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ESTIMATORS OF A DISTRIBUTION FUNCTION
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Zhong HuANG* and Yoshihiko MAEsoNoOf

Abstract

Many papers have studied theoretical properties of a kernel type estimator of
a distribution function. Especially mean squared errors are precisely studied. The
asymptotic distribution of the estimator is also discussed, and it is easy to show
asymptotic normality. In this paper, we will discuss higher order approximation of
the distribution of the kernel estimator. We will obtain an Edgeworth expansion,
which takes an explicit form. Assuming a bandwidth hn, = o(n™¢) (3 < ¢ < 3),
we obtain the explicit form of the expansion with residual term o(n™'). We also
discuss a bias term precisely.

Key Words and Phrases: Kernel estimator, Distribution function, Edgeworth expansion, Nor-
mal approximation, Bias reduction.

1. Introduction

Let X1, X5, -+, X, be independently and identically distributed (i.i.d.) random
variables with distribution and density functions F'(x), f(z). The kernel type estimator
of the density function f(zg) is

-~ 1 " ZTo _Xi
fnlzo) = m ZZ:;K <hn>

where h,, is a bandwidth parameter, and h, — 0 (n — 00). K is a kernel function which
satisfies

l[:K@Mx:L

The kernel estimator of the distribution function F(zg) is given by
~ 1 n Ty — X;
F, =—» W|———
o= 3w ()
where

Wm:[;K@m.
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Mean squared errors and asymptotic normality are precisely studied by many papers.
Azzalini (1981) proved that h, = O(n~'/3) attained a minimum mean squared error.

Garsfa-Soiddn et al. (1997) have obtained Edgeworth expansions of standardized
and studentized estimators F), (z0), and proved validity of them. Residual terms of the
expansions are O(n'/2h3 + h2 +n~'/2h,). They have also discussed an bias estimator
which includes an consistent estimator of f'(xg). In this paper, we will obtain an explicit
form of the expansion with residual terms o(n~1).

For the kernel K, let us assume the following conditions. Hereafter, for the sake of

o0
simplicity, we use / which means /

— 00

(k1) /K(z)dz =1,
(k2) /zK(z)dz =0,
(k3) /zéK(z)dz <oo (£=2,3,4).

The kernel estimator of the distribution F' was introduced by Nadaraya (1964), and
showed that its asymptotic mean and variance are same as the empirical distribution.
Under some regularity conditions, we can easily show the asymptotic normality of the
estimator F,(xg).

In section 2, we will discuss the asymptotic normality and the Edgeworth expansion.
After obtaining an explicit form of the bias term, we will give the expansion, which enable
us to make a confidence interval of F(xg) in section 3. In section 4, we will compare the
normal approximation and the expansion by simulation.

2. Asymptotic expansion

Since the kernel estimator of the distribution function is a sample mean of the i.i.d.
random variables, we have an asymptotic distribution of the estimator. If the bandwidth
h, = o(n~/*) and the conditions (k1) ~ (k3) are satisfied, it is easy to show that

p ( VilEa(wo) — F(xy)

o (o)

< y) = ®(y) +o(1)

where ®(y) is a distribution function of the standard normal N(0,1) and zy € R is
a fixed value. At first we will discuss the Edgeworth expansion for the standardized



Edgeworth expansion for kernel estimators of a distribution function 3

F,(x0). Let us define

o — Xi
W, = W
(*57)
o2 = Var(W)
_ E{{wi - E(W1)}’]
K3,7L - 3
Jn
_ E[{wi - EW)}
Kvél,n - 4
O-'n.
K3.n
Qunly) = ——"Ha(y).
R4.n K%n
Qanly) = — 24 Hj(y) — = H;(y)
where {Hy(y)} are Hermite polynomials
H2(y) = y2 -1
Hs(y) = y° 3y,
Hs(y) = y°—10y° —15y.

Then using Lemma 3.1 of Garsfa-Soidan et al. (1997), we have the following theorem.

THEOREM 2.1. Assume that f' exists and is continuous on a neighborhood of xg,
hn=cn~% (c>0,  <d < 1) and the conditions (k1) ~ (k3) are satisfied. Then we
have

On

P(ﬁ{an) — Blfy ()]} _ y> — Pa(y) + o(n)

where
Pu(y) = ®(y) + 1 2(y)Qun + 1 0(1)Q2.n (y).

