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Abstract
Temperature (T ) dependence of meson mass is an essential quantity char-

acterizing properties of hot-QCD matter. T dependence of meson masses is

obtainable through measurements of mesons and leptons emitted in heavy-

ion collisions, but the experimental results have large uncertainty because

of indirect measurements. In this thesis, the meson mass is referred to as

“meson pole mass” in order to distinguish it from “meson screening mass”.

Meson pole and screening masses, Mpole
ξ (T ) and M scr

ξ (T ), of ξ-meson are

defined by the inverse of the exponential decay of the mesonic correlation

functions in its temporal and spatial directions, respectively. This definition

means that Mpole
ξ (T ) is experimentally measurable, but M scr

ξ (T ) is not. In

lattice QCD (LQCD) simulations at finite T as the first-principle calculation

of QCD, the M scr
ξ (T ) is usually calculated instead of Mpole

ξ (T ), since the tem-

poral (imaginary-time) size is limited up to 1/T , but the spatial lattice size

doesn’t have such limitation in general. The relation between Mpole
ξ (T ) and

M scr
ξ (T ) at finite T is not understood at all, although Mpole

ξ (0) = M scr
ξ (0)

from the definition.

This thesis aims at predicting meson pole masses Mpole
ξ (T ) reliably from

the corresponding meson screening masses M scr
ξ (T ) calculated with LQCD

simulations. For this purpose, we construct the practical and reliable effec-

tive model that reproduces LQCD data on M scr
ξ (T ) and describe the chiral-

symmetry restoration and the effective U(1)A-symmetry restoration simulta-

neously. In effective models, screening-mass calculations were quite difficult

compared with pole-mass calculations, because it required time-consuming

numerical calculations. This difficulty is solved by proposing a new method

based on the Pauli-Villars regularization and a new prescription in calcu-

lating the spatial correlation function for M scr
ξ (T ). We have then predicted

Mpole
ξ (T ) from LQCD data on M scr

ξ (T ) by using the proposed model for both

scalar mesons (ξ = a0,κ, σ and f0) and pseudoscalar ones (ξ = π, K, η and

η′). Particularly for η′ meson, we have found that the predicted value is

consistent with the experimental value recently measured in heavy-ion colli-

sions. The model also proposes the following approximate relations between

Mpole
ξ (T ) and M scr

ξ (T ): (i) M scr
ξ (T ) − Mpole

ξ (T ) ≈ M scr
ξ′ (T ) − Mpole

ξ′ (T ) and

(ii) M scr
ξ (T )/M scr

ξ′ (T ) ≈ Mpole
ξ (T )/Mpole

ξ′ (T ), when ξ′-meson has the same

spin-parity as ξ-meson. Using relations (i) and (ii), we can easily estimate

Mpole
ξ (T ) from M scr

ξ (T ),M scr
ξ′ (T ) and Mpole

ξ′ (T ). When ξ′-meson is heavy,

Mpole
ξ′ (T ) may be obtainable with state-of-arts LQCD simulations.
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Chapter 1

Introduction

1.1 Quark matter at finite temperature

Strong interaction is one of the four basic interactions existing in the nature.

The interaction is working among quarks and gluons. In this sense, quarks

and gluons are fundamental particles in the nature. At low temperature

(T ), they are confined into hadrons by strong interaction. As T increases,

the mean distance among hadrons and anti-hadrons gets shorter, and con-

sequently hadrons and anti-hadrons start to overlap with each other. At

extremely high T , hadrons are considered to melt into quarks and gluons

gas, i.e., quark–gluon plasma (QGP). In fact, the QGP phase exists in the

early universe, and the QGP phase is changed into the hadron phase as a

result of the cooling (expansion) of the universe. The transition between the

hadron and QGP phases has been studied experimentally and theoretically;

however, it has not been revealed yet. Elucidation of quark and hadron mat-

ters at finite T is an essential subject between particle physics and cosmology,

that is, a bridge between the two fields.

The strong interaction is known to be described by quantum chromody-

namics (QCD). The Lagrangian density in Euclid spacetime is

LQCD = ψ̄ (γµDµ + m̂)ψ +
1

2
trc
(
F 2
µν

)
(1.1)

for quark fields ψ and gluon fields Aµ. The trace trc is taken in color space.

The ψ is ψ = (ψu,ψd,ψs,ψc,ψb,ψt)T for up (u), down (d), strange (s), charm

(c), bottom (b), and top (t) quarks. The Aµ are connected with ψ through

the covariant derivative Dµ = ∂µ− igAµ with the coupling constant g. Gluon

dynamics is organized by the field strength tensor Fµν :

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]. (1.2)

The current-quark-mass matrix m̂ is m̂ = diag(mu,md,ms,mc,mb,mt) and

the values are tabulated in Table 1.1. In this study, we focus on the nonper-

turbative aspects of hot-QCD matter that are realized in lower temperatures

of order ΛQCD ∼ 200 MeV as a typical energy scale of QCD. Therefore we

consider dynamics of the light quarks (u, d, and s quarks) whose current

masses are smaller than ΛQCD.

1



2 CHAPTER 1. INTRODUCTION

Table 1.1: Experimental values on current quark masses taken from Ref. [1].

mu md ms mc mb mt

2.3 MeV 4.8 MeV 95 MeV 1.275 GeV 4.18 GeV 160 GeV

Fig. 1.1: Running coupling constant αs as a function of energy scale Q taken

from Ref. [1].

The most important property of QCD is asymptotic freedom. Strong in-

teraction among quarks and gluons gets weaker as the energy scale Q goes

up. The Q dependence of the running coupling constant αs(Q) is experimen-

tally measured in the deep-inelastic scattering (DIS) between leptons and

hadrons, τ decay, and so on, as shown in Fig. 1.1. The symbols denote the

experimental results and the lines denote the theoretical predictions based

on perturbation theory. The perturbation well reproduces the experimental

results in Q > 1 GeV.

In low Q ≤ 1 GeV, the QCD vacuum has nonperturbative structures

such as color confinement, the spontaneous breaking of chiral symmetry, and

the existence of instantons and antiinstantons. They come from large/local

gauge and global symmetries that the QCD Lagrangian possesses.

1.1.1 Deconfinement transition and center symmetry

The transition from the hadron (confinement) phase at low T to the QGP

(deconfinement) phase at high T is characterized by the spontaneous breaking

of “center symmetry”, as shown below. The symmetry is exact in the pure

Yang–Mills theory, but not in QCD. The pure Yang–Mills theory corresponds

to QCD in the limit of heavy quark mass. In QCD, the expectation value
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⟨O⟩ of an operator O is obtained with the path integral as

⟨O⟩ = 1

Z

∫

BC

DψDψ̄DAµ O[ψ, ψ̄, Aµ] exp
[
−(SQuark[ψ, ψ̄, Aµ] + SYM[Aµ])

]
,

(1.3)

where the quark and Yang–Mills parts of QCD action, SQuark and SYM, are

SQuark =

∫ β

0

dτ

∫
d3x ψ̄(γµDµ + m̂)ψ, SYM =

∫ β

0

dτ

∫
d3x

1

2
trc(F

2
µν)

(1.4)

in Euclidean spacetime (xµ) = (τ,x) where imaginary time τ has an upper

limit β = 1/T . The partition function Z of QCD is described as

Z =

∫

BC

DψDψ̄DAµ exp
[
−(SQuark[ψ, ψ̄, Aµ] + SYM[Aµ])

]
. (1.5)

The subscript “BC” of the integral means the boundary conditions

ψ (τ + β,x) = −ψ (τ,x) , ψ̄ (τ + β,x) = −ψ̄ (τ,x) , (1.6)

Aµ (τ + β,x) = Aµ (τ,x) (1.7)

for ψ, ψ̄ and Aµ. In the τ direction, we should impose the antiperiodic bound-

ary condition on fermions such as quarks, and the periodic boundary condi-

tion on bosons such as gluons. Now we consider the following local SU(3)c
gauge transformation

ψ(x) → ψ′(x) = V (x)ψ(x),

Aµ(x) → A′
µ(x) = V (x)

(
Aµ(x)−

i

g
∂µ

)
V †(x) (1.8)

with the aperiodic boundary condition

V (τ + β,x) = zV (τ,x) (1.9)

for V (x) in the τ direction. The symbol z is the “center” of SU(3)c group

that commutes with all the elements of SU(3)c, and it is defined as

z = e2πik/3IC ≡ z3IC (k = 0, 1, 2) (1.10)

with the unit matrix IC in color space. We call the transformation as “Z3

transformation” in order to distinguish it from the usual gauge transforma-

tion (1.8)-(1.9) with z replaced by IC. In QCD, the Lagrangian is invariant

under the Z3 transformation. This symmetry is then referred to be “center

symmetry”. However, the Z3 transformation modifies the boundary condi-

tion for ψ, ψ̄ as

ψ′ (τ + β,x) = −z3ψ
′ (τ,x) , ψ̄′ (τ + β,x) = −z∗3ψ̄

′ (τ,x) . (1.11)

Therefore, center symmetry is explicitly broken through the boundary condi-

tion for dynamical quarks, although it is preserved in QCD Lagrangian itself.
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Center symmetry becomes exact in pure Yang–Mills theory, since the theory

has no quark-dynamics.

Center symmetry is considered to be approximately good in QCD, partic-

ularly for heavy quarks. An order parameter of the center-symmetry breaking

is the Polyakov loop Φ ≡ ⟨Φ(x)⟩ where the Polyakov-loop operator Φ(x) is

defined by

Φ(x) =
1

3
trcT exp

(
ig

∫ β

0

dτ A4(τ,x)

)
. (1.12)

Here, the symbol T stands for the path ordering for τ . Under the Z3 trans-

formation, the Polyakov-loop operator is transformed as

Φ(x) → Φ′(x) = z3Φ(x). (1.13)

This property means that Φ = 0 corresponds to the center-symmetric phase

and Φ ̸= 0 does to the center-symmetry broken phase. The Polyakov loop is

related to an excitation energy FQ of single heavy quark as [2]

Φ ∝ exp (−βFQ). (1.14)

In the confinement phase, FQ should be infinity, so that Φ = 0. Therefore, the

confinement phase is center-symmetric. In the deconfinement phase, FQ is

finite, so that Φ ̸= 0. Hence, center symmetry is broken in the deconfinement

phase. The Polyakov loop is thus an order parameter of the breaking of center

symmetry, that is, the confinement/deconfinement transition:

Φ =

{
0 for the confinement phase with center symmetry,

finite for the deconfinement phase without center symmetry.
(1.15)

1.1.2 Spontaneous breaking of chiral symmetry

In the chiral limit of mu = md = ms = 0, QCD Lagrangian (1.1) is invariant

under the flavor U(3)R×U(3)L rotation for the right- and left-handed quarks,

ψR and ψL, defined by

ψR = P+ψ, ψL = P−ψ (1.16)

with ψ = (ψu,ψd,ψs)T and the projection operators P± = (1 ± γ5)/2. We

rewrite the Lagrangian with ψR and ψL fields as

LQCD = ψ̄RγµDµψR + ψ̄LγµDµψL + (ψ̄Rm̂ψL + ψ̄Lm̂ψR) + · · · , (1.17)

where m̂ = diag(mu,md,ms). The global U(3)R×U(3)L transformation with

rotation angles α and β is

ψR → ψ′
R = U(α)ψR, ψL → ψ′

L = U(β)ψL,

ψ̄R → ψ̄′
R = ψ̄RU

†(α), ψ̄L → ψ̄′
L = ψ̄LU

†(β). (1.18)
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Here, U(θ) is a unitary matrix with rotation angles θ = (θ0, ..., θ8):

U(θ) = exp

(
i

8∑

a=0

θaT a

)
(1.19)

with the matrices T a defined by

T 0 =

√
2

3
IF, T a =

λa

2
(a = 1, 2, ..., 8), (1.20)

where the IF is the unit matrix and the λa correspond to the Gell-Mann

matrices in flavor space. The transformation (1.18) with β = −α is called

“chiral transformation”, and QCD Lagrangian (1.17) is invariant under the

chiral transformation in the chiral limit. If one considers finite current-

quark masses, chiral symmetry is explicitly broken by the mass terms in

QCD Lagrangian (1.17). The explicit breaking seems to be small, since

mu,md,ms < ΛQCD ∼ 200 MeV. Therefore chiral symmetry is approximately

good in QCD Lagrangian. However, in QCD vacuum, chiral symmetry is not

preserved and U(3)R×U(3)L symmetry is broken into SU(3)V×U(1)V×U(1)A
symmetry. This is called “the spontaneous breaking of chiral symmetry”. An

order parameter of the breaking is chiral condensate

⟨ψ̄fψf⟩ = ⟨ψ̄R,fψL,f⟩+ ⟨ψ̄L,fψR,f⟩ (1.21)

for flavor f . The condition ⟨ψ̄fψf⟩ = 0 corresponds to the chiral-symmetric

phase and ⟨ψ̄fψf⟩ ̸= 0 does to the chiral-symmetry broken phase as

⟨ψ̄fψf⟩ =
{

0 for the chiral-symmetric phase,

finite for the chiral-symmetry broken phase.
(1.22)

1.1.3 Instantons and U(1)A symmetry breaking

In Ref. [3], Weinberg considered the relation between pion mass (Mπ) and

η′-meson mass (Mη′). He pointed out that current algebra indicates Mη′ ≤√
3Mπ and this result is inconsistent with the experimental result Mη′ ≫√
3Mπ. This problem was solved by considering quantum anomaly of axial

current and introducing topologically nontrivial gauge configurations, each

with different winding number ν, in QCD vacuum. In the chiral limit (m̂ =

0), the quantum anomaly leads to

∂µj5µ(x) = −2NfQ(x) (1.23)

as a relation between the U(1)A current j5µ(x) and the topological charge

density Q(x), which are defined by

j5µ(x) = ψ̄(x)γµγ5ψ(x), Q(x) =
g2

16π2
trc
(
Fµν(x)F̃µν(x)

)
(1.24)
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with the number Nf of flavors and

F̃µν(x) =
1

2
ϵµνρσFρσ(x). (1.25)

The winding number ν is defined by

ν ≡
∫

d4x Q(x). (1.26)

The nontrivial gauge configuration with ν = 1 (ν = −1) is called instanton

(antiinstanton).

In the operator level, U(1)A symmetry is always broken through Q(x),

as shown in Eq. (1.23). For the expectation value of Eq. (1.23), the U(1)A-

symmetry breaking is affected by the nontrivial structure of QCD vacuum.

After integrating both the sides of Eq. (1.23) in spacetime x, global U(1)A
symmetry is approximately conserved if QCD vacuum is dominated by topo-

logically trivial (ν = 0) gauge configurations [4]. In this sense, the U(1)A-

symmetry breaking due to finite ν is simply called “U(1)A anomaly” in this

thesis.

1.2 Experimental surveys for quark matter

In experiments, properties of hot-QCD matter have been explored through

measurements of hadrons and leptons produced in heavy-ion collisions. Heavy

ions are collided with incident energies large enough to create QGP. In Rel-

ativistic heavy-ion collider (RHIC) experiments [5], QGP is considered to be

realized in the intermediate stage of the collisions by measuring various kinds

of flows and jets of hadrons. Similar measurements have been performed by

changing incident energies, centrality, and targets with Large Hadron Col-

lider (LHC) in CERN, Facility for Antiproton and Ion Research (FAIR) in

GSI, Nuclotron-based Ion Collider fAcility (NICA) in Dubna, and Japan

Proton Accelerator Research Complex (JPARC) in KEK.

T dependence of meson mass is the essential quantity that characterizes

properties of hot-QCD matter. In principle, one can determine T dependence

of meson masses through measurements of mesons emitted in heavy-ion col-

lisions. However, the experimental results have large uncertainty in general,

because they are indirect measurements. In fact, η′-meson mass measured at

finite T has large errors that mainly come from data analyses [6].

1.3 Lattice QCD and effective models

Lattice QCD (LQCD) simulation is the first-principle calculation of QCD

and hot-QCD. In the simulations, spacetime x is discretized into a lattice.

Each lattice point is labeled by a vector n = (nx, ny, nz, nτ ), where xµ = nµa
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for lattice spacing a and integer nµ. Quark fields ψ(x) and ψ̄(x) are defined

on each lattice point. For convenience, we introduce dimensionless quark

fields ψn and ψ̄n on each lattice point:

ψ(x) = a3/2ψn, ψ̄(x) = a3/2ψ̄n. (1.27)

The factor a3/2 is necessary to make ψn and ψ̄n dimensionless. Gluon fields

Aµ(x) are described as link variables

Un,µ ≡ U(na, na+ µ̂a) (1.28)

with the comparator

U(x, y) ≡ P exp

[
ig

∫ y

x

dzνAν(z)

]
, (1.29)

where µ̂ is the unit vector in the µ direction and the symbol P is the path or-

dering for the z-direction. The QCD partition function Z is then represented

by

Z =

∫
DψDψ̄DU exp

[
−
(
SQuark[ψ, ψ̄, U ] + SYM[U ]

)]

=

∫
DU detM[U ] exp [−SYM[U ]], (1.30)

where see for example Ref. [7] for the explicit forms of SQuark, SYM,M and the

path integral. The path integral is numerically performed by using Monte-

Carlo method with the importance sampling. When detM[U ] is complex, the

importance sampling breaks down. This problem is called “Sign problem”.

