa ln

{
εM (εa − 1)

εa2

}
+ εm ln

(
εm
εM

)
+ ln

(
εM

εa − 1

)] for A = 0,

1
1−αm

p

[
αm

p (εm − εa − 1) + εM ln
{

εa2

εm(εa−1)

}]
for B = 0,

(3.69)

εM ≡ tM
tsrc

, (3.70)

εa ≡
ta
tsrc

, (3.71)

εm ≡ tm
tsrc

, (3.72)
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where dimensionless parameters εM , εa, and εm which include the source parameters (H

and tsrc) and TFV of specific particle size are the time scales of the travel times for the

particles with largest size aM and arbitrary size a normalized by the source duration tsrc,

respectively.

The stratigraphic interval in which particles with size aM exist, hM is given by

hM =

∫ tM+tsrc

tM

dh (t)

dt
dt. (3.73)

It can be applied the results of Equations (3.62) and (3.63) corresponding to ta ≤ tM+tsrc,

then

I) tM + tsrc ≤ tc

hM =


C
A
aM

A

[
tsrc +

tM
B

{(
tM

tM+tsrc

)B
− 1

}]
for A ̸= 0,

C
p

{
−tsrc + (tM + tsrc) ln

(
1 + tsrc

tM

)}
for A = 0,

C
p
aM

p
{
tsrc + tM ln

(
tM

tM+tsrc

)}
for B = 0,

(3.74)

II) tm ≤ tM + tsrc

hM =



C

A
aM

A
[
tsrc
(
1− αm

A
)
+ αm

A (tm − tM)

+
tM
B

{(
tM
tm

)B

− 1

}]
for A ̸= 0,

C
p

{
(tsrc + tM − tm) p ln

(
1

αm

)
+ (tM − tm) + tm ln

(
tm
tM

)}
for A = 0,

C
p
aM

p
{
tsrc (1− αm

p) + αm
p (tm − tM) + tM ln

(
tM
tm

)}
for B = 0,

(3.75)

The thickness ratio of hM to htot defined as γM is given by

γM =
hM

htot

, (3.76)

I) tM + tsrc ≤ tm

γM =


1

1−αm
A

[
1 + εM

B

{(
εM

εM+1

)B
− 1

}]
for A ̸= 0,

1

p ln ( 1
αm

)

{
−1 + (1 + εM) ln

(
1 + 1

εM

)}
for A = 0,

1
1−αm

p

{
1 + εM ln

(
εM

εM+1

)}
for B = 0,

(3.77)
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II) tm ≤ tM + tsrc

γM =


1 + 1

1−αm
A

[
αm

A (εm − εM) + εM
B

{(
εM
εm

)B
− 1

}]
for A ̸= 0,

(1 + εM − εm) +
1

p ln ( 1
αm

)

{
(εM − εm) + εm ln

(
εm
εM

)}
for A = 0,

1 + 1
1−αm

p

{
αm

p (εm − εM) + εM ln
(

εM
εm

)}
for B = 0.

(3.78)

It is possible to approximate am = 0 when the case A > 0 and ta + tsrc ≤ tm, then

htot =
C

A
aM

Atsrc for A > 0, am = 0, (3.79)

ha =



C

A
aAM [(tsrc + tM − ta)

+
tM
B

{
1 +

(
tM

tsrc + ta

)B

− 2

(
tM
ta

)B
}]

for A > 0, ta ≤ tM + tsrc,

C
AB

aAM tM

{(
tM

tsrc+ta

)B
−
(

tM
tsrc−ta

)B
− 2

(
tM
ta

)B}
for A > 0, ta ≥ tM + tsrc,

(3.80)

γa =


1 + εM − εa +

εM
B

{
1− 2

(
εM
εa

)B
+
(

εM
1+εa

)B}
for A > 0, ta ≤ tM + tsrc,

εB+1
M

B

{(
1

1+εa

)B
−
(

1
1−εa

)B
− 2

(
1
εa

)B}
for A > 0, ta ≥ tM + tsrc,

(3.81)

hM =
C

A
aM

A

[
tsrc +

tM
B

{(
tM

tM + tsrc

)B

− 1

}]
for A > 0, am = 0. (3.82)

The characteristic ratio γM can be defined as the ratio of the thickness where the largest

particle size are present, hM , to the total thickness of the sediment htot as follows:

γM = 1 +
εM
B

(
εM

1 + εM
− 1

)B

for A > 0, am = 0. (3.83)

That is, the value of 1− γM represents the thickness of the layer in which the largest

particles are absent to the total thickness. Figure 3.8 shows γM as a function of power–law

exponent q of the source GSD for p = 2 (Stokes sedimentation) and εM . This suggests

that the time scale ratio εM can be estimated from the observation for the thickness ratio

γM and the power–law exponent q from the grain–size analysis for the pyroclastic fall

deposits.
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Figure 3.8 illustrated the effects of q and εM on γM to determine the correlations

among γM , q and εM . The power–law exponent q in the source GSD is a measure of

the abundance of coarser particles in all particles, whereas the thickness hM indicates the

fraction of coarser particles. Thus, for large q value, which corresponds to a steep slope in

GSD plot, coarse–poor particles create a relatively thin hM thickness, leading to a small

γM value. γM is positively correlated with q for a given εM .

On the other hand, εM and γM exhibit a negative correlation. Large εM values implies

large tM values (or correspond to large H values, small vt (aM) (or small aM) values), or

small tsrc values. As shown in Equation (3.32), the dimensionless parameter εM relates

to the duration corresponding to the formation of the hM sediment. Large values of εM

corresponds to small values of the duration corresponding to the formation of the interval

of the thickness hM relatively, which results in a decrease in γM values.

Extension of the CS Model: Numerical Approach

Here, we extend the CS model to more realistic settling velocities, in which TFV de-

pends on the particle Reynolds number Re as a function of particle radius and atmospheric

conditions surrounding particles (density and viscosity) as follows:

p =


2 for Re < 6,

1 for 6 ≤ Re < 500,

0.5 for 500 ≤ Re < 200, 000,

(3.84)

c =


2g(ρp−ρa)

9µ
for Re < 6,

2
[
4g2(ρp−ρa)

2

225ρaµ

] 1
3

for 6 ≤ Re < 500,[
6.2g(ρp−ρa)

ρa

] 1
2

for 500 ≤ Re < 200, 000.

(3.85)

Figure 3.10 shows the results of calculations when constants c are given as 2.3 × 108 for

Re < 6, 1.3 × 104 for 6 ≤ Re < 500, and 3.0 × 102 for 500 ≤ Re < 200, 000, assuming

atmospheric conditions at sea level (Bonadonna and Phillips, 2003; Folch, 2012; Fig. 3.9).

In calculation, we give the smallest particle size am = 10× 10−6 m as the cut–off particle

size.
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As shown in Figure 3.10, the behavior of γM as a function of q with the parameter

εM in numerical result is essentially similar to the simplified analytical result with a use

of a single TFV trend with p = 2 and am = 0. As shown in Equation (3.83), in cases of

analytical results, terms corresponding to the largest particle size aM are included in the

parameter εM . On the contrary, in cases of numerical results, additional terms correspond

to the given largest particle size aM in the calculation, which gives different γM values even

if the εM values are the same.Small aM values show similar γM values to analytical results

because of the use of a single TFV trend in calculation. However, values are different here

owing to the cut–off effect of the smallest particle in calculation (Fig. 3.10).

In cases of numerical results, for a given q value, the γM value decreases with an

increase in the largest particle size aM . When the largest particle size aM increases, the

slope TFV trend of coarser particles becomes more gradual than finer particles owing to

the particle Reynolds number, which decreases the size range composing the interval of

the thickness hM . Decreasing the size range in hM results in the decrease in the γM value.

Quantitative relations among γM , q, and εM are used to estimate one of unknown

parameters from other observed values. Details of the application methods are described

in the following section.

An application to the virtual pyroclastic fall deposit: Estimation of the source
duration

In this section, we illustrate the application of the CS model results to GSD data of

deposits by using a virtual example. By giving hypothetical data which is obtained from

geological survey (aM , q, and γM), we explain the application process of the CS model

to the estimations of the unknown parameter εM and the source duration tsrc. Actual

methods for obtaining geological data and an example of the practical application are

described in Part II.

Let us suppose that we have aM = 1.0 × 10−2 m and q = 4.5 as geological data

in the entire sediment GSD at a certain sampling locality. In addition, we have a γM
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value, which was also obtained by geological survey. To obtain the γM value, we first

need to measure the disappearance point hM of the largest particles aM by analyzing the

stratigraphic variation of maximum pumice (MP) a1 (Fig. 3.7). Then we calculate the

thickness ratio γM = hM/htot from these observed data. As a virtual example, we give

γM = 0.5.

By using these values of the pyroclastic fall deposit (aM = 1.0 × 10−2, q = 4.5, and

γM = 0.5), we can estimate the value of εM as approximately 0.2 (Fig. 3.11) when the

TFV constants c in Equation (3.85) are given as 2.3 × 108 for Re < 6, 1.3 × 104 for

6 ≤ Re < 500, and 3.0 × 102 for 500 ≤ Re < 200, 000, which are given as atmospheric

constants at sea level. Giving the eruption column height estimated by using the method

of Carey and Sparks (1986), which we regarded as the source heightH in our CS model, we

calculate the settling time for the largest particle, tM , and estimated the source duration

tsrc = tM/εM in Equation (3.70). If we give the value of the source height H as 104 m,

then the source duration tsrc is estimated as 1.6 × 103 s from the value of εM ≈ 0.2 as

shown in Figure 3.11.
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Figure 3.7: A schematic illustration of the constant source (CS) model. Particles are
supplied during eruption from height H. The duration of the particle supply is tsrc. The
sedimentation process begins from the first arrival of the largest particles with size aM .
The tM is the travel time of the largest particle from the source height to the ground.
The time interval in which particles with size aM exist is from tM to tM + tsrc. Red line:
Maximum particle size, Blue line: Minimum particle size, Green line: Median particle
size, Black line: Sorting parameter.
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Figure 3.8: (a) Analytical results of the relationship between the power law exponent of
the source GSD q and the thickness ratio of the largest particles existing layer to the total
thickness, γM . The εM is the dimensionless parameter defined by tM/tsrc. Blue lines:
εM = 10−2, Red lines: εM = 10−1, Black lines: εM = 100. (b) Plots of tM and tsrc related
by εM .
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Figure 3.9: The terminal fall velocity (TFV) with a radius a at sea level. Constants p
in Equation (3.84) are given as 2 for Re < 6, 1 for 6 ≤ Re < 500, and 0.5 for 500 ≤
Re < 200, 000, assuming atmospheric conditions at sea level (Bonadonna and Phillips,
2003; Folch, 2012). Constants c in Equation (3.85) are given as 2.3 × 108 for Re < 6,
1.3× 104 for 6 ≤ Re < 500, and 3.0× 102 for 500 ≤ Re < 200, 000, assuming atmospheric
conditions at sea level (Bonadonna and Phillips, 2003; Folch, 2012).
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Figure 3.10: Analytical and numerical results of the relationship between the power–law
exponent of the source GSD q and the thickness ratio of the largest particles existing
layer to the total thickness, γM . The aM is the radius of the largest particle, and εM is
defined by tM/tsrc. Blue lines: εM = 10−2, Red lines: εM = 10−1, Black lines: εM = 100,
solid lines: analytical results, dotted lines: results of calculation for aM = 10−2 m, dashed
lines: results of calculation for aM = 10−1 m.
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Figure 3.11: A result of the virtual application of the CS model. (a) Estimation of the
parameter εM as approximately 0.2 (values of aM = 1.0× 10−3 m, q = 4.5, and γM = 0.5,
which are given as assumptions of geological data, are used). (b) Estimation of the source
duration tsrc as 1.6 ×103 s (the estimated values of the γM and fall time of the particle
aM = 1.0 × 10−2 m from the source height H = 104 m with TFV at sea level, tM are
used).
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Chapter 4

Two–dimensional models

In this section, we provide two–dimensional theories which are spatially expanded

from one–dimensional theories. We define the horizontal distance from the vent as r

corresponding to the x or y axes in chapter 2.