PROOF. Since the estimator F), is the sample mean of {W;}, we can obtain the
formal Edgeworth expansion. Instead of the Cramer condition, we can apply Lemma
3.1 of Garsia-Soiddn et al. (1997), and prove the validity of the expansion.

Next we will obtain approximations of the moments of W;. Using a transformation
u=W(z), we get

/700 W(z)K(z)dz = %,
/_00 W2(2)K(2)dz = %7
/_ T W) K (2)dz = i
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Then, changing the variable, it follows from (k1) ~ (k3) that

pov) = [w (%) s

_ /W (w0 — hn2)dz

= [-W()F(zo — hn2)] T2 + /K F(xg — hpz)dz
= /K (o — hpz)dz
= [ KO @)~ huzf (o) + Oh2))d:

— F(x) / K (2)dz — hn f(x0) / SK(2)dz + O(h2)
= F(z0) +O(h).

Let us define

A= /Wl(z)zjK(z)dz (1)

Similarly, for the second moment, we have

B = [ W sy

hn/WQ(z)f(xo — hp2)dz

2 / W) K (2)F (20 — hnz)dz

- /W 2){F(20) — hnzf(zo) + O(h2)}dz
= F(xg) — 2h,f(z0)A11 + O(h2)

and for the third and fourth moment, we get

EW}) = /W2 F(xg — hp2)dz

F(xo) — 3h f( )A21+O(h2)

E(WY)

Combing the above evaluations, we can get the approximations of the cumulants
K3, and Kq n. Using the Taylor expansion of (z + a)~3/2 and (x4 a)2, it is easy to see
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that

on = Var(Wy) = E(W}) —{E(W)}?
= F(x0) — 2hnf(z0)A11 — {F(20)}* + O(h3)
F(x0){1 = F(20)} — 2hn f(w0)A11 + O(h),

073/2 1 3f($0)A1,1

= Fao{i = Faop? " o) — Feo

I 1
o, [F(20){1 — F(x0)}]? + O(hy).

Thus we have the approximations of k3, and k4. Since

E[{W1 — EW)}’] = E(WY?) = 3E(W)E(Wh) + 2{E(W1)}?
= F(Io){l — F(l’o)}{l — 2F(X0)} + 3hnf(1'o){2F(.’£0)A171 — A271} + O(h%),

and
E[{Wy — EOWV1)}YY] = F(20){1 — F(x)}{1 — 3F(x0) + 3F%(z0)} + O(hy),
we get
E{{Wy — E(W1)}?]
R3n = 0_2
B 1 — 2F () 3f(wo) (A1 — A1) 2
= Pl — Faol2 | [Pyl - Fao e 00
= Bsg+h,Bsi+0(h2),
K,4)n _ E[{Wl _Jf(Wl)}4] — B4)0 +O(hn)
where
B[ _ 1 — 2F($L’0) B _ 3f<.’130)(A1’1 — Ag’l)
20T [P (wo) {1 — F(x0)}]1/2° ST [F (o) {1 = F(xg) 1372
By — 1 —3F(xo) + 3F?(xo)
B0 F(wo){1 = F(z0)}

Using these approximations, we have the following theorem.

THEOREM 2.2. Assume that f' exists and is continuous on a neighborhood of xg,
and hy, =cn=% (¢ >0, 2 <d < 1). Then we have

P(ﬁ{Fn(xo) — BlEa (o)l _ y> = Po(y) +o(n™")

On
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where
Paly) = @(y) — n 20(y)Q1(y) — " *hao(y) Q5 (y) — n” ' 6(y)Qa(y)
and
_ _ _ 2
0w = B0m0). Qi) = B ). Qo) = B - 0.

3. Asymptotic representation of bias

In order to construct a confidence interval of F'(z), we have to obtain an Edgeworth
expansion of

P(ﬁ{ﬁmo) ~ Fla)} _ y>

On
Let us define the bias term

A, _ MEFL@o)] = Flwo)}

On

Then we have

P <ﬁ{ﬁn<mo> ~ Flao)} _ y>

On

Since h, =cn™% (¢ >0, 1 <d< 1), A, =0(1).
If the density function has bounded 5-th derivative f®), it follows from (k2) that

B[Fy(0)] — F(ao)

2 3 4 h5
n

h h h
= ff/(mo)Aoa - E"f”(xo)Aoz + ﬁf(g) (x0)Ao,4 — 1720f(4)(x0)A0’5 +O(h).

