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Abstract

Recent development of experiments with radioactive isotope beams and observations
of two-solar-mass neutron stars questioned existing knowledge of nuclear physics and
have attracted extensive attention. Most ideal theoretical approach to figure out prop-
erties of these exotic nuclear systems is so-called lattice quantum chromodynamics
(LQCD) which is the first-principle calculation of QCD. However, LQCD has difficul-
ties in describing finite nuclei and nuclear matter. For finite nuclei, high computational
costs are required. For nuclear matter, the notorious fermion sign problem caused by
finite chemical potential prevents the probability interpretation of the integrand of
path integrals in performing Monte Carlo simulations.

Since typical energy scale of nuclear physics is smaller than that of QCD, nuclear
effective field theory (NEFT), i.e., low-energy effective theory of QCD, provides an
alternative approach. By defining NEFT on a lattice and performing lattice simula-
tions in the same manner as in LQCD, we can study finite nuclei and nuclear matter.
However, when we try to increase the physical cutoff, the momentum scale below
which effective field theory is valid, fermion sign problem occurs like LQCD with
finite chemical potential.

In this dissertation, we propose a method to avoid the sign problem of NEFT on
a lattice. The method is the same as the reweighting method which is often used
in LQCD calculations with finite chemical potential except for how to determine the
reference determinant. Unlike QCD, there is a hierarchy of importance of operators
in NEFT. We perform renormalization group analysis to determine which operators
are important for low-energy physics. On the basis of the analysis, we distinguish
the operators which are relevant in low-energy physics and thus should be included
in the reference determinant from those which may not be. To assess the method we
propose, we perform lattice simulations and evaluate its effectiveness.

This dissertation is based on the following two papers:

• Numerical study of renormalization group flows of nuclear effective field theory
without pions on a lattice,
K. Harada, S. Sasabe, and M. Yahiro, Phys. Rev. C 94, 024004 (2016).

• Reweighting method for nuclear effective field theory on a lattice: an application
of renormalization group analysis,
S. Sasabe, K. Harada, and M. Yahiro (unpublished).
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Chapter 1

Introduction

First, we review the current status of nuclear physics in Sec. 1.1. In Sec. 1.2, we
introduce nuclear effective field theory (NEFT) and explain its application on a lattice.
Finally, we show overview of this dissertation.

1.1 Current status of nuclear physics

Recently, main subject of nuclear physics research is switched over from stable nuclei
to exotic nuclei with marked improvement in experimental equipment. A prominent
example of exotic nuclei is halo nuclei which are unstable nuclei and locate in the
vicinity of the drip line in the nuclear chart. Due to the fact that a few nucleons of
halo nuclei spread out widely, halo nuclei have larger radii compared with stable nuclei
with the same mass contrary to the relation r ≃ 1.2A1/3 between radius r and mass
number A which reflects the saturation property. Typical example of halo nuclei is
11Li whose radius is as large as that of 208Pb in spite of the fact that 11Li has much
smaller mass number than 208Pb.

Another exotic nuclear system is neutron stars. Neutron stars are compact and
dense stars formed in supernova explosions and composed mainly of neutrons. The
typical values of their radii and the masses are about 10 km and 1.4 solar mass,
respectively. At the center of neutron stars the density is expected to be several times
normal nuclear density due to the neutron degeneracy pressure against gravitational
collapse. Such high density nuclear matter does not realize in the usual circumstances
since nuclear matter becomes stable at the saturation density; the strong external
force, i.e., gravitation, makes it realized.

Physics of these exotic nuclear systems received extensive attention as new sub-
jects which enrich our understanding of nuclear physics. The most popular theoretical
approaches to investigate unstable nuclei and neutron star matter are quantum many
body calculations starting from effective interactions. Since effective interactions are
determined by systematic analysis of properties of stable nuclei, the application of
effective interactions to such extreme systems is accompanied by uncertainties. Fur-
thermore, the discovery of two-solar-mass neutron stars [12, 2] requires modification
of the equation of state obtained with the existing effective interactions.

One of the ideal theoretical approaches which describe nuclear systems without un-
certainties is so-called lattice quantum chromodynamics (LQCD). With LQCD, one
can figure out properties of a system with strong interaction by defining quantum chro-
modynamics on a lattice and performing Monte Carlo simulation. Although LQCD
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2 CHAPTER 1. INTRODUCTION

is a powerful tool for us to understand the physics of strongly interacting systems, its
application to finite nuclei and nuclear matter is very difficult at present. For finite
nuclei, high computational costs are required due to the following reasons. First of all,
the number of quark contractions which should be taken in the correlators of nuclei
increases rapidly as the number of nucleons of the nuclei increases. Some contraction
algorithms [14, 13, 24] have been proposed, but solved the difficulty only partially.
Second, a lattice with large spatial volume which is capable of accommodating finite
nuclei is required. Third, a lattice with extremely large distance in temporal direction
is necessary to separate the signal for the ground state from that for excited states.
Recall that the typical energy difference between the ground state and excited states is
O(1) MeV for finite nuclei, whereas that for hadrons is O(100) MeV. For these reasons,
LQCD simulations for finite nuclei is prohibitively expensive. For nuclear matter, the
notorious fermion sign problem caused by finite chemical potential makes the proba-
bility interpretation of the integrand of path integrals impossible. To overcome these
difficulties, a great deal of effort has been made for many years.

We therefore take an alternative approach to describe finite nuclei and nuclear
matter; nuclear effective field theory on a lattice, which I will describe in the next
section.

1.2 NEFT on a lattice

Since the seminal work on the low-energy effective field theory of nucleons, nuclear
effective field theory (NEFT), by Weinberg [49, 50, 51], extensive investigation has
been performed; see Refs. [15, 43] for the reviews. In contract to QCD in which the
fundamental degrees of freedom are quarks and gluons, NEFT describes systems with
strong interaction at low-energies in terms of low-lying hadrons, such as nucleons and
pions. In NEFT, there is a certain momentum scale, the physical cutoff Λphys below
which NEFT is expected to be equivalent to QCD. The effects of heavier hadrons
than Λphys, the processes with momenta higher than Λphys, and the internal structure
of the hadrons are integrated out, represented by an infinite number of local operators
which satisfy the same symmetries as QCD holds, and have been encoded in the
coupling constants of the interactions, low-energy constants. For example, the effects
of heavy-meson exchange processes between two nucleons are represented by local
four-nucleon operator without derivatives and those with even number of derivatives.
It is noteworthy that even if pions are included in NEFT, the exchange of the pion
with momentum transfer higher than the cutoff is represented as local four-nucleon
(and 2n-nucleon, in general) operators.

There is a hierarchy of importance among an infinite number of local operators
in NEFT. Classically, the contribution of an operator with a canonical dimension d
is of (Q/Λphys)

d−4 order, where Q represents the typical momentum scale of interest.
Thus, operators are classified through naive dimensional analysis into the leading
order, the next-to-leading order, and so on. Based on the hierarchy of operators,
the accuracy of NEFT can be improved systematically by introducing higher order
operators. In most cases, the ordering of importance given by naive dimensional
analysis is valid. However, quantum fluctuations change the situation drastically in
some cases. In such cases, a “quantum” version of dimensional analysis is required,
and it is renormalization group analysis that provides it. Renormalization group
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analysis in which how the low-energy constants vary as a function of the cutoff is
investigated reveals that the contribution of an operator with a canonical dimension
d changes from of (Q/Λphys)

d−4 order to of (Q/Λphys)
−ν order where ν is called scaling

dimension. An operator with positive ν is called relevant, whereas that with negative
ν is called irrelevant. Of course, as the typical momentum scale of interest decreases,
relevant operators play important role and the effect of irrelevant operators becomes
insignificant.

Although the early investigations exclusively employed continuous, semi-analytic
approach based on the Lippmann-Schwinger (LS) equation, the Faddeev equation, etc.,
the methods of numerical simulation on a lattice have been developed recently [38, 4,
5, 1, 17, 34, 16, 42, 35, 52, 23, 22, 48, 33]; see Ref. [37] for the review. On a lattice, the
cutoff in momentum is given by the lattice constant a as π/a. Thus, unlike LQCD,
the continuum limit in lattice NEFT should not be taken so that the cutoff does not
exceed the physical cutoff.

Lattice simulation of NEFT has several advantages. First of all, in the framework
of NEFT on a lattice, the investigation of many-nucleon systems can be performed
without suffering from complications due to the increase of the number of nucleons.
Recall that the Faddeev equation for three nucleons is more complex than the LS
equation for two nucleons, and the Faddeev-Yakubovsky equation for four nucleons
is even more complex. Lattice formulation does not have this kind of complication.
However, there is a drawback; Construction of many-nucleon operators which are nec-
essary when, for example, the correlators of nuclei are calculated becomes complicated
corresponding to the increase of the number of nucleons. So far, considerably large
nuclei to 28Si have already been investigated on a lattice [18, 34, 16]. Second, arbi-
trarily complicated pion interactions can be taken into account in lattice simulations,
just like arbitrarily complicated interactions of gluons can be incorporated in LQCD.
Therefore, it has potential of the calculations with the nonlinearly realized exactly chi-
ral symmetric interactions of pions. Note that the truncation of pion interactions at
a finite order which is often employed in semi-analytic calculations inevitably breaks
chiral symmetry. Third, it is straightforward to make the system contact to a heat
reservoir and/or to a particle reservoir. So, it allows us to study finite temperature,
finite density system. It is noteworthy that finite chemical potential does not give rise
to fermion sign problem in the case that nucleons are dealt with as non-relativistic
particles unlike LQCD where relativistic quarks inhabit [7].

Meanwhile, pion interactions which should be taken into account with increasing
the physical cutoff Λphys cause the fermion sign problem [6]. Also, Including higher
order contact interactions sometimes brings about the sign problem. This fact prevent
us from increasing the cutoff. To increase the cutoff and to include higher order
operators are important for NEFT to be more accurate and more applicable.

In this study, we propose a method to avoid the sign problem and assess its validity.
Although we confine ourselves to considering the next-to-leading order (NLO) NEFT
without pions in this study, in principle, the method we propose can be applied to
the case where pion interactions and/or higher order operators are included. Note
that the long-distance parts of pion interaction, corresponding to the pion exchanges
with the momenta below the cutoff Λ, are irrelevant in low-energy physics, whereas
the short-distance parts are included in the contact interactions in accordance with
the general principle of renormalization [28]. The study is an important step toward
the chirally symmetric NEFT with pions on a lattice.
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1.3 Overview

In this dissertation, we develop a reweighting method based on renormalization group
analysis. For this purpose, we consider the NLO NEFT without pions since it has
both parameter regions where the sign problem occurs and does not.

