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On the Local Asymptotic Behavior of the Likelihood Function for
Meixner Lévy Processes under High-Frequency Sampling

REICHIRO KAWAI*AND HIROKI MASUDAT

Abstract
We discuss the local asymptotic behavior of the likelihood function associated with all the four characterizing param-
eters(a, 3,0, u) of the Meixner lévy process under high-frequency sampling scheme. We derive the optimal rate
of convergence for each parameter and the Fisher information matrix in a closed form. The skewness p@rameter
exhibits a slower rate alone, relative to the other three parameters free of sampling rate. An unusual aspect is that the
Fisher information matrix is constantly singular for full joint estimation of the four parameters. This is a particular
phenomenon in the regular high-frequency sampling setting and is of essentially different nature from low-frequency
sampling. As soon as either or J is fixed, the Fisher information matrix becomes diagonal, implying that the
corresponding maximum likelihood estimators are asymptotically orthogonal.
Keywords:High-frequency sampling,&vy process, local asymptotic normality, Meixner process, Fisher information
matrix.

2010 Mathematics Subject Classificatidd@G51, 62E20.

1 Introduction and Preliminaries

The local asymptotic normality (LAN, for short) property is a vital concept in asymptotically optimal statistical anal-
yses. In short, the LAN property is defined through the following locally asymptotically quadratic structure of a
likelihood ratio

La(8+ Reti) —Ln(8) = {u, 74(8)) 5 (U #(8)u) + 0z, (1) (L1)

for eachu, wherePy is a probability measure associated with the param@tevhere {R,}nen is @ sequence of
nonrandom positive definite matrices tending to 0 in norm, wHei (6) }nen IS @ sequence of random vectors
converging in law to4”(0,.# (8)) underPg, and where# (0) is a nonnegative definite deterministic matrix, called the
Fisher information matrix. Once the identifl.Q) is confirmed withnonsingular.# (0), one can formulate asymptotic
optimality of estimation and testing hypothesis in terms/f(8). (See Le Cani{], Le Cam and Yandg], and van
der Vaart|[L4] for a systematic account of the LAN theory.)

In this article, we discuss the local asymptotic behavior of the likelihood function associated with the four-
parameter Meixner &vy process observed under high-frequency sampling scheme. The Meixner process has been
recognized as a successful class é¥{ processes for the purpose of practical modeling, such as mathematical fi-
nance and possibly turbulence, as well as of sufficient theoretical interest. We begin with some fundamental facts of
the Meixner process with the most popular parametrization. (We refer the rea@:[18) for general details, and
also [B,[6] for numerical aspects of the Meixner process.) The Meixner distribution, denoted by Meixfied, ),
is infinitely divisible and selfdecomposable, and admits a probability density

— Wexp[g(x—u)} ‘F <6+iX;“)

2
. XER, (1.2)

wherea >0, |B| < 1, & > 0, u € R. When = 0, the distribution is symmetric around We write
0:=(a,B,0,u) €0,
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the parameter spa&@being a bounded convex domain satisfying
© c{(a,B, 8, u)eRa>0,|B<md>0 uck}.
The Lévy measure of Meixnéa, 3,9, 1) admits the Lebesgue density

9(z09):= 6%, zeRg:=R\ {0}.

Let {X : t > 0} be a Levy process satisfying
Z(X1) = Meixner(a, B, 3, 1),

which we call avieixner (Levy) processwhich is of infinite variation. We denote By the distribution ofX associated
with the parametef € © and byEg the expectation taken under the probability mea&yreln what follows, every
stochastic asymptotics is taken undhgr The characteristic function a¥(X;) is given in closed form by

20
Eq [€¥%4] éV“( COS(B/Z))/2>> ; YER,

cosh((ay—if3
which implies that the Meixner distribution possesses the reproducing property, and that fore@andt > 0,
Z (c(X% —tu)) = Meixner(ca, 3,19, 0). 1.3)

One of the remarkable properties of the Meixner process is its asymptotic behavior with respect to observation time,
just like normal inverse Gaussian processes, tempered stable processesiskifbl]iand layered stable processes
of Houdié and Kawailff]. On the one hand, over short time intervals, it approximates a stable procdss$;0asa
scaled Meixner process
1
— —htu):t>0

tends to a standard Cauchyélly) process, where the convergence is in the weak sense of random processes in the
space of adlag functions fronj0, +) into R equipped with the Skorohod topology. (See also LerBiddelow.) In
a long time frame, on the other hand, it is close to a Brownian motioh;tasc, another scaled Meixner process

{cos(aB/Z)\/g(Xht_ht <u+ac$tang>) :t>0}

approaches to the standard Brownian motion. (These can be proved in a similar madh@d}9 [The stable-type
and Gaussian-type behaviors above have long been considered to be very appealing in various applications.