Similarly, using Taylor expansion, we have

h? h3
EW1) = F(xo)+ 7”]”(1’0)140,2 - E"f”(l’O)Ao,S +O(hy,),
h3
E(le) = F(.’EQ) — 2hnf($0)A1)1 + hif/(.%‘o)ALg — ?nf//(.%'o) + O(hi),
and then

0721 = F(CL’()){]. — F(xo)} — 2hnf($0)A1,1 + hif/(xO){Al,Q — F(l’o)Aon}

3
LB ) {(Ar — F(wo) Ao} + O(03).
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Further, we can get

1 1 f(xo)A11

T Fa) - F@o) 2 T o) (1 - Fleo)]P?

Y ~ f'(@o){A1,2 — F(20)Ao,2} 3f%(x0)AT,
" 2[F(xo){1 — F(x0)}]3/% 2[[F(20){1 — F(x0)}]>/2

3 (f”(ﬂfo){ALzz — F(zo)Ao3}  3f(x0)f (x0)A1,1{A1,2 — F(z0)Ao,2}
"\ 6[F(20){1 — F(x0)}]3/2 2[F(z0){1 — F(x0)}]>/2

5f3(x0)A:13,1 4
2[F(z0){1 — F(xo)}]7/2> + O(hy,).

_|_

Combining the above evaluations, we have the asymptotic representation for h, =
en @ (c>0, F<d< i)

n"YV2A, = h2by + h3bs + htby + h3bs + o(n~3/?) (2)
where
by = f'(ffo)Ao,z
2[F(zo){1 — F(x0)}]1/?
be — _ I (x0)Ao,3 J(xo) f'(x0)A1,1 40,2
’ 6[F(o){1 — F(z0)]'/* " 2[F(w0) {1 — F(w)}]>/’
by — F® (z0) A0 4
LT 2[F(wo){1 - (w2
2f(xo) f"(0) A1 Ao + 3[f (20)]* Ao 2{A12 — F(20)Ao2}
12[F (wo){1 — F(ﬂfo)}]g/z
+3[f($0)]2fl($o)A%,1A0,2
A[F (z0){1 — F(x0)}]*/?
and
bs =
F®(20) Ao 5

120[F(2z0){1 — F(x0)}]'/2
+f(ﬂﬁo)f(‘g)(HU(J)A1,1A(J,4 + 2f(x0) " (0){Ao,3A1,2 + Ao 2A13 — 2F (20) A2 A0 3}
24[F (z0){1 — F(x0)}]3/?
[f(x0)]?f" (x0) AT 1 Ao,3 + 3 (w0) [f/ (20)]2 Ao,2A11{A12 — F(0)Ao2}
A[F (20){1 — F(x0)}]*/?
5[f($0)]3f'($o)Ao,2A:f,1
A[F (20){1 — F(z0)}]"/*

+
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If the kernel is symmetric around 0, we have Ag 3 = Ao 5 = 0 and then

[ (x0)Ao,2

= SFG - Pl 2
by = (o) f'(x0)A11402
2[F(wo){L — F(x0) 1P/’
b = S () Ao  3[f'(20)]* Ao 2{A12 — F(x0) A2}
! 24[F (w0){1 — F(0)}]'/2 12[F (20){1 — F(x0)}]3/2

3[f(x0))? f'(w0) AT 1 Ao 2

T AF (o) {1 = F(zo)}]772

and
F(@0) f® (20) A1 Ao + 2 (20) ' (20) Ao,2A1,3
24[F (w0){1 — F(z0)}]*/2
73f(x0)[fl(ffo)]2A0,2A1,1{A1,2 — F(x0)Ao2}
A[F (z){1 — F (o) }]°/2
5[f($0)]3f/($0)140,214i1
A[F(zo){1 — F(x0)}]"/?"

by =

Furthermore, if we use a symmetric and 4-th order kernel, that is Ag 2 = A3 = Ap5 =0,
we have a simple form as follows

n"V2A, = his 4+ 36y + o(n=3/?)
where

F(20) O (20)A1,1 40,4
24[F (z0){1 — F(x0)}]>/?