Assumptions of the physical processes in two–dimensional theories

Plume dynamics of ash cloud depend on the source mass flux, GSD of particles at the

vent, geometry of the vent, and atmospheric properties. Trajectory of the ash cloud is

different depending on the eruption intensity and the horizontal wind speed. When the

eruption intensity is strong and/or horizontal wind speed is low, a volcanic plume rises

vertically and spreads radially at the neutral buoyancy level (NBL) to form an umbrella

cloud (e.g., Sparks, 1986; Woods, 1988). On the other hand, when the eruption intensity

is weak and wind speed is high, a volcanic plume is bent by the wind (Bonadonna et al.,

2005). Plume dynamics is characterized as two regions: vertical rise up from the vent as

an eruption column and horizontal expansion. In the case of the strong eruption intensity,

it is easy to distinguish these two regions. In the case of the weak eruption intensity and

high wind speed, it is difficult to separate bent-over plume into two regions, but it may be

possible to distinguish the bent-over region and the horizontal expanding region. In the

proximal area from the vent, the effects of the geometry of the plume and the unsteady

property of the volcanic eruption are large from the point of view of the spatiotemporal

scale of the transportation. In the distal area from the vent, on the other hand, it may be
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possible to neglect the effect of the transportation from the eruption column or bent-over

plume. We establish two–dimensional models to evaluate the spatiotemporal variation

of the GSDs and to understand the relationship between the source conditions and the

sedimentary features assuming the particle supply from the horizontally expanding ash

cloud.

In the two–dimensional transportation and sedimentation theory, we give additional

assumptions to the one–dimensional theory about the dynamics of ash cloud expansion to

determine the relationship among physical parameters of the eruption such as the source

height and magma discharge rate, the temporal variation of the source GSD, and the

spatial distribution of the sediment (Fig. 4.1):

(1) The “source” position is given as the top of the eruption column at distance r′ = 0

where r′ is the horizontal distance from the vent at the source height.

(2) Ash cloud spreads horizontally on the height of the NBL at height z = Hb (r
′, t′).

(3) Particles are fractionated from the bottom of the current (ash cloud) at height

z = Hcb (r
′, t′) corresponding to Hb (r

′, t′).

(4) Fractionated particles fall through the atmosphere and are advected by the wind.

(5) Particles settle on the ground surface.

To describe the temporal and spatial variations of GSD in the ash cloud, we give the

GSD function in unit area in the ash cloud. We assume that the particles in the current

is homogeneously distributed at distance r′ and time t′, then the GSD function in the ash

cloud at a distance r′ and time t′ with a radius a is given as FAC (a, r′, t′) no./(m2· m).

We give the GSD function at the source height z = Hcb and a distance r′ = 0 as Fsrc (a, t
′)

as the “source” in the two–dimensional transportation and sedimentation theory, then

Fsrc (a, t
′) = FAC (a, r′ = 0, t′) . (4.1)
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We assume that ash cloud spreads horizontally at NBL fractionating particles from

the bottom of the ash cloud to the underlying atmosphere. We give the height at the top

of the current at distance r′ and time t′ as z = Hct (r
′, t′), then the thickness of the ash

cloud at distance r′ and time t′, L (r′, t′) is

L (r′, t′) = Hct (r
′, t′)−Hcb (r

′, t′) . (4.2)

We assume that the vertical distribution of the particles in the ash cloud at distance r′ and

time t′ is homogeneous. The expansion velocity ub is defined by the giving model.During

the horizontal transportation process in the ash cloud, we assume that the efficiency of

the fractionation depends on the fall velocity of a particle corresponding to the particle

radius a and the duration existing in the ash cloud corresponding to the travel distance

from the source r′. We define the GSD function of the fractionated particles at distance

r′, height Hcb (r
′, t′) and time t′ as the fractionated GSD function ffrc, then∣∣∣∣dFAC (a, r′, t′)

dt′

∣∣∣∣ = ffrc (a, r
′, t′)× vt (a) , (4.3)

ffrc (a, r
′, t′) = f (a, r′, z′ = Hcb (r

′, t′) , t′) , (4.4)

which corresponds to the source GSD function in the one–dimensional theory.

As shown in Equation (2.7), the settling GSD function is defined in the two–dimensional

descriptions as

fstl (a, r, t) = f (a, r, z = h (t) , t) . (4.5)

As shown in Equation (2.37), the settling GSD function is approximated as

fstl (a, r, t) = f (a, r, z = 0, t) . (4.6)

As shown in Equations (2.26) to (2.28), in the two–dimensional theory, we give the

wind velocity which has only component of r axis from the assumptions in chapter 2, then

v (r, z, t) r̂ = ū = const., (4.7)
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v (r, z, t) ẑ = w̄ = 0, (4.8)

where r̂ is unit vectors of r–coordinate. As shown in Equation (2.25), we define the

absolute value of the TFV as vt (a) in the two–dimensional theory, as same as the definition

in the one–dimensional model.

Fluxes of falling particles with a radius a shown in Equations (2.18) to (2.20) in two–

dimensional models are

jn (a, r, z, t) = f (a, r, z, t)× (ūr̂ − vt (a) ẑ) , (4.9)

jv (a, r, z, t) = f (a, r, z, t)× (ūr̂ − vt (a) ẑ)× V ∗ (a) , (4.10)

jm (a, r, z, t) = f (a, r, z, t)× (ūr̂ − vt (a) ẑ)× V ∗ (a)× ρs (a) . (4.11)

Similarly, fluxes of falling particles shown in Equations (2.21) to (2.23) are

Jn (r, z, t) =

∫ ∞

0

f (a, r, z, t)× (ūr̂ − vt (a) ẑ) da, (4.12)

Jv (r, z, t) =

∫ ∞

0

f (a, r, z, t)× (ūr̂ − vt (a) ẑ)× V ∗ (a) da, (4.13)

Jm (r, z, t) =

∫ ∞

0

f (a, r, z, t)× (ūr̂ − vt (a) ẑ)× V ∗ (a)× ρs (a) da. (4.14)

The accumulation rate of the sediment in Equation (2.24) is

dh (r, t)

dt
=

1

φPF (z = h (r, t) , t)
Jv (z = h (r, t) , t)

≈ 1

φPF (r, z = 0, t)
Jv (r, z = 0, t)

=
1

φPF (r, z = 0, t)

∫ ∞

0

fstl (a, r, t) vt (a)V
∗ (a) da. (4.15)

As shown in Equation (2.30), the fall time from the source height with departure time t′

to the sedimentation surface with the arrival time t with a radius a particles, ta is

ta (a, r
′, t′) =

Hcb (r
′, t′)

vt (a)
, (4.16)
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then the relationship between the departure time and the arrival time in Equation (2.34)

is

t = t′ + ta (a, r
′, t′)

= t′ +
Hcb (r

′, t′)

vt (a)
. (4.17)

As shown in Equations (2.31) and (2.32), the advection distance ∆r is

∆r = r − r′

= ūta (a, r
′, t′)

= ū
Hcb (r

′, t′)

vt (a)
. (4.18)

We obtain the GSD relationship between fstl and Fsrc by giving assumptions in the fol-

lowing section (Fig. 4.2).
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Figure 4.1: A schematic illustration of the two–dimensional transportation and sedimen-
tation processes.
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Figure 4.2: A schematic illustration of the GSD variation during the two–dimensional
transportation and sedimentation processes. In the two–dimensional case, the “source”
is defined as the position at the top of the eruption column. An ash cloud spreads as
a current at the neutral buoyancy level reducing the number of particles. Fractionated
particles fall through the atmosphere below the ash cloud advected by downwind, then
settle on the ground surface. The settling GSD is related to the source GSD by giving
the settings corresponding to the current of the ash cloud.