2 Local Asymptotic Behavior of Likelihood Function

Consider the sampleX, ;, %, - - - » X,,,) Observed at equidistant observation points in time,
thk:=KAn, k=1,...,n,
with a sequencéAn }nery Of positive stepsizes satisfying
Al 0 and nA,to, asnt oo, (2.1)
Let us state the main claim of this article. To maintain the flow, we defer the proof to SBcfion
Theorem 2.1. The LAN propertylI.]) holds for eachd € ©, with

Rn:diag(1 ! 11),

VR y/nA, /N’ y/n
1 0 1 0
202 s 2ad
so=| ° wwEm 0 O 2.2)
1 0 1 0
200 252
0 0 0 1
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Observe that the Fisher information matf&3) is singular, that is|.# (08)| = 0 for eachf € ©. Due to this fact,
on the one hand, the conventional asymptotic optimality theory is not applicable to the full joint estimation of the four
parameters. On the other hand, it is clear that the singularity is caused solely by the off-diagonal elements between
a andd. Nevertheless, as soon asor d is fixed, the Fisher information matrix then reducesRf® and purely
diagonal. This ensures that the maximum likelihood estimators are asymptotically independent.

Let us discuss the singularity issue for Meixnéwly processes in terms of sampling scheme. First, it will shortly
turn out (based on Lemnf&2) that under low-frequency sampling witky = A > 0, the Fisher information matrix
remains involved with infinite sums. It seems difficult to judge in an analytical manner whether the matrix is singular.
(See alsold].) Next, it is worthwhile to compare with the continuous sampling setting, based upon the following
result.

Proposition 2.2. Let T > 0 and let8 := (a, B, &, Uk) € ©, k= 1,2. The probability measureBy, | 7, andPg, |z,
are equivalent iftry 01 = a8, and g = L.

This proposition implies that singularity in studying likelihood becomes more noteworthy in the continuously observed
case than in the high-frequency sampling case: in the latter case, the likelihood itself does exist for every admissible
parameter values, while the Fisher information may be singular; in the former case, the likelihood itself may not exist.
Especially what is interesting is that the location parametisrrequired to be fixed.

Let us next discuss the singularity issue for different classeswof Iprocesses under high-frequency sampling.

It is well known that a similar phenomenon is observed in the case of non-Gaussian &eplgrbacess. Precisely,

the joint maximume-likelihood estimation of the stability index and the scale parameter leads to a constantly singular
Fisher information matrix. (Sedl[[10], for example.) Inferring from this, we suspect that the singularity arises from
every Levy process whose short-range behavior can be approximated in law by a stable process with unknown stability
index and scale parameter. Typical examples are tempered stable proddkaes Jayered stable processés [In

this direction, the present setting of Meixner processes is not directly relevant since its short-time stability index is
necessarily 1 (see Lemri&] later). As observed in the Fisher information mat23dj, the singularity issue in our
framework comes instead frofa, o).

In principle, unlike the low-frequency sampling case, the high-frequency sampling scheme yields different optimal
rates of convergence for different characterizing parameters. There exist several case studies in the literature that
address the joint LAN property for univariat&ty processes. The most well known case is the scaled Wiener process
with drift, X =ty + oW, where the LAN property holds true f¢u, o) at rate(/nAn,/n) with a diagonal Fisher
information matrix. In the case of inverse Gaussian subordinators or gamma processes, both of which are characterized
by the two parameter&, y), the LAN property holds true at ratg/n,/nA,) with a diagonal Fisher information
matrix. (See Masud®]J for details.) More recently, the authors derivelfij fhe LAN property for the normal inverse
Gaussian (NIG) process, which is characterized by the four paranfetgdso, 1). Again, the LAN property holds
true at rate(y/nln, v/nln, /N, 1/n) with a block-diagonal Fisher information matrix. Interestingly, the NIG process
suffers no singularity issue, while, when suitably normalized, sharing the same short-range behavior of Cauchy type
with the Meixner process.