This problem occurs for finite quark-number chemical potential µq. For this

reason, LQCD simulations provide a lot of results particularly at µq = 0.

As an approach complementary to LQCD simulations, properties of QCD

and hot-QCD have been studied intensively by effective models such as the

Nambu–Jona-Lasinio (NJL) model and the Polyakov-loop extended Nambu–

Jona-Lasinio (PNJL) model [8–24]. In the NJL model, U(1)A anomaly and

the spontaneous breaking of chiral symmetry are taken into account. In the

PNJL model, confinement is approximately considered through the Polyakov

loop Φ, in addition to U(1)A anomaly and the spontaneous breaking of chiral

symmetry. These models have been applied for many phenomena. In partic-

ular, the PNJL model has been used to investigate the relation between the

chiral and the deconfinement transitions. Lately, a Polyakov-loop (Φ) depen-

dent four-quark interaction was introduced so as to enhance the correlation

between the two transitions [25,26]. The PNJL model with the entanglement

(Φ-dependent) four-quark interaction is now called the entanglement-PNJL

(EPNJL) model [25, 26]. The EPNJL model is successful in reproducing

LQCD results in the imaginary µq region [27,28] and the real isospin chemi-

cal potential region [29] where LQCD is free from the Sign problem.
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1.4 Meson masses

Meson mass is a key characterizing QCD vacuum. T dependence of me-

son masses plays an important role in understanding properties of hot-QCD

matter, for example, in determining reaction rates of hadron-hadron colli-

sions and dilepton production.

In this thesis, the meson mass is referred to as “meson pole mass” in

order to distinguish it from “meson screening mass”. Meson pole and screen-

ing masses, Mpole
ξ (T ) and M scr

ξ (T ), of ξ-meson are defined by the inverse of

the exponential decay of the mesonic correlation functions in its temporal τ -

and spatial x-directions, respectively. Obviously, this definition shows that

Mpole
ξ (T ) is experimentally measurable, but M scr

ξ (T ) is not. On the other

hand, in LQCD simulations at finite T as the first-principle calculation of

QCD, the M scr
ξ (T ) is usually calculated instead of Mpole

ξ (T ), since the tem-

poral (imaginary-time) size is limited up to 1/T , but the spatial lattice size

doesn’t have such limitation in general. The relation between Mpole
ξ (T ) and

M scr
ξ (T ) at finite T is not understood at all, although Mpole

ξ (0) = M scr
ξ (0)

from the definition. T dependence of light-meson screening masses was evalu-

ated lately in a wide range of 140 <∼ T <∼ 800 MeV by using 2+1-flavor LQCD

simulations with improved (p4) staggered fermions [30]. Thus, the M scr
ξ (T )

are available with LQCD simulations, but not measurable experimentally.

The M scr
ξ (T ) are thus obtainable with LQCD simulations but not with

experiments. In contrast, the Mpole
ξ (T ) are experimentally measurable but

hard to obtain with LQCD simulations. If we can predict Mpole
ξ (T ) theoreti-

cally from LQCD results on M scr
ξ (T ), we can compare the predicted Mpole

ξ (T )

with the corresponding experimental data directly. Furthermore, when ex-

perimental data are not available for Mpole
ξ (T ) of interest, such a prediction

may be useful in experimental analyses.

As a complementary approach to LQCD simulations for M scr
ξ (T ) and

experimental measurements for Mpole
ξ (T ), we can consider effective models

such as the PNJL model [8–24] and the EPNJL model [25,26]. T dependence

of Mpole
ξ (T ) was often studied with the NJL-type effective models [8, 12, 19,

23,24,31]. These models well describe Mpole
ξ (T ) at T = 0, but it was difficult

to calculate M scr
ξ (T ) at finite T with the NJL-type models. However, this

problem was solved very recently; see Chapter 2 for the detail.

Throughout these discussions, we can find the following three problems

in order to obtain Mpole
ξ (T ) accurately:

(I) In principle, T dependence of Mpole
ξ (T ) can be determined from mea-

surements in heavy-ion collisions. However, the measurements are in-

direct, so that the experimental results have large uncertainty.

(II) LQCD simulation is the first-principle calculation of QCD. However,

the calculation of Mpole
ξ (T ) is quite difficult compared with M scr

ξ (T ),
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because the imaginary-time size is limited up to 1/T . The difficulty

becomes more serious as T increases.

(III) In effective models, screening-mass calculations were quite difficult

compared with pole-mass calculations.

1.5 Purpose

The aim of this thesis is to make a reliable model prediction on Mpole
ξ (T )

from the corresponding M scr
ξ (T ) calculated with LQCD simulations. We

solve problems (I)∼(III) to accomplish the aim.

In Chapter 2, we solve problem (III) by considering the following two

prescriptions: (1) The Pauli-Villars regularization and (2) a new prescrip-

tion in calculating the spatial correlation function for M scr
ξ (T ). These two

prescriptions extremely reduce numerical costs, as shown in Chapter 2.

In Chapter 3, we solve problems (I) and (II) particularly for π and a0
mesons by proposing a new version of EPNJL model that reproduces LQCD

data on M scr
π (T ) and M scr

a0 (T ).

In Chapter 4, we solve problems (I) and (II) generally for scalar and pseu-

doscalar mesons by proposing a new version of PNJL model that reproduces

LQCD data on M scr
ξ (T ) for ξ = π, K, ηs̄s, a0,κ, σs̄s mesons.

This thesis is based on the following two published and one submitted

papers:

• Effective model approach to meson screening masses at finite tempera-

ture, M. Ishii, T. Sasaki, K. Kashiwa, H. Kouno, and M. Yahiro, Phys.

Rev. D 89, 071901(R) (2014).

• Determination of U(1)A restoration from pion and a0-meson screening

masses: Toward the chiral regime, M. Ishii, K. Yonemura, J. Takahashi,

H. Kouno, and M. Yahiro, Phys. Rev. D 93, 016002 (2016).

• Model prediction for temperature dependence of meson pole masses

from lattice QCD results on meson screening masses, M. Ishii, H.

Kouno, and M. Yahiro, submitted in Physical Review D.



Chapter 2

Formulation for meson
screening mass

In this chapter, we evaluate temperature (T ) dependence of pion and sigma-

meson screening masses by using the Polyakov-loop extended Nambu–Jona-

Lasinio (PNJL) model and the entanglement-PNJL (EPNJL) model. For

this purpose, we propose a practical method of calculating meson screen-

ing masses in NJL-type effective models. Our method solves the well-known

problem that the evaluation of screening masses is difficult in NJL-type ef-

fective models. The method is based on the Pauli–Villars (PV) regulariza-

tion and a new prescription of calculating the correlation function for meson

screening mass. We first show that the EPNJL model with the PV reg-

ularization is successful in reproducing 2-flavor lattice QCD results on T

dependence of the chiral condensate and the Polyakov loop. We then ap-

ply the method to recent 2+1-flavor lattice QCD results on T dependence

of pion screening mass. Since pion is composed of u and d quarks, we use

2-flavor EPNJL model for simplicity. This approximation is good enough for

qualitative discussion.

2.1 2-flavor PNJL and EPNJL models

The PNJL model is one of effective models for QCD in the low-energy region.

The model describes the spontaneous breaking of chiral symmetry and color

confinement of quarks at the same time. The Lagrangian density of 2-flavor

PNJL model in Minkowski space is defined as

LPNJL = ψ̄(iγµD
µ−m̂0)ψ+GS[(ψ̄ψ)

2+(ψ̄iγ5τψ)
2]−U(Φ[A], Φ̄[A], T ) (2.1)

with the u-, d-quark fields ψ = (ψu,ψd)T, the current-quark-mass matrix

m̂0 = diag(mu,md) and the Pauli matrices τ = (τ1, τ2, τ3) in isospin space.

We consider the isospin-symmetric case for simplicity: mu = md = m0. The

gauge fields Aµ are introduced through the covariant derivative

Dµ = ∂µ + iAµ, (2.2)

10
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where the Aµ are assumed to be static background fields and Aµ = gδµ0A
0 =

−igδµ0A4 for the coupling constant g. The Polyakov loop Φ and its conjugate

Φ̄ are then obtained in the Polyakov gauge by

Φ =
1

3
trc(L), Φ̄ =

1

3
trc(L

∗) (2.3)

with L = exp[iA4/T ] = exp[idiag(A11
4 , A22

4 , A33
4 )/T ] for the classical variables

Ajj
4 satisfying that A11

4 + A22
4 + A33

4 = 0.

The Ajj
4 are not uniquely determined from Φ and Φ̄, because of the gauge

symmetry, e.g., Φ and Φ̄ are invariant under the interchange of A11
4 , A22

4 and

A33
4 . The arbitrariness does not change any physics. Particularly for zero

quark chemical potential (µ = 0), Φ equals to Φ̄, because the QCD La-

grangian (1.1) is invariant under the charge conjugation. Hence it is possible

to determine A11
4 , A22

4 and A33
4 as

A11
4 = −A22

4 = cos−1

(
3Φ− 1

2

)
T, A33

4 = 0 (2.4)

for µ = 0. Here, Φ and Φ̄ are mainly governed by the Polyakov-loop potential

U in Eq. (2.1). We use the logarithm-type Polyakov-loop potential [18]

U(Φ, Φ̄, T ) = T 4

[
−a(T )

2
ΦΦ̄+ b(T ) ln

{
1− 6ΦΦ̄+ 4(Φ3 + Φ̄3)− 3(ΦΦ̄)2

}]
,

(2.5)

a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

, b(T ) = b3

(
T0

T

)3

. (2.6)

The parameter set in U is fitted to reproduce LQCD data at finite T in the

pure gauge limit, i.e., QCD without dynamical quarks. The parameter set

is tabulated in Table 2.1. The potential yields the first-order deconfinement

Table 2.1: Parameter set of Polyakov-loop potential U . The parameters are

taken from Ref. [18].

a0 a1 a2 b3 T0 (Pure gauge)

3.51 −2.47 15.2 −1.75 270 [MeV]

phase transition at T = T0. In the pure gauge limit, LQCD data show the

phase transition at T = 270 MeV. Hence the parameter T0 is often set to

270 MeV. However, if one considers dynamical quarks, the PNJL model with

this value of T0 yields a larger value of pseudocritical temperature for the

deconfinement transition than the LQCD prediction. This problem can be

solved by rescaling T0, as shown in Ref. [25]. Therefore, we treat T0 as an

adjustable parameter.
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The EPNJL model is an extension of the PNJL model. In the EPNJL

model, the coupling constant of the four-quark interaction is assumed to

depend on Φ and Φ̄ [25, 26]:

GS(Φ) = GS(0) ·
[
1− α1ΦΦ̄− α2

(
Φ3 + Φ̄3

)]
. (2.7)

When α1 = α2 = 0, the EPNJL model is reduced to the PNJL model. The

parameters α1,α2 and T0 in the EPNJL model are determined to reproduce

LQCD data on the chiral-transition temperature T χ
c . The parameters are

tabulated in Table 2.2. When we analyze 2-flavor LQCD results on T depen-

dence of chiral condensate and Polyakov loop, we use the first parameter set

named “2-flavor” in Table 2.2. When we analyze 2+1-flavor LQCD results

on T dependence of pion screening mass, we use second parameter set named

“2+1-flavor” in Table 2.2; see Sec. 2.5 for the detail.

Table 2.2: Parameter sets of EPNJL model for 2-flavor and 2+1-flavor sys-

tems.
α1 α2 T0 [MeV]

2-flavor 0.2 0.2 200

2+1-flavor 0.31 0.31 156

2.2 Mesonic correlation functions

We derive the equations for pion and sigma-meson screening masses. First,

we determine the dressed quark propagator by using the mean-field (Hartree)

approximation. We then treat a meson propagation as a mesonic fluctuation

from the mean-field variable by taking the random-phase approximation.

Making the mean-field approximation to the Lagrangian density (2.1)

leads to the linearized Lagrangian density

LMFA
EPNJL = ψ̄S−1ψ − UM(σ,Φ, Φ̄)− U(Φ[A], Φ̄[A], T ), (2.8)

where S is the dressed quark propagator

S =
1

iγν∂ν − iγ0A4 − M̂
(2.9)

with the effective-quark-mass matrix M̂ = diag(M,M) satisfying M = m0−
2GS(Φ)σ and the mesonic potential UM = GS(Φ)σ2. The variable σ means

the chiral condensate: σ = ⟨ψ̄ψ⟩. Making the path integral over the quark
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field, one can get the thermodynamic potential (per unit volume) as

ΩEPNJL(σ,Φ, Φ̄, T ) = UM + U − 2Nf

∫
d3p

(2π)3

[
3Ep

+
1

β
ln [1 + 3(Φ+ Φ̄e−βEp)e−βEp + e−3βEp ]

+
1

β
ln [1 + 3(Φ̄+ Φe−βEp)e−βEp + e−3βEp ]

]
(2.10)

with β = 1/T , Ep =
√

p2 +M2 and the number Nf of flavors. Mean-field

variables (σ,Φ and Φ̄) are determined to minimize ΩEPNJL.

The mesonic current corresponding to ξ = π or σ meson is

Jξ(x) = ψ̄(x)Γξψ(x)− ⟨ψ̄(x)Γξψ(x)⟩, (2.11)

where the matrix Γξ has the color, flavor and Dirac indices. The matrix Γξ is

Γξ = IC ⊗ ID ⊗ IF for ξ = σ and Γξ = IC ⊗ iγ5 ⊗ τ3 for ξ = π, where IC, ID

and IF are the unit matrices in color, Dirac and flavor spaces, respectively.

The mesonic correlation function ζξξ(t,x) in coordinate space x = (t,x) is

defined by

ζξξ(t,x) ≡ ⟨0|T
(
Jξ(x)J

†
ξ (0)

)
|0⟩, (2.12)

where the symbol T stands for the time-ordered product. The mesonic cor-

relation function χξξ(q20, q
2) in momentum space q = (q0, q) is obtained as

the Fourier transformation of ζξξ(t,x):

χξξ(q
2
0, q

2) = i

∫
d4x eiq·xζξξ(t,x). (2.13)

Using the random-phase (ring) approximation, one can obtain the Schwinger-

Dyson equation　

χξξ(q
2
0, q

2) = Πξξ(q
2
0, q

2) + 2GS(Φ)Πξξ(q
2
0, q

2)χξξ(q
2
0, q

2) (2.14)

for χξξ(q20, q
2), where the one-loop polarization function Πξξ(q20, q

2) is defined

as

Πξξ(q
2
0, q

2) ≡ (−i)

∫
d4p

(2π)4
trc,f,d (ΓξiS(p

′ + q)ΓξiS(p
′)) (2.15)

with p′ = (p0+ iA4,p) and the dressed quark propagator S(p) in the Hartree

approximation. The trace trc.f.d is taken in color, flavor and Dirac spaces.

The solution to Eq. (2.14) is

χξξ =
Πξξ

1− 2GS(Φ)Πξξ
. (2.16)
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The Πξξ are explicitly obtained by

Πσσ = i

∫
d4p

(2π)4
Tr
[{γµ(p′ + q)µ +M}(γνp′ν +M)

{(p′ + q)2 −M2}(p′2 −M2)

]

= 2iNf [I1 + I2 − (q2 − 4M2)I3], (2.17)

Πππ = i

∫
d4p

(2π)4
Tr
[
(iγ5τ

a)
{γµ(p′ + q)µ +M}
{(p′ + q)2 −M2} × (iγ5τ

a)
(γνp′ν +M)

(p′2 −M2)

]

= 2iNf [I1 + I2 − q2I3], (2.18)

with

I1 =

∫
d4p

(2π)4
trc
[ 1

p′2 −M2

]
, (2.19)

I2 =

∫
d4p

(2π)4
trc
[ 1

(p′ + q)2 −M2

]
, (2.20)

I3 =

∫
d4p

(2π)4
trc
[ 1

{(p′ + q)2 −M2}(p′2 −M2)

]
,

(2.21)

where trace trc means the trace of color matrix. For finite T , the correspond-

ing equations are obtained by the replacement

p0 → iωn = i(2n+ 1)πT,
∫

d4p

(2π)4
→ iT

∞∑

n=−∞

∫
d3p

(2π)3
. (2.22)

In this thesis, we refer to the summation over n as “Matsubara summation”

and the integral over p as “internal-momentum integration”.