59



4.1 Constant height (CH) model

In the Constant height (CH) case, we give constants as follows:

Hcb (r
′, t′) = Hcb = const., (4.19)

Hct (r
′, t′) = Hct = const., (4.20)

then the thickness of the current is also given as constant, then

L (r′, t′) = Hct −Hcb

= L = const. (4.21)

According to the Martin and Nokes’ theory (1988), the fractionation of particles at the

bottom of the ash cloud is defined as

dFAC (a, t∗)

dt∗
= −vt (a)

L
FAC (a, t∗) , (4.22)

where t∗ is the residence time in the ash cloud, then Equation (4.22) is

FAC (a, t∗) = FAC (a, t∗ = 0) exp

(
−vt (a) t

∗

L

)
. (4.23)

In the two–dimensional theory, residence time t∗ depends on the system of the spread of

the ash cloud. If we give the velocity of the current spread at a distance r′, ub (r
′), then

dr′

dth
= ub (r

′) , (4.24)

where th is the horizontal travel time from the source to a distance r′. ub (r
′) may cor-

responds to the volumetric flow rate of the ash cloud, shape of the ash cloud, and wind

velocity around the current. th is given as a function of a distance r′, which indicates

that residence time t∗ is converted into the horizontal travel time th (r
′), then Equations

(4.22) and (4.23) are rewritten as

dFAC (a, th (r
′))

dth (r′)
= −vt (a)

L
FAC (a, th (r

′)) , (4.25)
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FAC (a, th (r
′)) = FAC (a, th (r

′) = 0) exp

(
−vt (a) th (r

′)

L

)
. (4.26)

Considering the relationship between the distance from the vent r′ and the time t′,

Equation (4.26) is

FAC (a, r′, t′) = Fsrc (a, t
′ − th (r

′)) exp

(
−vt (a) th (r

′)

L

)
, (4.27)

ffrc (a, r
′, t′) =

1

L
Fsrc (a, t

′ − th (r
′)) exp

(
−vt (a) th (r

′)

L

)
. (4.28)

As shown in Equation (4.16), the fall time from the source height to the sedimentation

surface with a radius a, ta is

ta (a) =
Hcb

vt (a)
, (4.29)

then the relationship between the departure time t′ and the arrival time t in Equation

(4.17) is

t = t′ + ta (a)

= t′ +
Hcb

vt (a)
. (4.30)

As shown in Equation (4.18), the advection distance ∆r is

∆r = r − r′

= ūta (a)

= ū
Hcb

vt (a)
. (4.31)

The GSD relationship between at the source position and at the sedimentation surface at

a distance r is

fstl (a, r, t) =
1

L
Fsrc (a, t− ttot (a, r)) exp

(
−vt (a) th (r −∆r)

L

)
, (4.32)

ttot (a, r) = th (r
′) + ta (a)

= th (r −∆r (a)) + ta (a) , (4.33)

61



where ttot is the total travel time of the particle with a radius a from the source position

r′ = 0 to the arrival position with a distance r. By using Equations (4.15) and (4.32), the

accumulation rate dh/dt is given by the source GSD function Fsrc, then

dh (r, t)

dt
=

1

φPF (r, t)

∫
1

L
Fsrc (a, t− ta (a)− th (r −∆r))

×exp

(
−vt (a) th (r −∆r)

L

)
vt (a)V

∗ (a) da. (4.34)

As shown in Equation (4.34), the temporal and spatial variation of the sediment thickness

is calculated by using giving the temporal variation of the source GSD function Fsrc and

surrounding conditions. We give specific setting about the ash cloud expansion in the

following section.

4.1.1 Constant current model

In this section, we assume the spread of the ash cloud with constant current velocity

referred as the constant current model (Fig. 4.3). The constant current model is available

when the current velocity strongly depends on the wind velocity at the height of the ash

cloud and the observation locality is enough farther than the horizontal spatial scale of

the bent-over region. In the constant current model, the current velocity ub is given as

constant during expansion, then

dr′

dth
= ub = const., (4.35)

then

th (r
′) =

r′

ub

, (4.36)

r′ (th) = ubth. (4.37)

From Equations (4.27) and (4.36), the horizontal variation of the GSD function in the

ash cloud FAC is given by

FAC (a, r′, t′) = Fsrc

(
a, t′ − r′

ub

)
exp

(
−vt (a)

ubL
r′
)
. (4.38)
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The GSD function of the fractionated particles form the ash cloud is represented from

Equations (4.28) and (4.36), then

ffrc (a, r
′, t′) =

1

L
Fsrc

(
a, t′ − r′

ub

)
exp

(
−vt (a)

ubL
r′
)
. (4.39)

From Equations (4.32) and (4.36), the settling GSD function at a distance r′ and time

t with a radius a is given by

fstl (a, r, t) =
1

L
Fsrc

(
a, t− Hcb

vt (a)
−

r − ū Hcb

vt(a)

ub

)

×exp

(
−vt (a)

ubL

(
r − ū

Hcb

vt (a)

))
. (4.40)

The accumulation rate of the sediment at a distance r and time t is

dh (r, t)

dt
=

1

LφPF (t)

∫
Fsrc

(
a, t− Hcb

vt (a)
−

r − ū Hcb

vt(a)

ub

)

×exp

(
−vt (a)

ubL

(
r − ū

Hcb

vt (a)

))
vt (a)V

∗ (a) da, (4.41)

and the total travel time ttot is

ttot (a, r) =
Hcb

vt (a)
+

r − ū Hcb

vt(a)

ub

. (4.42)

Equation (4.41) suggests that the accumulation rate and the thickness of the sediment is

calculated by giving initial conditions.
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Figure 4.3: A schematic illustration of the constant current model. In the constant current
model, the current velocity of the ash cloud is constant with a distance from the vent.
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4.1.2 Another models

In this section, we give another models which depend on the style of the ash cloud

expansion: cylinder model, fan model, and gravity current model (Fig. 4.4).

Cylinder model

The cylinder model is assumed as an umbrella cloud in the strong Plinian eruprion,

which is based on the model in Koyaguchi (1994). When we assume the ash cloud as a

cylinder, the volume of the columnar is given by

V C = πr′
2
L, (4.43)

where V C is the volume of the cylinder. The volumetric flow rate Q is approximated as

Q =
dV c

dth
∼ 2πr′

dr′

dth
L, (4.44)

then the current velocity in the ash cloud ub is

ub =
dr′

dth

=
Q

2πL
r′

−1
=

1

2

(
Q

πL

) 1
2

th
− 1

2 , (4.45)

th (r
′) =

πL

Q
r′

2
, (4.46)

r′ (th) =

(
Q

πL

) 1
2

th
1
2 . (4.47)

From Equations (4.27) and (4.46), the horizontal variation of the GSD function in the

ash cloud FAC is given by

FAC (a, r′, t′) = Fsrc

(
a, t′ − πL

Q
r′

2

)
exp

(
−πvt (a)

Q
r′

2

)
. (4.48)

The GSD function of the fractionated particles form the ash cloud is represented from

Equations (4.28) and (4.46), then

ffrc (a, r
′, t′) =

1

L
Fsrc

(
a, t′ − πL

Q
r′

2

)
exp

(
−πvt (a)

Q
r′

2

)
. (4.49)
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From Equations (4.32) and (4.46), the settling GSD function at a distance r′ and time

t with a radius a is given by

fstl (a, r, t) =
1

L
Fsrc

(
a, t− Hcb

vt (a)
− πL

Q

{
r − ū

Hcb

vt (a)

}2
)

×exp

(
−πvt (a)

Q

{
r − ū

Hcb

vt (a)

}2
)
. (4.50)

The accumulation rate of the sediment at a distance r and time t is

dh (r, t)

dt
=

1

LφPF (t)

∫
Fsrc

(
a, t− Hcb

vt (a)
− πL

Q

{
r − ū

Hcb

vt (a)

}2
)

×exp

(
−πvt (a)

Q

{
r − ū

Hcb

vt (a)

}2
)
vt (a)V

∗ (a) da, (4.51)

and the total travel time ttot is

ttot (a, r) =
Hcb

vt (a)
+

πL

Q

{
r − ū

Hcb

vt (a)

}2

. (4.52)

Fan model

The fan model is assumed as a weak plume with strong wind velocity around the ash

cloud. When we assume an umbrella ash cloud as a fan, the volume of the ash cloud is

given by

V F =
θL

2
r′

2
, (4.53)

where V F is the volume of the fan, and θ is angle of the fan. The volumetric flow rate Q

is approximated as

Q =
dV F

dth
∼ r′θL

dr′

dth
, (4.54)

then the current velocity in the ash cloud ub is

ub =
dr′

dth

=
Q

θL
r′

−1
=

(
Q

2θL

) 1
2

th
− 1

2 , (4.55)

th (r
′) =

θL

2Q
r′

2
, (4.56)
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r′ (th) =

(
2Q

θL

)1/2

th
1
2 . (4.57)

From Equations (4.27) and (4.56), the horizontal variation of the GSD function in the

ash cloud FAC is given by

FAC (a, r′, t′) = Fsrc

(
a, t′ − θL

2Q
r′

2

)
exp

(
−vt (a) θ

2Q
r′

2

)
. (4.58)

The GSD function of the fractionated particles form the ash cloud is represented from

Equations (4.28) and (4.56), then

ffrc (a, r
′, t′) =

1

L
Fsrc

(
a, t′ − θL

2Q
r′

2

)
exp

(
−vt (a) θ

2Q
r′

2

)
. (4.59)

From Equations (4.32) and (4.56), the settling GSD function at a distance r′ and time

t with a radius a is given by

fstl (a, r, t) =
1

L
Fsrc

(
a, t− Hcb

vt (a)
− θL

2Q

{
r − ū

Hcb

vt (a)

}2
)

×exp

(
−vt (a) θ

2Q

{
r − ū

Hcb

vt (a)

}2
)
. (4.60)

The accumulation rate of the sediment at a distance r and time t is

dh (r, t)

dt
=

1

LφPF (t)

∫
Fsrc

(
a, t− Hcb

vt (a)
− θL

2Q

{
r − ū

Hcb

vt (a)

}2
)

×exp

(
−vt (a) θ

2Q

{
r − ū

Hcb

vt (a)

}2
)
vt (a)V

∗ (a) da, (4.61)

and the total travel time ttot is

ttot (a, r) =
Hcb

vt (a)
+

θL

2Q

(
r − ū

Hcb

vt (a)

)2

. (4.62)

Gravity current model

The gravity current model is assumed as more realistic expansion of an umbrella cloud

during the large Plinian eruption, which is based on the existing model (Sparks et al.,

1997).

ub =
dr′

dth
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=
2

3
CGC

1
2 r′

− 1
2 =

2

3
CGC

1
3 th

− 1
3 , (4.63)

th (r
′) = CGC− 1

2 r′
3
2 , (4.64)

r′ (th) = CGC
1
3 r′

2
3 , (4.65)

CGC ≡ 3λNQ

2π
, (4.66)

where λ is an empirical constant, N is Brunt-Väisälä frequency, and CGC is a constant.