Finally, let us note that the LAN property may be investigated, either singular or non-singular, only when the
likelihood function are available in a sufficiently tractable form, sucH3a® @nd B.2). But, this is very rare. For
example, the likelihood function for tempered stable processes is unknown in a closed form. Note also that the
availability of an explicit likelihood function may not be enough. For example, without the reproducing property such
as .3, even the explicit likelihood function is intractable in the high-frequency sampling framework. (A typical
example is the generalized hyperboliedy process.) This also ensures the importance of case studies.

3 Proofs

Throughout the proofs, we denote Byz) the Gamma functiofi (z) := [, x> e *dx, wherezis a complex number
with a positive real part, denote k¥ the Riemann zeta function, that i&(s) := zkﬁ”l k=S, s> 1, and writey :=
liMmw(SR_1 k=1 —Inn) ~ 0.5772 for the Euler-Mascheroni constant.

3.1 Proof of Theorem2.1
It holds by .3 that for eacm € N,

Xnk i= Xipy — Xeniq ~ Meixnen(a, B,And,Anp), k=1,...



In view of this fact and the probability density functidh?), define for eaclme N andk=1,...,n,
_A 2
Ihk(0) := 20310 <2cosg> —In(2ra) — InT (2An0) + g (Xnk—Onp) +In |l <An6+ iX”vka”"l>
Thanks to the stationarity and independence of increment&wf processes, the log-likelihood function to be maxi-
mized with discrete observatiof, , }k=1....n is as simple as

(3.1)

)= Z Ink(6). (3.2)
1) We begin with the local Cauchy approximation. We define a sequgggk-1,.. » of iid random variables by
% A .
Enk = Enk(a, 8, 1, 0n) = ”Zni;“ ~ Melxner<M737An6,O> . (3.3)

In the pathwise sense, the random variafles }«—1.. n depend oria, d, i, An) and is independent @. In contrast,
the law.Z (&,1) depends o3, 3,4,) and is independent @i, i1). We can show that the law’ (&, 1) has the mean,
the variance, the skewness and the kurtosis, respectively,

B 1 2 cos(B)
tanz, 203 co2(B/2)’ Sm*\/ An ’ '

(See, for example, Grigelioni€]}) It then follows that as1 1 +o, the first four moments are of ordéx(1), O(A; 1),
O(An¥/?) andO(A;2) if B + 0, while 0,0(A;1), 0 andO(A;;2) if B = 0.

We denote bythe standard Cauchy distributiothe infinitely divisible distribution with characteristic function
y— e M and the probability density function

o(x) == 7T(1—1H<2)’ xeR. (3.4)
The following lemma indicates that the random varialaigsact as suitably normalized increments.
Lemma 3.1. The law.Z’(&n1) converges to the standard Cauchy distribution, gs-vo.
Proof. The claim can be deduced readily by observing that, for gacRR,

yeu) _ (__codB/a)  \
g [¥1] = (Cosh((y/(An5)il3)/2)>

2 20An0
:(eV/<2An S(1—itan(B/2)) +e¥/(@nd) (1+Itan(l3/2)>>

5 s

(717“”(!3/2)) eY ify>0,
) 2005 ,

(1+i tanB /2)) e, ify<o,

— ef‘y"

asnt +oo, with the help of the Evy continuity theorem. O

2) The likelihood function[8.2) in question is smooth i@. We can rewrite[3. 1) as
Ink(8) = 28ndIn[2c0gB/2)] — In(2ra) — INT (28n8) + BnBOenk +IN|T (And (1+ignk)) |2.

In our proof of TheorerZ. 1 we will need to specify the partial derivatives up to the second order. To this end, we
define an arraygnk(0) }nen;k=1....n Of random vectors iR* by gnk(6) := Og (Ink(6)), where

AnBS (Bnd(1+igny))
o ¢~ ekt 2o endm iy )
(2) And (& —tan(B/Z))
o gn,k L n n,k , , .
ni(@):=| | = 2enin2e0s/2) - 2 i + 2Rty ) | 7
) (Bnd(L+igns)) '
Onk _Ana +A” Im (Wﬂin:)))
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(See Grigoletto and Prova8, [Appendix A] for derivation of the gradient.) We also prepare the following asymptotics.