We need to regularize the momentum p integrals in the thermodynamic

potential ΩEPNJL of Eq. (2.10) and in the three functions I1, I2, I3. Usually,

the three-dimensional momentum-cutoff regularization

∫
d3p

(2π)3
→
∫

|p|≤Λ

d3p

(2π)3
(2.23)

is taken in NJL-type effective models, where Λ is a cutoff parameter. How-

ever, the regularization breaks Lorentz invariance. In this thesis, we take

the Pauli-Villars (PV) regularization [32] that preserves Lorentz invariance.

The original version of PV regularization breaks chiral symmetry explicitly,

since the regularization introduces auxiliary particles with heavy masses. In

addition, we cannot take their masses infinity, because the present model

is nonrenormalizable. This problem is solved by E. Ruiz Arriola and L.L.

Salcedo in Ref. [33].

Here we explain the PV regularization for the thermodynamic potential

ΩEPNJL and the three functions I1, I2, I3. For convenience, we divide ΩEPNJL

into ΩEPNJL = UM + U + NfΩF(M), and represent I1 and I2 by I(M) and
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I3 by I3(M). In the PV scheme, the functions ΩF(M), I(M) and I3(M) are

regularized as

Ωreg
F (M) =

2∑

α=0

CαΩF(Mα),

Ireg(M) =
2∑

α=0

CαI(Mα),

Ireg3 (M) =
2∑

α=0

CαI3(Mα), (2.24)

where M0 = M and the Mα (α = 1, 2) mean masses of auxiliary particles.

The parameters Mα and Cα should satisfy the condition

2∑

α=0

Cα = 0,
2∑

α=0

CαM
2
α = 0 (2.25)

to remove the quartic, the quadratic and the logarithmic divergence in I1, I2, I3,

and ΩF. We assume (C0, C1, C2) = (1, 1,−2) and (M2
1 ,M

2
2 ) = (M2 +

2Λ2,M2 + Λ2), following Ref. [34]. We keep the parameter Λ finite even

after the subtraction (2.24), since the present model is non-renormalizable.

In the present parameterization, logarithmic divergence partially remains in

Ωreg
F (M) even after the subtraction (2.24), but the term does not depend on

the mean-field variables (σ,Φ, Φ̄) and is irrelevant to the determination of

mean-field variables for any T . Therefore we can simply drop the term.

2.3 Difficulty of screening-mass calculations

The NJL-type effective models are very useful. In fact, meson pole masses

have been predicted by the models, particularly for light scalar and pseu-

doscalar mesons. In contrast, the evaluation of meson screening masses was

quite difficult. The difficulty comes from the following two problems. One

is that the NJL-type models are nonrenormalizable and thereby the regular-

ization is necessary in the model calculations. So far, the three-dimensional

momentum-cutoff regularization (2.23) was often taken. However, the regu-

larization breaks Lorentz invariance. As a result of this breaking, the spatial

correlation function ζξξ(0,x) has unphysical oscillations [35]. This makes it

quite difficult to determine meson screening mass (M scr
ξ ) from the exponential

decay of ζξξ(0,x) at large distance (r = |x|):

M scr
ξ ≡ − lim

r→∞

d ln ζξξ(0,x)

dr
. (2.26)

Another problem is difficulty of the Fourier transformation

ζξξ(0,x) =

∫
d3q

(2π)3
χξξ(0, q

2)eiq·x =
1

4π2ir

∫ ∞

−∞
dq̃ q̃χξξ(0, q̃

2)eiq̃r , (2.27)
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where q̃ = ±|q|. In the model approach, the correlation function χξξ(0, q̃2) is

calculated first in momentum space and is Fourier transformed to the func-

tion ζξξ(0,x) in coordinate space. In the integrand of Eq.(2.27), q̃χξξ(0, q̃2)

is slowly damping with q̃, whereas eiq̃r is highly oscillatory particularly at

large r where M scr
ξ is determined. This property makes direct numerical cal-

culations difficult. In general, this problem is avoidable with contour integral

in complex-q̃ plane. However, the contour integral is still difficult because

unphysical cuts are present in the vicinity of the real axis [35]; see the left

panel of Fig. 2.1, where the limit of ϵ→ 0 should be taken after the Fourier

transformation.

Fig. 2.1: Singularities of χξξ(0, q̃2) in the complex-q̃ plane based on the pre-

vious formulation [35] (left) and the present formulation (right). The wavy

lines denote cuts and the open points represent the branch points of cuts.

The closed points correspond to poles.

2.4 Meson screening mass in EPNJL model

The meson screening mass M scr
ξ is determined from the exponential damping

of ζξξ(0,x) that is the Fourier transform of χξξ(0, q̃2), as shown in Eq. (2.27).

In the previous formalism [35], however, heavy numerical calculations are re-

quired in the Fourier transform. We first explain the difficulty in the previous

formalism [35]. After making the PV regularization and taking Matsubara

(n) summation before the p integral in Eq. (2.22), the function Ireg3 (0, q̃2) in

χξξ(0, q̃2) contains a term Ireg3 = Ireg3,vac + Ireg3,tem defined by

Ireg3,vac(0, q̃
2) =

−iNc

16π2

2∑

α=0

Cα

[
lnM2

α + fvac

(
2Mα

q̃

)]
, (2.28)

fvac(x) =
√
1 + x2 ln

(√
1 + x2 + 1√
1 + x2 − 1

)
(2.29)
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and

Ireg3,tem(0, q̃
2) =

iNc

16π2

2∑

α=0

Cα

∫ ∞

0

dp ftem(p, q̃)
(
F−
p + F+

p

)
, (2.30)

ftem(p, q̃) =
1

Ep

p

q̃
ln

(
(q̃ − 2p)2 + ϵ2

(q̃ + 2p)2 + ϵ2

)
, (2.31)

where the Fermi distribution functions F±
p are defined as

F±
p =

1

Nc

Nc∑

j=1

1

exp [β(Ep ± iAjj
4 )] + 1

(2.32)

with number Nc of colors. In Eq. (2.31), the ϵ2 term is added to make the p

integral well-defined at q̃ = ±2p, but this requires the limit of ϵ → 0 finally.

As shown in the left panel of Fig. 2.1, fvac(2Mα/q̃) has the vacuum cuts and

ftem(p, q̃) possesses temperature cuts in the complex q̃ plane. In the upper-

half plane where contour integral is performed, the cuts contribute to the q̃

integral in addition to the pole at q̃ = iM scr
ξ determined by

[
1− 2GS(Φ)Πξξ(0, q̃

2)
]∣∣

q̃=iMscr
ξ

= 0. (2.33)

It is not easy to evaluate the temperature-cut contribution, since in Eq. (2.27)

the integrand is slowly damping and highly oscillating with q̃ near the real

axis in the complex q̃ plane. Furthermore we have to take the limit of ϵ→ 0

finally.

The problem mentioned above can be solved by taking the n summation

after making the p integral, as shown below. Following this procedure, we

get Ireg3 (0, q̃2) as an n-summation of analytic functions:

Ireg3 (0, q̃2) =
iT

2π2

Nc∑

j=1

∞∑

n=−∞

2∑

α=0

Cα

∫ 1

0

dx

∫ ∞

0

dk̃
k̃2

[k̃2 + (x− x2)q̃2 +M2
j,n,α]

2

=
iT

4πq̃

∑

j,n,α

Cα sin
−1
( q̃

2√
q̃2

4 +M2
j,n,α

)
(2.34)

with

Mj,n,α(T ) =
√

M2
α + {(2n+ 1)πT + Ajj

4 }2. (2.35)

We have numerically checked that the convergence of the n summation is

quite fast in Eq. (2.34). In the upper-half plane, each term of Ireg3 (0, q̃2) has

a cut starting from 2iMj,n,α on the imaginary axis. The cut is shown in the

right panel of Fig. 2.1. The lowest branch point is

q̃ = iMth ≡ 2iMj=1,n=0,α=0 (2.36)

HenceMth is regarded as “threshold mass”, because that the meson screening-

mass spectrum becomes continuous above the point.
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When M scr
ξ < Mth, the pole at q̃ = iM scr

ξ is isolated from the cut well.

This means that one can take the contour (A→B→C→D→A) shown in the

right panel of Fig. 2.1. The q̃ integral of q̃χξξ(0, q̃2)eiq̃r on the real axis in

Eq. (2.27) is then obtainable from the residue at the pole and the line integral

from point C to point D. The former behaves as exp[−M scr
ξ r]/r at large r

and the latter as exp [−Mthr]/r. The behavior of ζξξ(0,x) at large r = |x| is
thus determined by the pole. Therefore, we can evaluate the screening mass

from the location of the pole in the complex-q̃ plane without performing the

q̃ integral. In the high-T limit, the threshold mass tends to 2πT . This result

is consistent with that of perturbative QCD [36].

2.5 Numerical Results

First, we show that the EPNJL model with PV regularization well describes

the chiral symmetry restoration. As already mentioned in Sec. 2.2, the orig-

inal version of PV regularization breaks chiral symmetry explicitly, since the

regularization introduces auxiliary particles with heavy masses. This problem

is solved in Ref. [33] and NJL model with the improved PV-regularization

well describes empirical value of chiral condensate at T = 0 in Ref. [37].

We should check whether the PV regularization also works at finite T . We

analyze 2-flavor LQCD data on the chiral condensate of Ref. [38] and the

Polyakov loop of Ref. [39] by using the EPNJL model with the PV regular-

ization. In model calculations, we have three adjustable parameters T0,α1

and α2. We determine these parameters so as to reproduce pseudocritical

temperature T deconf,2f
c ≈ 173 ± 8 MeV of the deconfinement transition. The

EPNJL model with the PV regularization yields the same quality of agree-

ment with the LQCD data as the EPNJL model with the three-dimensional

momentum-cutoff regularization [26].

The pion screening mass M scr
π obtained by state-of-the-art 2+1 flavor-

LQCD simulations [30] is well analyzed by the present 2-flavor EPNJL model

simply, since the meson is composed of u and d quarks only and has no

s-quark component. In the LQCD simulations [30], the chiral transition

temperature is T χ,3f
c = 196 MeV, although it is T χ,3f

c = 154± 9 MeV in finer

2+1-flavor LQCD simulations [40,41] close to the continuum limit. Therefore,

we rescale the LQCD results of Ref. [30] with a factor 154/196 in order to

reproduce T χ,3f
c = 154 ± 9 MeV. The model parameters, m0 and T0, are

refitted so as to reproduce the rescaled 2+1-flavor LQCD data, i.e., Mπ =

175 MeV at vacuum and T χ,3f
c = 154 ± 9 MeV; the resulting values are

m0 = 10.3 MeV and T0 = 156 MeV. The variation of m0 from the original

value 6.3 MeV to 10.3 MeV little changes the values of σ and Φ.

As shown in Fig. 2.3, the M scr
π calculated with the EPNJL model (solid

line) well reproduces the LQCD results (open circles), when α1 = α2 = 0.31.

In the PNJL model with α1 = α2 = 0, the model result (dotted line) largely
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Fig. 2.2: T dependence of chiral condensate and Polyakov loop in the 2-flavor

system. In model calculations, we use T0 = 200 MeV and α1 = α2 = 0.2.

LQCD data are taken from Ref. [38] for the chiral condensate and Ref. [39]

for the Polyakov loop. The chiral condensates are normalized by the zero

temperature value σ0.

underestimates the LQCD results, indicating that the entangle coupling is

important. The dashed line denotes the sigma-meson screening mass M scr
σ

obtained by the EPNJL model with α1 = α2 = 0.31. The solid and dashed

lines are lower than the threshold mass Mth (dot-dashed line). This ensures

that the M scr
π and M scr

σ determined from the location of the single pole in

the complex-q̃ plane agree with those from the exponential decay of ζξξ(0,x)

at large r. The chiral restoration takes place at T ≈ T χ.3f
c = 154 MeV,

since M scr
π = M scr

σ there. After the restoration, the screening masses rapidly

approach the threshold mass and finally 2πT . The threshold mass is thus an

important concept to understand T dependence of screening masses.
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Fig. 2.3: T dependence of pion and sigma-meson screening masses. In model

calculations, we use T0 = 156 MeV for the PNJL and EPNJL models. The

parameters α1 and α2 in the EPNJL model are set to α1 = α2 = 0.31.

LQCD data are taken from Ref. [30] for pion screening mass. M scr
π and M scr

σ

calculated by the EPNJL model are denoted by the solid and dashed lines,

respectively, whereas M scr
π calculated with the PNJL model is shown by the

dotted line. The M scr
π obtained by 2+1-flavor LQCD simulations are denoted

by the open circles. The dot-dashed line stands for the threshold mass.

2.6 Short Summary

We have proposed a practical method of calculating meson screening masses

M scr
ξ (T ) in NJL-type effective models. The method is based on the following

two procedures:

(1) The PV regularization,

(2) A new prescription of calculating the spatial correlation function for

meson screening mass.

In the three-dimensional momentum cutoff regularization commonly used,

artificial oscillations appear in the spatial mesonic correlation function, since

the regularization breaks Lorentz invariance in momentum space. In the PV

regularization taken in this thesis, such artificial oscillations do not appear,

because the PV regularization possesses Lorentz invariance.

In the previous formalism [35] for the correlation function ζξξ(0,x) in

coordinate x space, it is calculated by Fourier transformation from the cor-

relation function χξξ(0, q̃2) in momentum q̃ space. However, the Fourier

transformation is quite difficult, because it demands q̃ integration of highly

oscillating function in the long distance limit (|x| → ∞) where the meson
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screening mass is evaluated. In principle, we can avoid the difficulty by per-

forming the Fourier transformation as a contour integral in the complex-q̃

plane. In the previous formalism [35] where the Matsubara summation is

taken before the internal-momentum integration in the Fourier transforma-

tion, temperature cuts appear near the real-q̃ axis in the complex-q̃ plane and

the evaluation of the cuts still demands heavy numerical calculations. In our

formalism, we take the Matsubara summation after the internal-momentum

integration in the Fourier transformation, and thereby such temperature cuts

do not appear. Cuts and a pole appearing in our formalism are located only

on the imaginary-q̃ axis in the complex-q̃ plane. We can then obtain the me-

son screening mass as a pole of χξξ(0, q̃2), when the pole is located below the

cuts. The lowest branch point can be regarded as the threshold massMth(T ).

Therefore, we can easily evaluate the meson screening mass M scr
ξ (T ) when

M scr
ξ (T ) < Mth(T ).

First, we have proposed the new version of EPNJL model that is based

on the PV regularization instead of the three-dimensional momentum-cutoff

regularization commonly used. We have then applied the prescription (2) to

the EPNJL model in order to analyze T dependence of pion and sigma-meson

screening masses and shown that the model well explains recent 2+1 flavor

LQCD results on T dependence of pion screening mass and the value of T χ,3f
c ,

when α1 = α2 = 0.31 and T0 = 156 MeV.



Chapter 3

U(1)A symmetry restoration

We consider the effective U(1)A-symmetry restoration with the 2+1-flavor

EPNJL model. For this purpose, T dependence is introduced for the coupling

strength K of the Kobayashi-Maskawa-’t Hooft (KMT) determinant inter-

action: K = K(T ). The K(T ) is determined from state-of-the-art LQCD

results on T dependence of screening masses for pion and its U(1)A partner

(a0 meson). The K(T ) thus obtained is strongly suppressed in the vicinity

of the pseudocritical temperature of chiral transition. The EPNJL model

with the K(T ) well reproduces meson susceptibilities calculated by LQCD

simulations. By using this reliable model, we predict light-quark mass (ml)

and strange-quark mass (ms) dependence of chiral transition particularly

around the physical point (ml,ms) = (6.2 MeV, 175 MeV). We show that

the chiral transition is the second order at the “light-quark chiral-limit” point

(ml,ms) = (0 MeV, 175 MeV). We find that a tricritical point appears in

the southwest direction from the physical point. The location we find is

(ml,ms) = (0 MeV, 127 MeV).

3.1 U(1)A symmetry and Columbia plot

As already mentioned in Sec. 1.1.3, global U(1)A symmetry is explicitly bro-

ken by the quantum anomaly through the topologically nontrivial gauge con-

figurations (instantons and antiinstantons). At high T , instanton density

(dninst(T )) is suppressed by Debye screening in the medium. Pisarski and

Yaffe calculated the suppression S(T ) ≡ dninst(T )/dninst(0) perturbatively

in high T [42], say T >∼ 2T χ
c for the pseudocritical temperature T χ

c of chiral

transition, and S(T ) was obtained by

S(T ) = exp
[
− π2ρ2T 2

(2
3
Nc +

1

3
Nf

)]

= exp[−T 2/b2] (3.1)

with the instanton radius ρ. The typical value of ρ is about 1/3 fm, and

hence the suppression parameter b is about 0.70T χ
c for Nc = Nf = 3 of

22
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Fig. 3.1: A schematic phase diagram of 2+1-flavor QCD as a function

of light-quark mass ml and strange-quark mass ms (Columbia plot). A

tricritical point may appear on the ms axis; the location is shown by

(ml,ms) = (0,mtric
s ). The solid lines denote second-order transitions be-

longing to the universality class labeled, where the labels Z(2) and O(4)

represent the 3d Ising and the 3d O(4) class, respectively.

our interest [43]; note that 2+1-flavor LQCD simulations show T χ
c = 154 ±

9 MeV [40, 41, 44]. The suppression S(T ) in Eq. (3.1) is stronger as T in-

creases, and consequently global U(1)A symmetry is effectively restored at

higher T in the vacuum expectation value. This phenomenon is called “effec-

tive restoration of U(1)A symmetry”, since U(1)A symmetry is always broken

in the current-operator level as shown in Eq. (1.23).