From Equations (4.27) and (4.64), the horizontal variation of the GSD function in the

ash cloud FAC is given by

FAC (a, r′, t′) = Fsrc

(
a, t′ − CGC− 1

2 r′
3
2

)
exp

(
−vt (a)

L
CGC− 1

2 r′
3
2

)
. (4.67)

The GSD function of the fractionated particles form the ash cloud is represented from

Equations (4.28) and (4.64), then

ffrc (a, r
′, t′) =

1

L
Fsrc

(
a, t′ − CGC− 1

2 r′
3
2

)
exp

(
−vt (a)

L
CGC− 1

2 r′
3
2

)
. (4.68)

From Equations (4.32) and (4.64), the settling GSD function at a distance r′ and time

t with a radius a is given by

fstl =
1

L
Fsrc

(
a, t− Hcb

vt (a)
− CGC− 1

2

{
r − ū

Hcb

vt (a)

} 3
2

)

×exp

(
−vt (a)

L
CGC− 1

2

{
r − ū

Hcb

vt (a)

} 3
2

)
. (4.69)

The accumulation rate of the sediment at a distance r and time t is

dh (r, t)

dt
=

1

LφPF (t)

∫
Fsrc

(
a, t− Hcb

vt (a)
− CGC− 1

2

{
r − ū

Hcb

vt (a)

} 3
2

)

×exp

(
−vt (a)

L
CGC− 1

2

{
r − ū

Hcb

vt (a)

} 3
2

)
vt (a)V

∗ (a) da, (4.70)

and the total travel time ttot is

ttot (a, r) =
Hcb

vt (a)
+ CGC− 1

2

{
r − ū

Hcb

vt (a)

} 3
2

. (4.71)
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Figure 4.4: Schematic illustrations of the cylinder model and the gravity current model
(left) and the fan model (right). In these models, the volumetric flow rate Q is given.
Thus, the current velocity of the ash cloud ub decreases with a distance from the vent
owing to the geometry of the ash cloud.
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4.2 Constant source (CS) model

In this section, we give the constant source GSD function and the constant source

height during the particle supply, then

Fsrc (a, t
′) = FCS

src (a)× ⊓ (τ ′) , (4.72)

Hcb (r
′, t′) = Hcb = const., (4.73)

Hct (r
′, t′) = Hct = const., (4.74)

where FCS
src (a) is the source GSD function in the two–dimensional constant source (CS)

model. The thickness of the current is also given as constant, then

L (r′, t′) = Hct −Hcb

= L = const., (4.75)

In the two–dimensional CS model, we give constant size range of the source GSD function

as

am ≤ a ≤ aM , (4.76)

As shown in Equation (4.33), the total travel time of particles with a radius a which

arrive at a distance r, ttot (a, r) is

ttot (a, r) = th (r
′) + ta (a)

= th (r − ūta (a)) + ta (a) . (4.77)

In the two–dimensional CS model, the difference of the travel time corresponds to the

grading structure of the sediment (Fig. 4.5). The grading structures are characterized as
(

∂ttot(a=aM ,r)
∂a

)
r
< 0 : normal grading,(

∂ttot(a=aM ,r)
∂a

)
r
> 0 : reverse grading.

(4.78)
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Here after, we regard the value of the TFV as a particle size for the sake of simplicity,

the Equation (4.77) is rewritten as

ttot (vt, r) = th (r
′) + tvt (vt)

= th (r − ūtvt (vt)) + tvt (vt) . (4.79)

ta (vt) =
Hcb

vt
. (4.80)


(

∂ttot(vt=vt(aM ),r)
∂vt

)
r
< 0 : normal grading,(

∂ttot(vt=vt(aM ),r)
∂vt

)
r
> 0 : reverse grading.

(4.81)

We search the boundary condition of the normal grading structure and the reverse grading

structure in the following section.
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Figure 4.5: Schematic illustrations of the transportation (left) and the plot of the total
travel time vs. particle size which arrives at a certain observation locality (right). Normal
grading structure is achieved by the precedence of the coarse particles at a sedimentation
surface. On the contrary, reverse grading is achieved by the precedence of the fine particles
at a sedimentation surface.
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4.2.1 Constant current model

In the constant current model, the total travel time is given as shown in Equation

(4.42). The difference of the total travel time to the TFV at a distance r is(
∂ttot (vt, r)

∂vt

)
r

=

(
ū

ub

− 1

)
Hcb

vt2
. (4.82)

As shown in Equation (4.82), grading structures depend on the ratio of ū to ub, then{
ū < ub : normal grading,

ū > ub : reverse grading.
(4.83)

By using the restrictions in Equation (4.83), it is possible to identify the cause of the

grading structures in the pyroclastic fall deposit owing to whether the transportation or

the original temporal variation of the eruption.
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Figure 4.6: Plots of the total travel time vs. particle size which arrives at a certain
observation locality in the constant current model. Normal grading structure is achieved
when the downwind velocity is smaller than the current velocity. On the contrary, reverse
grading is achieved when the downwind velocity is larger than the current velocity.
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4.2.2 Another models

Cylinder model

In the cylinder model, the total travel time is given as shown in Equation (4.52). The

difference of the total travel time to the TFV at a distance r is(
∂ttot (vt, r)

∂vt

)
r

= −Hcb

vt2
+

2πLūHcb

Qvt2

(
r − ū

Hcb

vt

)
. (4.84)

Similarly, the difference of the total travel time to a distance r with TFV vt is(
∂ttot (vt, r)

∂r

)
vt

=
2πL

Q

(
r − ū

Hcb

vt

)
. (4.85)

From Equations (4.84) and (4.85), grading structures depend on the characteristic distance

from the vent:{
rM ≤ r < rc : normal grading,

rc ≤ r : reverse grading,
(4.86)

rc ≡ rM +
Q

2πLū
, (4.87)

rM ≡ ū
Hcb

vt (aM)
, (4.88)

where rM is the advection distance of the particle from the source height to the sedimen-

tation surface with a radius aM , and rc is a characteristic distance giving the boundary

of the grading structure. From Equation (4.85), the TFV of the first arrival particles at

distance r, vc is

vc (r) = ūHcb

(
r − Q

2πLū

)−1

for r ≥ rc. (4.89)

The characteristic distance at the source height in which the largest particle with a radius

aM arrive at distance rc, r
′
c is

r′c ≡
Q

2πLū
. (4.90)

As shown in Equation (4.45), the current velocity at a distance r′c is

ub (r
′ = r′c) =

dr′ (r′ = r′c)

dth
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= ū. (4.91)

Equation (4.91) implies the critical distance at which gives the superiority of the efficiency

during the transportation between in the ash cloud and in the atmosphere.

Fan model

In the fan model, the total travel time is given as shown in Equation (4.62). The

difference of the total travel time to the TFV at a distance r is(
∂ttot (vt, r)

∂vt

)
r

= −Hcb

vt2
+

θLūHcb

Qvt2

(
r − ū

Hcb

vt

)
. (4.92)

Similarly, the difference of the total travel time to a distance r with TFV vt is(
∂ttot (vt, r)

∂r

)
vt

=
θL

Q

(
r − ū

Hcb

vt

)
. (4.93)

From Equations (4.92) and (4.93), grading structures depend on the characteristic distance

from the vent:{
rM ≤ r < rc : normal grading,

rc ≤ r : reverse grading,
(4.94)

rc ≡ rM +
Q

θLū
. (4.95)

From Equation (4.93), the TFV of the first arrival particles at distance r, vc is

vc (r) = ūHcb

(
r − Q

θLū

)−1

for r ≥ rc. (4.96)

The characteristic distance at the source height in which the largest particle with a radius

aM arrive at distance rc, r
′
c is

r′c ≡
Q

θLū
. (4.97)

As shown in Equation (4.55), the current velocity at a distance r′c is

ub (r
′ = r′c) =

dr′ (r′ = r′c)

dth

= ū. (4.98)

Equation (4.98) implies the critical distance at which gives the superiority of the efficiency

during the transportation between in the ash cloud and in the atmosphere.
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Gravity current model

In the gravity current model, the total travel time is given as shown in Equation (4.71).

The difference of the total travel time to the TFV at a distance r is(
∂ttot (vt, r)

∂vt

)
r

= −Hcb

vt2
+

3

2

ūHcb

vt2
C− 1

2

(
r − ū

Hcb

vt

) 1
2

. (4.99)

Similarly, the difference of the total travel time to a distance r with TFV vt is(
∂ttot (vt, r)

∂r

)
vt

=
3

2
C− 1

2

(
r − ū

Hcb

vt

) 1
2

. (4.100)

From Equations (4.99) and (4.100), grading structures depend on the characteristic dis-

tance from the vent:{
rM ≤ r < rc : normal grading,

rc ≤ r : reverse grading,
(4.101)

rc ≡ rM +
4

9

C

ū2
. (4.102)

From Equation (4.100), the TFV of the first arrival particles at distance r, vc is

vc (r) = ūHcb

(
r − 4

9

C

ū2

)−1

for r ≥ rc. (4.103)

The characteristic distance at the source height in which the largest particle with a radius

aM arrive at distance rc, r
′
c is

r′c ≡
4

9

C

ū2
. (4.104)

As shown in Equation (4.63), the current velocity at a distance r′c is

ub (r
′ = r′c) =

dr′ (r′ = r′c)

dth

= ū. (4.105)

Equation (4.105) implies the critical distance at which gives the superiority of the efficiency

during the transportation between in the ash cloud and in the atmosphere.
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Effect of the wind around the current

To consider more realistic expansion of the ash cloud at the NBL, we assess the effect

of the wind on the current velocity. Here we give wind velocity at NBL as uw. Costa et

al. (2013) gives the ratio of the current velocity ub to the wind velocity at NBL uw as the

Richardson number Ri:

Ri ≡ ub
2

uw
2
. (4.106)

Based on the atmospheric observations, Costa et al. (2013) considered the three trans-

portation regimes; the density transportation regime for Ri > 1, substantially passive

transportation regime for Ri < 0.25, and the intermediate transportation regime for

0.25 ≤ Ri ≤ 1. Based on these regimes, we redefine current velocities ub in two–

dimensional CS models, then

uCC
b =

{
ub for 1 < Ri

uw for Ri ≤ 1
, (4.107)

uC
b =

{
Q

2πL
r′−1 for 1 < Ri

uw for Ri ≤ 1
, (4.108)

uF
b =

{
Q
θL
r′−1 for 1 < Ri

uw for Ri ≤ 1
, (4.109)

uGC
b =

{
2
3
CGC

1
2 r′−

1
2 for 1 < Ri

uw for Ri ≤ 1
, (4.110)

where uCC
b , uC

b , u
F
b , u

GC
b are current velocities which include the effect of the wind velocity

at NBL in the constant current model, the cylinder model, the fan mode, and the gravity

current model, respectively. We define characteristic distances as

r′
C
b ≡ Q

2πLuw

, (4.111)

r′
F
b ≡ Q

θLuw

, (4.112)
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r′
GC
b ≡ 4

9

C

uw
2
, (4.113)

where r′Cb , r′Fb , r′GC
b are characteristic distances which satisfy Ri = 1 in the cylinder

model, the fan mode, and the gravity current model, respectively.

Comparison among downwind velocity during the fallout process ū, the wind veloc-

ity at NBL uw, and the current velocity ub provides us a restriction about the grading

structure. The current velocity ub at the boundary distance for the grading structure r′c

satisfies

ub (r
′ = r′c) = ū. (4.114)

In the cylinder model, the fan model, and the gravity current model, the current velocities

decrease monotonically with the distance from the vent. According to the Richardson

number, the current velocity ub converge on the wind velocity at NBL ub. Thus reverse

grading structure is achieved when ū > uw is satisfied, which corresponds to r′c < r′b.