Lemma 3.2. It holds almost surely that

da F(And(1+ien1)) ) a kZO ((k+And)? + (Anden1)?)?
Dndén 1 1- gr%l
~ — ! ’ 2
a <(An5)2 1+ 85’1)2 2
d r,(An6(1+ |£n1))> 2 = k+An5
—I s = —2N50
7] m ( M(And(1+ |€n,1)) " En,lkZO ((k+An5)2+ (An55n,l)2)2
1
~ —2025 e 3
o ((An5>3<l+e§,l>2 el )> |
ilm (rl(Ané(l‘i‘ ifnl))) _ _% i (k+An5)2 — (Anéen,l)2
0[1 r(An6(1+|€n,1)> B a kZO ((k+An5)2+(An5£n1)2)2

An

a

—Re

( 1 1-¢

1
(8nd)? (1+€2,)? +< (2)> ’

k+And

9 (F’(An6(1+ien¢1)))  2(BedEnn)?

o kZO ((K+D8n8)2 + (Andgn1)?)?

1

~

a

2(Andéen1)? 1
B <(An5)3 (1+e§1)2+Z(3))’

0 M(Bnd(1+ign1))\ & (k+0n0)?— (Anden1)?
REE( M(And(1+in1)) ) B nkZo ((k+An5)2+ (An53n,1)2)2

do

A 1 1—8&1 )
~ Ol o) (1+en2$1)2+5(> )
P (F’(An5(1+ien’1)))2An+°° K+ And

on e\ T (Bnd(1+ien1)) a kZO((k+An5)2+(An5€n=1)2)2

2/An 1 1
o ((An5)3 (122, +Z(3)> :

where all the asymptotics hold wher A-co.

Proof. The proof entails rather lengthy algebra of somewhat routine nature. To avoid overloading this proof, we only
consider the first claim and omit all the rest. To this end, we have only to justify the interchange of the differentiation
and the infinite sum as

0 1 =g 1
90 2y (KT BB 1 (Ot Do) [0~ 2y 30 (KT BaB)2 1 ((nt — Do) 2

For convenience, we use the notation

1
(k+28n8)2+ ((x—Lnp)/a)?’

Hk a):=



with x € R, d, U, Ay fixed. It holds by the Taylor theorem that fdr> 0 and for eaclk € N,

H(ka+A)—H(ka)
A

' o k Asd
/OEH(,OHr s)ds

12 (x—Bnpt)/(a +As) ?
< i aors (wraors (s a9y o
_ 2 (X—Dnp)?
= a8 (k+0nd)%

Hence, we get

CIHKa+A)—Hka)
A

<2u—AWﬁ+w 1 <2u—Amﬁ

B a3 kzl (k+48nd)* — 3 ‘@

k=1

which justifies the interchange with the help of the dominated convergence theorem. The asymptotics are straight-
forward by splitting the sum into two parts= 0 andk > 1 with the help of the definition of the Riemann zeta
function. O

3) Note that using the expressioi&H), we can show that

7(8)= Im S R [oni(8)0nk(6) | Ro

oo =y

In order to complete the proof of Theor@dl it suffices to prove the following two lemmas (see Section 4.1 in Kawai
and Masuddg] and the references therein for details).

Lemma 3.3. The symmetric matri¥’ (0) is well defined and is given biZ.Q).
Lemma 3.4. (i) It holds that

nt-oo

lim R, <i Eg [0nk(6)] Eo [gnk(6)] T) R, =0,
k=1

where the right hand side indicates the zero matri®Ri4.
(ii) It holds that

lim supki1 (]Ee {|Rngn,k(9)|4} +Eg [‘RnHeS%“n,k(e))Rn’z]) —0.

nt+o gce &

Note that (ii) in particular verifies the Lindeberg condition: for evary O,

im 5 Eo [[Rigni(0)[*1 ([Regnu(®)] 2 )] =0

4) We here prove Lemnia&3 Recall the definition of the digamma function

li +oo
B () e

and also that for each> 0 andy € R,
F’(x+iy)> X w ( [ +x 1)
Re( ) =—os Y-S 51 |
(I’(x+|y) iy Y ;1 (I+x)2+y? |

Mx+iy)\ & y
" < F(X+iy)> *|;(I+X>2+y2’




where the both infinite sums are well defined. Note that with respect to the vayjahlke former is even, while the
latter is odd. It is straightforward that ag® 4o,