Figure 3.1 shows the current status of our knowledge on the 2+1-flavor

phase diagram as a function of light-quark mass ml and strange-quark mass

ms. The phase diagram is usually called “Columbia plot”. The lower left

(upper right) corner corresponds to QCD in the massless limit (pure Yang–

Mills limit), and QCD shows a first-order phase transition associated with

the breaking of chiral (Z3) symmetry there [45, 46]. Varying ml and ms, we

can see that these first-order transitions become second order of 3d Ising

(Z(2)) universality class, as shown by the solid lines [45, 46].

However, the order of chiral transition and its universality class has not

been determined on the vertical line of ml = 0 and ms > 0, and it is consid-

ered to be related to the correlation between the U(1)A- and chiral-symmetry

restorations. In the two-flavor chiral limit of (ml,ms) = (0,∞) at the up-

per left corner, for example, the order may be second order belonging to

O(4) class if the U(1)A symmetry is broken at T = T χ
c , since U(2)R × U(2)L
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symmetry is broken into SU(2)L × SU(2)R isomorphic to O(4) in the situ-

ation and the transition is then expected to be in the 3d O(4) universality

class [45,46]. When U(1)A and chiral symmetries are restored simultaneously

at T = T χ
c , it was suggested in Ref. [45] that the chiral transition becomes the

first order. Recently, however, it was pointed out in Ref. [47] that the second

order is still possible. In this case, the transition belongs to not O(4) but

U(2)L×U(2)R universality class. Many LQCD simulations were made so far

to clarify the order and its universality class in the two-flavor chiral limit of

(ml,ms) = (0,∞) and the light-quark chiral limit where ml vanishes with ms

fixed at the physical value, but these are still controversial; see Refs. [48–59].

Very recently, the effective restoration of U(1)A symmetry was studied

with state-of-the-art LQCD simulations by analyzing T dependence of pion

and a0-meson screening masses [30] and also by meson susceptibilities [60,61].

The effective restoration of U(1)A symmetry thus becomes an important

current issue.

3.2 Model setting

3.2.1 EPNJL model

We consider the 2+1-flavor EPNJL model [25, 26]. The Lagrangian density

in Minkowski space is

L =ψ̄(iγνD
ν − m̂0)ψ +GS(Φ)

8∑

a=0

[(ψ̄λaψ)
2 + (ψ̄iγ5λaψ)

2]

−K(T )
[
det
f,f ′

ψ̄f (1 + γ5)ψf ′ + det
f,f ′

ψ̄f (1− γ5)ψf ′

]

− U(Φ[A], Φ̄[A], T ), (3.2)

where Dν = ∂ν + iAν with Aν = δν0g(A
0)ata/2 = −δν0 ig(A4)ata/2 for the

gauge coupling g, the vector ψ = (ψu,ψd,ψs)T means quark fields, and the

λa (ta) are the Gell-Mann matrices in flavor (color) space and λ0 =
√

2/3 IF

for the unit matrix IF in flavor space. The determinant in Eq. (3.2) is

taken in flavor space. For the 2+1-flavor system, the current quark masses

m̂0 = diag(mu,md,ms) satisfy the relation ms > ml ≡ mu = md. In the

EPNJL model, the coupling strength GS(Φ) of the scalar-type four-quark

interaction depends on the Polyakov loop Φ and its Hermitian conjugate Φ̄

as

GS(Φ) = GS(0)
[
1− α1ΦΦ̄− α2(Φ

3 + Φ̄3)
]
. (3.3)

This entanglement coupling is invariant under the charge conjugation and

the Z3 transformation. When α1 = α2 = 0, the EPNJL model is reduced to

the PNJL model. We set α2 = 0 for simplicity, since the α2 term yields the

same effect as the α1 term in the present analysis. As shown later in Sec.
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3.3, the value of α1 is determined from LQCD data on pion and a0-meson

screening masses; the resulting value is α1 = 1.0.

The EPNJL model exhibits the U(1)A anomaly through the Kobayashi-

Maskawa-’t Hooft (KMT) determinant interaction with the coupling strength

K(T ) [4, 62]. Here we assume that the coupling strength K of the KMT

interaction is proportional to the instanton density, and hence K gets smaller

as T increases: K = K(T ). For T dependence of K(T ), we consider the

following form phenomenologically:

K(T ) =

{
K(0) (T < T1)

K(0)e−(T−T1)2/b2 (T ≥ T1)
. (3.4)

For high T satisfying T ≫ T1, the form (3.4) is reduced to Eq. (3.1). As

shown later in Sec. 3.3, the values of T1 and b will be well determined from

LQCD data on pion and a0-meson screening masses; the resulting values are

T1 = 0.79T χ
c = 121 MeV and b = 0.23T χ

c = 36 MeV.

After the Pisarski-Yaffe discussion on S(T ), T dependence of the instan-

ton density was estimated theoretically by the instanton-liquid model [43],

but the estimation is applicable only for T >∼ 2T χ
c . For this reason, in

Ref. [31], the Woods-Saxon form (1 + e(T−T ′
1)/b

′
)−1 with two parameters T ′

1

and b′ was used phenomenologically for K(T )/K(0). The present form (3.4)

has T dependence similar to the Woods-Saxon form.

In the EPNJL model, the time component of Aµ is treated as a ho-

mogeneous and static background field, which is mainly governed by the

Polyakov-loop potential U . In the Polyakov gauge, Φ and Φ̄ are obtained by

Φ =
1

3
trc(L), Φ̄ =

1

3
trc(L

∗) (3.5)

with L = exp[iA4/T ] = exp[idiag(A11
4 , A22

4 , A33
4 )/T ] for real variables Ajj

4

satisfying A11
4 + A22

4 + A33
4 = 0. For zero quark chemical potential where

Φ = Φ̄, one can set A33
4 = 0 and determine the others as A22

4 = −A11
4 =

cos−1[(3Φ− 1)/2].

We use the logarithm-type Polyakov-loop potential of Ref. [18] as U . The
parameter set in U has already been determined from LQCD data at finite

T in the pure gauge limit. The potential has a parameter T0 and yields a

first-order deconfinement phase transition at T = T0. The parameter used

to be set to T0 = 270 MeV, since LQCD data show the phase transition at

T = 270 MeV in the pure gauge limit. In full QCD with dynamical quarks,

however, the EPNJL model with this value of T0 is found not to explain

the LQCD results. Nowadays, T0 is then rescaled to reproduce the LQCD

results. In this chapter, we take T0 = 180 MeV so that the present model

can reproduce LQCD results on the pseudocritical temperature T deconf
c of the

deconfinement transition; actually, T deconf
c = 165 MeV in the present model,

while T deconf
c = 170± 7 MeV in LQCD [63].
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Applying the mean-field approximation (MFA) for Eq. (3.2) leads to the

linearized Lagrangian density

LMFA = ψ̄S−1ψ − UM − U(Φ[A], Φ̄[A], T ) (3.6)

with the quark propagator

S = (iγν∂
ν − γ0A

0 − M̂)−1, (3.7)

where M̂ = diag(Mu,Md,Ms) with

Mu = mu − 4GS(Φ)σu + 2K(T )σdσs,

Md = md − 4GS(Φ)σd + 2K(T )σsσu,

Ms = ms − 4GS(Φ)σs + 2K(T )σuσd,

and σf means the chiral condensate ⟨ψ̄fψf⟩ for flavor f . The mesonic poten-

tial UM is

UM = 2GS(Φ)(σ
2
u + σ2

d + σ2
s)− 4K(T )σuσdσs.

Making the path integral over quark fields, one can get the thermodynamic

potential (per unit volume) as

ΩEPNJL = UM + U − 2
∑

f=u,d,s

∫
d3p

(2π)3

[
3Ep,f

+
1

β
ln [1 + 3(Φ+ Φ̄e−βEp,f )e−βEp,f + e−3βEp,f ]

+
1

β
ln [1 + 3(Φ̄+ Φe−βEp,f )e−βEp,f + e−3βEp,f ]

]
(3.8)

with Ep,f =
√

p2 +M2
f and β = 1/T . Mean-field variables (σl, σs,Φ and Φ̄)

are determined to minimize ΩEPNJL, where isospin symmetry is assumed for

the light-quark sector, i.e., σl ≡ σu = σd.

3.2.2 Mesonic correlation functions

We extend the formalism of Chapter 2 for pion and a0-meson correlation

functions from the 2-flavor system to the 2+1-flavor system. The current

operator of ξ meson is

Jξ(x) = ψ̄(x)Γξψ(x)− ⟨ψ̄(x)Γξψ(x)⟩, (3.9)

where Γπ = iγ5λ3 for π meson and Γa0 = λ3 for a0 meson. The mesonic

correlation function ζξξ′(t,x) in coordinate space x = (t,x) is defined by

ζξξ′(t,x) ≡ ⟨0|T
(
Jξ(t,x)J

†
ξ′(0)

)
|0⟩ (3.10)
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and the corresponding mesonic correlation function χξξ′(q20, q̃
2) in momentum

space q = (q0, q) is by

χξξ′(q
2
0, q̃

2) = i

∫
d4xeiq·xζξξ′(t,x), (3.11)

where q̃ = ±|q| and the operator T stands for the time-ordered product.

Applying the random-phase (ring) approximation for χξξ′ , we can get the

Schwinger-Dyson equation

χξξ′ = Πξξ′ + 2
∑

ξ′′ξ′′′

Πξξ′′Gξ′′ξ′′′χξ′′′ξ′ (3.12)

for χξξ′ , where Gξξ′ is the effective four-quark interaction and Πξξ′ is the

one-loop polarization function defined by

Πξξ′(q
2
0, q̃

2) ≡ (−i)

∫
d4p

(2π)4
trc,f,d (ΓξiS(p

′ + q)Γξ′iS(p
′)) (3.13)

with p′ = (p0 + iA4,p), where the trace trc,f,d is taken in color, flavor and

Dirac spaces. Here the matrix S(p) is the quark propagator in momentum

space that is calculated from Eq. (3.7). For ξ = π and a0, the Gξξ′ and

Πξξ′ satisfy that Gξξ′ = Gξδξξ′ and Πξξ′ = Πξδξξ′ , since isospin symmetry is

assumed and the random phase approximation is taken. Because of these

properties, we can easily solve the Schwinger-Dyson equation for ξ = π and

a0. The solution is

χξξ =
Πξ

1− 2GξΠξ
(3.14)

with the effective couplings Gπ and Ga0 defined by

Ga0 = GS(Φ) +
1

2
K(T )σs, (3.15)

Gπ = GS(Φ)−
1

2
K(T )σs. (3.16)

Taking the trace trc,f,d for flavor and Dirac spaces in Eq. (3.13), we get

the explicit forms of Ππ and Πa0 as

Πa0 = i
∑

f,f ′

(λ3)f ′f (λ3)ff ′

×
∫

d4p

(2π)4
trc,d

[{γµ(p′ + q)µ +Mf}(γνp′ν +Mf ′)

{(p′ + q)2 −M2
f }(p′2 −M2

f ′)

]

= 4i[I1 + I2 − (q2 − 4M2
l )I3], (3.17)

Ππ = i
∑

f,f ′

(λ3)f ′f (λ3)ff ′

×
∫

d4p

(2π)4
trc,d

[
(iγ5)

{γµ(p′ + q)µ +Mf}
{(p′ + q)2 −M2

f }
(iγ5)

(γνp′ν +Mf ′)

(p′2 −Mf ′)2

]

= 4i[I1 + I2 − q2I3], (3.18)
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where the operator trc,d means the trace in color and Dirac spaces. At T = 0,

the functions I1, I2 and I3 are represented by

I1 =

∫
d4p

(2π)4
trc
[ 1

p′2 −M2
l

]
, (3.19)

I2 =

∫
d4p

(2π)4
trc
[ 1

(p′ + q)2 −M2
l

]
, (3.20)

I3 =

∫
d4p

(2π)4
trc
[ 1

{(p′ + q)2 −M2
l }(p′2 −M2

l )

]
,

(3.21)

where the operator trc corresponds to the trace in color space and Ml ≡
Mu = Md. When we consider the finite-T system, the replacements

p0 → iωn = i(2n+ 1)πT,
∫

d4p

(2π)4
→ iT

∞∑

n=−∞

∫
d3p

(2π)3
(3.22)

should be taken in I1, I2 and I3.

We then use the PV regularization [32,35], as already mentioned in Chap-

ter 2. For convenience, we divideΩEPNJL intoΩEPNJL = UM+U+
∑

f ΩF(Mf ),

and represent I1 and I2 by I(Ml) and I3 by I3(Ml). In the PV scheme, the

functions ΩF(Mf ), I(Ml) and I3(Ml) are regularized as

Ωreg
F (Mf ) =

2∑

α=0

CαΩF(Mf ;α),

Ireg(Ml) =
2∑

α=0

CαI(Ml;α),

Ireg3 (Ml) =
2∑

α=0

CαI3(Ml;α), (3.23)

where Mf ;0 = Mf and the Mf ;α (α ≥ 1) mean masses of auxiliary parti-

cles. The parameters Mf ;α and Cα should satisfy the condition
∑2

α=0 Cα =∑2
α=0 CαM2

f ;α = 0. In actual calculations, we then take (C0, C1, C2) =

(1, 1,−2) and (M2
f ;1,M

2
f ;2) = (M2

f + 2Λ2,M2
f + Λ2). We keep the param-

eter Λ finite even after the subtraction (3.23), because the present model is

non-renormalizable. For the parameters ml,ms, GS(0), K(0) and Λ, we take

those of Ref. [37]: ml = 6.2 MeV, ms = 175.0 MeV, GS(0)Λ2 = 2.35 and

K(0)Λ5 = 27.8 for Λ = 795 MeV. This parameter set reproduces mesonic

observables at T = 0, i.e., the pion and kaon decay constants (fπ = 92 MeV

and fK = 105 MeV) and their masses (Mπ(0) = 141 MeV and MK(0) = 512

MeV) and the η′-meson mass (Mη′(0) = 920 MeV). In the present work, we

analyze LQCD data of Ref. [30] for pion and a0-meson screening masses. In

the LQCD simulations, the pion mass Mπ(0) at vacuum (T = 0) is 175 MeV

and slightly larger than the experimental value 138 MeV. We then change ml

to 9.9 MeV in the EPNJL model in order to reproduce Mπ(0) = 175 MeV.
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3.2.3 Meson pole mass

The meson pole mass Mpole
ξ is a pole of χξξ(q20, q̃

2) in the complex q0 plane.

Taking the rest frame q = (q0,0) for convenience, one can get the equation

for Mpole
ξ as

[
1− 2GξΠξ(q

2
0, 0)

]∣∣
q0=Mpole

ξ −iΓξ/2
= 0, (3.24)

where Γξ is the decay width to quark-antiquark pair continuum. The method

of solving Eq. (3.24) for Mpole
ξ and Γξ has already been established in Ref. [8].

3.2.4 Meson screening mass

We derive the equations for pion and a0-meson screening masses, following

Chapter 2. This is an extension of the method from 2 flavors to 2+1 flavors.

As mentioned in Sec. 1, it is not easy to make the Fourier transform

from χξξ(0, q̃2) to ζξξ(0,x) particularly at large r = |x|. When the direct

integration on the real q̃ axis is difficult, in general we can consider a contour

integral in the complex q̃ plane by using the Cauchy’s integral theorem.