On the contrary, when the atmospheric condition satisfies ū < uw, the structure of the

sediment is always normal grading (upward fining) in two–dimensional CS models. Based

on these results, on observation of the reverse grading structure (upward coarsening)

under the situation of the normal grading region in two–dimensional CS models implies

the temporal variation of the volcanic activities, such as the source GSD, the eruption

column height, and magma discharge rate.
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Part II

Application to the 2011
Shinmoe–dake eruption
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Chapter 5

Settings of the 2011 Shinmoe–dake
eruptions

5.1 Overview of the 2011 Shinmoe–dake eruptions

We apply our models developed in the preceding chapters to the 2011 Shinmoe–dake

subplinian eruption. Shinmoe–dake is an andesitic stratovolcano which belongs to the

Kirishima volcano complex, south of Kyushu, southwest of Japan (the elevation is 1,421

m asl) (Fig. 5.1). Since August 2008, there had been several small phreatic eruptions at

Shinmoe–dake. The sequence of the 2011 Shinmoe–dake eruptions has been reported as

following (Fukuoka District Meteorological Observatory and Kagoshima Local Meteoro-

logical Observatory, 2012).

On January 19, a small phreatomagmatic eruption occurred, and made weak ash plume

which was elongated to SE from the vent. An ash–fall deposit up to 0.5 cm thick was

observed about 7 km SE of the vent, and extended to Nichinan City, 60 km SE from the

vent (Miyabuchi et al. 2013). On January 22, a small ash emission occurred. A milky

white plume rose up to about 200 m above the vent which was elongated to SE from the

vent. From January 22 to 25, white plumes which extended from the rim of the vent up

to about 200 m above the vent were sometimes observed.

At 07 h 31 min (Japan Standard Time; JST) on January 26, a phreatomagmatic

eruption started from 14 h 49 min corresponding to a cock’s tail jet with about 3,500

m asl high plume. Then it shifted to a subplinian eruption with a grayish white tephra
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plume from 16 h 10 min, and the maximum height of the plume reached about 7,500 m asl

(Shimbori et al. 2013). After the beginning of the eruption on January 26, the Fukuoka

District Meteorological Observatory (FDMO) of the Japan Meteorological Agency (JMA)

changed the volcanic alert level of Volcanic Warning (near-crater warning) from level 2

to level 3. The first subplinian eruption lasted until around 19 h on January 26.

After the first subplinian eruption, weak plume continued to rise, and the height of the

plume was about 2,000 m asl. Around 22 h on January 26, the plume rose up about 4,000

asl, which continued to about 02 h on January 27. Then the plume height increased up to

about 7,500 asl during the eruption from 02 h to 05 h on January 27, which corresponds

to the second subplinian eruption.

At 15 h 41 min on January 27, an explosion occurred and ash was released with

strong plume which reached about 6,000 m asl. After the explosion, a large amount of

ash emission occurred from 16 h 22 min to 17 h 40 min, which corresponds to the third

subplinian eruption. The maximum plume height was about 7,000 m asl during the third

subplinian eruption.

After the third subplinian eruption, volcanic activity shifted to lava intrusion stage

from January 28 in the morning, and started to fill the summit crater. At 12 h 47 min

on January 28, the second explosion occurred and ejected ballistics up to 1.3 km the SW

flank from the vent. On January 30, lava in the summit crater extended to approximately

500 m in diameter. Vulcanian eruptions continues from January 27 intermittently during

lava emission stage, and the number of the vulcanian eruption decreased after February

9.

The largest vulcanian explosion occurred on March 13 and the plume height reached

about 4,000 m above the crater rim. Small eruptions occurred intermittently until the end

of August 2011. The last eruption occurred on August 31, and it continued to September

7.

The total amounts of ejecta produced by subplinian eruptions have been estimated
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from geological data. The total amount of ejecta is 15–34 ×106 m3 for the sum of the first

and the second subplinian eruption and 5.0–7.6 ×106 m3 for the third subplinian eruption

(Maeno et al., 2014).

The total amount of ejecta is also estimated from geodetic data and the numerical

study (Kozono et al., 2013). DRE volumes ejected by each subplinian eruptions are

4.06–5.07 ×106 m3 for the first subplinian eruption, 5.34–6.67 ×106 m3 for the second

subplinian eruption, and 3.04–3.79 ×106 m3 (Kozono et al., 2013).

During the 2011 Shinmoe–dake eruptions, various geophysical observations were car-

ried out such as the height of the plume observed by the ground-based weather radar net-

work and meteorological satellites (Shimbori et al., 2013; Fig. 5.2), the geodetic change

(Ueda et al., 2013; Fig. 5.3), SAR (Ozawa and Kozono, 2013), etc. The trajectory of

the plume was bent owing to the weak eruption intensity and the high wind speed. The

bent–over plume region was a few kilometers SE from the vent. We assume that, at the

proximal area farther than a few kilometer, particle supply from the bent–plume was

negligible and particles were supplied only from the horizontally expanding ash cloud.

As shown in Figure (5.2), rapid changes in the eruption column height during the

first subplinian eruption occurred at the beginning of the eruption and the ending of

the eruption in a short time scale compared to the eruption duration. We assume that

the height of the ash cloud, which corresponds to the source height in the established

models, were constant during the eruption. Thus, it is possible to apply one–dimensional

and two–dimensional constant height models and to compare the temporal variations of

geophysical data and the temporal variations of GSDs of ejected pyroclasts by using our

model. We identify the stratigraphy of pyroclastic fall deposits produced by the 2011

Shinmoe–dake eruptions in the following section.
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5.2 Stratigraphy of pyroclastic fall deposits produced

by the 2011 Shinmoe–dake eruptions

The stratigraphy of pyroclastic fall deposits produced by the 2011 Shinmoe–dake erup-

tions has been reported (Nakada et al., 2013; Miyabuchi et al., 2013; Maeno et al., 2014;

Iriyama and Toramaru, 2015). As the lowermost part of the deposit in a series of the 2011

Shinmoe–dake eruptions, a light yellow, thin layer exists, which is assumed as a materials

produced by the phreatomagmatic eruption on January 19 and/or the morning of the

January 26 corresponding to Layer 1 in Nakada et al. (2013) and unit 1 in Miyabuchi et

al. (2013).

Above the layer of the phreatomagmatic products, pumice lapilli layer follows, which

includes the coarsest particles in the sequence of the 2011 Shinmoe–dake eruptions in the

upper part of this layer corresponding to the Layer 2–4 in Nakada et al. (2013), unit 2

in Miyabuchi et al. (2013), and Unit S1 and S2 in Maeno et al. (2014). This layer is

assumed as the compositions of ejecta produced by the first and the second subplinian

eruptions. This part shows upward coarsening (reverse grading) in the lower part, and

also shows upward fining (normal grading) in the upper part. The relatively finer part

in the lower part of this layer corresponds to the lower part of Layer 3 in Nakada et al.

(2013) and unit 2L in Miyabuchi et al. (2013). The coarsest part in this layer corresponds

to Layer 3 in Nakada et al. (2013) and unit 2M in Miyabuchi et al. (2013). The relatively

finer par in the upper part of this layer corresponds to Layer 4 in Nakada et al. (2013)

and unit 2U in Miyabuchi et al. (2013). Maeno et al. (2014) reported that there was a

boundary of products of the first and the second subplinian eruptions in the middle part

of the coarsest part of this layer corresponding to the lower part of Layer 3 in Nakada et

al. (2013) and unit 2L in Miyabuchi et al. (2013) based on the stratigraphic variation of

the bulk density of pumice. Thus, the lower part of this layer defined as Unit S1 and the

upper part of this layer as Unit S2 corresponding to the first and the second subplinian

eruption (Maeno et al., 2014).
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Above the pumice lapilli layer, there is black lithic sand follows corresponding to the

boundary of Layer 4/5 in Nakada et al. (2013), unit 2/3 in Miyabuchi et al. (2013), and

Unit S2/S3 in Maeno et al. (2014). This layer corresponds to the explosion at 15 h 41 min

on January 27 based on the local observation at Takachihogawara (2.8 km SE) reported

in Miyabuchi et al. (2013).

Above the black lithic sand layer, pumiceous lapilli layer follows again corresponding

to the ejecta of the third subplinian eruption. This layer corresponds to Layer 5 in Nakada

et al. (2013), unit 3 in Miyabuchi et al. (2013), and Unit S3 in Maeno et al. (2014).

There are following layers composed by ash and/or pumice, which are produced by ejecta

of vulcanian eruptions after January 28.

Iriyama and Toramaru (2015) reported the stratigraphic variations of GSDs in pyro-

clastic fall deposits produced by the first and the second subpinian eruptions correspond-

ing to the Layer 2–4 in Nakada et al. (2013), unit 2 in Miyabuchi et al. (2013), and Unit

S1 and S2 in Maeno et al. (2014). They identified correspondence between the strati-

graphic intervals of pyroclastic fall deposits and the eruption events based on the existence

of the black lithic sand layer corresponding to the ejecta of vulcanian eruption at 15 h 41

min on January 27. They carried out the geological survey at three localities along the

dispersal axis (NE from the vent) of the deposit; Tg (2.7 km SE), Mk (7.9 km SE) and

Nt (11.3 km). The stratigraphic variations showed two sets of upward coarsening–fining

variation in deposits, which is assumed to correspond to the eruption events of the first

and the second subplinian eruption.

We explain the details about materials used in practical applications in the following

chapters.

5.3 Materials

We focus on the pyroclastic fall deposits produced by subplinian eruptions. As applica-

tions of our theoretical models about transportation of sedimentation, we used pyroclastic
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fall deposits at locality Mk produced by the first subplinian eruption reported in Iriyama

and Toramaru (2015) (Fig. 5.1). The stratigraphic variations of the median pumice size

Mdϕ and the sorting σϕ are shown in Figures 5.4 and 5.5. We also obtain stratigraphic

variations of GSDs and the maximum pumice size MP shown in Figure 5.5.
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Figure 5.1: Index map of Shinmoe–dake volcano at Kirishima volcanoes, Japan, and
sampling sites of the 26–27 January 2011 pyroclastic fall deposits. Mk: Miike elementary
school (7.9 km SE from the vent).
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Figure 5.2: The temporal variation of the echo height during the first subplinian eruption
(Shimbori et al., 2013).

88



Figure 5.3: The temporal variation of geodetic rate of volumetric change during the first
subplinian eruption (Ueda et al., 2013; Ichihara, 2016).
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Figure 5.4: Grain–size histograms coarser than ϕ = 2 of respective samples from the 2011
Shinmoe–dake deposits reported in Iriyama and Toramaru (2015).
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Figure 5.5: (a) A sketch of the pyroclastic fall deposit composed by ejecta of the first
and the second subplinian eruptions. (b) Stratigraphic variations of Mdϕ and σϕ of the
2011 Shinmoe–dake eruption deposits (data from Iriyama and Toramaru, 2015). (c)
Stratigraphic variations of the median pumice radius (aMd; left) and the maximum pumice
radius (a1; right). Dashed lines: Stratigraphic variations of the median and the maximum
pumice radius corresponding to the upper boundary of the thickness hM in the one–
dimensional CS model.
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Chapter 6

Application of one–dimensional
models

In this chapter, we apply one–dimensional models to the 2011 Shinmoe–dake sub-

plinian eruptions. In section 6.1, we apply the constant source (CS) model and estimate

the source duration tsrc from the sedimentary structure and the GSD of the sediment.