This dissertation is organized as follows. In Chap. 2, we perform the renormal-
ization group (RG) analysis of the NLO NEFT without pions defined on a lattice by
diagonalizing the lattice Hamiltonian numerically. The obtained RG flows are com-
pared with the flow in the continuum and the flows obtained analytically with lattice-
regularized integrals. Based on the RG analysis performed in Chap. 2, we develop
the reweighting method and assess its effectiveness by executing Monte Carlo simula-
tions in Chap. 3. The validity of the method is confirmed by comparing the resulting
reweighting factor in the irrelevant direction with that in the relevant direction for
various values of chemical potential. In addition to this, we compare the reweighting
method based on the RG analysis with that based on the naive dimensional analysis.
Finally, Chap. 4 is devoted to a summary.



Chapter 2

Renormalization group analysis

2.1 NLO NEFT without pions in the continuum

We start with the following isospin SU(2) symmetric Lagrangian of the NLO NEFT
without pions:

L = N †
(

i∂t +
∇2

2M

)
N − C0

(
NTPkN

)† (
NTPkN

)
+C2

[(
NTPkN

)† (
NTPk

←→
∇ 2N

)
+ H.c.

]
, (2.1)

where N represents the nucleon field, M is the nucleon mass, and
←→
∇ 2 =

←−
∇ ·
←−
∇−2

←−
∇ ·−→

∇+
−→
∇ ·
−→
∇ corresponds to the momentum transfer squared in the center-of-mass frame

of two incoming or outgoing nucleons. Pk is a projection operator for a specific channel
of the two-nucleon states; for the 3S1 (spin-triplet) channel, Pk = σ2σkτ 2/

√
8 where σa

and τa are spin and isospin Pauli matrices, respectively. The term represented by the
momentum independent four-nucleon operator is the leading-order (LO) interaction,
whereas the term represented by the four-nucleon operator with two spatial derivatives
is the next-to-leading order (NLO) interaction. Thus, C0 and C2 are the low-energy
constants for LO and NLO operators, respectively.

The S-wave Lippmann-Schwinger (LS) equation for the off-shell center-of-mass
nucleon-nucleon (NN) scattering amplitude derived form the Lagrangian, Eq. (2.1),
is given by

−iA(p0,p1,p2) = −iV (p1,p2) +

∫
d3k

(2π)3
[−iV (k,p2)]

×iG(p0,k)
[
−iA(p0,p1,k)

]
, (2.2)

where V is the vertex in momentum space,

V (p1,p2) = C0 + 4C2(p
2
1 + p2

2), (2.3)

G(k) represents the propagator,

G(p0,k) =
1

p0 − k2/M + iϵ
, (2.4)

p0 is the off-shell center-of-mass energy of the system, and p1 and p2 are half the
relative momenta in the incoming and outgoing two-nucleon states, respectively.

5
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The LS equation can be solved formally as

A(p1,p2) = C0 + 4C2(p
2
1 + p2

2) + (C0α(p1) + 4C2β(p1)) + 4C2α(p1)p
2
2, (2.5)

where we suppressed the argument p0 and introduced functions α(p1) and β(p1),

α(p1) =

∫
d3k

(2π)3
G(k)A(p,k), (2.6)

β(p1) =

∫
d3k

(2π)3
k2G(k)A(p,k). (2.7)

By multiplying Eq. (2.5) by G(p2)(2π)3 and p2
2G(p2)(2π)3 and integrating over p2, we

obtain the system of linear equations for α(p1) and β(p2),(
1− C0I0 − 4C2I1 −4C2I0
−C0I1 − 4C2I2 1− 4C2I1

)(
α(p1)
β(p2)

)
=

(
C0I0 + 4C2I1 + 4C2I0p

2
1

C0I1 + 4C2I2 + 4C2I1p
2
1

)
, (2.8)

where we have introduced the integrals,

In = −M
∫

d3k

(2π)3
|k|2n

|k|2 + µ2
, (2.9)

with
µ =

√
−Mp0 − iϵ. (2.10)

The system of linear equations can be solved as

α(p1) = D−1
[
C0I0 + 4C2(I1 − 4C2I

2
1 + 4C2I0I2) + 4C2I0p

2
1

]
, (2.11)

β(p1) = D−1
[
C0I1 + 4C2I2 + 4C2(I1 − 4C2I

2
1 + 4C2I0I2)p

2
1

]
, (2.12)

where D represents the determinant of the coefficient matrix,

D = 1− C0I0 − 8C2I1 + 16C2
2I

2
1 − 16C2

2I0I2. (2.13)

By substituting Eqs. (2.11) and (2.12) into Eq. (2.5), we obtain the NN scattering
amplitude [21, 45, 26] as

A(p1,p2) = x+ y
(
p2
1 + p2

2

)
+ zp2

1p
2
2, (2.14)

with

x =
(
C0 + 16C2

2I2
)
/D, (2.15)

y = 4C2(1− 4C2I1)/D, (2.16)

z = 16C2
2I0/D. (2.17)

Note that the integrals In we introduced are divergent and thus we need to regularize
them in some way. If we employ a sharp momentum cutoff Λ, they are expressed as

In = − M

2π2

∫ Λ

0

dk
k2n+2

k2 + µ2
. (2.18)
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The Wilsonian RG analysis of the off-shell NN scattering amplitude can be per-
formed elegantly by introducing the energy-dependent redundant operators, which
can be eliminated by making use of equations of motion [3, 26, 27]. However, we
consider the on-shell formulation since it is simpler and sufficient for our present pur-
pose. See Ref. [26] for the relation between the two formulations. At low energies,
the inverse of the on-shell amplitude can be written in powers of the momentum
p =

√
Mp0 = |p1| = |p2| as

A−1
∣∣
on−shell

= −M
4π

[
− 1

a0
+

1

2
r0p

2 +O(p4)− ip

]
. (2.19)

This expansion is known as the effective range expansion and the low-energy parame-
ters such as the scattering length a0 and the effective range r0 characterize the system
at low energies.

By performing the effective range expansion for the obtained scattering amplitude,
we obtain the scattering length and the effective range as

M

4π

1

a0
=

MΛ

2π2

[
θ1 +

(1 + θ3Y )2

X − θ5Y 2

]
, (2.20)

M

4π

r0
2

=
M

2π2Λ

[
−R(0) +

Y (2 + θ3Y )(1 + θ3Y )2

(X − θ5Y 2)2

]
, (2.21)

where, according to Seki and van Kolck [46], we have introduced dimensionless cou-
pling constants X and Y defined by

C0 =
2π2

MΛ
X, 4C2 =

2π2

MΛ3
Y, (2.22)

the constants θn(n = 1, 3, 5) and the function R(x) defined by

I0 = −Mλ

2π2

[
θ1 +

(
p2

Λ2

)
R

(
p2

Λ2

)]
− iM

4π
p, (2.23)

L3 ≡ −M
∫

d3k

(2π)3
= −MΛ3

2π2
θ3, (2.24)

L5 ≡ −M
∫

d3k

(2π)3
|k|2 = −MΛ5

2π2
θ5. (2.25)

If the regularization with the sharp momentum cutoff Λ is employed,

θ1 = 1, θ3 =
1

3
, θ5 =

1

5
, R(0) = −1. (2.26)

It is noteworthy that the expressions Seki and van Kolck obtained do not contain the
terms higher than linear in Y of Eqs. (2.20) and (2.21) as a result of their perturbative
treatment of the NLO interaction.

We obtain the following RG equations by imposing the condition that a0 and r0
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are independent of Λ:

Λ
dX

dΛ
= X (1 + 6θ3Y ) + Y 2

(
5θ5 + 3θ23X + 3θ3θ5Y

)
+
X − θ5Y 2

(1 + θ3Y )2
[
−R(0) (θ3X + θ5Y )

(
X − θ5Y 2

)
+θ1

{
θ5Y

2 (3 + 2θ3Y ) +X [1 + 2θ3Y (2 + θ3Y )]
}]
,

(2.27)

Λ
dY

dΛ
= 3Y

(
1 +

θ3
2
Y

)
(1 + θ3Y )

+
X − θ5Y 2

2(1 + θ3Y )

[
−R(0)X + 4θ1Y + {R(0)θ5 + 2θ1θ3}Y 2

]
. (2.28)

We find the fixed points which make both the right-hand side of Eq. (2.27) and
that of Eq. (2.28) zero at the same time, and locate the nontrivial fixed point which
is responsible for the “unnaturally” large scattering length in the 3S1 channel as

(X⋆, Y⋆) =

[
3

5

(
4− 3

√
3
)
,
3

2

(
−2 +

√
3
)]

= (−0.717691 . . . ,−0.401924 . . .). (2.29)

In Fig. 2.1, we show the obtained trivial and nontrivial fixed points together with the
RG flow. The arrows indicate the directions in which X and Y evolve as the cutoff
decreases.

Note that the location of the fixed point and the flow are not universal, while
the existence of the nontrivial fixed point and the scaling dimensions, which are the
eigenvalues of the linearized RG equations in the vicinity of the nontrivial fixed point,
are universal. We see the fact that the location of the fixed point and the flow depend
on the details of the regularization scheme and how they vary as the regularization is
changed in the following sections.

2.2 RG flows with the lattice-regularized integrals

In this section, we consider to regularize the integrals defined by Eq. (2.9) with a
lattice following Seki and van Kolck [46] to obtain RG flows which approximate those
on a lattice. We suppose the lattice whose volume is infinite and lattice constant is a.
We restrict the interval of integration to be the first Brillouin zone,

−π
a
≤ ki ≤

π

a
(i = 1, 2, 3), (2.30)

and replace the momentum square |k|2 coming from the Laplacian∇2 in the continuum
with the corresponding discretized one obtained with the three-point formula,

|k|2 → 4

a2

3∑
i=1

sin2

(
kia

2

)
. (2.31)

With this prescription, for example, the integral I0 is given as

I0 =
M

a

3∏
i=1

[∫ π

π

dki
2π

]
1

p2 − 4
∑3

i=1 sin2(ki/2) + iϵ
, (2.32)
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Figure 2.1: The flow and the trivial and nontrivial fixed points of the NLO NEFT
in the X-Y plane obtained by using a sharp momentum cutoff in the continuum
formulation. The arrows indicate the directions in which X and Y evolve as the cutoff
decreases.

where we have introduced a dimensionless quantity p =
√

(Ma)(p0a) and performed
the change of variables ki → ki/a so that the integration variables are dimensionless.