However, χξξ(0, q̃2) has logarithmic cuts in the vicinity of the real q̃ axis

[35], and heavy numerical calculations are necessary for evaluating the cut

effects [35]. In our previous work [64] in Chapter 2, we showed that the

logarithmic cuts are removable. Actually, our formulation has no logarithmic

cut, because the Matsubara summation over n is taken after the p integration

in Eq. (3.22). We then obtain Ireg3 (0, q̃2) as an infinite series of analytic

functions:

Ireg3 (0, q̃2) = iT
Nc∑

j=1

∞∑

n=−∞

2∑

α=0

Cα

∫
d3p

(2π)3

[ 1

p2 +M2
j,n,α

1

(p+ q)2 +M2
j,n,α

]

=
iT

2π2

∑

j,n,α

Cα

∫ 1

0

dx

∫ ∞

0

dk
k2

[k2 + (x− x2)q̃2 +M2
j,n,α]

2

=
iT

4πq̃

∑

j,n,α

Cα sin
−1
( q̃

2√
q̃2

4 +M2
j,n,α

)
(3.25)

with

Mj,n,α(T ) =
√

M2
α + {(2n+ 1)πT + Ajj

4 }2, (3.26)

where Mα ≡ Mu;α = Md;α. We have numerically confirmed that the con-

vergence of n-summation is quite fast in Eq. (3.25). Each term of Ireg3 (0, q̃2)

has two physical cuts on the imaginary axis in the complex-q̃ plane. One

is an upward vertical line starting from q̃ = 2iMj,n,α and the other is a

downward vertical line from q̃ = −2iMj,n,α. The lowest branch point is

q̃ = 2iMj=1,n=0,α=0 in the upper-half plane where we consider the contour

integration. We call 2Mj=1,n=0,α=0 “the threshold mass Mth”.
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We can obtain the meson screening mass M scr
ξ as a pole of χξξ(0, q̃2):

[
1− 2GξΠξ(0, q̃

2)
]∣∣

q̃=iMξ,scr
= 0. (3.27)

If the pole at q̃ = iM scr
ξ is well isolated from the cut, i.e., the condition

M scr
ξ < Mth is well satisfied, one can determine the screening mass from

the pole location without making the q̃ integral. In the high-T limit, the

condition becomes M scr
ξ < 2πT .

3.2.5 Meson susceptibility

Here, the meson susceptibility χsus
ξ is considered for ξ = π, a0, η and σ. In

LQCD simulations of Refs. [60, 61], the χsus
ξ are defined in Euclidean space-

time xE = (τ,x) as

χsus
ξ =

1

2

∫
d4xE ⟨Jξ(τ,x)J†

ξ (0,0)⟩. (3.28)

In the LQCD simulations, it is assumed that Jσ and Jη have no s-quark

component for simplicity: namely, Jσ =
∑

f=u,d ψ̄fψf − ⟨
∑

f=u,d ψ̄fψf⟩ and

Jη =
∑

f=u,d ψ̄f iγ5ψf − ⟨
∑

f=u,d ψ̄f iγ5ψf⟩. For consistency, we take the same

assumption also in the model analysis, and denote “the mesons with no s-

quark (ns) component” by σns and ηns. The factor 1/2 is introduced to define

the χsus
ξ as single-flavor quantities.

The χsus
ξ is related to the Matsubara Green’s function χE

ξξ(q
2
4, q

2) in the

momentum representation as

χsus
ξ =

1

2
χE
ξξ(q

2
4, q

2)
∣∣
q4=0,q=0

, (3.29)

and χE
ξξ is obtainable from Eq. (3.14) for π and a0 mesons. For ηns meson,

we have to consider a mixing between ηns and ηs = ψ̄siγ5ψs. As a result of

this mixing, one can obtain χηnsηns as [8]

χηnsηns =
(1− 2GηsηsΠηsηs)Πηnsηns

det [I − 2GΠ ]
, (3.30)

where I is the unit matrix and

G =

(
Gηsηs Gηsηns

Gηnsηs Gηnsηns

)
, Π =

(
Πηsηs 0

0 Πηnsηns

)
(3.31)

for the elements

Gηsηs = GS(Φ), (3.32)

Gηnsηns = GS(Φ) +
1

2
K(T )σs, (3.33)

Gηsηns = Gηnsηs =

√
2

2
K(T )σl. (3.34)
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In the isospin-symmetric case we consider, the polarization functions Πηsηs

and Πηnsηns have the same form as Ππ:

Πηsηs = Ππ(Ms), (3.35)

Πηnsηns = Ππ(Ml), (3.36)

where note that Ππ(Ms) is a function of not Ml but Ms. Similarly, χσnsσns is

obtainable from Eq. (3.30) with K(T ) replaced by −K(T ) and Ππ by Πa0 .

3.3 Numerical Results

3.3.1 Meson screening masses

The EPNJL model has three adjustable parameters, α1 in the entanglement

coupling GS(Φ) and b and T1 in the KMT interaction K(T ). These parame-

ters can be clearly determined from LQCD data [30] for pion and a0-meson

screening masses, M scr
π and M scr

a0 , as shown below.
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Threshold

Fig. 3.2: T dependence of pion and a0-meson screening masses, M scr
π and

M scr
a0 . The solid (dot-dash) line denotesM scr

π (M scr
a0 ) calculated by the EPNJL

model, whereas the dotted line corresponds to the threshold mass. LQCD

data are taken from Ref. [30]; closed squares (open circles) correspond to the

2+1-flavor data for M scr
π (M scr

a0 ). In Ref. [30], T χ
c was considered 196 MeV,

but it was refined to 154 ± 9 MeV [40, 41]. The latest value is taken in this

figure.

Figure 3.2 shows T dependence of M scr
π and M scr

a0 . Best fitting is obtained,

when α1 = 1.0, T1 = 0.79T χ
c = 121 MeV and b = 0.23T χ

c = 36 MeV. In fact,

the EPNJL results (solid and dot-dash lines) with this parameter set well
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Fig. 3.3: Effects of T -dependent KMT interaction on pion and a0-meson

screening masses. The solid (dot-dash) line denotes M scr
π (M scr

a0 ) calculated

by the PNJL model with T -dependent coupling K(T ). See Fig. 3.2 for

LQCD data.

account for LQCD data [30] for both M scr
π and M scr

a0 . The parameters thus

obtained indicate the strong suppression of K(T ) in the vicinity of T χ
c . The

mass difference ∆Mscr(T ) = M scr
a0 (T )−M scr

π (T ) is sensitive to K(T ) because

of Eqs. (3.15) and (3.16), and hence the values of b and T1 are well determined

from ∆Mscr(T ).

When α1 = 0, the EPNJL model is reduced to the PNJL model. The

results of the PNJL model are shown in Fig. 3.3 for comparison. The PNJL

results cannot reproduce LQCD data particularly in the region T >∼ 180 MeV.

The slope of the solid and dot-dash lines in the region is thus sensitive to the

value of α1. Namely, the value of α1 is well determined from the slope.

In Fig. 3.2, the solid and dot-dash lines are lower than the threshold

mass 2Mj=1,n=0,α=0 (dotted line). This guarantees that the M scr
π and M scr

a0

determined from the pole location in the complex-q̃ plane agree with those

from the exponential decay of ζξξ(0,x) at large r = |x|.
In the EPNJL model with the present parameter, the chiral susceptibility

χll for light quarks has a peak at T = 163 MeV, as shown later in Fig. 3.11(a).

This indicates T χ
c = 163 MeV. The model result is consistent with LQCD

data T χ
c = 154 ± 9 MeV of Refs. [40, 41] close to the continuum limit. For

the deconfinement transition, meanwhile, the parameter T0 is adjusted to

reproduce LQCD data on T deconf
c , as already mentioned in Sec. 3.2. In fact,

the Polyakov-loop susceptibility χ̄ΦΦ̄ has a peak at T = 165 MeV in the

EPNJL model, as shown in Fig. 3.11(b). The model result T deconf
c = 165

MeV is consistent with LQCD data T deconf
c = 170± 7 MeV of Ref. [63] close
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to the continuum limit.

Figure 3.4 shows T dependence of the renormalized chiral condensate ∆l,s

defined by

∆l,s ≡
σl(T )− ml

ms
σs(T )

σl(0)− ml
ms
σs(0)

, (3.37)

and the Polyakov loop Φ. The present EPNJL model well reproduces LQCD

data [40] for the magnitude of ∆l,s in addition to the value of T χ
c . The

present model overestimates LQCD data for the magnitude of Φ, although

it yields a result consistent with LQCD for T deconf
c . The overestimation

in the magnitude of Φ is a famous problem in the PNJL model. Actu-

ally, many PNJL calculations have this overestimation. This is considered

to come from the fact that the definition of the Polyakov loop is different

between LQCD and the PNJL model [65, 66]. In LQCD the definition is

ΦLQCD = ⟨trc T exp[i
∫ 1/T

0 dτA4(τ,x)]⟩/3, while in the PNJL model based

on the Polyakov gauge and the mean-field approximation the definition is

ΦPNJL = trc exp[i⟨A4⟩/T ]/3, although both are order parameters of Z3 sym-

metry [65,66]; see for example Ref. [14, 67] as a trial to solve this problem.
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Fig. 3.4: T dependence of ∆l,s and Φ. The solid (dot-dash) line corresponds

to results of the EPNJL model for ∆l,s (Φ). LQCD data for 2+1 flavors are

taken from Ref. [40].

Now we investigate effects of T -dependent KMT interaction K(T ) on

M scr
π and M scr

a0 . In Fig. 3.5, T -dependence of K(T ) is switched off; namely,

the results of the EPNJL model with K(T ) = K(0) are shown. One can see

that T -dependence ofK(T ) reduces the mass difference ∆M scr = M scr
a0 −M scr

π

significantly in a range 150 <∼ T <∼ 180 MeV, comparing Fig. 3.5 with Fig. 3.2.

At T = 176 MeV where the first-order chiral and deconfinement transitions
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Fig. 3.5: Effects of T -dependent KMT interaction on pion and a0-meson

screening masses. The solid (dot-dash) line denotes M scr
π (M scr

a0 ) calculated

by the EPNJL model with K(T ) = K(0). See Fig. 3.2 for LQCD data.

take place, M scr
π has a jump while M scr

a0 has a cusp. Meson screening mass is

thus a good indicator for the first-order transitions.

In Fig. 3.6, both T dependence of K(T ) and the entanglement of GS(Φ)

are switched off. Namely, the results of the standard PNJL model with a con-

stant K are shown. The model cannot reproduce LQCD data, as expected.

Figure 3.7 shows three types of EPNJL calculations for the mass difference

∆Mscr(T ). The mass difference plays a role of the order parameter of the

effective restoration of U(1)A symmetry. The full-fledged EPNJL calculations

(solid line) with both T -dependent K and the entanglement coupling GS(Φ)

well reproduce LQCD data, while the standard PNJL model (dotted line)

with constant K largely overestimates the data.

The present model has T dependence implicitly in GS(Φ) through Φ and

explicitly in K(T ). As a model opposite to the present one, one may consider

the case that K(T ) = K(0) and GS has T dependence explicitly, i. e., GS =

GS(T ). We can determine GS(T ) so as to reproduce LQCD data for ∆l,s;

however, this model overestimates LQCD data for ∆Mscr. Thus the present

model is well designed.
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3.3.2 Meson susceptibilities

The validity of K(T ) is investigated by comparing LQCD data with the

model results for meson susceptibilities χsus
ξ (ξ = π, a0, ηns, σns). LQCD data

based on domain-wall fermions [61] are available for two cases of pion mass

Mπ(0) at vacuum being the physical value 135 MeV and a slightly heavier

value 200 MeV. In order to reproduce these values with the EPNJL model,

we take ml = 5.68 MeV for the first case and 12.8 MeV for the second one.

We consider the difference ∆π,a0 = χsus
π − χsus

a0 as an order parameter of

the effective U(1)A-symmetry restoration. Figure 3.8 shows T dependence

of ∆π,a0/T
2 for two cases of Mπ(0) = 135 and 200 MeV. Since the χsus

ξ have

ultraviolet divergence, they are renormalized with the MS scheme in LQCD.

For this reason, one cannot compare the LQCD data with the results of the

EPNJL model directly. We then multiply the model results by a constant so

as to reproduce LQCD data at T = 139 MeV for the case of Mπ(0) = 135

MeV. The model results thus renormalized well reproduce LQCD data for

any T in both cases of Mπ(0) = 135 and 200 MeV, as shown in Fig. 3.8.

Similar analyses are made for T dependence of ∆π,σ = χsus
π − χsus

σns
and

∆η,a0 = χsus
ηns − χsus

a0 that are related to SU(2)L × SU(2)R symmetry. Figures

3.9 and 3.10 show T dependence of ∆π,σ/T 2 and ∆η,a0/T
2 for Mπ(T ) = 135

MeV and 200 MeV, respectively. In both the figures, the EPNJL model

well reproduces T dependence of LQCD results. The present model with the

K(T ) of Eq. (3.4) is thus reasonable.
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3.3.3 The order of chiral transition near the physical

point

 0

 5

 10

 15

 20

 25

 30

 100  120  140  160  180  200  220  240

χll

T [MeV]

(a) Simulation point
Physical point

Chiral limit (×10
-1)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 100  120  140  160  180  200  220  240

χ
−
Φ Φ
−

T [MeV]

(b) Simulation point
Physical point

Chiral limit

Fig. 3.11: T dependence of (a) chiral susceptibility χll and (b) Polyakov-loop

susceptibility χ̄ΦΦ̄ at S-point, P-point and Cl-point. Here χll and χ̄ΦΦ̄ are

dimensionless and their definition is the same as in the LQCD formulation.

Calculations are done by the EPNJL model with the present parameter set.

The dotted, dot-dash and solid lines stand for the results at S-point, P-point

and Cl-point, respectively. At Cl-point, χll is divided by 10 and diverges at

T = T χ
c = 153 MeV

Finally we consider the order of chiral transition near the physical point

(mphys
l ,mphys

s ) = (6.2 MeV, 175 MeV) in the ml–ms plane, First we vary ml

from 9.9 to 0 MeV with ms fixed at 175 MeV.

Following the Ref. [68], we calculate the chiral susceptibility χll for light

quarks and the Polyakov-loop susceptibility χ̄ΦΦ̄ defined by χ̄ΦΦ̄ ≡ (χΦΦ +
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2χΦΦ̄ + χΦ̄Φ̄)/4. Figure 3.11 presents T dependence of χll and χ̄ΦΦ̄ in three

points, “simulation point (S-point)” of (ml,ms) = (9.9 MeV, 175 MeV),

“physical point (P-point)” of (ml,ms) = (6.2 MeV, 175 MeV) and “light-

quark chiral-limit point (Cl point)” of (ml,ms) = (0 MeV, 175 MeV). The

transition temperatures, T χ
c and T deconf

c , are determined from the peak po-

sitions of χll and χ̄ΦΦ̄, and depend on ml and ms. However, as shown in

Fig. 3.11 (a), the T χ
c thus determined is 163 MeV for S-point and 160 MeV

for P-point, and hence the value little varies between the two points. For

Cl-point, χll diverges at T = T χ
c = 153 MeV. The chiral transition is thus

second order at Cl-point at least in the mean-field level. This result suggests

that the effective U(1)A restoration is not completed at T = T χ
c . This sug-

gestion is supported by LQCD data at S-point in Fig. 3.7 where ∆Mscr(T χ
c )

is about a half of ∆Mscr(0).

As shown in Fig. 3.11 (b), ml dependence of T deconf
c is even smaller;

namely, T deconf
c = 165 MeV for S-point and Cl-point and 163 MeV for P-

point. For Cl-point, χ̄ΦΦ̄ has a sharp peak at T = 153 MeV. It is just a result

of the propagation of divergence from χll to χ̄ΦΦ̄ [69], and never means that

a second-order deconfinement takes place there.

Fig. 3.12: Order of chiral transition near physical point in the ml–ms plane.

The value of log[χll(T χ
c )] is shown by a change in hue. Simulation point,

physical point, light-quark chiral-limit point and tricritical point are denoted

by S, P, Cl and TCP. The solid lines stand for second-order chiral transitions.

Next, both ml and ms are varied near P-point. Figure 3.12 shows the val-

ues of log[χll(T χ
c )] near P-point in the ml–ms plane. The values are denoted

by a change in hue. Three second-order chiral transitions (solid lines) meet



40 CHAPTER 3. U(1)A SYMMETRY RESTORATION

at (mtric
l ,mtric

s ) ≈ (0, 0.726mphys
s ) = (0 MeV, 127 MeV). This is nothing but

the tricritical point (TCP) of chiral phase transition.

3.4 Short Summary

In this chapter, we have investigated chiral dynamics in the ml-ms plane

(Columbia plot). For this purpose, we have introduced the effective U(1)A-

symmetry restoration to the 2+1-flavor EPNJL model by considering the

T -dependent coupling strength K(T ) of the KMT interaction. The K(T )

was well determined from state-of-the-art LQCD data on T dependence of

the difference between pion and a0-meson screening masses. The K(T ) thus

obtained is strongly suppressed around the pseudocritical temperature of

chiral transition.

In order to check the validity of the K(T ), we have analyzed LQCD

data on T dependence of meson susceptibilities of U(1)A partner (π and

a0 mesons) and chiral partner (π and σns mesons). We have found good

agreement between LQCD results and the EPNJL model ones.

By using this reliable model, we have investigated the Columbia plot

near the physical point (ml,ms) = (mphys
l ,mphys

s ) = (6.2 MeV, 175 MeV).

We have showed that chiral transition is the second order at the light-quark

chiral limit point (ml,ms) = (0,mphys
s ) = (0, 175 MeV). We have also found

that a tricritical point (TCP) exists on the line of ml = 0 in the ml-ms

plane. The TCP is located in the southwest direction from physical point.