And section 6.2, we apply the conservation of the number and estimate the temporal

variation of the source GSD fsrc (a, t
′) from the stratigraphic variation of the sediment

GSD.

6.1 Estimation of the source duration

As an application of the CS model, according to the method illustrated in the preceding

section, we estimated the dimensionless parameter εM and the source duration tsrc from

geological data of the first subplinian eruptions. Then, we compared the estimated and

observed values of tsrc because the duration tsrc has been previously reported, and we

discuss the factors affecting the discrepancy.

First, we summarized geological data of the 2011 Shinmoe–dake eruptions (Iriyama

and Toramaru, 2015), which are used in this section. Iriyama and Toramaru (2015)

conducted geological survey on January 29 and 30, soon after the eruption, and obtained

two sets of samples, Mk–a1 and a2, with a short sampling time interval of one day from

the same locality 7.9 km southeast from the vent (Fig. 5.5). The locality and the timing
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of sampling were the same between Mk–a1 and a2; therefore, the two sets of samples

were used to check the similarity of the observed data. Iriyama and Toramaru (2015)

divided sediment 7 cm thick into eight layers with intervals of approximately 1 cm for

both sets of samples. According to the stratigraphic variation of Mdϕ in Iriyama and

Toramaru (2015), the lower part of the sediment (Layers 1–5) is composed of ejecta of the

first eruption, and the upper part (Layers 6–8) are composed of the ejecta of the second

eruption. In this study, we regard the 60 % position from the base of the sediment as the

boundary of the first and the second eruption on the basis of previous studies (Maeno et

al., 2014; Iriyama and Toramaru, 2015) (Fig. 5.5).

Second, we describe the observation methods for obtaining aM , q, and γM values as

geological data. Figure 5.5 shows the stratigraphic variations of the maximum pumice

radius corresponding to a1, and the median particle radius aMd. a1 is defined as the

average of the five largest particles in a layer, and aMd is defined as the converted value

from the value of Mdϕ in Iriyama and Toramaru (2015) to a linear scale. In this study, we

regard peak values of a1 in a single eruption as observed values of aM in the CS model.

We obtained aM = 7.2 mm for the first eruption.

The q value was obtained from the GSD plot of the entire sediment, which is composed

by a single eruption as qobs. We give constant density of the particles ρs as 1,200 kg/m3

reported by Miyabuchi et al. (2013). The GSD of the entire sediment in a single eruption

was obtained from the combination of the GSD data in each layer. The values of power–

law exponent q were estimated by fitting the slope of GSD in the log–log plot of size

versus population density (Fig. 6.1). For the entire range of sizes, we obtained qobs = 3.8

for the first eruption (Fig. 6.1).

We describe a method for obtaining the values of a characteristic sedimentary structure

γM . Regarding the peak position of aM value through the stratigraphic variation as the

top of the thickness hM , we calculated the γM value (γM = hM/htot). We obtained

γM = 0.54 for the first eruption (Fig. 5.5).
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We estimated the unknown dimensionless parameter εM of known geological data (aM ,

qobs, and γM), as illustrated in the preceding section. Eruption column heights observed by

radar echo data are approximately 7,000 m for both the first (Shimbori et al., 2013). We

regarded the eruption column heights observed by radar echo data as the source height H

in the CS model. As shown as in Figure 3.9, we assumed TFV at sea level, which depends

on the particle size and Reynolds number. As a result, we obtained εM values of 0.62 for

the first eruption (Fig. 6.2).

From the observed values aM and H, the fall times of the largest particle from the

source height to the ground tM were obtained as 270 s for the first eruption. By using the

estimated εM value and the calculated tM value, we estimated the source duration tsrc in

the CS model. As a result, we determined tsrc values of approximately 440 s for the first

eruption (Fig. 6.2).

In the case of the Shinmoe–dake 2011 eruptions, we obtained data for the eruption

duration by geophysical observation (Shimbori et al., 2013). Therefore, we can check the

applicability of our method by comparing the estimated and actual source durations or

deposit characteristics.

Eruption durations have been reported as 2.5 h (approximately 9,000 s) for the first

eruption (e.g., Shimbori et al., 2013). Thus, we assumed the observed eruption duration

as the source duration in the CS model. For comparison, we show in in Figure 6.2 that

the observed value of tsrc is approximately 9 × 103 s for the first eruption. In addition,

the estimated values of tsrc are given as approximately 440 s for the first eruption. It

was determined that estimated source durations tsrc are underestimated. Thus, we exam-

ined the factors causing the difference in tsrc values between estimation and observation.

Underestimation of the source duration tsrc was caused by underestimation of the non-

dimensional parameter εM . As reported in previous studies, the GSD of all ejecta is close

to the power–law distribution (e.g., Kaminski and Jaupart, (1998); Girault et al., 2014).

However, as shown in Figure 6.1, the GSD plots convex upward. This suggests that the
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procedure of automatic power–law fitting is not appropriate. If we assume that source

GSDs have power–law distributions, the values for the finer particles may become incor-

rect owing to transportation effects. Two physical effects are assumed for the difference

in the GSD plot: the fractionation effect during the expansion of the umbrella cloud and

advection effect owing to the downwind movement during the fall process.

As a result of the particle fractionation from the expanding umbrella cloud, coarser

particles generally settle in the proximal area, and fine particles settle in the distal area

(Koyaguchi, 1994). This effect likely causes the GSDs to differ somewhat from the power–

law distribution.

In addition, the advection effect owing to downwind movement appears to enhance the

depletion of fine particles and to induce underestimation of fine particles at the ground

compared with the source GSD.

On the basis of the aforementioned argument, we neglected the data of the finer

particles and reobtained the power–law exponent q from the GSD plot by cutting off

the plot range (Fig. 6.1). We define the cut–off power–law exponent as qc1 for that of

−2 ≤ ϕ ≤ 1 and qc2 for the size range −2 ≤ ϕ ≤ 0. For the first eruption, we obtained

qc1 = 4.5 and qc2 = 5.1 and estimated the source durations tsrc as approximately 1,560

s and 9,750 s from the obtained εM as 0.18 and 0.03, respectively (Figs. 6.1 and 6.2).

Therefore, we argue that the estimated source durations are in good agreement with the

observed source durations within error if we consider the depletion of finer particle in

estimating power–law exponents such as qc1 and qc2. Thus, it is shown that the method

of the CS model is useful when selecting the appropriate value of the power–law exponent

q after considering the transportation mechanism of ejecta.
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Figure 6.1: GSD plots of pyroclastic fall deposits produced by the first subplinian eruption
of the Shinmoe–dake 2011 eruptions. Mk-a data reported in Iriyama and Toramaru (2015),
7.9 km southeast from the vent, are used. Dashed lines: Lines of power–law fittings.
The Slope corresponds to the power–law exponent of cumulative GSD D (Kaminski and
Jaupart, 1998), which is related as q = D + 1. qobs is the power–law exponent which is
obtained by the power law fitting for the GSD from the entire range of sizes. qc1 and qc2
are the power–law exponents which are obtained by the power–law fitting for the GSD
within the size range of −2 ≤ ϕ ≤ 1 and −2 ≤ ϕ ≤ 0, respectively.
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Figure 6.2: Results of the application of the CS model to the first subplinian eruption
of the 2011 Shinmoe-dake eruptions. (left) Estimation of the parameter εM by using
geological data aM , q, and γM . (right) Estimation of the source duration. Closed circles
represent the observed and estimated values from geological survey. Open circles represent
the values which are obtained from geophysical observation.
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6.2 Estimation of the temporal variation of the one–

dimensional source GSD

As an application of the conservation of the number in the one–dimensional theory,

we estimate the temporal variation of the source GSD fsrc (a, t
′). We assume that the

source height H (t′) is constant during the eruption,

H (t′) = H = const., (6.1)

then the conservation on the number in Equation (3.23) is

fstl (a, t) = fsrc (a, t
′) , (6.2)

(
∂t′

∂t

)
a

= 1. (6.3)

The observed GSDs shown in Figure 6.3 are different to the fstl because the volumetric

fraction of the particles are different before settling and after settling, then

φs (z = 0, t) =

∫ ∞

0

fstl (a, t)V
∗ (a) da, (6.4)

φPF (t) =

∫ ∞

0

fsdm (a, t)V ∗ (a) da, (6.5)

where fsdm is the GSD function of the sediment obtained by grain–size analysis. The

relationship between fstl and fsdm is given by

fstl (a, t) = fsdm (a, t)
φs (z = 0, t)

φPF (t)
. (6.6)

As an assumption, we give constant volumetric fraction of settling particles,

φs (z = 0, t) = φstl = const., (6.7)

where φstl is constant volumetric fraction of the settling particles. As an assumption,

we give constant value of the volumetric fraction of the settling particles as φstl = 10−6

based on the volumetric fraction of rain drop.The temporal variation of the settling GSD

function is obtained shown in Figure 6.4.
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We apply the conservation of the number as shown in Equation (6.2), and the the

source GSDs is estimated as shown in Figure 6.5. We apply the result of the estimation

of the source GSDs in the one–dimensional theory to the two–dimensional theories in the

following chapter.
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Figure 6.3: GSD plots of particles in the sediment converted from GSD data corresponding
to the fraction of mass reported in Iriyama and Toramaru (2015)
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Figure 6.4: GSD plots of the settling particles estimated from GSD data of the sediment
in Figure 6.3. The axis of normalized stratigraphic height in Figure 6.3 is converted to
the time from the beginning of the sedimentation.
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Figure 6.5: GSD plots of particles at the one–dimensional source position. The time zero
corresponds to the beginning of the sedimentation.
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Chapter 7

Application of two–dimensional
models

In this chapter, we apply two–dimensional models to the 2011 Shinmoe–dake sub-

plinian eruption. As an application of the constant source (CS) model, we identify the

cause of the grading structure. And as an application of the constant height (CH) model,

we estimate the temporal variation of the source GSD at the top of the eruption column

Fsrc (a, t
′).