By identifying Λ with π/a, Seki and van Kolck [46] obtained the values of the
constants,

θ1 = 1.58796 . . . , θ3 =
2

π
, R(0) = 0.754330 . . . , (2.33)

and θ5 is easily evaluated as θ5 = 12/π3. (The integral I0 in (2.32) can be calculated in
a closed form; see Refs. [11, 20].) With these parameters, we find that the nontrivial
fixed point is now located at (X⋆, Y⋆) = (−0.76602 . . . ,+0.17501 . . .). Fig. 2.2 shows
the obtained fixed points and the RG flow. The flow is very different from the one in
the continuum, especially in the strong-coupling phase, i.e., the left-hand part of the
figure. It is noteworthy that the sign of Y⋆ is changed depending on the regularization.
These result show a non-universal feature of the RG flow, as one might expect.
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Figure 2.2: The same as in Fig. 2.1, but obtained with the lattice regularization with
the three-point formula.

In addition to the three-point formula, we also consider the five-point formula,

|k|2 → 4

a2

3∑
i=1

[
sin2

(
kia

2

)
+

1

3
sin4

(
kia

2

)]
. (2.34)

This formula has higher-order discretization errors than the three-point formula.
As we will show later, effects of the rotational symmetry breaking caused by the

discretization with the three-point formula are large. Thus, we perform the same RG
analysis with the five-point formula as that with the three-point formula. With this
prescription, we obtain values of the constants as

θ1 = 1.37619 . . . , θ3 =
2

π
, θ5 =

15

π3
, R(0) = −0.41278 . . . . (2.35)

Here we have calculated the constants θ1 and R(0) by reference to the method of
Appendix of Ref. [46]; see the Appendix of Ref. [29] for more details. With these
parameters, we find that the nontrivial fixed point is now located at (X⋆, Y⋆) =
(−0.63338 . . . ,−0.098805 . . .). In Fig. 2.3, we show the fixed points and the RG flow.
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Figure 2.3: The same as in Fig. 2.1, but obtained with the lattice regularization with
the five-point formula.

The flow changes considerably from the case of the three-point formula, especially
in the strong-coupling phase and becomes more similar to the flow in the continuum,
as one might expect. We summarize the locations of the nontrivial fixed point in
Table 2.1 as well as the constants θn(n = 1, 3, 5) and R(0) for the RW equations in
Table 2.2.

Note that the prescription discussed in this section does not produce a genuine
lattice result. On a lattice, the rotational invariance is explicitly broken so that the
notion of “partial waves” is not good. However, we just substituted the integrals
evaluated with the lattice regularization into the RG equations derived from the LS
equation for the S waves. Although the procedure is not fully consistent, the analytic
results obtained here are a very useful guide for the genuine lattice study, as shown
later.
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Table 2.1: Locations of the nontrivial fixed point

Regularization scheme (X⋆, Y⋆)

Sharp momentum cutoff Λ (−0.717691 . . . ,−0.401924 . . .)
Lattice regularization with

the three-point formula (−0.76602 . . . ,+0.17501 . . .)
Lattice regularization with

the five-point formula (−0.63338 . . . ,−0.098805 . . .)

Table 2.2: Constants for the RW equations

Regularization scheme θ1 θ3 θ5 R(0)

Sharp momentum cutoff Λ 1
1

3

1

5
−1

Lattice regularization with
the three-point formula 1.58796 . . .

2

π

12

π3
0.754330 . . .

Lattice regularization with
the five-point formula 1.37619 . . .

2

π

15

π3
−0.41278 . . .

2.3 Ground-state wave function and the ANC

In this section, we consider the stationary Schrödinger equation in the continuum,
before we proceed to that defined on a lattice to obtain the genuine lattice result. In
momentum space, the stationary Schrödinger equation for the relative motion of the
two-nucleon state is given by

Eψ(p) =
p2

M
ψ(p) +

∫ Λ d3q

(2π)3
[
C0 + 4C2

(
p2 + q2

)]
ψ(q), (2.36)

where we suppose that the wave function satisfies ψ(p) = 0 for |p| > Λ and restrict
the interval of integration to be the region |q| ≤ Λ. Hereafter, we concentrate on the
case with E < 0, i.e., the bound state.

The Schrödinger equation can be solved in the same matter as the LS equation in
Sec. 2.1. By introducing constants α and β,

α =

∫ Λ d3q

(2π)3
ψ(q), β =

∫ Λ d3q

(2π)3
q2ψ(q), (2.37)

we can formally solve the Schrödinger equation as

ψ(p) =
−M

p2 + µ2

[(
C0 + 4C2p

2
)
α + 4C2β

]
, (2.38)

where µ =
√
M |E|. By multiplying Eq. (2.38) by (2π)−3 and p2(2π)−3 and integrating



2.3. GROUND-STATE WAVE FUNCTION AND THE ANC 13

over p, we obtain the system of linear equations for α and β,(
1− C0I0 − 4C2I1 −4C2I0
−C0I1 − 4C2I2 1− 4C2I1

)(
α
β

)
=

(
0
0

)
. (2.39)

Here, we use the integrals In defined by Eq. (2.9) but with µ =
√
M |E|. Note that

the coefficient matrix is the same as that appears in Eq. (2.8). The system of linear
equations has a nonzero solution if the determinant D defined by Eq. (2.13) is equal
to 0. This condition which corresponds to the vanishing of the denominator of the
scattering amplitude determines µ, hence the energy eigenvalue E.

When the condition is satisfied, by substituting the ratio β/α,

β

α
=

1− C0I0 − 4C2I1
4C2I0

, (2.40)

into Eq. (2.38), the wave function is written as

ψ(p) = −4MαC2 +
Mα [4C2µ

2 − (1− 4C2I1)/I0]

p2 + µ2
. (2.41)

We determine the overall normalization by the usual condition
∫ Λ

d3p/(2π)3|ψ(p)|2 =
1. In the coordinate space, this function is expressed by a sum of the regularized
δ function and the regularized Yukawa function. Therefore, it is natural to define
the asymptotic normalization constants (ANC) as the numerator of the second term
divided by 4π since the Yukawa function governs the asymptotic behavior of the
coordinate-space wave function in the limit of Λ→∞.

By utilizing formulations explained in Sec. 2.1 and this section, We can relate the
scattering length and the effective range to the binding energy and the ANC as follows.
First, we determine the coupling constants X and Y correspond to the given values of
the scattering length and the effective range as a function of the cutoff Λ by solving
Eqs. (2.20) and (2.21) for each value of the cutoff Λ. We then obtain the binding
energy and the ANC by solving the equation D = 0 numerically.

In Fig. 2.4, we show the results for the physical set of the scattering length
and the effective range for the spin-triplet isospin-singlet S-wave channel, (a0, r0) =
(5.42, 1.75) fm [10], corresponding to deuteron, as a function of the cutoff Λ. We see
that the binding energy and the ANC are constant for a wide range of the cutoff and
approximately equal to 2.19 MeV and 0.244 fm−1/2, respectively. It is noteworthy that
the obtained value of the ANC is very close to the recommended value in Ref. [10],
0.8845(8) /

√
4π fm−1/2 = 0.2495(2) fm−1/2, obtained with a completely different NN

potential. (The factor
√

4π comes from the normalization of the spherical harmonics.)
Note that both the binding energy and the ANC vanish at Λ ≈ 57.2 MeV, cor-

responding to Λ2/M ≈ 3.5 MeV in energy scale or π/Λ ≈ 10.8 fm in length scale.
Recalling that binding energy and the mean-square radius of deuteron are 2.22 MeV
and 1.97 fm, we guess the behavior comes from the resolution there is too low to detect
the deuteron.

The result we numerically obtained supports that we can take the binding energy
and the ANC instead of the scattering length and the effective range as the parameters
which characterize the system at low energies. Thus, to obtain the RG flow on a lattice,
we use the binding energy and the ANC as low-energy physical quantities to be fixed
in the next section.
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Figure 2.4: The binding energy (upper) and the ANC (lower) as a function of the
cutoff Λ, calculated for the physical set of the scattering length and the effective
range, (a0, r0) = (5.42, 1.75) fm, corresponding to deuteron [10]. The binding energy
and the ANC are constant for a wide range of the cutoff and approximately equal to
2.19 MeV and 0.244 fm−1/2, respectively. The obtained value of the ANC is very close
to the recommended value in Ref. [10], 0.8845(8) /

√
4π fm−1/2 = 0.2495(2) fm−1/2,

obtained with a completely different NN potential.
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2.4 NLO NEFT without pions on a lattice

In this section, we consider the Hamiltonian of the NLO NEFT without pions defined
on a spatial cubic lattice to obtain a genuine lattice result. We suppose the lattice has
Ns sites in each directions, a finite lattice constant a, and a finite size L = Nsa and
is imposed the periodic boundary condition. On the lattice, the three-dimensional
position vector x is replaced with na, where n is a three-dimensional vector with
integer components n = (n1, n2, n3). The periodic boundary condition identifies n
with n +Nsei, where ei(i = 1, 2, 3) is the unit vector in the ith direction.

The Hamiltonian of the NLO NEFT without pions in the continuum is given as

H =

∫
d3x

[
N †

(
− ∇

2

2M

)
N + C0

(
NTPkN

)† (
NTPkN

)
−C2

{(
NTPkN

)† (
NTPk

←→
∇ 2N

)}]
. (2.42)

By performing the substitutions, H → HLa
−1, x → na,

∫
d3x → a3

∑
n, N(x) →

Nna
−3/2, M → MLa

−1, C0 → CL
0 a

2, and C2 → CL
2 a

4, we obtain the dimensionless
Hamiltonian on a lattice, HL, in terms of dimensionless quantities as

HL =
∑
n

[
− 1

2ML

N †
n∇2

LNn + CL
0

(
NT

nPkNn

)† (
NT

nPkNn

)
−CL

2

{(
NT

nPkNn

)† (
NT

nPk

←→
∇ 2

LNn

)
+ +H.c.