The location we predicted is (ml,ms) ≈ (0, 0.726mphys
s ) = (0 MeV, 127 MeV).



Chapter 4

Model prediction for meson
pole masses

In this chapter, we predict ξ-meson pole masses Mpole
ξ (T ) from ξ-meson

screening masses M scr
ξ (T ) calculated with LQCD simulations by proposing a

practical effective model. First, we construct the effective model that repro-

duces LQCD data on T dependence of scalar and pseudoscalar meson screen-

ing masses. We consider a new version of PNJL model with T -dependent

coupling strengths of four-quark and six-quark Kobayashi-Maskawa-’t Hooft

interactions. The T -dependent coupling strengths are well determined from

LQCD data on the chiral-symmetry restoration and the effective U(1)A-

symmetry restoration. We show that our model well reproduces LQCD data

on M scr
ξ (T ) for both scalar and pseudoscalar mesons, particularly in T >∼ T χ

c ,

without introducing new adjustable parameters. Using the effective model,

we predict T dependence of Mpole
ξ (T ) for scalar and pseudoscalar mesons.

For η′ meson, we find that the model prediction is consistent with the exper-

imental value at finite T extracted from indirect measurements in heavy-ion

collisions. Finally, we show that the relationM scr
ξ (T )−Mpole

ξ (T ) ≈ M scr
ξ′ (T )−

Mpole
ξ′ (T ) is considerably good when ξ and ξ′ belong to scalar mesons, and

suggest that the relation M scr
ξ (T )/M scr

ξ′ (T ) ≈ Mpole
ξ (T )/Mpole

ξ′ (T ) is satisfied

within 20% error when ξ and ξ′ belong to pseudoscalar mesons and also when

ξ and ξ′ belong to scalar mesons.

4.1 Formalism

4.1.1 Model setting

We extend the 2+1-flavor PNJL model [9–24] by introducing T dependence

to the coupling strengths for four- and six-quark interactions: Namely, GS =

GS(T ) and GD = GD(T ). The Lagrangian density in Minkowski space is

41
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defined as

L =ψ̄(iγνD
ν − m̂0)ψ +GS(T )

8∑

a=0

[(ψ̄λaψ)
2 + (ψ̄iγ5λaψ)

2]

−GD(T )
[
det
f,f ′

ψ̄f (1 + γ5)ψf ′ + det
f,f ′

ψ̄f (1− γ5)ψf ′

]

− U(Φ[A], Φ̄[A], T ), (4.1)

where the gauge fields Aν are introduced through the covariant derivative

Dν = ∂ν + iAν and are assumed to be Aν = gδν0 (A
0)ata/2 = −igδν0 (A4)ata/2

for the gauge coupling g. The quark fields ψ = (ψu,ψd,ψs)T have current

quark masses m̂0 = diag(mu,md,ms) satisfying ms > ml ≡ mu = md in the

2+1-flavor system. The matrices λa (ta) for a = 1, ..., 8 are the Gell-Mann

matrices in flavor (color) space. Furthermore, λ0 is related to the unit matrix

IF in flavor space as λ0 =
√
2/3 IF, and detf,f ′ stands for the determinant

in flavor space.

Following our discussion in Chapter 3, we determine T dependence of

GD(T ) in order to reproduce LQCD data on the U(1)A-symmetry restoration.

The T -dependent strength GD(T ) thus determined is defined by

GD(T ) =

{
GD(0) (T < T1)

GD(0)e−(T−T1)2/b21 (T ≥ T1)
. (4.2)

As mentioned above, we also introduce T dependence to the coupling

strength GS of four-quark interaction. We assume that GS(T ) has the same

function form as GD(T ):

GS(T ) =

{
GS(0) (T < T2)

GS(0)e−(T−T2)2/b22 (T ≥ T2)
. (4.3)

One can determine the parameter set (T1, b1) from LQCD data on ∆M scr
a0,π(T )

and the set (T2, b2) from LQCD data on ∆l,s(T ). We tabulate the resultant

values in Table 4.1. We will show the detail of the parameter fitting in Sec.

4.2.1. In Chapter 3, we used the EPNJL model with a T -dependent KMT

interaction of form (4.2). The present values of T1 and b1, shown in Table

4.1, are close to the ones in the EPNJL model.

Table 4.1: Model parameters in coupling strengths GS(T ) and GD(T ).

T1 [MeV] b1 [MeV] T2 [MeV] b2 [MeV]

121 43.5 131 83.3

As shown in Chapter 2, the Polyakov loop Φ and its Hermitian conjugate

Φ̄ are obtained by

Φ =
1

3
trc(L), Φ̄ =

1

3
trc(L

∗) (4.4)
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with the Polyakov-loop operator

L = exp[iA4/T ] = exp[i× diag(A11
4 , A22

4 , A33
4 )/T ] (4.5)

for real variables Ajj
4 satisfying A11

4 + A22
4 + A33

4 = 0. For the case of µ = 0

where Φ = Φ̄, note that we can set A33
4 = 0 and determine the others as

A22
4 = −A11

4 = cos−1[(3Φ− 1)/2].

Again, we take the logarithm-type Polyakov-loop potential of Ref. [18]

as U . The parameter T0 included in U is used as an adjustable parameter.

In the present case, we take T0 = 180 MeV so that the PNJL model can

reproduce 2+1-flavor LQCD data on T dependence of pion screening mass

at T >∼ T χ
c = 154± 9 MeV, where the value of T χ

c is determined from LQCD

simulations [40, 41].

Making the mean-field approximation (MFA) to Eq. (4.1), one can obtain

the linearized Lagrangian density

LMFA = ψ̄S−1ψ − UM − U(Φ[A], Φ̄[A], T ), (4.6)

where the quark propagator

S = (iγν∂
ν − γ0A

0 − M̂)−1 (4.7)

depends on the chiral condensates σf = ⟨ψ̄fψf⟩ (f = u, d, s) through the

effective-mass matrix M̂ = diag(Mu,Md,Ms) with

Mu = mu − 4GS(T )σu + 2GD(T )σdσs,

Md = md − 4GS(T )σd + 2GD(T )σsσu,

Ms = ms − 4GS(T )σs + 2GD(T )σuσd.

The mesonic potential UM is defined by

UM = 2GS(T )(σ
2
u + σ2

d + σ2
s)− 4GD(T )σuσdσs.

Making the path integral over quark fields in the mean-field action, one

can get the thermodynamic potential (per unit volume)

ΩPNJL = UM + U − 2
∑

f=u,d,s

∫
d3p

(2π)3

[
3Ep,f

+
1

β
ln [1 + 3(Φ+ Φ̄e−βEp,f )e−βEp,f + e−3βEp,f ]

+
1

β
ln [1 + 3(Φ̄+ Φe−βEp,f )e−βEp,f + e−3βEp,f ]

]
(4.8)

with Ep,f =
√

p2 +M2
f and β = 1/T . Mean-field variables (σl, σs,Φ and Φ̄)

are determined to minimize ΩPNJL, where isospin symmetry is assumed for

the light-quark sector, i.e., σl ≡ σu = σd and Ml = Mu = Md.
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On the right-hand side of Eq. (4.8), the first term (vacuum term) diverges.

The three-dimensional momentum-cutoff regularization is often used to avoid

the divergence. However, the regularization breaks Lorentz invariance. This

breaking induces an unphysical oscillation in the spatial correlation function

ζξξ(0,x) [35]. Furthermore, the basic relation Mpole
ξ (0) = M scr

ξ (0) is not

satisfied as a result of the Lorentz-symmetry breaking. We then use the Pauli-

Villars (PV) regularization [32,35] since it preserves Lorentz invariance. This

PV regularization has a parameter Λ with mass dimension; see Sec. 4.1.3 for

further explanation.

Table 4.2: Model parameters determined from physical quantities at vacuum.

Set (A) is the realistic parameter set that is determined from experimental or

empirical values at vacuum. In set (B), ml and ms are slightly changed from

set (A) so as to become consistent with the lattice setting (ml/ms = 1/10

and Mpole
π (0) = 176 MeV) of LQCD simulations of Ref. [30, 70].

ml [MeV] ms [MeV] GS(0)Λ2 GD(0)Λ5 Λ [MeV]

set (A) : 8 191 2.72 40.4 660

set (B) : 13 130 2.72 40.4 660

The present model has five parameters (ml,ms, GS(0), GD(0),Λ) in ad-

dition to T0, (T1, b1) and (T2, b2). The five parameters can be determined

from experimental data or empirical values at vacuum. The determina-

tion of the five parameters should be made before the determination of T0,

(T1, b1) and (T2, b2). We first assume ml = 8 MeV and then determine

the values of (ms, GS(0), GD(0),Λ) so as to reproduce experimental data on

fπ = 92.4 MeV, Mpole
π = 138 MeV, Mpole

K = 495 MeV and Mpole
η′ = 958 MeV,

where fπ is the pion decay constant. The resulting parameter values are

shown as set (A) in Table 4.2. When we compare model results with LQCD

data, we refit the values of ml and ms so as to become consistent with the

lattice setting. The parameter set with such a parameter tuning is referred

to as set (B) in this thesis; see Sec. 4.1.4 for the detail.

Table 4.3 shows physical quantities at vacuum calculated with the pa-

rameter set (A) of Table 4.2 and the corresponding experimental or empirical

values. Numbers with asterisk are inputs of the present parameter fitting.

The parameter set (A) reproduces available experimental data reasonably

well. In addition, the results of set (A) are close to those of the parameter

set in Ref. [8] for meson pole masses for η, a0,κ, σ, f0, the mixing angle θη
between η0 and η8 states, the mixing angle θσ between σ0 and σ8 states, the

effective s-quark mass Ms, and the kaon decay constant fK .
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Table 4.3: Physical quantities at vacuum calculated with the parameter set

(A) of Table 4.2 and the corresponding experimental or empirical values.

Numbers with asterisk are inputs of the present parameter fitting. Exper-

imental data are taken from Refs. [1, 71]. The effective light-quark mass

Ml ≈ 336 MeV is estimated from experimental data on baryon magnetic mo-

ments [71]. Since we impose the isospin symmetry, we estimate experimental

values of averaged pion and kaon masses as Mπ ≡ (M exp
π0 +M exp

π+ +M exp
π− )/3 =

(134.97 + 2 × 139.57)/3 = 138.0 MeV and MK ≡ (M exp
K0 + M exp

K̄0 + M exp
K+ +

M exp
K−)/4 = (2× 497.61 + 2× 493.68)/4 = 495.6 MeV. Experimental data on

the decay constants fπ and fK are taken for charged pion and kaon.

Mπ [MeV] MK [MeV] Mη′ [MeV] fπ [MeV] fK [MeV]

Cal. 138∗ 495∗ 958∗ 92.4∗ 96.2

Exp. 138.0 495.6 957.8 92.2 110.5

Mη [MeV] Ma0 [MeV] Mκ [MeV] Mσ [MeV] Mf0 [MeV]

Cal. 487 813 1016 674 1185

Exp. 547.8 980±20 800 400∼550 980±20

θη θσ Ml [MeV] Ms [MeV]

Cal. −7.40◦ 17.6◦ 336 544

Exp. −11.4◦ – 336 –

4.1.2 Meson pole masses

We consider pseudoscalar mesons (ξ = π, K, η, η′) and scalar ones (ξ =

a0,κ, σ, f0), and recapitulate the formalism of Ref. [8]. The current oper-

ator for ξ meson is expressed by

Jξ(x) = ψ̄(x)Γξψ(x)− ⟨ψ̄(x)Γξψ(x)⟩ (4.9)

with Γξ = IC ⊗ ΓD ⊗ ΓF, where IC is the unit matrix in color space. The

matrix ΓD in Dirac space is ΓD = ID for the scalar channel and ΓD = iγ5 for

the pseudoscalar channel, where ID is the unit matrix in Dirac space. The

matrix ΓF in flavor space is

ΓF =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ3 for π, a0
(λ4 ± iλ5)/

√
2 for K, κ

λs for ηs̄s, σs̄s
λns for ηl̄l, σl̄l

, (4.10)

where λns = diag(1, 1, 0) and λs = diag(0, 0,
√
2).

Mesons η and η′ are described as mixed states of ηs̄s and ηl̄l states, and

σ and f0 are by the superposition of σs̄s and σl̄l states: Namely,

(
η′

η

)
= O(θlsη )

(
ηs̄s
ηl̄l

)
,

(
f0
σ

)
= O(θlsσ )

(
σs̄s
σl̄l

)
(4.11)
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with the orthogonal matrix O(θ)

O(θ) =

(
cos θ sin θ

− sin θ cos θ

)
, (4.12)

where the mixing angle θlsη (θlsσ ) represents the ηs̄s-ηl̄l (σs̄s-σl̄l) mixture and

is obtained by diagonalizing coupled meson propagators for ηl̄l and ηs̄s (σl̄l
and σs̄s) states [8]. The Fourier transform χξξ′(q20, q

2) of mesonic correlation

function ζξξ′(t,x) ≡ ⟨0|T
(
Jξ(x)J

†
ξ′(0)

)
|0⟩ in Minkowski space x = (t,x) is

described by

χξξ′(q
2
0, q

2) = χξξ′(q
2
0, q̃

2) = i

∫
d4xeiq·xζξξ′(t,x) (4.13)

with (external) momentum q = (q0, q), where the symbol T stands for the

time-ordered product and q̃ = ±|q|. The random-phase (ring) approximation

leads to the Schwinger-Dyson equation

χξξ′ = Πξξ′ + 2
∑

ξ′′, ξ′′′

Πξξ′′Gξ′′ξ′′′χξ′′′ξ′ (4.14)

for χξξ′ , where Gξξ′ is an effective four-quark interaction acting between

mesons ξ and ξ′. The one-loop polarization function Πξξ′ is defined by

Πξξ′(q
2
0, q

2) ≡ (−i)

∫
d4p

(2π)4
trc,f,d (ΓξiS(p

′ + q)Γξ′iS(p
′)) (4.15)

with internal momentum p = (p0,p), where p′ = (p0 + iA4,p) and the trace

trc,f,d is taken in color, flavor and Dirac spaces. The quark propagator S(p) is

diagonal in flavor space: S(p) = diag(Su, Sd, Ss). The polarization function

Πξξ′(q20, q
2) can be classified with quark and anti-quark flavors f and f ′ as

Πff ′

S = (−2i)

∫
d4p

(2π)4
trc,d (iSf (p

′ + q)iSf ′(p′))

= 4i[If1 + If
′

2 −
{
q2 − (Mf +Mf ′)2

}
Iff

′

3 ] (4.16)

for the scalar mesons and

Πff ′

P = (−2i)

∫
d4p

(2π)4
trc,d ((iγ5)iSf (p

′ + q)(iγ5)iSf ′(p′))

= 4i[If1 + If
′

2 −
{
q2 − (Mf −Mf ′)2

}
Iff

′

3 (4.17)

for the pseudoscalar mesons, where the trace trc,d is taken in color and Dirac

spaces and

If1 =

∫
d4p

(2π)4
trc
[ 1

p′2 −M2
f

]
, (4.18)

If2 =

∫
d4p

(2π)4
trc
[ 1

(p′ + q)2 −M2
f

]
, (4.19)

Iff
′

3 =

∫
d4p

(2π)4
trc
[ 1

{p′2 −M2
f }((p′ + q)2 −M2

f ′)

]
.

(4.20)
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For finite T , the replacement

p0 → iωn = i(2n+ 1)πT,
∫

d4p

(2π)4
→ iT

∞∑

n=−∞

∫
d3p

(2π)3
(4.21)

should be taken.

Here we explain the PV regularization for the thermodynamic potential

ΩPNJL of Eq. (4.8) and the three integrals If1 , I
f
2 , I

ff ′

3 . For later convenience,

ΩPNJL is divided into ΩPNJL = UM + U +
∑

f=u,d,sΩF(Mf ), while If1 and If2
are represented by I(Mf ) and Iff

′

3 is by Iff ′(Mf ,Mf ′). In the PV scheme,

the functions ΩF(Mf ), I(Mf ) and Iff ′(Mf ,Mf ′) are regularized as

Ωreg
F (Mf ) =

2∑

α=0

CαΩF(Mf ;α),

Ireg(Mf ) =
2∑

α=0

CαI(Mf ;α),

Iregff ′(Mf ,Mf ′) =
2∑

α=0

CαIff ′(Mf ;α,Mf ′;α), (4.22)

where Mf ;0 = Mf and the Mf ;α (α = 1, 2) denote the masses of auxil-

iary particles. The parameters Mf ;α and Cα should satisfy the condition∑2
α=0 Cα =

∑2
α=0 CαM2

f ;α = 0 to remove the quartic, the quadratic and the

logarithmic divergence in I1, I2, I
ff ′

3 , and ΩF. Logarithmic divergence par-

tially remains in Ωreg
F (Mf ) even after the subtraction of Eq. (4.22), but the

term does not depend on the mean-field variables (σl, σs,Φ, Φ̄) and is not rel-

evant to the determination of mean-field variables for any T . Hence we can

simply drop the term. We take (C0, C1, C2) = (1, 1,−2) and (M2
f ;1,M

2
f ;2) =

(M2
f +2Λ2,M2

f +Λ
2), following Ref. [34]. We keep the parameter Λ finite even

after the subtraction (4.22), since the present model is non-renormalizable.