(2800 1
=2 ((ZAné)) s
and that almost surely asf +oo,
Re(r’(An (1+|sn1)))__1 e ( |+An5 1>N_11
(Dnd(1+ign1)) And 1+e7y zi | +And)2+ (Andn1)? | Dnd 1462,
|m(r/(An6(1+.ignl))) 1 &g _|_+m Dndény Ni &n1 .
(Dnd(1+ign1)) And 1+¢e2; &G (1+D800)%+ (AndEn1)?  Dnd1+er,

By using the above results, we get
11—,

gy L1 &m
gn,l( ) a l+£§l7

gﬁ(e) =Apd (sn,l — tani) ,
11-¢2;
51+ g2,

(4) 2 &g
(6) ~ ad1+e2,’

asnt +o. By denoting by.4, |,(8) the(I1,12)-entry of #(8), we readily deduce by means of the LLN that

1 7 /1-x\? 1
H11(0) = ) /]R <1+X2> P(x)dx= 2q2
o

2(cog3/2))*’

1 1-x2\? 1
H33(0) = ﬁ/ﬁ{ <1+X2> P(x)dx= 252"

F22(0) =

F12(6) = F21(6) = o,
S23(0) = S32(0) =
F34(0) = S43(6) = /1 X x)dx= 0

34(0) = 743(6) = Cad? 1+x21+x2(p o

1 11-x1-%x° 1
S13(0) = 751(6) = 55 J e 10 PV 5a5
I2.4(6) = F42(6) =0,
2 1-x% x

F14(6) = F41(6) = — P(x)dx = 0.

a2d Jr 1+x2 1+ X2
This completes the proof of Lemrfga3
5) It remains to prove Lemnia4

(i) With the help of Lemm&.2and the asymptotic behaviors@f1(0) given in the proof of Lemm&3together with
the bounded convergence theorem, it holds thatfag-co,

2
_% I]R 14,?2 (p(x)dx
0
2
7 5 e Lﬁz P(x)dx
a5 Jr e 90 dx

VRiEg [gn1(6)] ~ =0,

7



which is enough to prove the claim.
(i) With the help of the asymptotic behaviors@f1(6) given in the proof of Lemm&.3and notatlorrn

andrl := 1//nfor k= 1,34, it suffices to check that
kil]Ee :r,ﬁl)ggﬁ(e) 4: ~ n%r“/R <Lﬁ>4(p(x)dx 8n?:14’
ool 4
> 5o |[©950) | ~ 1 [ .
> 2| [aof ]~ 2 (Z) [ (15 o000r= grose

=
Il
iR

each of which tends to zero ag +. Thanks to the compactness of the Geit follows that

#nggpz Eo [[Rugnk(8)[*] =0.

We can derive each entry of the Hessian matrix lHégg(0)) of the likelihood as

aln, a? a a2 & ((1+800)2+ (Bndenk)?)?
s s
a?  (1+¢e5)?
3210k (0) = —A __%
I T2 (cogB/2))2°
to g £ (14 808)2 — (DndEnK)?
Rni(0) = —402 Y s + 217 ’
5In.k(6) nZ)(|+2An5)2 n%(a+An5)2+(An5£n,k)2)2
1 1-4gh, — &ty
TE AR
02|nk(9) _ 202 2 — (1 +D8n0)% + (An55n,k)2 N 2 _1+£§,k
e az Z)((|+An5) +(Bndenk)?)? 202 (1+¢€5,)?

and

And
0a9plnk(0) = *%En,k»

2
_ 4An e (I +A5)(An6€nk)2 4 Sn k
9a0plni(0) ===~ Zo(a +08)2+ (Ddeni)?)2  ad \1+e2, )’
o BAn 4An g Anagn k(l +An6) 4 En’k
9adulnk(6) =2 — 52 Z (I +8nd)2 + (AndEnk)?)? a2d (1+e2,)%
ta 2
9p05hni(0) =~ B ),
1
aﬁdulnk(e) = —Ana7
IN2 = | +And)AnOE 4 g
ddduln,k(e) __ n ( n ) ndcnk n,k

@ {808+ (Bedeni?P ™

ad? (1+4,)%

= 1)y



where all the asymptotics hold almost surelyngs+oo. It is straightforward to deduce that ag +o,