}]
, (2.43)

where we introduced the dimensionless discretized Laplacian ∇2
L and

←→
∇ 2

L. For the
three-point formula, we define

∇2
LNn =

3∑
i=1

(Nn+ei − 2Nn +Nn−ei) , (2.44)

and

NT
n

←→
∇ 2

LNn =
3∑

i=1

[(
NT

n+ei
− 2NT

n +NT
n−ei

)
PkNn −

(
NT

n+ei
−NT

n

)
Pk (Nn+ei −Nn)

−
(
NT

n −NT
n−ei

)
Pk (Nn −Nn−ei) +NT

nPk (Nn+ei − 2Nn +Nn−ei)
]
,

(2.45)

so that these derivatives give the same discretized Laplacian in momentum space as
we employed in Eq. (2.31) as shown shortly. Similarly, for the five-point formula, we
define

∇2
LNn =

3∑
i=1

(
− 1

12
Nn+2ei +

4

3
Nn+ei −

5

2
Nn +

4

3
Nn−ei −

1

12
Nn−2ei

)
, (2.46)
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and

NT
n

←→
∇ 2

LNn = − 1

12

3∑
i=1

[(
NT

n+2ei
− 16NT

n+ei
+ 30NT

n − 16NT
n−ei

+NT
n−ei

)
PkNn

−1

2

(
NT

n+ei
−NT

n

)
Pk (Nn+2ei − 15Nn+ei + 15Nn −Nn−ei)

−1

2

(
NT

n −NT
n−ei

)
Pk (Nn+ei − 15Nn + 15Nn−ei −Nn−2ei)

−1

2

(
NT

n+2ei
− 15NT

n+ei
+ 15NT

n −NT
n−ei

)
Pk (Nn+ei −Nn)

−1

2

(
NT

n+ei
− 15NT

n + 15NT
n−ei
−NT

n−2ei

)
Pk (Nn −Nn−ei)

+NT
nPk (Nn+2ei − 16Nn+ei + 30Nn − 16Nn−ei +Nn−2ei)

]
. (2.47)

We perform Fourier transform for the nucleon operators,

Nn =
1

N
3/2
s

∑
p

eip·nap, (2.48)

where we suppress the spin and isospin indices, and work in momentum space. Due
to the periodic boundary condition, the momentum p = (p1, p2, p3) takes the discrete
values

pi =
2π

Ns

p̂i, (2.49)

where p̂i(i = 1, 2, 3) are integers and satisfy

−Ns

2
< p̂i ≤

Ns

2
. (2.50)

The creation and annihilation operators satisfy the canonical anticommutation rela-
tions

{ap, ap′} =
{
a†p, a

†
p′

}
= 0,

{
ap, a

†
p′

}
= δp,p′ . (2.51)

By substituting Eq. (2.48) into Eq. (2.43), we obtain the Hamiltonian in terms of
creation and annihilation operators,

HL =
∑
p

∆p

2ML

a†pap +
1

N3
s

∑
{pi}

δp1+p2−p3−p4,0

×
[
CL

0 + CL
2 (∆p1,p2 + ∆p3,p4)

] (
a†p1

Pka
†
p2

)
(ap3Pkap4) , (2.52)

where

∆p = 4
3∑

i=1

sin2
(pi

2

)
, (2.53)

and

∆p,q = 4
3∑

i=1

[
sin2

(pi
2

)
+ sin2

(qi
2

)
− 2 cos

(
pi + qi

2

)
sin

(pi
2

)
sin

(qi
2

)]
(2.54)
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for the three-point formula, whereas

∆p = 4
3∑

i=1

[
sin2

(pi
2

)
+

1

3
sin4

(pi
2

)]
, (2.55)

and

∆p,q = 4
3∑

i=1

[
sin2

(pi
2

)
+

1

3
sin4

(pi
2

)
+ sin2

(qi
2

)
+

1

3
sin4

(qi
2

)
− cos

(
pi + qi

2

){
sin

(pi
2

)[
sin

(qi
2

)
+

1

3
sin3

(qi
2

)]
+

[
sin

(pi
2

)
+

1

3
sin3

(pi
2

)]
sin

(qi
2

)}]
(2.56)

for the five-point formula. Note that, for both formulas, ∆p has the same form as the
discretized version of the momentum square we employed in Sec. 2.2 and the relations
∆p,q = ∆q,p and ∆p,−p = 4∆p are satisfied.

2.4.1 Schrödinger equation for two-nucleon states

We proceed to consider the lattice version of the stationary Schrödinger equation. Let
|Ψk⟩ be the spin-triplet isospin-singlet two-nucleon state with zero total momentum,

|Ψk⟩ =
∑
p

ψ(p)a†pP
†
ka

†
−p |0⟩ . (2.57)

The Schrödinger equation is given by

HL |Ψk⟩ = EL |Ψk⟩ , (2.58)

where EL = Ea is the dimensionless energy eigenvalue.

In terms of the discretized wave function ψ(p) of relative motion in momentum
space, we can write the equations as

ELψ(p) =
∆p

ML

ψ(p) +
1

N3
s

∑
q

[
CL

0 + 4CL
2 (∆p + ∆q)

]
ψ(q). (2.59)

Note that this equation is nothing but the discretized version of Eq. (2.36).

To obtain the binding energy and the ANC, we numerically diagonalize the eigen-
value equation (2.59). Since there is no self-energy contribution in our theory, the
lattice constant a in physical unit can be assigned by giving ML through the relation
ML = Ma, where we set the nucleon mass, M = 938.9 MeV. In the following analysis,
we typically consider the case a = 5 fm, which corresponds to the momentum cutoff
Λ = π/a ≈ 124 MeV. For most of the calculations, we use the lattice whose size is
Ns = 16, which corresponds to a cube with the edge of length L = 80 fm

Note that although there is no bound state in the weak-coupling phase physically,
the periodic boundary condition makes the ground state have negative energy [41].
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2.4.2 Determination of the ANC

The wave function obtained by diagonalizing the lattice Hamiltonian (2.43) is not rota-
tionally symmetric due to the fact that the lattice discretization breaks the rotational
symmetry. To demonstrate the broken rotational symmetry, in Figs. 2.5, we show the

coordinate-space wave function normalized by its asymptotic form, ψ(r)/(e−
√

ML|EL|r/r),
in the (1,0,0), (1,1,0), and (1,1,1) directions where we obtain ψ(r) by performing
Fourier transform for ψ(p). Precisely, for the asymptotic form, we took into ac-
count the periodicity. To incorporate the effect of the potentials within the distance
L = Nsa is sufficient to obtain converged results. For example, we plot the function
in the (1,0,0) direction,

ψ(na, 0, 0)

/[
e−
√

ML|EL|na

na
+
e−
√

ML|EL|(Nsa−na)

Nsa− na

]
, (2.60)

where integers n satisfy 0 ≤ n ≤ Ns. Note that the function is symmetric with respect
to Ns/2. If the system holds the rotational symmetry, at sufficiently long distances,
the wave functions would coincide with each other and show a plateau with the value
of ANC. However, the wave function obtained with the three-point formula (upper)
shows large direction-dependence. Also, with the five-point formula, we can reduce it
largely, but there remains.

Thus, there is an ambiguity in determining the ANC by the asymptotic form of
the coordinate space wave function. As an alternative way, we employ the method
which utilize the momentum-space wave function. By fitting the numerically obtained
the normalized momentum-space wave function ψ(p) to the expression implied by the
Schrödinger equation (2.59),

ψ(p) = A+
B

∆p +ML|EL|
, (2.61)

we determine the constants A and B. Note that this form of the wave function
corresponds to the continuum wave function, Eq. (2.41). As same as in the continuum,
we identify B/4π with the ANC. In this method, the effect of the explicit rotational-
symmetry breaking is absorbed by the discretized Laplacian in momentum space ∆p,
so we can determine the ANC without suffering from ambiguity.

2.4.3 RG analysis

It has already validated in Sec. 2.3 that the binding energy and the ANC can be taken
as the parameters characterize the system at low energies instead of the scattering
length and the effective range. In the following analysis, we thus use the binding energy
and the ANC as low-energy physical quantities and require them to be independent
of the lattice constant, corresponding to the cutoff. To obtain the RG flow, we first
calculate the binding energy and the ANC for a set of (X, Y ) where X and Y are the
dimensionless coupling constants defined in Eq. (2.22), but with Λ = π/a. Then, we
change the lattice constant a bit from a to a+ δa, and numerically search the new set
of (X + δX, Y + δY ) which reproduces the same binding energy and the ANC.
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Figure 2.5: The rotational symmetry breaking in the asymptotic behavior of the
wave function. The wave function in the (1, 0, 0), (1, 1, 0), and (1, 1, 1) directions
are obtained with the three-point formula (upper) and with the five-point formula
(lower). The gray line indicates the ANC defined as B/4π from the coefficient B
of the regularized Yukawa term in Eq. (2.61). The calculation corresponds to the
deuteron state, so that ANC is 0.244 fm−1/2.
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Fig. 2.6 shows the RG flow calculated with the five-point formula. The arrows
indicate the change (δX, δY ) for a = 5 fm and δa = 0.25 fm. Due to the fictitious
feature of the ground-state energy in the weak-coupling phase, we do not calculate the
flow in the right upper part of the figure corresponds to the weak coupling phase.
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Figure 2.6: The flow of the NLO NEFT in the strong coupling phase in the X-Y
plane obtained by numerical diagonalization of the Hamiltonian defined on a lattice
with the five-point formula. The allows indicate the directions of the smaller values
of the cutoff. The right upper part of the figure corresponds to the weak coupling
phase where the periodic boundary condition makes the unphysical ground state with
negative energy.
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Near the phase boundary, it is difficult to calculate the flow since the ground-
state energy becomes small and the effects of the periodic boundary condition become
noticeable [40]. The boundary condition affects the wave function with the radius
∼ L/2 = 40 fm which corresponds to the binding energy ∼ 0.03 MeV. However, we
find that the finite-size effect brings about useful information, as shown below.

In Fig. 2.7, we show the difference of the ground-state energies calculated with
Ns = 14 and Ns = 16, and the difference with Ns = 16 and Ns = 18. As one naturally
expects, the difference is larger in the Ns = 14 v.s. Ns = 16 case than in the Ns = 16
v.s. Ns = 18 case.

It is numerically shown that the ridge line is independent of the lattice size L.
We argue that this ridge line corresponds to the phase boundary as follows. First
of all, as we discussed above, the L dependence of the ground-state energy in the
strong-coupling phase comes from the spreading of the wave function and thus the
energy difference becomes larger as we approach the phase boundary. Second, the
L dependence in the weak-coupling phase arises for a different reason; In the weak-
coupling phase, the wave function spreads out over the whole space and feels an infinite
number of potentials placed periodically, where the lattice size L corresponds to the
period of the potentials. As the period is smaller, the “density” of the attractive
potential becomes higher and the ground-state gains more negative energy. Finally,
for the both sides of the ridge line, L dependence of calculated ground-state energies
fit well with the known L dependence of Refs. [40, 41].