π, a0, K,κ mesons

For ξ = π, a0, K and κ mesons, the effective four-quark interactions Gξξ′ and

the polarization functions Πξξ′ are diagonal, i.e., Gξξ′ = Gξδξξ′ , Πξξ′ = Πξδξξ′ ,

since we assume isospin symmetry in the light-quark sector and take the

random-phase approximation. We then can easily solve the Schwinger-Dyson

equation (4.14) as

χξξ =
Πξ

1− 2GξΠξ
(4.23)
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for ξ = π, a0, K and κ, where the effective couplings Gξ are obtained by

Ga0 = GS(T ) +
1

2
GD(T )σs, (4.24)

Gπ = GS(T )−
1

2
GD(T )σs, (4.25)

Gκ = GS(T ) +
1

2
GD(T )σl, (4.26)

GK = GS(T )−
1

2
GD(T )σl (4.27)

and the one-loop polarization functions Πξ are written by

Πa0 = Π ll
S , Ππ = Π ll

P, Πκ = Πsl
S , ΠK = Πsl

P .

(4.28)

The meson pole mass Mpole
ξ and its decay width Γξ are determined from

a pole position of χξξ(q20, q̃
2) in the lower half-plane of the complex q0 plane.

Taking the rest frame q = (q0,0) for convenience, we can get the equation
[
1− 2GξΠξ(q

2
0, 0)

]∣∣
q0=Mpole

ξ −iΓξ/2
= 0 (4.29)

for Mpole
ξ and Γξ. In the present model, Γξ becomes finite when the meson

can decay into a quark-antiquark pair. Here, we take the approximation

Γξ/2M
pole
ξ ≪ 1, following Ref. [12]. We numerically confirm the approxima-

tion is good for T ≤ 250 MeV of our interest.

η, η′, σ, f0 mesons

The pole masses of η and η′ (σ and f0) mesons are determined by solving

the coupled-channel equations (4.14) for ηl̄l and ηs̄s (σl̄l and σs̄s). For later

convenience, we introduce the correlation functions χξξ′ with the matrix form

χξ =

(
χξs̄sξs̄s χξs̄sξl̄l

χξl̄lξs̄s χξl̄lξl̄l

)
(ξ = η, σ). (4.30)

The Schwinger-Dyson equation for χξ is obtained from Eq. (4.14) as

χξ = Πξ + 2ΠξGξχξ (4.31)

with the coupling matrix Gξ and the polarization-function matrix Πξ,

Gξ =

(
Gξs̄sξs̄s Gξs̄sξl̄l

Gξl̄lξs̄s Gξl̄lξl̄l

)
, Πξ =

(
Πξs̄s 0

0 Πξl̄l

)
.

(4.32)

The solution to Eq. (4.31) is

χξs̄sξs̄s =
(1− 2Gξl̄lξl̄lΠξl̄l)Πξs̄s

det [I − 2ΠξGξ]
, (4.33)

χξl̄lξl̄l =
(1− 2Gξs̄sξs̄sΠξs̄s)Πξl̄l

det [I − 2ΠξGξ]
, (4.34)

χξs̄sξl̄l = χξl̄lξs̄s =
2Gξl̄lξs̄sΠξs̄sΠξl̄l

det [I − 2ΠξGξ]
, (4.35)
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where I is the unit matrix and the symbol det is determinant taken in the ξl̄l
and ξs̄s channels. The matrix elements of Gη and Gσ are explicitly obtained

by

Gηs̄sηs̄s = GS(T ), Gηl̄lηl̄l = GS(T ) +
1

2
GD(T )σs,

Gηs̄sηl̄l = Gηl̄lηs̄s =

√
2

2
GD(T )σl, (4.36)

Gσs̄sσs̄s = GS(T ), Gσl̄lσl̄l
= GS(T )−

1

2
GD(T )σs,

Gσs̄sσl̄l
= Gσl̄lσs̄s = −

√
2

2
GD(T )σl, (4.37)

and the matrix elements of Πη,Πσ are by

Πσl̄l
= Π ll

S , Πσs̄s = Πss
S , (4.38)

Πηl̄l = Π ll
P, Πηs̄s = Πss

P . (4.39)

The masses of η and η′ (σ and f0) are determined as poles of χη (χσ), that

is, as zero points of the determinant in Eqs. (4.33)-(4.35):

det
[
I − 2Πξ(q

2
0, 0) Gξ

]∣∣
q0=Mpole

ξ −iΓξ/2
= 0. (4.40)

Two poles are found in the lower half-plane of the complex q0 plane. The

lighter and heavier pole masses correspond to η and η′ (σ and f0) meson

masses, respectively.

4.1.3 Meson screening masses

We extend the method of Chapter 2 for evaluating M scr
ξ (T ) from the single-

channel system to the multi-channel system. Following Chapter 2, we start

with the reason why the derivation of M scr
ξ (T ) was not easy in NJL-type

effective models before the work of Chapter 2. The M scr
ξ is defined with the

spatial correlator ζξξ(0,x) in the long-distance limit (r = |x| → ∞):

M scr
ξ = − lim

r→∞

d ln ζξξ(0,x)

dr
, (4.41)

where

ζξξ(0,x) =
1

4π2ir

∫ ∞

−∞
dq̃ q̃χξξ(0, q̃

2)eiq̃r. (4.42)

Equation (4.42) has two problems in the q̃ integration. The first problem

is from the regularization taken. As already mentioned in Chapter 2, the

three-dimensional momentum cutoff commonly used breaks Lorentz invari-

ance even in T = 0. This induces an unphysical oscillation in ζξξ(0,x)

particularly at large r [35]. We can easily solve this problem by using the

PV regularization. Hence we take the PV regularization. As easily found

from Eq. (4.42), direct numerical calculations of the q̃ integration are quite
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difficult at large r because of highly oscillation of the integrand. This is the

second problem. In order to solve this problem, one can consider analytic

continuation of χξξ(0, q̃2) to the complex q̃ plane. In general, the integra-

tion can be made easily with the Cauchy’s integral theorem. However, the

complex function χξξ(0, q̃2) has logarithmic cuts in the vicinity of the real

q̃ axis; see Fig. 2.1 in Chapter 2. This demands time-consuming numerical

calculations to evaluate the contribution of logarithmic cuts [35]. As already

shown in Chapters 2 and 3, these logarithmic cuts are avoidable by taking

the Matsubara summation over n after the p integration in Eq. (4.21). Con-

sequently, we obtain the regularized function Iff
′

3,reg as an infinite series of

analytic functions:

Iff
′

3,reg(0, q̃
2) = iT

Nc∑

j=1

∞∑

n=−∞

2∑

α=0

Cα

∫
d3p

(2π)3

[ 1

p2 +M2
f

1

(p+ q)2 +M2
f ′

]

=
iT

2π2

∑

j,n,α

Cα

∫ 1

0

dx

∫ ∞

0

dk
k2

[k2 + (x− x2)q̃2 + (1− x)M2
f + xM2

f ′ ]2

=
T

8πq̃

∑

j,n,α

CαLog

(
Mf +Mf ′ + iq̃

Mf +Mf ′ − iq̃

)
(4.43)

with

Mf (T ) =
√

M2
f,α + {(2n+ 1)πT + Ajj

4 }2, (4.44)

where “Log” denotes the principle value of the logarithm. The function iIff
′

3,reg

is real for real q̃, when q0 = 0. This means that mesons do not decay into a

quark and an antiquark. The function Iff
′

3,reg is obtained as an infinite series,

but we have numerically confirmed that the sequence of partial sums con-

verges rapidly. In the last form of Eq. (4.43), each term has two physical cuts

on the imaginary axis; one is an upward vertical line starting from the branch

point q̃ = i (Mf +Mf ′) and the other is a downward vertical line from the

branch point q̃ = −i (Mf +Mf ′). In the upper half-plane where the contour

integration is taken, the lowest branch point is q̃ = i (Mf +Mf ′)j=1,n=0,α=0.

The screening mass M scr
ξ is determined as a pole of χξξ(0, q̃2) in the upper

half-plane. The pole should be located below the lowest branch point:

M scr
ξ < Mth ≡ (Mf +Mf ′)j=1,n=0,α=0 , (4.45)

where Mth can be considered as “threshold mass” in the sense that meson is

in qq̄ continuum states when M scr
ξ > Mth. For ξ = π, a0, K,κ channels, we

can obtain the M scr
ξ by solving the equation

[
1− 2GξΠξ(0, q̃

2)
]∣∣

q̃=iMscr
ξ

= 0, (4.46)

when M scr
ξ < Mth. As T increases, M scr

ξ (pole) approaches Mth (the lowest

branch point) from below [64,72], as shown in Fig. 2.1 of Chapter 2. Mean-

while, Mth also tends to 2πT in the high-T limit, because of Ajj
4 → 0 in Eq.

(4.44). Therefore, M scr
ξ approaches 2πT as T becomes high.
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Now we consider the channel mixing. The formalism on meson screening

masses is the same as that on meson pole masses. Only the difference is that

the external momentum is set to q = (0, q). The coupled equations for the

M scr
ξ are

det
[
I − 2Πξ(0, q̃

2) Gξ

]∣∣
q̃=iMscr

ξ
= 0, (4.47)

where q̃ = ±|q| for real q and it is assume to be a complex value in the actual

calculations of M scr
ξ . Here note that Mth = 2(Ml)j=1,n=0,α=0 for η, σ mesons.

For η′, f0 mesons, we consider Mth = 2(Ms)j=1,n=0,α=0 as the threshold mass.

Strictly speaking, η′ (f0) can decay into a light-quark pair by the channel

mixing. However, such a contribution is unphysical for T ≤ T deconf
c because of

color confinement and small for T ≥ T deconf
c because of small channel mixing.

4.1.4 Model tuning for LQCD-data analyses

We use LQCD data of Ref. [30] for the M scr
ξ (T ) and of Ref. [70] for ∆l,s(T ),

since the same lattice setting is taken in the two simulations. In Refs. [30,70],

the quark-mass ratio is ml/ms = 1/10, and the π-meson mass at T = 0 is

Mpole
π (0) = 176 MeV that is slightly heavier than the experimental value 138

MeV. In model calculations, we then change quark masses from (ml,ms) =

(8 MeV, 191 MeV) to (ml,ms) = (13 MeV, 130 MeV) to become consistent

with the lattice setting. This parameter set is tabulated as set (B) in Table

4.2.

In LQCD simulations of Refs. [30, 70], the chiral-transition temperature

T χ
c is measured to be 196 MeV, but the value established in state-of-art

LQCD simulations of Refs. [40, 41] is T χ
c = 154 ± 9 MeV. Therefore, we

rescale the values of T and M scr
ξ in Refs. [30, 70] to reproduce T χ

c = 154± 9

MeV.

In LQCD simulations of Ref. [30] for pseudoscalar mesons (η, η′) and

scalar ones (σ, f0), the quark-line disconnected diagrams are neglected and

thereby the ηs̄s (σs̄s) channel is decoupled with the ηl̄l (σl̄l) channel. Eventu-

ally, LQCD data are available only for ηs̄s- and σs̄s-meson screening masses.

We then switch off the channel mixing in model calculations by setting

Gξs̄sξl̄l = Gξl̄lξs̄s = 0 for ξ = η, σ, when we analyze the LQCD data on

ηs̄s and σs̄s mesons.

Particularly for η- and η′-meson masses at T = 0, it is shown in Ref. [73]

that the disconnected diagrams are necessary to reproduce the experimental

values, although the diagrams are neglected in finite-T LQCD simulations of

Ref. [30] forM scr
ξ (T ). The disconnected diagrams contribute to both diagonal

and off-diagonal elements of the correlation-function matrix χξ in Eq. (4.30),

whereas the connected diagrams do to only the diagonal elements. The chan-

nel mixing induced by the off-diagram elements is thus one of effects induced

by the disconnected diagrams. We can then divide the disconnected-diagrams
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effects into the channel-mixing effect and the remaining disconnected-diagram

effects acting on the diagonal elements of χξ. Model calculations with the

parameter set (A) include the channel-mixing effect explicitly and the remain-

ing disconnected-diagram effects implicitly, since the set (A) is so determined

as to reproduce experimental data on meson pole masses at T = 0, particu-

larly on Mpole
η′ (0). Hence, we can consider that model calculations with the

parameter set (B) also include the channel-mixing effect explicitly and the re-

maining disconnected-diagram effects implicitly, whereas LQCD calculations

do not have any disconnected-diagram effects. Although the channel mixing

can be switched off in the model calculations to evaluate ηs̄s- and σs̄s-meson

screening masses, it should be noted that the model calculations include the

remaining disconnected-diagram effects implicitly.
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4.2 Numerical Results

4.2.1 Parameter fitting
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Fig. 4.1: T dependence of (a) ∆l,s and (b) ∆M scr
a0,π. Model results are shown

by solid lines, while LQCD data are denoted by closed circles. The parameter

set (B) is taken in model calculations. LQCD data are taken from Refs. [30,

70].

As shown in Eqs. (4.2) and (4.3), the present model has adjustable pa-

rameters (T1, b1) in the KMT coupling strength GD(T ) and (T2, b2) in the

four-quark coupling strength GS(T ). The parameters (T1, b1) are deter-

mined from LQCD data associated with the U(1)A-symmetry restoration,

i.e., ∆M scr
a0,π = M scr

a0 −M scr
π in T > 1.1T χ

c = 170 MeV where only the U(1)A-

symmetry breaking survives [61, 72]. Similarly, the parameters (T2, b2) are
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determined from LQCD data associated with the chiral-symmetry restora-

tion, i.e., the pseudocritical temperature T χ
c = 154± 9 MeV [40,41] and the

renormalized chiral condensate

∆l,s(T ) =
σl(T )− ml

ms
σs(T )

σl(0)− ml
ms
σs(0)

. (4.48)

Figure 4.1 shows the results of the present parameter fitting for (a)∆l,s(T )

and (b) ∆M scr
a0,π(T ). Note that the parameter set (B) is taken in model calcu-

lations. Nice agreement is seen between model results (solid lines) and LQCD

data (closed circles), when (T1, b1) = (121, 43.5) and (T2, b2) = (131, 83.3) in

units of MeV. These values are tabulated in Table 4.1.
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Fig. 4.2: T dependence of meson screening masses for (a) pseudoscalar

mesons π, K, ηs̄s and (b) scalar mesons a0,κ, σs̄s. Model results are denoted

by lines and LQCD data are by symbols. The parameter set (B) is taken in

model calculations. LQCD data are taken from from Ref. [30].



4.2. NUMERICAL RESULTS 55

4.2.2 Meson screening masses

Here, we consider T dependence of meson screening masses M scr
ξ (T ) for pseu-

doscalar and scalar mesons and analyze LQCD data of Ref. [30], using the

present model with the parameter set (B). In the model calculations the chan-

nel mixing is switched off, since the disconnected diagrams are neglected in

LQCD simulations of Ref. [30].

Figure 4.2 shows T dependence of theM scr
ξ (T ) for (a) pseudoscalar mesons

(ξ = π, K, ηs̄s) and for (b) scalar mesons (ξ = a0,κ, σs̄s). The lines stand

for model results, and the symbols correspond to LQCD data of Ref. [30].

As mentioned in Sec. 4.1.3, in model calculations the M scr
ξ (T ) are derivable

when M scr
ξ (T ) < Mth. For the a0-meson case, for example, the condition is

satisfied for T > 139 MeV. The solid line representing M scr
a0 (T ) is then drawn

in T > 139 MeV. The same procedure is taken for the other lines. In both

LQCD data and our model results, all the meson masses tend to 2πT with

respect to increasing T ; see Sec. 4.1.3 for the proof. Owing to this property,

in T > 1.04T χ
c = 160 MeV, model results well reproduce LQCD data for

all the mesons. In T < 1.04T χ
c = 160 MeV, agreement between model

results and LQCD data is good for pseudoscalar π, K mesons and pretty

good for scalar a0,κ, σs̄s mesons. For pseudoscalar ηs̄s meson, the model

result overestimates LQCD data by about 10% ∼ 30% in T < 1.04T χ
c = 160

MeV, but the deviation becomes small rapidly as T increases from 160 MeV.

The deviation in T < 1.04T χ
c = 160 MeV may come from the remaining

disconnected-diagram effects acting on the diagonal elements of χη. This

implies that the channel-mixing effect is also important for ηs̄s meson in

T < 1.04T χ
c = 160 MeV. This statement is confirmed with model calculations

in Sec. 4.2.5. In addition, this statement is consistent with the statement

of Ref. [74] that the disconnected diagrams may be suppressed at least for

T ≫ T χ
c by the Debye screening and the weakly interacting nature of the

deconfinement phase.