O(1/n)  O(An/n)  O(1/n)  O(1/n)
2] | O(An/n)  O(1/n) O(An/n) O(An/n)
ggng Eo [[RaHess (ni(0) Rl | = O(1/n) O@@n/m) O(1/n) O(1/n) |
O(1/n)  O(&n/n)  O(1/n)  O(1/n)
where the squared norm inside the expectation are understood to be componentwise. The proof oBlZisima
complete.
3.2 Proof of Proposition2.2

The mean ok is given bypp(0) := u+ adtan3/2), so that we may write

Eg [6Y1] = exp

iyuo(6)+/R (eiyz—l—iyz)g(z;e)dz, yeR.
0

According to Satd12, Theorem 33.1], for each > 0, the measureBy, | 7, andPy, | #; are equivalent iff the following
conditions are fulfilled:

(@) 9(z62) =y(z61,6.)9(z 61) for some Borel functiory(-; 61, 6,) : R — (0,);
(b)  Ho(62) = Ho(61) + Jp Z(¥(Z 61, 62) — 1)9(z 61)dZ
© Jr(1—/y(z61,62))%d(z 61)dz < +eo.
Hence, it suffices to show that these three conditions hold treg & = a>d, and iy = L.

Concerning the behaviors of thély densityg(z 6) near the origin and at infinity, in view of the series expansion
z/sinh(z) = 1-22/6+0(Z*) as|z] — 0, it is easy to see that theely densityg(z 8) admits the following expansion

9(z6) = %52 <1+ §z+ O(zz)) , (3.6)

as|z| — 0. Note that sinfx) behaves like* /2 asx T +, while it behaves like-e /2 asx | —. We thus get

_ 25z texp{—(m—B)z/a}, Z1 +oo,
9(2'9)”{ 25|z Lexp(— (14 B)lzl/a},  z| —eo. 8.7

In particular, B.8) as well as the fact thaf(z 6) > 0 for everyz +# 0 ensures (a); more specifically, the singularities of
0(z 61) andg(z 6,) at the origin are canceled out singig; 6,)/9(z 61) ~ a2,/ (a29;) as|z] — 0.
We turn to (c) withy(z 61, 6,) = g(z 62)/d(z 61). Due to B.§ and B.9), it holds that

(1_ y(z 64, 92))29(2 6:) = (\/g (z,61)— \/g(Z; 92))2

ﬁg(\/alél_\/(béz) + (Va1 — Vaz) (Bl Bz\/>)2+0(22)), Iz =0,

Ciz "exp(—042), Z7 +oo,
C_ |2 *exn(—q_[2), 7] oo,

for some positive constan®, andg.., depending or{6s, 6,). Hence, (c) holds true iffr; & = a2, which we will
impose in the rest of this proof.
The remaining (b) is equivalent to

Ha + alc‘iltanﬁ— — M2 — 00 tan—-

B2 /<5leXp(BlZ/al)_ eXp(B22/02)>dZ

2 sinh(1z/a;) sinh(1z/ay)
In the casex101 = a8, =: C > 0, the last display can be rewritten as

exp(f1z/a1) exp(Bz/az) _
= +C (tan ~tan? /Ro (alsinh(nz/al) B azsinh(nz/az)> dz) =0

9



We now show that the function

B B ¢ ( expfrz/a1)  exp(Bz/az) )dz=0
) - b

¢ . PL_
(a1,B1;01,B2) := tan7 —tan7> — aisinNmz/a1)  azsinh(mz/az

rendering that (b) holds true ifi; = p2, which completes the proof of the proposition. First, we observe that

f(as,0;02,0) = /Ro <agsinr‘(nz/a2) B alsinr‘(nz/al)> dz=0,

since the integrand is odd, continuousinand exponentially decreasing @51 +c. Next, using the fact that the
variance of Meixnefr, Bg, &, Uk) equalsfy 79(z 6¢)dz we derive

SORBz/ ) 1
ak Ro smh(nz/ak) 2co%(B/2)"

Hence, we get

KA 1 ZeXp(ﬁlz/Ofl)
I 2(cogB1/2))? orf Ry SiNh(1Zz/qy)

and(d/dBz)f (a1, B1; a1,B2) = 0in a similar manner. These imply thétas, B1; a1, 82) = 0. The proof is complete.

f(aq, B a1,B2) =

dz=0,
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