ΔＥ

[MeV]

Figure 2.7: The difference of the calculated ground-state energies with Ns = 14 and
Ns = 16 (upper surface), and that with Ns = 16 and Ns = 18 (lower surface) are
shown as functions of X and Y . This side of the mountain range corresponds to the
weak coupling phase, whereas the other side is the strong coupling phase.
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Once we establish that the ridge line represents the phase boundary, it is easy to
locate the nontrivial fixed point. In Fig. 2.8, we show the ridge line together with the
RG flow shown in Fig. 2.6. Recalling that, around the nontrivial fixed point, the RG
flow falls into along the phase boundary and springs from there, we identify where
the nontrivial fixed point is. It is (X⋆, Y⋆) = ( -0.65 to -0.63, -0.13 to -0.11 ), which
is surprisingly close to the one obtained analytically with the five-point formula in
Sec. 2.2.

The direction in which the RG flow springs from the nontrivial fixed point cor-
responds to the relevant operator. The unit vector for the direction is obtained as
(−1/

√
2,−1/

√
2) within the accuracy of the present analysis. This is very differ-

ent from (−0.933 . . . ,−0.359 . . .) obtained from the linearized RGEs derived from
Eqs. (2.27) and (2.28) with the five-point formula. We guess that we obtain more
similar results as we approach the nontrivial fixed point.
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0.1

0.2
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Y

Figure 2.8: The ridge line (red) together with the RG flow in Fig. 2.6 calculated with
the five-point formula. From the flow, we infer that the nontrivial fixed point is on
the dashed line (green). The nontrivial fixed point is also on the ridge line, it is at
the crossing point (blue bullet). The small point (magenta) just above the crossing
point is the location of the nontrivial fixed point obtained by the analytic calculation,
(X⋆, Y⋆) = (−0.63338 . . . ,−0.098805 . . .).
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We perform similar analysis with the three-point formula and show the ridge line
together with the RG flow in Fig. 2.9. Note that the RG flow is considerably different
from that with the five-point formula. The location of the nontrivial fixed point is
obtained as (X⋆, Y⋆) = (-0.75 to -0.77, 0.12 to 0.14). It is again very close to the
one analytically obtained. The relevant direction is now represented by a unit vector
(−1/2,−

√
3/2) within the accuracy of the present analysis. It should be compared

with (−0.935 . . . , 0.353 . . .) obtained by linearizing RGEs Eqs. (2.27) and (2.28) with
the three-point formula around the nontrivial fixed point.
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Figure 2.9: The same as in Fig. 2.8, but with the three-point formula. The small point
(magenta) indicates the location of the nontrivial fixed point obtained by the analytic
calculation, (X⋆, Y⋆) = (−0.76602 . . . , 0.17501 . . .).

To summarize, the analytic results with the lattice regularization, which are not
obtained on a lattice, are very accurate for the location of the nontrivial fixed point,
but the direction of the relevant operator is considerably different from the one on a
lattice within the accuracy of the present analysis.
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2.4.4 The flow line corresponding to deuteron

Finally, we draw a flow line that corresponds to deuteron. As input parameters, we use
the binding energy E = 2.19 MeV and the ANC = 0.244 fm−1/2, which are obtained
from the physical set of the scattering length and the effective range in Sec. 2.3.
The flow line is obtained as follows. First, we search a point (X0, Y0) for which the
binding energy and the ANC take the values given above for a certain value of the
lattice constant a0. Then, we change the lattice constant 5% larger, a1 = 1.05a0, and
numerically search a new set of coupling constants (X1, Y1) which reproduces the same
binding energy and ANC. We repeat the procedure iteratively. Recall that the lattice
constant is assigned by the dimensionless nucleon mass ML = Ma due to the absence
of the self-energy contribution.

We show the flow line together with the RG flow, the nontrivial fixed point, the
phase boundary, and the relevant direction in Fig. 2.10 for the five-point formula and
in Fig. 2.11 for the three-point formula, respectively.
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Figure 2.10: The flow line corresponding to deuteron calculated with the five-point
formula is shown as a dotted line (magenta) against the RG flow given in Fig. 2.8. The
nontrivial fixed point (blue bullet) phase boundary (red solid line), and the relevant
direction (green dashed line) are also shown.
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When we draw Figs. 2.10 and 2.11, we change ML in the region 9 ≲ ML ≲ 80
which corresponds to 2 fm ≲ a ≲ 17 fm. Of course, the lattice with a ∼ 2 fm is too
fine for the present EFT; the calculation there should not be taken too seriously.

The part of the flow closest to the nontrivial fixed point corresponds to the lattice
constant a in the range from 5 fm to 10 fm, corresponding to the momentum scale
from 62 MeV to 124 MeV. This is just the region where the EFT without pions is
valid.
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Figure 2.11: The same as in Fig. 2.10, but calculated with the three-point formula.





Chapter 3

Reweighting Method

3.1 Fermion sign problem

We start with the isospin SU(2) symmetric Lagrangian of the NLO NEFT without
pions in Euclidean space:

LE = N †
(
−∂4 +

∇2

2M
+ µ

)
N − C0

(
NTPkN

)† (
NTPkN

)
+C2

[(
NTPkN

)† (
NTPk

←→
∇ 2N

)
+ H.c.

]
, (3.1)

where we have introduced the chemical potential µ in the usual manner. The grand
canonical partition function is given by

Z ∝
∫
DχDχ∗ exp (−SE) =

∫
DχDχ∗ exp

[∫
d4xLE

]
, (3.2)

where χ, χ∗ are the Grassmann variables corresponding to the nucleon fields N,N †,
respectively. In the following, we rewrite the Lagrangian density applying Hubbard-
Stratonovich transformations [32, 47], perform path-integral for the Grassmann vari-
ables analytically, and obtain the partition function in terms of the auxiliary fields
and the fermion determinant.

By using identities

(
σiσ2

)
αβ

(
σ2σi

)
α̇β̇

=
3

2

(
σ0
)
αα̇

(
σ0
)
ββ̇

+
1

2

(
σi
)
αα̇

(
σi
)
ββ̇
, (3.3)(

τ 2
)
γ̇δ̇

(
τ 2
)
γδ

= −1

2

(
τ 0
)
γγ̇

(
τ 0
)
δδ̇

+
1

2

(
τ i
)
γγ̇

(
τ i
)
δδ̇
, (3.4)

and Fierz transformations, we rewrite the leading order contact interaction term as

−1

8
C0

[(
N †N

)2 − (
N †τN

)2]
= −1

8
C0

(
N †τ̃N

)2
, (3.5)

where we have introduced

τ̃ =
(
τ̃ 0, τ̃ 1, τ̃ 2, τ̃ 3

)
= (12×2, iτ

1, iτ 2, iτ 3). (3.6)

27



28 CHAPTER 3. REWEIGHTING METHOD

Similarly, the next-to-leading order contact interaction term can be written as

1

8
C2

[{
N †

(←−
∇2 +

−→
∇2

)
N
}(

N †N
)

+
(
N †N

){
N †

(←−
∇2 +

−→
∇2

)
N
}

−
{
N †τ

(←−
∇2 +

−→
∇2

)
N
}(

N †τN
)
−
(
N †τN

){
N †τ

(←−
∇2 +

−→
∇2

)
N
}

−2

{(
N †←−∇N

)2

+
(
N †−→∇N

)2

−
(
N †τ
←−
∇N

)2

−
(
N †τ
−→
∇N

)2
}]

=
1

8
C2

[{
N †τ̃

(←−
∇2 +

−→
∇2

)
N
}
·
(
N †τ̃N

)
+
(
N †τ̃N

)
·
{
N †τ̃

(←−
∇2 +

−→
∇2

)
N
}

−2

{(
N †τ̃
←−
∇N

)2

+
(
N †τ̃
−→
∇N

)2
}]

. (3.7)

Furthermore, we can rewrite terms in the last line of the above expression as(
N †τ̃
←−
∇N

)2

+
(
N †τ̃
−→
∇N

)2

→ 1

2

{[(
N †τ̃
←−
∇N

)
−
(
N †τ̃
−→
∇N

)]2
−
(
N †τ̃N

)
· ∇2

(
N †τ̃N

)}
, (3.8)

where we have omitted the following total derivative terms:

∇
[(
N †τ̃N

)
· ∇

(
N †τN

)]
. (3.9)

Then, the Lagrangian density is given by

LE = N †
(
−∂4 +

∇2

2M
+ µ

)
N − c0

(
N †τ̃N

)2
+c2

[{
N †τ̃

(←−
∇2 +

−→
∇2

)
N
}
·
(
N †τ̃N

)
+
(
N †τ̃N

)
·
{
N †τ̃

(←−
∇2 +

−→
∇2

)
N
}

−
[(
N †τ̃
←−
∇N

)
−

(
N †τ̃
−→
∇N

)]2
+
(
N †τ̃N

)
· ∇2

(
N †τ̃N

)]
, (3.10)

where we have defined the coupling constants c0 and c2 by

c0 ≡
C0

8
, c2 ≡

C2

8
. (3.11)

By multiplying the partition function, Eq. (3.2), by

(const.) =

∫
Dϕ′

0 exp
[
−ϕ′

0
2
]
, (3.12)

and making a change of variable from ϕ′
0 to ϕ0 which satisfies

ϕ′
0 = ϕ0 + i

√
c0
(
N †τ̃N

)
− i

c2√
c0

{
N †τ̃

(←−
∇2 +

−→
∇2

)
N
}
− i

c2
2
√
c0
∇2

(
N †τ̃N

)
,

(3.13)

we obtain the terms which eliminate

−c0
(
N †τ̃N

)2
+ c2

(
N †τ̃N

)
· ∇2

(
N †τ̃N

)
+c2

[{
N †τ̃

(←−
∇2 +

−→
∇2

)
N
}
·
(
N †τ̃N

)
+
(
N †τ̃N

)
·
{
N †τ̃

(←−
∇2 +

−→
∇2

)
N
}]

,

(3.14)
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in the Lagrangian, Eq. (3.10). Here, we have omitted the terms with four derivatives
in accordance with the fact that we have truncated the Lagrangian up to including
NLO. Similarly, by introducing another auxiliary field ϕ⃗′