7.1 Identification of the cause of the reverse grading

structure

To identify the cause of the grading structure of the pyroclastic fall deposit, we applied

the two–dimensional constant source (CS) model to the 2011 Shinmoe–dake subplinian

eruption. According to eye–witness observation and satellite images of the ash cloud

during the 2011 Shinmoe–dake subplinian eruption, the ash cloud spreads with a constant

current velocity owing to the weak plume and strong velocity during the eruption. Thus,

it seems that the constant current model is available. Available data are the wind profile

ū and ub (Hashimoto et al., 2012), and heights of the ash cloud Hcb and Hct including the

thickness of the current L (Shimbori et al., 2013; Suzuki and Koyaguchi, 2013). We give

constants as ū = 10 m/s, ub = 30 m/s, Hcb = 3, 000 m, Hct = 7, 000 m, and L = 4, 000 m.

Using these observed parameters, it is possible to identify the cause of the reverse grading
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structure of the pyroclastic fall deposit at locality Mk by using the CS model.

In the constant current model, the grading structure depends on the ratio of ū to ub

shown in Equation (4.83). In comparison, it satisfies ū < ub during the eruption. Thus,

it is expected that the pyroclastic fall deposit with the normal grading structure by the

constant supply. However, the reverse grading structure was reported, which suggests

that the grading structure was formed owing not to the effect of the transportation in the

constant supply, but to the effect of the temporal variation of the volcanic activity during

the eruption.

Here, we estimate the temporal variation of the two–dimensional source GSD at the

top of the eruption column during the 2011 Shinmoe–dake subplinian eruption in the

following section.

7.2 Estimation of the temporal variation of the two–

dimensional source GSD

By using observed data in chapter 7.1, we estimate the temporal variation of the two–

dimensional source GSD. By using Equation (4.31), we obtain the relationship between

the particle size a and the fractionation distance r′ from which the particles arrive at

the locality Mk (black line in Fig. 7.1). As shown in Figure 7.1, the larger particle

size is, the closer the distance from the locality Mk to the fractionation distance is,

which corresponds to the size dependence on the advection distance ∆r. However, the

fractionation distance of the ϕ ≥ 1 particles is estimated as r′ < 0, which suggests that the

particles are supplied from the upwind side of the current. In case of the 2011 Shiinmoe–

dake subplinian eruption, however, there is no ash cloud in the upwind side. Therefore,

it is not realistic to give the supply from the upwind side.

In consideration for the realistic transportation of ejecta, it is possible to occur the

aggregation process. Recently, it has been reported that a large part of fine ash falls

as aggregates (e.g., Taddeucci et al., 2011). Reported aggregates are composed by the
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particles which are finer than 0.5 mm in diameter corresponding to ϕ = 1 and the TFV

of aggregates becomes larger than fall in individual particles composing the aggregates

(Taddeucci et al., 2011). Assuming that particles which are finer than 0.5 mm in diameter

make aggregates with a diameter 1 mm, then the relationship between the particle size and

the fractionation distance for the particles which settle on the locality Mk is reobtained

(red line in Fig. 7.1).

By using Equations (4.40) and the result of the estimated GSD in the one–dimensional

model (Fig. 6.5), the temporal variation of the two–dimensional source GSD at the top of

the eruption column, Fsrc is estimated (Fig. 7.2). As shown in Figure 7.2, fine particles

increase monotonically, middle sized particles are almost constant, and coarse particles

increase in the early stage and decrease in the late stage. We also obtain the temporal

variation of the power–law exponent of the source GSDD (t′) by obtained from the power–

law fitting (Fig. 7.3).The D value decreases in the early stage, and increases in the late

stage.
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Figure 7.1: Plots of the relationship between the particle size and the fractionation dis-
tance at the source height. Black line indicates the individual fallout. Red line indicates
aggregation fallout. The fall velocity of aggregates composed by fine particles with a size
ϕ ≥ 0 is given as that with a size ϕ = 0.
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Figure 7.2: GSD plots of particles at the two–dimensional source position corresponding
to the top of the eruption column.
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Figure 7.3: The temporal variation of the power–law exponent of the two–dimensional
source GSD.
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Chapter 8

Discussion

8.1 Comparison among the estimated source GSD

and the observed data

In this section, we compare the temporal variations among the estimated GSD data

in this study and observed data such as eruption column height and geodetic volume

change. As shown in Figure 8.1, the D value have negative correlation to the eruption

column height and the geodetic volume change. According to the results of the numerical

study, the maximum height of the eruption column height Ht positively correlates to the

power–law exponent D and the mass eruption rate under the steady-state calculation

(Girault et al., 2014). If we assume that the steady–state was satisfied in any moment

during the eruption, the mass eruption rate increased in the early stage according to the

plots of the estimated D value and the observed Ht value (Fig. 8.1). The estimated

temporal variation of mass eruption rate is consistent with that expected from the data

of the geodetic volume change (Ueda et al., 2013). Thus, it seems that the estimation

of the temporal variation of the source GSD during the eruption by using our theory is

effective.
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8.2 Summary of the 2011 Shinmoe–dake subplinian

eruption

In this section, we summarize the volcanic activity during the 2011 Shinmoe–dake

subplinian eruption (Fig. 8.2). In the early stage, the eruption began with a low mass

eruption rate corresponding fine–rich particles, which made a low eruption column height.

In the middle stage, the mass eruption rate reached a peak and coarse particles increased.

The increase of the eruption column height was resulted not in the change of the GSD of

ejecta but in the increase of the mass eruption rate. In the late stage, the mass eruption

rate decreased and the GSD of ejecta become fine–rich decreasing the eruption column

height.

Fine particles with a radius ϕ ≥ 1 composed aggregates during the fall process and

enhance their transport efficiency. Owing to the temporal variation of the source GSD,

the stratigraphy of the pyroclastic fall deposit at locality Mk showed the reverse grading

structure in the lower part of the deposit and the normal grading structure in the upper

part of the deposit.

8.3 Advantages of the models

In this section, we focus on the advantages of our models. It had been difficult to ex-

tract information on time from pyroclastic fall deposits in the past. The one–dimensional

CS model enables us to estimate the source duration tsrc by using geological data. We

give a power–law source GSD as an assumption, but it is possible to apply similarity by

giving various types of the source GSDs.

In the past, it had been significant question to identify the cause of the grading struc-

ture in the pyroclastic fall deposit. The two–dimensional CS model enables us to identify

the cause of the grading structure owing whether to the transportation effect or to the

temporal variation effect, which depends on the ratio of downwind velocity during the fall

process ū to the current velocity ub in case of the constant current model.

110



In the past, it had been difficult to estimate the temporal variation of the source

GSD quantitatively owing to the lack of the theory to reconstruction from the pyroclas-

tic fall deposit. The conservation of the number in the one–dimensional theory and the

two–dimensional CH model enable us to estimate the temporal variation of the source

GSD from the point of view of the transportation and the sedimentation processes. Fur-

thermore, the temporal variation of the source GSD suggests the temporal variation of

the mass eruption rate. We need to check the temporal variation of textures in pyro-

clasts such as the bubble texture which is assumed to reflect physical the environment of

fragmentation in the future.

8.4 Cautions in applying the CS model to natural

plinian deposits

In this section, we discuss three limitations in applying the CS model. First, we address

the selection of sampling locality. Two transportation styles occur in the formation of

deposits from plinian eruptions: transportation from the margin of the eruption column

and that from the bottom of the ash cloud (e.g., Koyaguchi and Ohno, 2001). In particular,

particles are supplied from the margin of the eruption column in the proximal area (Class

I fragments in Koyaguchi and Ohno, 2001), whereas they are supplied from the bottom of

the NBL ash cloud in the distal area (Class II fragments in Koyaguchi and Ohno, 2001).

This difference in transportation style is supported by a kink in the plot of sediment

thickness versus distance, or second root of area (e.g., Pyle, 1989; Fierstein and Nathenson,

1992; Bonadonna et al., 1998). Because we assumed particle supply from a constant height

in the CS model, we selected geological data for distal sediments that correspond to Class

II fragments in Koyaguchi and Ohno (2001).

The second limitation is in the sampling method. When obtaining the γM value during

the geological survey, caution must be taken with the spatial resolution of the sampling

interval (Fig. 8.3). When the sampling interval is sufficiently smaller than (htot − hM),
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we can obtain the true γM value from the stratigraphic variation of the maximum pumice

radius a1 (case 1 in Fig. 8.3). However, when the sampling interval is similar to or larger

than (htot − hM), the disappearance point of aM particles might not be detectable from

the stratigraphic variation of a1 (case 2 in Fig. 8.3). When the sampling interval is larger

than (htot − hM), the a1 becomes aM for all sampling layers (Fig. 8.3). On the contrary,

the aMd value monotonically decreases from the bottom to the top of the sediment layer

(Fig. 8.3). In particular, Md values change dramatically to the upper boundary of hM

(Fig. 8.3). In this case, the γM value can be estimated from the stratigraphic variations

of aMd (Fig. 8.3).

An additional indicator of γM is the sorting parameter σ. As shown in Figure (3.7), the

sorting parameter σ in the CS model depends of the size range of the settling particles.

Thus, the peak position of σ corresponds to the upper boundary of the hM thickness,

which becomes another key in obtaining γM as geological data.

8.5 Remaining problems

We estimated the temporal variation of the source GSD as a result of an application

of the constant current model which is a kind of the two–dimensional theory. Then, the

temporal variation of the mass eruption rate during the eruption is suggested accompany-

ing the temporal variations of the source GSD and the eruption column height. However,

the current velocity of the ash cloud ub may depend on the mass eruption rate. It may be

possible that the expansion of the ash cloud is regarded as constant current with a weak

plume and a strong wind, even though the mass eruption rate temporally changes. Thus,

we need to obtain the available range on the constant current model.

When the temporal variation of the mass eruption rate is important for the current

velocity, our theory should be extended to unsteady cases. It is assumed that the temporal

variation of the settling GSD becomes complex in such cases. Thus, to reconstruct the

temporal variation of the source GSD from pyroclastic fall deposits, we need GSD data
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of the sediment not only from a single locality, but also from multiple localities. Then,

the source GSD would be estimated as an optimum solution in the future.

8.6 Future work

We provide a theory to estimate the temporal variation of the source GSD during the

eruption. Following studies will also make clear the more detailed variation of the source

GSD and its relationship to the plume dynamics. Estimated GSD variation will be helpful

for the study of the volcanopetrology in which the temporal variation of the physical and

chemical variations of magmatic processes will be estimated.

Furthermore, transportation and sedimentation processes are common mechanisms

not only for the volcanology but also for various types of geology. Thus, our theory is

applied to many kinds of sediments as a fundamental description.
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Figure 8.1: Temporal variations of (a) power–law exponent of the two–dimensional source
GSD estimated in this study, (b) eruption column height observed by radar echo data
(Shimbori et al., 2013), and (c) geodetic rate of volumetric change (Ueda et al., 2013;
Ichihara, 2016). (d) Relationship among the maximum height of the plume, exponent of
power–law source GSD, and mass eruption rate at the vent obtained from the steady–state
calculation of the plume dynamics (Girault et al., 2014). Red circles indicate the temporal
variation of estimated exponent and observed eruption column height. Expected change
of the mass eruption rate is similar to geodetic rate of volumetric change in (c).