For later discussion, we evaluate the M scr
ξ (T ) also in the realistic case,

taking the parameter set (A) and taking account of the channel mixing in

model calculations. Figure 4.3 shows the results for (a) pseudoscalar mesons

π, K, η, η′ and for (b) scalar mesons a0,κ, σ, f0. As mentioned in Fig. 4.2, all

the meson screening masses tend to 2πT . This property is independent of

quark masses. At high T , the M scr
ξ (T ) calculated with the realistic parameter

set (A) are close to those with the set (B). The difference between the former

and the latter appear only in T < T χ
c = 154± 9 MeV.
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Fig. 4.3: T dependence of meson screening masses for (a) pseudoscalar

mesons π, K, η, η′ and (b) scalar mesons a0,κ, σ, f0 calculated with the re-

alistic parameter set (A). Model results are denoted by lines. In model cal-

culations, the channel mixing is taken into account.

4.2.3 Meson pole masses

Now we predict meson pole masses in the realistic case, taking the parameter

set (A) and taking account of the channel mixing in model calculations. The

results are shown for pseudoscalar mesons π, K, η, η′ in Fig. 4.4(a) and for

scalar mesons a0,κ, σ, f0 in Fig. 4.4(b). For η′ meson, the pole mass in

medium with finite T was deduced from heavy-ion collision measurements

as Mpole
η′ (T ) = 340+375

−245 MeV [6]. In the analyses, T = 177 MeV is taken as

the default value and T is varied systematically between 140 and 220 MeV.

We then denote the experimental data [6] by the rectangle (140 MeV ≤ T ≤
220 MeV, 95 MeV ≤ Mpole

η′ ≤ 715 MeV) with the thin dotted vertical line
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standing for the default value T = 177 MeV. Our model result is consistent

with the experimental data. In general, Mpole
ξ is not smooth when the qq̄-

production threshold is opened. This threshold effect is seen at T = 190

MeV, e.g., for η′ meson.
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Fig. 4.4: Model prediction on T dependence of meson pole masses for (a)

pseudoscalar mesons π, K, η, η′ and (b) scalar mesons a0,κ, σ, f0. In model

calculations, the parameter set (A) is taken and the channel mixing is taken

into account. Model results are denoted by lines. For η′ meson in panel

(a), the experimental data [6] is shown by the rectangle with the thin dotted

vertical line T = 177 MeV; see the text for the explanation.
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4.2.4 Relation between pole and screening masses
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Fig. 4.5: Difference between screening and pole masses for (a) pseudoscalar

mesons π, K, η, η′ and (b) scalar mesons a0,κ, σ, f0. Model results are denoted

by lines. In model calculations, the parameter set (A) is taken and the

channel mixing is taken into account.

Figure 4.5 shows T dependence of the difference M scr
ξ (T )−Mpole

ξ (T ) for (a)

pseudoscalar mesons π, K, η, η′ and for (b) scalar mesons a0,κ, σ, f0, where

the parameter set (A) is taken and the channel mixing is taken into account in

model calculations. Whenever T dependence of the difference is not smooth,

it is due to the threshold effect. For pseudoscalar mesons, the difference

tends to become larger for heavier meson. For scalar mesons, meanwhile, the

difference is universal approximately:

M scr
ξ (T )−Mpole

ξ (T ) ≈ M scr
ξ′ (T )−Mpole

ξ′ (T ) (4.49)
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for ξ ̸= ξ′. The deviation is about 35 MeV around T = 200 MeV. If M scr
ξ (T ),

M scr
ξ′ (T ) andMpole

ξ′ (T ) are obtained with LQCD simulations, one can estimate

T dependence of Mpole
ξ (T ) from them by using Eq. (4.49).

Next, the relation between Mpole
ξ (T ) and M scr

ξ (T ) is considered through

the ratios Mpole
ξ (T )/Mpole

ξ′ (T ) and M scr
ξ (T )/M scr

ξ′ (T ), where ξ
′ is assumed to

be a scalar (pseudoscalar) meson when ξ is a scalar (pseudoscalar) meson.

The identity
Mpole

ξ (T )

Mpole
ξ′ (T )

=
M scr

ξ (T )

M scr
ξ′ (T )

(4.50)

is satisfied at both T = 0 and ∞. The identity at T = 0 comes from

the fact that M scr
ξ (0) = Mpole

ξ (0) for any meson. The identity at T = ∞
can be proven as follows. As mentioned in Sec. 4.1.3, in the large-T limit

all the M scr
ξ (T ) tend to 2πT . Therefore, the ratio M scr

ξ /M scr
ξ′ becomes 1

in the limit. Similarly, the ratio Mpole
ξ /Mpole

ξ′ approaches 1 with respect to

increasing T as a consequence of the effective SU(3)V-symmetry restoration.

SU(3)V symmetry is broken by the factms ̸= ml in vacuum, but it is restored

effectively at high T because the symmetry breaking is the order of (ms −
ml)/T there; precisely speaking, for the flavor-singlet states, the symmetry

is broken also by the quark-line disconnected diagrams, but the diagrams are

suppressed by the Debye screening and the weakly interacting nature at high

T [74].

Figure 4.6 shows the ratios as a function of T for (a) pseudoscalar mesons

(ξ = K, η, η′, ξ′ = π) and for (b) scalar mesons (ξ = κ,σ, f0, ξ′ = a0).

Qualitatively, the two ratios have similar T dependence each other for both

pseudoscalar and scalar mesons: Namely,

Mpole
ξ (T )

Mpole
ξ′ (T )

≃
M scr

ξ (T )

M scr
ξ′ (T )

. (4.51)

Quantitatively, the relation (4.51) is well satisfied within 20% error for pseu-

doscalar and scalar mesons. The relation is useful, because it allows us to

estimate Mpole
ξ (T ) for lighter ξ-meson from Mpole

ξ′ (T ) for heavier ξ′-meson

and M scr
ξ (T )/M scr

ξ′ (T ) that may be obtainable with state-of-art LQCD simu-

lations.
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Fig. 4.6: T dependence of Mpole
ξ /Mpole

ξ′ and M scr
ξ /M scr

ξ′ for (a) pseudoscalar

mesons (ξ = K, η, η′, ξ′ = π) and (b) scalar mesons (ξ = κ,σ, f0, ξ′ = a0).

The ratios M scr
ξ /M scr

ξ′ are denoted by solid lines, and the ratios Mpole
ξ /Mpole

ξ′

are by dotted, dashed and dot-dashed lines. In model calculations, the pa-

rameter set (A) is taken and the channel mixing is taken into account.
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4.2.5 Discussion
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Fig. 4.7: T dependence of channel-mixing effects on (a) η- and η′-meson

screening masses and (b) σ- and f0-meson screening masses. In panel (a)

(panel (b)), the thin and thick solid lines denote screening masses of η and

η′ (σ and f0) mesons, respectively, and the thin and thick dashed lines corre-

spond to screening masses of ηl̄l and ηs̄s (σl̄l and σs̄s) channels, respectively.

The parameter set (B) is taken in model calculations.

T dependence of the channel-mixing effect is investigated within model calcu-

lations. The parameter set (B) is taken in model calculations. In Fig. 4.7(a),

the thin and thick solid lines denote the results of model calculations with the

channel mixing for η- and η′-meson screening masses, respectively. Note that

the lines are drawn when the condition M scr
ξ (T ) < Mth is satisfied. When

the channel mixing is switched off, the thin and thick solid lines are changed

into the thin and thick dashed lines that stand for ηl̄l- and ηs̄s-meson screen-
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ing masses, respectively. As expected in Sec. 4.2.2, the channel-mixing effect

is large for η- and η′-meson screening masses in T < 1.04T χ
c = 160 MeV.

This is a result of the fact that the mass difference between the thin and

thick dashed lines is small there; for example, the difference is 113 MeV at

T = 140 MeV. For T > 1.04T χ
c = 160 MeV, meanwhile, the channel-mixing

effect is negligible, since Gηs̄sηl̄l = Gηl̄lηs̄s = GD(T )σl/
√
2 is quite small in

Eq. (4.32) because of σl ≈ 0. In Fig. 4.7(b), the thin and thick solid lines

stand for the results of model calculations with the channel mixing for σ-

and f0-meson screening masses, respectively, while the thin and thick dashed

lines correspond to the results of model calculations without the channel

mixing for σl̄l- and σs̄s-meson screening masses, respectively. In the case of σ

and f0 mesons, the channel-mixing effect is negligible for any T . This stems

from the fact that the mass difference between the thin and thick dashed

lines is large in T < 1.04T χ
c = 160 MeV (e.g., the difference is 335 MeV at

T = 140 MeV) and Gσs̄sσl̄l
= Gσl̄lσs̄s = −GD(T )σl/

√
2 ≈ 0 because of σl ≈ 0

in T > 1.04T χ
c = 160 MeV. Therefore, the channel mixing as the charac-

teristics of the disconnected diagrams is important only for η- and η′-meson

screening masses in T < 1.04T χ
c = 160 MeV. The discussion made above for

the channel-mixing effect on η, η′, σ, f0-meson screening masses is confirmed

to be true also on η, η′, σ, f0-meson pole masses.

4.3 Short Summary

We have predicted T dependence of Mpole
ξ (T ) from T dependence of M scr

ξ (T )

calculated with LQCD simulations as the first-principle calculation of QCD.

For this purpose, we have considered a new version of the PNJL model with

the following three improvements:

(1) The PV regularization was taken in the model. The use of the regular-

ization is essential for the calculation of M scr
ξ (T ) in order to avoid arti-

ficial oscillations in mesonic correlation functions in coordinate space.

This regularization also guarantees the identity M scr
ξ (T ) = Mpole

ξ (T ) at

T = 0.

(2) We introduced the T -dependent coupling strength GS(T ) to four-quark

interaction in order to describe the chiral-symmetry restoration. The

GS(T ) was determined from the renormalized chiral condensate calcu-

lated with LQCD simulations.

(3) We introduced the T -dependent coupling strength GD(T ) to six-quark

KMT interaction in order to describe the U(1)A-symmetry restoration.

The GD(T ) was determined from pion and a0-meson screening masses

calculated with LQCD simulations, particularly in T >

˜ T
χ
c .
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First, we have shown that the effective model well reproduces LQCD data

on T dependence of M scr
ξ (T ) for both scalar and pseudoscalar mesons. We

have then predicted T dependence of Mpole
ξ (T ) for scalar and pseudoscalar

mesons, using the PNJL model mentioned above. Particularly for η′ me-

son, we have shown that our model prediction agrees with the experimen-

tal results at finite T extracted from indirect measurements in heavy-ion

collisions. Finally, we have found that the relation M scr
ξ (T ) − Mpole

ξ (T ) ≈
M scr

ξ′ (T )−Mpole
ξ′ (T ) is pretty good when ξ and ξ′ are scalar mesons and also

found that the relation M scr
ξ (T )/M scr

ξ′ (T ) ≈ Mpole
ξ (T )/Mpole

ξ′ (T ) is satisfied

within 20% error not only when ξ and ξ′ are pseudoscalar mesons and but

also when ξ and ξ′ are scalar mesons. The relations indicate that one can

determine T dependence of Mpole
ξ (T ) from M scr

ξ (T ),M scr
ξ′ (T ) and Mpole

ξ′ (T ).

In state-of-arts LQCD calculations, Mpole
ξ′ (T ) may be obtainable for heavier

mesons such as D meson. In preliminary model calculations, we have checked

that the two relations are well satisfied also for mesons composed of charm

quark.



Chapter 5

Summary and Outlook

The purpose of this thesis is to predict meson pole masses Mpole
ξ (T ) re-

liably from the corresponding meson screening masses M scr
ξ (T ) calculated

with LQCD simulations. We had the following three problems in order to

accomplish the purpose:

(I) In principle, T dependence of Mpole
ξ (T ) can be determined from mea-

surements in heavy-ion collisions. However, the measurements are indi-

rect, so that the experimental results have large uncertainty in general.

In fact, η′-meson pole mass was recently measured at finite T , but the

results have large errors mainly coming from data analyses.

(II) LQCD simulation is the first-principle calculation of QCD. However,

the calculation of Mpole
ξ (T ) is quite difficult compared with M scr

ξ (T ),

because the imaginary-time size is limited up to 1/T . The difficulty is

more serious as T increases. In fact, pole-mass calculations are usu-

ally done under the quench approximation (without dynamical quarks),

and/or the small lattice size. Meanwhile, meson screening masses are

calculated, without the quench approximation and small lattice size, in

the wide temperature range T ! 800 MeV [30].

(III) In effective models, screening-mass calculations were quite difficult

compared with pole-mass calculation, because it required time-consuming

numerical calculations.

First, we solved problem (III) in Chapter 2 by considering the following

two prescriptions:

(1) The Pauli-Villars (PV) regularization is taken.

(2) A new prescription is proposed in calculating the spatial correlation

function for meson screening mass. In the new prescription, the internal-

momentum integration is done before the Matsubara summation.
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These two prescriptions extremely reduce numerical costs, as shown in

Sec. 2.4 of Chapter 2.

Second, we solved problems (I) and (II) by proposing new versions of

EPNJL and PNJL models that reproduce LQCD data on M scr
ξ (T ):

(A) In the new version of EPNJL model proposed in Chapter 3, T de-

pendence was introduced to the coupling strength of six-quark KMT

interaction in order to describe the U(1)A-symmetry restoration.

(B) In the new version of PNJL model proposed in Chapter 4, T depen-

dence was introduced to the coupling strengths of four-quark and six-

quark KMT interaction in order to describe the chiral-symmetry and

the U(1)A-symmetry restoration simultaneously.

We recommend Model (B) for analyses of meson screening and pole

masses, since Model (B) is more practical than Model (A). Therefore, we

conclude that the purpose “reliable prediction of Mpole
ξ (T ) from M scr

ξ (T ) cal-

culated with LQCD” can be accomplished by Model (B) with prescriptions

(1) and (2). In fact, Model (B) has successfully reproduced LQCD data

on M scr
ξ (T ) for scalar and pseudoscalar mesons. We have then predicted

the corresponding meson pole masses Mpole
ξ (T ) by using Model (B). Espe-

cially for η′ meson, we have found that the predicted value is consistent with

the experimental value recently reported in Ref. [6]. Model (B) also pro-

posed the following approximate relations between Mpole
ξ (T ) and M scr

ξ (T ):

(i) M scr
ξ (T ) − Mpole

ξ (T ) ≈ M scr
ξ′ (T ) − Mpole

ξ′ (T ) and (ii) M scr
ξ (T )/M scr

ξ′ (T ) ≈
Mpole

ξ (T )/Mpole
ξ′ (T ), when ξ′-meson has the same spin-parity as ξ-meson. Us-

ing relations (i) and (ii), one can estimate Mpole
ξ (T ) from M scr

ξ (T ),M scr
ξ′ (T )

and Mpole
ξ′ (T ). When ξ′-meson is heavy, Mpole

ξ′ (T ) may be obtainable with

latest LQCD simulations.

In this thesis, we have considered scalar and pseudoscalar mesons com-

posed of u, d and s quarks for finite T but zero baryon density. As important

future works, it is interesting to clarify properties of Mpole
ξ and M scr

ξ partic-

ularly in the following three cases by extending the present method:

(1) Light vector mesons for finite T and baryon density,

(2) Charmed and bottomed vector mesons for finite T and baryon density,

(3) Light mesons for low T but high baryon density.

The studies (1) and (2) are fascinating from the experimental point of

view. These mesons decay into photons in hot-QCD matter produced by

heavy-ion collisions. Once photons are produced in hot-QCD matter, they

behave as free particles there, and finally decay into a dilepton in the outside

of hot-QCD matter. Therefore, the dilepton-mass spectra contain informa-

tion of hot-QCD matter, and are good probes of QGP formation in experi-

ments. In fact, thermal and medium modifications of ρ and Υ mesons have
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been observed in dilepton invariant mass spectra in RHIC [75] and LHC [76].

The ρ-meson mass is considered to be related with the restoration of chiral

symmetry and the Υ -meson mass may be an indicator of the Debye screening

in confinement force. It is an exciting subject to extract these physics from

the measurements by using our method.

The study (3) may be related to the following famous puzzle in recent

two-solar-mass observations of neutron star (NS) through the Shapiro de-

lay [77]. In the inner core of NS, high densities are realized because of

gravity. Therefore, both neutrons and hyperons should appear in the core.

However, the equation of state (EoS) with hyperons becomes softer from the

EoS without hyperons, and consequently can not explain the two-solar-mass

observations. This problem is called “Hyperon puzzle”. I consider that den-

sity dependence of light meson masses may be related to the Hyperon puzzle

by changing baryon-baryon interactions.
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