2 and making a change of

variable from ϕ⃗′
2 to ϕ⃗2 which satisfies

ϕ⃗′
2 = ϕ⃗2 + i

√
c2

[(
N †τ̃
←−
∇N

)
−
(
N †τ̃
−→
∇N

)]
, (3.15)

we obtain the term which cancels out

−c2
[(
N †τ̃
←−
∇N

)
−
(
N †τ̃
−→
∇N

)]2
, (3.16)

in Eq. (3.10).
Thus, we can write the partition function, Eq. (3.2), in terms of auxiliary fields as

Z ∝
∫
DχDχ∗Dϕ0Dϕ⃗2 exp

[∫
d4xLE(χ, χ∗,ϕ0, ϕ⃗2)

]
, (3.17)

where

LE = χ∗
(
−∂4 +

∇2

2M
+ µ

)
χ− 2i

√
c0ϕ0 · (χ∗τ̃χ)

+2i
c2√
c0
ϕ0 ·

{
χ∗τ̃

(←−
∇2 +

−→
∇2

)
χ
}

+ i
c2√
c0
ϕ0 · ∇2 (χ∗τ̃χ)

−2i
√
c2ϕ⃗2 ·

[(
χ∗τ̃
←−
∇χ

)
−

(
χ∗τ̃
−→
∇χ

)]
− ϕ2

0 − ϕ⃗2
2. (3.18)

Here derivatives in coordinate space do not act on the auxiliary fields ϕ0 and ϕ⃗2.
Now, we can perform the path-integral for the Grassmann variables χ and χ∗, then
we obtain

Z ∝
∫
Dϕ0Dϕ⃗2 detM

(
ϕ0, ϕ⃗2

)
exp

[∫
d4x

(
−ϕ2

0 − ϕ⃗2
2

)]
, (3.19)

where

detM
(
ϕ0, ϕ⃗2

)
= det

[(
−∂4 +

∇2

2M
+ µ

)
− 2i
√
c0ϕ0 · τ̃ + 2i

c2√
c0
ϕ0 · τ̃

(←−
∇2 +

−→
∇2

)
+i

c2√
c0
ϕ0 · ∇2τ̃ −2i

√
c2ϕ⃗2 ·

{
τ̃
←−
∇ − τ̃

−→
∇
}]

. (3.20)

In order to use Monte Carlo method for integrating the auxiliary fields, we would
like to interpret the determinant multiplied by the exponent as a Gibbs factor, i.e., a
probability distribution. For the interpretation, it is necessary for the determinant to
be positive semidefinite. In the case of c0, c2 < 0,

√
ci = i

√
|ci|(i = 0, 2) , the fermion

determinant detM is positive semidefinite, because the fermion matrix M satisfies

τ 2Mτ 2 = M∗, (3.21)

so that for an eigenvalue λ of the matrix M , the value λ∗ is also an eigenvalue and
if λ ∈ R, λ is doubly degenerate [25, 36]. In the case of either c0 > 0 or c2 >

0, detM(ϕ0, ϕ⃗2) takes a complex value. It is important to note that the chemical
potential does not cause fermion sign problem unlike the case of lattice QCD [7].
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3.2 Fermion matrix on a lattice

In this section, we will obtain the discretized version of the fermion matrix Eq. (3.20).
For the spatial directions, the lattice has the same lattice constant, size and boundary
condition as defined in Sec. 2.4. For the temporal direction, we introduce a lattice
constant at = αta and a size Lt = Ntat and impose the anti-periodic boundary
condition.

Although, we consider the discretization with the five-point formula as well as that
with the three-point formula in Chap. 2, we adopt only the three-point formula in this
chapter to reduce computational costs.

In contrast to the improvement of lattice discretization in spatial directions, that in
temporal direction can be done by utilizing the relation between a trace of a product of
several normal ordered operators and path integrals without increase of computational
costs. Following Lee et al. [38, 39], let us consider the free nucleon case where contact
interaction terms are absent. In this case, the simplest lattice action is given by

Ssimple
E =

∑
n

[
χ∗
nχn+e4 − (1 + µ− 6h)χ∗

nχn − h
3∑

i=1

{χ∗
nχn+ei + χ∗

nχn−ei}

]
, (3.22)

where h = αt/2ML and e4 means the unit vector in the temporal direction. This
action has temporal discretization errors of O(αt). To reduce the discretization error,
let us start with the operator formalism. The free lattice Hamiltonian is

H free =
∑
n

[(
3

ML

− µ
)
N †

nNn −
1

2ML

3∑
i=1

(
N †

nNn+ei +N †
nNn−ei

)]
, (3.23)

and the grand canonical partition function can be written as

Z = Tr exp
(
−βH free

)
= Tr exp

(
−αtH

free
)Nt

, (3.24)

where we have divided into Nt pieces. By using the identity [8, 9], one can get

exp
(
−αtH

free
)

=: exp
(
−hfree

)
: +O(h) (3.25)

where

hfree =
∑
n

[
{1− eµαt (1− 6h)}N †

nNn − heµαt

3∑
i=1

{
N †

nNn+ei +N †
nNn−ei

}]
. (3.26)

Following Refs. [38, 39], we have introduced the additional eµαt factor multiplying h so
that in the resultant action the chemical potential appears in the usual manner [30, 31].
Then, we use the relation between a trace of a product of several normal ordered
operators and path integrals,

Tr : fn(N †, N) :: . . . :: f1(N
†N) :

=

∫
dχndχ

∗
n . . . dχ1dχ

∗
1 exp

[
n∑

j=1

χ∗
j (χj − χj+1)

]
n∏

j=1

fj(χ
∗
j , χj),

(3.27)
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with χn+1 = −χ1 and obtain

Sfree
E =

∑
n

[
χ∗
nχn+e4 − eµαt(1− 6h)χ∗

nχn − heµαt

3∑
i=1

{χ∗
nχn+ei + χ∗

nχn−ei}

]
.(3.28)

It is conventional to redefine the Grassmann field χn as

χ′
n = eµαtχn. (3.29)

Thus, the partition function is given by

Z ≃ egµαtNtN3
s

∫
Dχ′Dχ∗ exp

(
−S̃free

E

)
, (3.30)

where g represents the number of internal degrees of freedom (in the present case of
g = 2× 2 = 4, taking into account the spin and isospin degrees of freedom) and

Sfree
E =

∑
n

[
e−µαtχ∗

nχ
′
n+e4

− (1− 6h)χ∗
nχ

′
n − h

3∑
i=1

{
χ∗
nχ

′
n+ei

+ χ∗
nχ

′
n−ei

}]
. (3.31)

This action has temporal discretization errors of O(h). In the region where the NEFT
without pions is valid, ML = Ma/ℏc is much larger than 1; for example, for a =5 fm,
ML ∼ 25. Also, this action differs from the simple one of Eq (3.22) just by coefficients.
Thus, the discretization errors are reduced without increase of computational costs and
this action is superior to the simple one.

Next, we consider to take into account the contact interaction terms. When we
write down the free lattice Hamiltonian, Eq (3.23), we have performed the substitution,

N † ∇2

2M
N → 1

2ML

3∑
i=1

N †
n (Nn+ei − 2Nn +Nn−ei) . (3.32)

Corresponding to this substitution, we also perform the following substitutions,

N †←−∇2N →
3∑

i=1

(
N †

n+ei − 2N †
n +N †

n−ei

)
Nn, (3.33)

2N †←−∇ ·
−→
∇N →

3∑
i=1

[(
N †

n+ei −N
†
n

)
(Nn+ei −Nn)

+
(
N †

n −N
†
n−ei

)
(Nn −Nn−ei)

]
. (3.34)

This definition is determined so as to the relation,∫
d3x∇2

(
N †N

)
=

∫
d3xN †

(←−
∇2 + 2

←−
∇ ·
−→
∇ +

−→
∇2

)
N = 0, (3.35)

holds on a lattice. In addition to this, the substitution for the first derivative,

2∇i

(
N †N

)
→

(
N †

n+ei −N
†
n

)
(Nn+ei +Nn)

+
(
N †

n+ei +N †
n

)
(Nn+ei −Nn) , (3.36)
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is determined so that the relation,

∫
d3x∇

[
N †N∇

(
N †N

)]
=

∫
d3x

[{
∇
(
N †N

)}2
+N †N∇2

(
N †N

)]
= 0, (3.37)

also holds on a lattice by combining the substitution rule for the second derivative
defined above.

By using Eqs. (3.32), (3.33), (3.34), and (3.36), the lattice action for the NLO
NEFT without pions is given by

SNLO
E =

∑
n

[
e−µαtχ∗

nχ
′
n+e4

− (1− 6h)χ∗
nχ

′
n − h

3∑
i=1

(
χ∗
nχ

′
n+ei

+ χ∗
nχ

′
n−ei

)
+2iαt

√
c0ϕ0,n · (χ∗

nτ̃χ
′
n)

−2iαt
c2√
c0
ϕ0,n ·

3∑
i=1

(
χ∗
n+ei
− 2χ∗

n + χ∗
n

)
τ̃χ′

n

−2iαt
c2√
c0
ϕ0,n ·

3∑
i=1

χ∗
nτ̃

(
χ′
n+ei
− 2χ′

n + χ′
n−ei

)
−iαt

c2√
c0
ϕ0,n ·

3∑
i=1

(
χ∗
n+ei

τ̃χ′
n+ei
− 2χ∗

nτ̃χ
′
n + χ∗

n−ei
τ̃χ′

n−ei

)
−2iαt

√
c2χ

∗
n

3∑
i=1

{(
ϕ⃗2,n

)
i
· τ̃χ′

n+ei

}
+ 2iαt

√
c2

3∑
i=1

{(
ϕ⃗2,n

)
i
χ∗
n+ei

}
· τ̃χ′

n

+ϕ2
0,n + ϕ⃗2

2,n

]
. (3.38)

Thus, the fermion matrix on the lattice is written as

Mn,m = e−µαtδn+e4,m − (1− 6h)δn,m − h
3∑

i=1

(δn+ei,m + δn+ei,m)

+2iαt

√
c0ϕ0,n · τ̃ δn,m

−2iαt
c2√
c0
ϕ0,n · τ̃

3∑
i=1

(δn,m+ei − 2δn,m + δn,m−ei)

−2iαt
c2√
c0
ϕ0,n · τ̃

3∑
i=1

(δn+ei,m − 2δn,m + δn−ei,m)

−iαt
c2√
c0

3∑
i=1

(ϕ0,n+ei − 2ϕ0,n + ϕ0,n−ei) · τ̃ δn,m

−2iαt

√
c2

3∑
i=1

{(
ϕ⃗2,n

)
i
· τ̃ δn+ei,m −

(
ϕ⃗2,m

)
i
· τ̃ δn,m+ei

}
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= e−µαtδn+e4,m +

[
−(1− 6h) + 2iαt

√
c0

(
1 + 15

c2
c0

)
ϕ0,n · τ̃

−iαt
c2√
c0

3∑
i=1

(ϕ0,n+ei + ϕ0,n−ei) · τ̃

]
δn,m

+
3∑

i=1

[
−h− 2iαt

c2√
c0

(ϕ0,n+ei + ϕ0,n) · τ̃ − 2iαt

√
c2

(
ϕ⃗2,n

)
i
· τ̃

]
δn+ei,m

+
3∑

i=1

[
−h− 2iαt

c2
c0

√
c0 (ϕ0,n−ei + ϕ0,n) · τ̃ + 2iαt

√
c2

(
ϕ⃗2,n−ei

)
i
· τ̃

]
δn−ei,m.