114



Figure 8.2: Summary of the first subplinian eruption of the 2011 Shinmoe–dake eruption.
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Figure 8.3: (a) A schematic illustration of the pyroclastic fall deposit produces by the CS
model. Case 1 and 2 represent the difference of thickness of the sampling interval. (b)
Expected results of the stratigraphic variations of the maximum pumice radius (a1; open
circles) and the median radius (aMd, closed circles). When the thickness of the sampling
interval is smaller than (htot − hM), rapid variations may be detectable in both of the
a1 and the aMd. However, when the thickness of the sampling interval is larger than
(htot−hM), the stratigraphic variation of a1 may be constant and rapid variation may be
detectable only in the aMd.
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Chapter 9

Conclusions

We developed a theory for the transportation and sedimentation during the volcanic

eruption. We defined the GSD function and made it possible to the transportation and the

sedimentation processes quantitatively. We first developed a methodology to reconstruct

the unsteady change of the source GSD from the settling GSD in the one–dimensional

case. In the one–dimensional CS model, we made it possible to estimate the source

duration. The two–dimensional CS model enables us to identify the cause of the grading

structure of the fall deposit. And the two–dimensional CH model enables us to estimate

the temporal variation of the source GSD.

We applied our theories to the 2011 Shinmoe–dake subplinian eruption. As an ap-

plication of the one–dimensional CS model, we estimated the source duration, which

was reasonable value compared to the observed eruption duration. By using the two–

dimensional CS model, the reverse grading structure in the pyroclastic fall deposit at

locality Mk was made by the temporal variation of the volcanic activity. As an applica-

tion of the two–dimensional CS model, we estimated the temporal variation of the source

GSD at the top of the eruption column. Estimated source GSD suggests the relationship

to the dynamics of the volcanic plume such as the values of the eruption column height

and the mass eruption rate.

117



Acknowledgments

The author thanks Prof. Atsushi Toramaru (Dept. of Earth and Planetary Sciences,

Fac. of Science, Kyushu Univ.) for giving chances to experience exciting discussion in

the fields and the laboratory. The author also thanks Prof. Emeritus Tetsuo Yamamoto

(Institute of Low Temperature Science, Hokkaido Univ.), Assoc. Prof. Mie Ichihara

(Earthquake Research Institute, The University of Tokyo), Assist. Prof. Yujiro J. Suzuki

(Earthquake Research Institute, The University of Tokyo), and Assist. Prof. Fukashi

Maeno (Earthquake Research Institute, The University of Tokyo) for discussions and

helpful comments; and Assoc. Prof. Takeshi Ikeda (Dept. of Earth and Planetary

Sciences, Fac. of Science, Kyushu Univ.) and Assist. Prof. Tomoharu Miyamoto (Dept.

of Earth and Planetary Sciences, Fac. of Science, Kyushu Univ.) for daily discussion and

encouragements. This work was supported by JSPS KAKENHI grants 15J00926.

Notation

Latin letters

a particle radius, [L].

am cut off particle radius in calculation, [L].

aM the largest particle radius in whole particles, [L].

aMd median particle radius, [L].

a1 the maximum particle radius of settling particles, [L].

a2 the minimum particle radius of settling particles, [L].

A constant in Equation, (3.46).
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b the increaseing rate of the source height in the Linear Height Increase (LHI) model.

B constant in equation, (3.47).

c constant of terminal fall velocity in Equations (3.33) and (3.85).

C constant in Equation (3.48).

Cd drag coefficient.

CGC constant in the gravity current model in Equation (4.66).

D power–law exponent in Equation (3.41).

f GSD function for unit volume [N/ (L3 · L)].

fcum cumulative GSD function of particles per unit volume [N/L3].

ffrc GSD function of fractionated particles from the ash cloud per unit volume [N/ (L3 · L)].

fsdm GSD function of particles in deposit per unit volume [N/ (L3 · L)].

fsrc GSD function particles at the source height per unit volume [N/ (L3 · L)].

fCS
src GSD function particles at the source height in the CS model per unit volume [N/ (L3 · L)].

fstl GSD function of settling particles per unit volume [N/ (L3 · L)].

ftot total number of particles per unit volume [N/ (L3)].

F GSD function particles per unit area [N/ (L2 · L)].

Fsrc GSD function particles at the top of the eruption column per unit area [N/ (L2 · L)].

Ftot total number of particles per unit area [N/ (L2)].

FAC GSD function particles in the ash cloud per unit area [N/ (L2 · L)].

G time relation function [T ].

g acceleration of gravity [L/T 2].

h stratigraphic height [L].

ha stratigraphic interval existing size a particles [L].

heff effective thickness in Equation (3.59) [L].

htot total thickness of sediment [L].

hM stratigraphic interval which includes size aM particles [L].

H source height [L].
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Hb height of the bottom of the ash cloud which corresponds to neutral bouyancy level [L].

Hcb height of the bottom of the current of the ash cloud [L].

Hct height of the top of the current of the ash cloud, [L].

Ht height of the top of the eruption column, [L].

H0 initial height of the source in the Linear Height Increase (LHI) model, [L].

jm the mass flux of falling particles with size a [M/ (L2 · L · T )].

jm vertical component of the mass flux of falling particles with size a [M/ (L2 · L · T )].

jn the number flux of falling particles with size a [N/ (L2 · L · T )].

jn vertical component of the number flux of falling particles with size a [N/ (L2 · L · T )].

jv the volume flux of falling particles with size a [L3/ (L2 · L · T )].

jv vertical component of the volume flux of falling particles with size a [L3/ (L2 · L · T )].

Jm the mass flux of falling particles [M/ (L2 · T )].

Jm vertical component of the mass flux of falling particles [M/ (L2 · T )].

Jn the number flux of falling particles [N/ (L2 · T )].

Jn vertical component of the number flux of falling particles, [N/ (L2 · T )].

Jv the volume flux of falling particles [L3/ (L2 · T )].

Jv vertical component of the volume flux of falling particles [L3/ (L2 · T )].

L the thickness of the current of the ash cloud, [L]

m the mass distribution, [M/ (L3 · L)].

Mdϕ median particle size in ϕ scale.

n constant in Equation (3.42).

N Brunt-Väisälä frequency.

p constant in Equations (3.33) and (3.84).

q exponent of power–law source grain–size distribution in Equation (3.42).

qc1 exponent of power–law source grain–size distribution cut–offed −2 ≤ ϕ ≤ 1.

qc2 exponent of power–law source grain–size distribution cut–offed −2 ≤ ϕ ≤ 0.

qobs exponent of power–law source grain–size distribution observed by grain-size analysis.
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Q volumetric flow rate into the ash cloud, [L3/T ].

Q0 mass eruption rate, [M/T ].

r horizontal distance from the vent [L].

rc boundary distance between normal grading structure and reverse grading structure, [L].

rM advection distance of the largest particles with size aM [L].

r′ horizontal distance from the vent at the source position [L].

r′Cb boundary distance which satisfies Ri = 1 in the cylinder model, [L].

r′Fb boundary distance which satisfies Ri = 1 in the fan model, [L].

r′GC
b boundary distance which satisfies Ri = 1 in the gravity current model, [L].

r′c boundary distance which equals to rc − rM , [L].

r̂ unit vector with component r.

R particle radius, [L].

Re particle Raynolds number.

Ri Richardson number.

t time at an object height [T ].

ta fall time of particles with size a from source height to the ground [T ].

th horizontal travel time in the ash cloud [T ].

tm fall time of particles with size am from source height to the ground [T ].

tsrc supply duration at the source, [T ].

ttot total travel time from departure to arrival [T ].

tvt fall time of particles with TFV vt from source height to the ground [T ].

tM fall time of particles with size aM from source height to the ground [T ].

t′ time at the source height [T ].

t∗ duration existing in a system [T ].

u x axis component of the wind velocity v, [L/T ].

ub current velocity of the ash cloud, [L/T ].

uC
b current velocity of the ash cloud in the cylinder model, [L/T ].
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uCC
b current velocity of the ash cloud in the constant current model, [L/T ].

uF
b current velocity of the ash cloud in the fan model, [L/T ].

uGC
b current velocity of the ash cloud in the gravity current model, [L/T ].

uw x or r axis component of average wind velocity at neutral buoyancy level, [L/T ].

ū x or r axis component of average wind velocity, [L/T ].

v wind velocity, [L/T ].

v y axis component of the wind velocity v, [L/T ].

vt terminal fall velocity, [L/T ].

vc terminal fall velocity of the critical particle size, [L/T ].

v̄ y axis component of average wind velocity, [L/T ].

V volume distribution, [L3/ (L3 · L)].

V C volume of the ash cloud in the cylinder model, [L3].

V F volume of the ash cloud in the fan model, [L3].

V ∗ volume of size a particle [L3/N ].

w z axis component of the wind velocity v, [L/T ].

w̄ z axis component of average wind velocity, [L/T ].

x coordinate of the Cartesian coordinate system, [L].

x′ coordinate of the Cartesian coordinate system at the source position, [L].

x̂ unit vector of x coordinate.

y coordinate of the Cartesian coordinate system, [L].

y′ coordinate of the Cartesian coordinate system at the source position, [L].

ŷ unit vector of y coordinate.

z coordinate of the Cartesian coordinate system, [L].

z′ coordinate of the Cartesian coordinate system at the source position, [L].

ẑ unit vector of z coordinate.
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Greek letters

αm dimensionless particle radius of the smallest particles scaled by the largest radius.

γa thickness ratio of ha to htot in the constant source (CS) model.

γM thickness ratio of hM to htot in the constant source (CS) model.

δ delta function.

εa time scale ratio in Equation (3.71).

εm time scale ratio in Equation (3.72).

εM time scale ratio in Equation (3.70).

ζ solution of the delta function in Equation (3.20).

θ center angle of the fan-shaped ash cloud in the Fan model, [radian].

λ constant in equation (4.66)

µ dynamic viscosity of the atmosphere [L2/T ].

π circular constant.

ρl density of liquid phase (atmosphere), [M/L3]

ρs density of solid phase (particle), [M/L3]

σ sorting parameter of the grain-size distribution.

σϕ sorting parameter of the grain-size distribution in ϕ unit.

τ ′ dimensionless time scaled by the source duration.

ϕ particle size in phi scale.

φsrc volume fraction of particles at the source height.

φstl volume fraction of settling particles.

φPF volume fraction of particles in sediment corresponding to packing fraction of sediment.

⊓ rectangular function.
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