3 (20)Ao s

O = 2[F(ao) {1 F(ao)}]1?

and 52 =

In this case, it is easy to see that

Oy — An) = B(y) — And(y) +o(n ")

= ®(y) - (n'*h00 + 0! 21562)d(y) + o(n 1),

n 2oy — An)Qi(y — An) = n26(y)Qu (y) + o(n ),

0 2had(y — An)Qi(y — An) = 07 PR (y) Q5 (y) +o(n )
and

nTro(y — An)Q2(y — An) = 07 o(y)Q2(y) +o(n ™).

Thus we get a simple form of the Edgeowrth expansion

P(wu@u@—Fw@}

On

< y> = Piy(y) +o(n™")

where

Pialy) = @(y) —n20(y)Q1(y) — n'?ht616(y) — n2h,o(y) Q7 (y)
~hY2R3550(y) — n Qa(y).
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Miiller (1984) discussed higher order kernel, and gave the following 4-th order kernel

1
K(u) = %(mﬁ — 36uS + 42u* — 20u® + 3)I(Ju| < 1)
where I(+) is an indicator function.

4. Simulation
In this section, we will compare the simple normal approximation and the Edge-
worth expansion by simulation. Here we use the Epanechnikov kernel
3

= (1 —u*)I(lul <1)

K@) =]

with bandwidth h,, = n=3. In the tables, ”True” means an estimate of

P(ﬁ{ﬁn@co) ~ Fla)} _ y>

On -

based on 1,000,000 replications of the sample sets {z1,...,z,}. Table 1.~ 3. denote
the results of the comparison when xy = 1.645 and F'(z) is the normal distribution.

Table 1. zo = 1.645, (n = 20)

Y Normal Edgeworth True
—2.5 | 0.0062097 | 0.0005635 | 0.00000
-2 0.0227501 | 0.0011811 | 0.00001
—1.5 | 0.0668072 | 0.0505320 | 0.00002
-1 0.1586553 | 0.1872352 | 0.19727
—0.5 | 0.3085375 | 0.3753120 | 0.33068
0 0.5000000 | 0.5421862 | 0.55341
0.5 | 0.6914625 | 0.6780195 | 0.71257
1 0.8413447 | 0.8054994 | 0.82570
1.5 0.9331928 | 0.9057585 | 0.91194
2 0.9772499 | 0.9567984 | 0.95216
2.5 0.9937903 | 0.9755485 | 0.98049
Tabel 2. zg = 1.645, (n = 50)
Y Normal Edgeworth True
—2.5 | 0.0062097 | 0.0001790 | 0.00000
-2 0.0227501 | 0.0065772 | 0.00001
—1.5 | 0.0668072 | 0.0484223 | 0.04581
-1 0.1586553 0.1569024 | 0.15497
—0.5 | 0.3085375 0.3267333 | 0.31143
0 0.5000000 | 0.5148187 | 0.52078
0.5 | 0.6914625 0.6839743 | 0.70333
1 0.8413447 | 0.8184529 | 0.82738
1.5 0.9331928 | 0.9095608 | 0.91453
2 0.9772499 | 0.9588444 | 0.96210
2.5 0.9937903 | 0.9813390 | 0.98439
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Table 3. zo = 1.645, (n = 100)

Y Normal Edgeworth True
—2.5 | 0.0062097 | 0.0008896 | 0.00000
-2 0.0227501 0.0098472 | 0.00685
—1.5 | 0.0668072 | 0.0500268 | 0.04898
-1 0.1586553 | 0.1492084 | 0.14800
—0.5 | 0.3085375 | 0.3109683 | 0.31087
0 0.5000000 | 0.5031549 | 0.50483
0.5 | 0.6914625 0.6830423 | 0.69578
1 0.8413447 | 0.8227624 | 0.83010
1.5 0.9331928 | 0.9134912 | 0.91947
2 0.9772499 | 0.9622814 | 0.96439
2.5 0.9937903 | 0.9847047 | 0.98629

The simulation results when F(x) is x? and Laplace are similar.

From the above simulation study, we can see that the Edgeworth expansion im-
proves the normal approximation in most cases.
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