(3.39)

We suppress the effect of the boundary condition in this expression.
Since the lattice discretization does not affect internal symmetry, in the case of

c0, c2 < 0, the matrix Mn,m satisfies the relation Eq. (3.21) in the continuum, so there
is no sign problem. On the other hand, in the case of either c0 > 0 or c2 > 0, the
sign problem occurs and we cannot perform path integrals by using a Monte Carlo
method.

In the most part of the RG flow which corresponds to the deuteron, Y takes a
positive value as shown in Fig. 2.11, so, if we would like to perform the simulation
with such a value of Y , we would suffer from the sign problem.

3.3 Reweighting method based on RG analysis

In this section, we will propose the reweighting method based on the RG analysis to
avoid the sign problem. The reweighting method [19] is one of the methods often
employed to avoid the sign problem in LQCD simulations. The basic idea of the
reweighting method is shown schematically as follows: First, we rewrite the partition
function as

Z =

∫
Dϕ detM(ϕ)e−S(ϕ) =

∫
Dϕ detM(ϕ)

detM ′(ϕ)
detM ′(ϕ)e−S(ϕ), (3.40)

where detM ′(ϕ) is assumed to be positive semidefinite. Second, we perform path inte-
gral based on Monte Carlo method regarding detM ′(ϕ)e−S(ϕ) as the probability func-
tion. Finally, we deal with detM(ϕ)/detM ′(ϕ) as the reweighting factor which cor-
rects the difference between the original “probability” function, detM(ϕ)e−S(ϕ), and
the probability function which we employ to sample configurations, detM ′(ϕ)e−S(ϕ).
In this method, the expectation value of an operator O is evaluated as

⟨O⟩ =

∫
DϕO detM(ϕ)

detM ′(ϕ)
detM ′(ϕ)e−S(ϕ)∫

Dϕ detM(ϕ)

detM ′(ϕ)
detM ′(ϕ)e−S(ϕ)

. (3.41)

Although detM ′(ϕ) can be chosen arbitrarily, it is preferable in practice that the
reweighting factor does not strongly depend on ϕ. From the viewpoint of the RG
analysis, we propose to omit irrelevant operators from the fermion matrix, since irrel-
evant operators are insignificant at low energies, whereas relevant operators play an
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Table 3.1: Labels for various sets of a0 and r0.

Label a0 [fm] r0 [fm]
Ref 5.42 0.00
Irr1 5.42 0.25
Irr2 5.42 0.55
Irr3 5.42 0.85
Irr4 5.42 1.05
Irr5 5.42 1.25
Irr6 5.42 1.55
Irr7 5.42 1.75
Rel1 4.42 0.00
Rel2 3.42 0.00
Rel3 2.42 0.00
Rel4 2.00 0.00

important role. We expect that the fermion determinant without irrelevant operators
mimics the original one well and that the reweighting factor depends on ϕ weakly.

Since the relevant operator corresponds to the scattering length and the leading
irrelevant operator to the effective range, we exclude the irrelevant operator by fixing
the effective range calculated by the diagonalization to be 0.00 fm, while making the
strength of the relevant operator by requiring the scattering length to be the physical
value, 5.42 fm. In Fig. 3.1, we show the reference point, (a0, r0) = (5.42, 0.00) fm, of
the reweighting method and the physical point, (a0, r0) = (5.42, 1.75) fm, in the case of
the lattice constant a = 5 fm together with the RG flow, the nontrivial fixed point, the
phase boundary, and the relevant direction. We also show in Fig. 3.1 the points with
the physical values of scattering length and various values of effective range, as well as
points with the vanishing value of the effective range and various values of scattering
length. The former points are considered to be along the irrelevant direction, while the
latter along the relevant direction. In Table 3.1, we summarize the relation between
(a0, r0) and labels shown in Fig. 3.1. Note that the nontrivial fixed point corresponds
to (a0, r0) = (∞, 0.00). In the following analysis, we will study the dependence of the
reweighting factor on these directions.

The reweighting method we propose can be expressed as

Z ≃ egµαtNtN3
s

∫
Dϕ0Dϕ⃗2 detM

(
ϕ0, ϕ⃗2; c0, c2;µ

)
exp

[∑
n

(
−ϕ2

0,n − ϕ⃗2
2,n

)]
,

= egµαtNtN3
s

∫
Dϕ0Dϕ⃗2

detM
(
ϕ0, ϕ⃗2; c0, c2;µ

)
detM

(
ϕ0, ϕ⃗2; cRef

0 , cRef
2 ; ν

)
×detM

(
ϕ0, ϕ⃗2; c

Ref
0 , cRef

2 ; ν
)

exp

[∑
n

(
−ϕ2

0,n − ϕ⃗2
2,n

)]
, (3.42)

where the form of the fermion matrix M(ϕ0, ϕ⃗2; c0, c2;µ) is given in Eq. (3.39). Here,
we have introduced a different value of the chemical potential for the reference deter-



3.3. REWEIGHTING METHOD BASED ON RG ANALYSIS 35

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

X

Y

Ref	
Rel1	

Rel2	

Rel3	

Rel4	

Irr1	
Irr2	

Irr3	

Irr4	

Irr7	

Irr6	

Irr5	

Figure 3.1: The Physical point corresponding to deuteron and the reference point of
the reweighting method where (a0, r0) = (5.42, 0.00) fm at a = 5 fm are shown by
magenta and red points, respectively. The cyan-colored points are in the irrelevant
direction, corresponding to a0 = 5.42 fm and 0.00 fm < r0 < 1.75 fm, while the
orange-colored points are in the relevant direction, corresponding to a0 < 5.42 fm and
r0 = 0.00 fm.

minant. The purpose of it will be explained shortly.

The expectation value of the reweighting factor we can evaluate on the lattice is

⟨
detM

(
ϕ0, ϕ⃗2; c0, c2;µ

)
detM

(
ϕ0, ϕ⃗2; cRef

0 , cRef
2 ; ν

)⟩

= egναtNtN3
s

∫
Dϕ0Dϕ⃗2

detM
(
ϕ0, ϕ⃗2; c0, c2;µ

)
detM

(
ϕ0, ϕ⃗2; cRef

0 , cRef
2 ; ν

)
× 1

ZRef
detM

(
ϕ0, ϕ⃗2; c

Ref
0 , cRef

2 ; ν
)

exp

[∑
n

(
−ϕ2

0,n − ϕ⃗2
2,n

)]
, (3.43)
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where

ZRef ≃ egναtNtN3
s

∫
Dϕ0Dϕ⃗2 detM

(
ϕ0, ϕ⃗2; c

Ref
0 , cRef

2 ; ν
)

exp

[∑
n

(
−ϕ2

0,n − ϕ⃗2
2,n

)]
.

(3.44)

This corresponds to the ratio of the partition function Z to ZRef up to the factor
eg(µ−ν)αtNtN3

s . Thus, it varies as a function of the difference of the thermodynamic
potentials or the pressure as follows:

Z

ZRef
= e−β(Ω−ΩRef) = e+βN3

s (p−pRef). (3.45)

This value just shows the normalization of the probability function. To examine how
close the two probability functions are to each other, we tune the expectation value of
the reweighting factor to be one within errors by changing the chemical potential for
the reference determinant from that for the original determinant and then evaluate
the standard deviation of the reweighting factor. This tuning is equivalent to choosing
the pressure of the reference system equal to the pressure of the target system, as is
easily seen from Eq. (3.45). This process is realized by utilizing the relation between
the pressure of the system and the chemical potential:

p(µ) =

∫ µ

−∞
dµ′ρ(µ′), (3.46)

where ρ(µ) is the nucleon density.
Since to generate configurations is more time-consuming than to evaluate the

reweighting factor, in actual calculations, we use configurations obtained with fixed
ν common to all reweighting points along the relevant and the irrelevant directions
and change the chemical potential for the original determinant, µ, instead of changing
ν. For the calculations shown below, the difference between µ and ν is only of a few
percent order.

3.4 Computational strategy

In this section, we will describe how to generate auxiliary field configurations. We
sample the partition function,

Z ∝
∫ ∏

n

Dϕ0,nDϕ2,n detM
(
ϕ0,ϕ2; c

Ref
0 cRef

2 ; ν
)

exp

[∑
n

(
−ϕ2

0,n − ϕ2
2,n

)]
, (3.47)

where the fermion matrix, Mn,m is given in Eq. (3.39), by using the Metropolis al-
gorithm. In this process, we utilize the locality of the auxiliary fields, ϕ0,n and ϕ2,n,
in the fermion matrix. Let us consider to replace the old auxiliary fields on the site
n, Φn = (ϕ0,n, ϕ2,n), with the new one Φn + ∆Φn. The fermion matrix for the new
configuration, M(Φn+∆Φn), differs from that for the old configuration, M(Φn), only
by elements which correspond to the site and the nearest neighbor sites in spatial di-
rections. These non-zero elements of ∆M = M(Φn +∆Φn)−M(Φn) can be collected
into one square I × I block, (∆M)I×I , by permuting lines and columns so that the
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other blocks of ∆M are empty. Therefore, the ratio of two fermion determinants can
be expressed by

det(M + ∆M)

detM
= det(1 + ∆MM−1) = det

(
1I×I + (∆M)I×I(M

−1)I×I

)
(3.48)

due to the fact that the matrix 1 + ∆MM−1 is a block triangular matrix [44]. Note
that only we have to do is to evaluate the determinant of a I×I matrix. The size of the
matrix does not depend on the lattice volume and is related to which discretization
formula is employed. If we employ the discretization with the five-point formula,
∆M has the non-zero elements which correspond not only to the site and the nearest
neighbor sites but also to the next-nearest neighbor sites in each spatial direction. This
is why we adopt the three-point formula to reduce computational costs. In addition
to this, we have to calculate only the I × I block of M−1 to evaluate the ratio. We
calculate the I × I block of M−1 column by column by using the conjugate gradient
method.

For auxiliary fields on a site, we try to update nhit times successively. The ratio be-
tween the new matrix, M (k+1), and the lastly accepted matrix, M (k), can be evaluated
recursively by using the inverse matrix of the original matrix M (0) as follows [44]:

ρ(0) = 1,

ρ(k+1) =
detM (k+1)

detM (k)

=
detM (k+1)

detM (0)

detM (0)

detM (k)

=
detM (k+1)

detM (0)

detM (k−1)

detM (k)
· · · detM (0)

detM (1)

= det
(
1I×I + (M (k+1) −M (0))I×I(M

(0))−1
I×I

) 1

ρ(k)
1

ρ(k−1)
· · · 1

ρ(2)
1

ρ(1)
.(3.49)

Note that the index 1, . . . , k runs only for the matrices which corresponds to the
accepted fields.

3.5 Numerical results

In this section, we discuss the reweighting factor obtained by the Monte Carlo simula-
tions. All simulations are performed on N3

s ×Nt = 43 × 4 lattice with a = at = 5 fm.
Thus, the temperature of the system is about 10 MeV. For almost all the parameter
set, we generate about 250,000 configurations and discard the first 500 configurations
as thermalization. We perform the measurement at every 100 configurations so the
sample size is 2,500.

3.5.1 Reweighting factor

First, we show the result of the reweighting factor. Fig. 3.2 (a) shows the reweighting
factor for the point labeled as “Irr7” corresponding to the physical point for various
values of chemical potential in the case of µ = ν on the complex plane and Fig. 3.2 (b)
shows the absolute value of it as a function of the chemical potential. For all values
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of µ, the real part of the reweighting factor takes larger value than the imaginary
part. The absolute value of the reweighting factor increase as the chemical potential
increases. This behavior can be understood as the increase of the difference of the
partition functions up to the factor eg(µ−ν)αtNtN3

s as already mentioned in Sec. 3.3.
By changing the chemical potential for the original determinant from that for the

reference determinant, we have tuned the expectation value of the reweighting factor
to be one within errors. Fig. 3.3 shows the resulting reweighting factor for the point
labeled as “Irr7” on the complex plane.

The tuning requires the difference between µ and ν to be only of a few percent
order. Since the sample size is common to all results, the larger error bar corresponds
to the larger standard deviation. Hereafter, we are going to argue that the standard
deviation represents the similarity of the probability functions.

Fig. 3.4 shows the standard deviation of the absolute value of the reweighting factor
as a function of the chemical potential of the reference determinant ν. The standard
deviation increases as the chemical potential increases. This behavior is natural be-
cause the renormalization group analysis on which the reweighting method is based
have been performed at zero density and the larger chemical potential corresponds to
the larger density.
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Figure 3.2: The reweighting factor for the point labeled as “Irr7” corresponding to
the physical point for various values of chemical potential in the case of µ = ν on the
complex plane (a), and the absolute value of it as a function of the chemical potential
(b).



40 CHAPTER 3. REWEIGHTING METHOD

μ≃-16 [MeV]

μ≃-20 [MeV]

μ≃-24 [MeV]

μ≃-28 [MeV]

μ≃-32 [MeV]

μ≃-36 [MeV]

μ≃-40 [MeV]

0.98 0.99 1.00 1.01 1.02 1.03
-0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

Real

Im
a
g

Figure 3.3: The reweighting factor for the point labeled as “Irr7” on the complex plane
after tuning the chemical potential µ so that the real part of the expectation value to
be one within errors.
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Figure 3.4: The standard deviation of the absolute value of the reweighting factor for
the point labeled as “Irr7” as a function of the chemical potential of the reference
determinant ν.
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Fig. 3.5-3.14 shows the same as in Fig. 3.4, but for the points labeled as “Irr1”-
”Irr6” and “Rel1”-”Rel4”, respectively. For all results, the monotonic increase of the
standard deviation can be seen.

Irr1

-40 -35 -30 -25 -20 -15
0.0

0.2

0.4

0.6

0.8

1.0

ν [MeV]

S
ta
n
d
a
rd

d
e
v
ia
ti
o
n

Figure 3.5: The same as in Fig. 3.4, but for the point labeled as “Irr1”.
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Figure 3.6: The same as in Fig. 3.4, but for the point labeled as “Irr2”.
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Figure 3.7: The same as in Fig. 3.4, but for the point labeled as “Irr3”.
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Figure 3.8: The same as in Fig. 3.4, but for the point labeled as “Irr4”.
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Figure 3.9: The same as in Fig. 3.4, but for the point labeled as “Irr5”.
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Figure 3.10: The same as in Fig. 3.4, but for the point labeled as “Irr6”.
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Figure 3.11: The same as in Fig. 3.4, but for the point labeled as “Rel1”.
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Figure 3.12: The same as in Fig. 3.4, but for the point labeled as “Rel2”.
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Figure 3.13: The same as in Fig. 3.4, but for the point labeled as “Rel3”.
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Figure 3.14: The same as in Fig. 3.4, but for the point labeled as “Rel4”.
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To examine the direction dependence of the standard deviation, we plot the stan-
dard deviation for ν ≃ −40 MeV as a function of the distance in the X − Y plane in
Fig. 3.15. The standard deviation in the irrelevant direction is significantly smaller
than that in the relevant direction at the same distance: Compare label “Irr1” with
label “Rel1” and label “Irr6” with label “Rel4”, respectively.
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Figure 3.15: The direction dependence of the standard deviation for ν ≃ −40 MeV.

Fig. 3.16-3.21 shows the same as in Fig. 3.15, but for various values of chemical
potential. The tendency of the direction dependence is preserved for all values of the
chemical potential.
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Figure 3.16: The same as in Fig. 3.15, but for ν ≃ −36 MeV.
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Figure 3.17: The same as in Fig. 3.15, but for ν ≃ −32 MeV.
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Figure 3.18: The same as in Fig. 3.15, but for ν ≃ −28 MeV.
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Figure 3.19: The same as in Fig. 3.15, but for ν ≃ −24 MeV.
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Figure 3.20: The same as in Fig. 3.15, but for ν ≃ −20 MeV.
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Figure 3.21: The same as in Fig. 3.15, but for ν ≃ −16 MeV.
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3.5.2 Scaling dimension vs. canonical dimension

In the reweighting method we have concerned, we perform the power counting based on
the scaling dimension through renormalization group analysis. On the other hand, we
can also perform the power counting based on the canonical dimension through naive
dimensional analysis. In this subsection, we compare the reweighting method based
on renormalization group analysis with that based on naive dimensional analysis.

Although both the leading order and the next-to-leading order contact interaction
terms are irrelevant operators in the power counting based on the canonical dimen-
sion, we deal with the next-to-leading order term as the irrelevant operator which is
omitted from the reference determinant. Fig. 3.22 shows the the standard deviations
of the absolute value of the reweighting factor for the point labeled as “Irr7” obtained
with renormalization group analysis and naive dimensional analysis as a function of
the chemical potential of the reference determinant ν. For the result with naive di-
mensional analysis, the sample size is 500. The standard deviation obtained with
renormalization group analysis is significantly smaller than that obtained with naive
dimensional analysis for all values of the chemical potential. This fact indicates that
the power counting based on the scaling dimension is superior to that based on the
canonical dimension even if the nucleon density of the system is finite.
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Figure 3.22: The standard deviations of the absolute value of the reweighting fac-
tor for the point labeled as “Irr7” obtained with renormalization group analysis and
naive dimensional analysis as a function of the chemical potential of the reference
determinant ν.





Chapter 4

Summary

In this dissertation, we developed the reweighting method on the basis of RG analysis
by considering the NLO NEFT without pions.

First, we performed the RG analysis of the NLO NEFT without pions defined on
a spatial lattice by diagonalizing the lattice Hamiltonian numerically. To obtain the
RG flows, we change the lattice constant with the binding energy and the ANC fixed.
We showed the validity of using the binding energy and the ANC as a low-energy
physical quantity to fix the effective field theory couplings for a wide range of the
cutoff. Through this analysis, we not only obtained the RG flows, but also inferred
the relevant operator, the phase boundary, and the location of the nontrivial fixed
point. We compared the obtained RG flows with the flow in the continuum and the
flows obtained analytically with lattice-regularized integrals. It became clear that the
location of the nontrivial fixed point is close to that obtained by the corresponding
analytic calculation with lattice-regularized integrals.

Then, we proceeded to lattice simulations. We determined the reference point of
the reweighting method by fixing the effective range to be 0.00 fm and the scattering
length to be the physical value, 5.42 fm. We also considered the points that are along
with the irrelevant direction with the physical scattering length and the points that
are along with the relevant direction with the effective range 0.00 fm. We generated
configurations which obey the probability function with the reference determinant by
performing Monte Carlo simulations. Since the expectation value of the reweighting
factor just represents the normalization of the probability function, in evaluating the
reweighting factor, we tuned it to be one within errors by utilizing the relation between
the pressure of the system and the chemical potential. We compared the standard de-
viations of the tuned reweighting factor in the relevant direction with those in the
irrelevant direction and concluded that the reweighting in the irrelevant direction is
significantly superior to that in the relevant direction. We also compared the reweight-
ing method based on RG analysis with that based on naive dimensional analysis and
confirmed the former is better than the latter.

By performing RG analysis and lattice simulations, we have established the reweight-
ing method for nuclear effective field theory on a lattice on the basis of renormalization
group analysis. It is noteworthy that, although we confine ourselves to considering
the NLO NEFT without pions in this study, the method we developed can be applied
to the case where pion interactions and/or higher order operators are included. Recall
that NEFT with pions has the sign problem even if the chemical potential is absent
and the long-distance parts of pion interaction, corresponding to the pion exchanges
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with the momenta below the cutoff Λ, are irrelevant. It is worth applying the method
to the NEFT with pions in which (nonlinearly realized) chiral symmetry is exactly
implemented.
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