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On the Local Asymptotic Behavior of the Likelihood Function for
Meixner Lévy Processes under High-Frequency Sampling

REIICHIRO KAWAI ∗ AND HIROKI MASUDA†

Abstract

We discuss the local asymptotic behavior of the likelihood function associated with all the four characterizing param-
eters(α,β ,δ ,µ) of the Meixner Ĺevy process under high-frequency sampling scheme. We derive the optimal rate
of convergence for each parameter and the Fisher information matrix in a closed form. The skewness parameterβ
exhibits a slower rate alone, relative to the other three parameters free of sampling rate. An unusual aspect is that the
Fisher information matrix is constantly singular for full joint estimation of the four parameters. This is a particular
phenomenon in the regular high-frequency sampling setting and is of essentially different nature from low-frequency
sampling. As soon as eitherα or δ is fixed, the Fisher information matrix becomes diagonal, implying that the
corresponding maximum likelihood estimators are asymptotically orthogonal.

Keywords:High-frequency sampling, Ĺevy process, local asymptotic normality, Meixner process, Fisher information
matrix.
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1 Introduction and Preliminaries

The local asymptotic normality (LAN, for short) property is a vital concept in asymptotically optimal statistical anal-
yses. In short, the LAN property is defined through the following locally asymptotically quadratic structure of a
likelihood ratio

Ln(θ +Rnu)−Ln(θ) = ⟨u,Hn(θ)⟩−
1
2
⟨u,I (θ)u⟩+oPθ (1) (1.1)

for eachu, wherePθ is a probability measure associated with the parameterθ , where{Rn}n∈N is a sequence of
nonrandom positive definite matrices tending to 0 in norm, where{Hn(θ)}n∈N is a sequence of random vectors
converging in law toN (0,I (θ)) underPθ , and whereI (θ) is a nonnegative definite deterministic matrix, called the
Fisher information matrix. Once the identity (1.1) is confirmed withnonsingularI (θ), one can formulate asymptotic
optimality of estimation and testing hypothesis in terms ofHn(θ). (See Le Cam [7], Le Cam and Yang [8], and van
der Vaart [14] for a systematic account of the LAN theory.)

In this article, we discuss the local asymptotic behavior of the likelihood function associated with the four-
parameter Meixner Ĺevy process observed under high-frequency sampling scheme. The Meixner process has been
recognized as a successful class of Lévy processes for the purpose of practical modeling, such as mathematical fi-
nance and possibly turbulence, as well as of sufficient theoretical interest. We begin with some fundamental facts of
the Meixner process with the most popular parametrization. (We refer the reader to [2, 13] for general details, and
also [3, 6] for numerical aspects of the Meixner process.) The Meixner distribution, denoted by Meixner(α ,β ,δ ,µ),
is infinitely divisible and selfdecomposable, and admits a probability density

x 7→ (2cos(β/2))2δ

2παΓ(2δ )
exp

[
β
α
(x−µ)

]∣∣∣∣Γ(δ + i
x−µ

α

)∣∣∣∣2 , x∈ R, (1.2)

whereα > 0, |β |< π, δ > 0, µ ∈ R. Whenβ = 0, the distribution is symmetric aroundµ. We write

θ := (α, β , δ , µ) ∈ Θ,
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the parameter spaceΘ being a bounded convex domain satisfying

Θ− ⊂
{
(α, β , δ , µ) ∈ R4

∣∣α > 0, |β |< π, δ > 0, µ ∈ R
}
.

The Lévy measure of Meixner(α,β ,δ ,µ) admits the Lebesgue density

g(z;θ) := δ
exp(βz/α)

zsinh(πz/α)
, z∈ R0 := R\{0}.

Let {Xt : t ≥ 0} be a Ĺevy process satisfying

L (X1) = Meixner(α,β ,δ ,µ),

which we call aMeixner (Ĺevy) process, which is of infinite variation. We denote byPθ the distribution ofX associated
with the parameterθ ∈ Θ and byEθ the expectation taken under the probability measurePθ . In what follows, every
stochastic asymptotics is taken underPθ . The characteristic function ofL (X1) is given in closed form by

Eθ
[
eiyX1

]
= eiyµ

(
cos(β/2)

cosh((αy− iβ )/2)

)2δ
, y∈ R,

which implies that the Meixner distribution possesses the reproducing property, and that for eachc> 0 andt > 0,

L (c(Xt − tµ)) = Meixner(cα, β , tδ , 0). (1.3)

One of the remarkable properties of the Meixner process is its asymptotic behavior with respect to observation time,
just like normal inverse Gaussian processes, tempered stable processes of Rosiński [11] and layered stable processes
of Houdŕe and Kawai [4]. On the one hand, over short time intervals, it approximates a stable process; ash ↓ 0, a
scaled Meixner process {

1
hαδ

(Xht −htµ) : t ≥ 0

}
tends to a standard Cauchy (Lévy) process, where the convergence is in the weak sense of random processes in the
space of c̀adl̀ag functions from[0,+∞) intoR equipped with the Skorohod topology. (See also Lemma3.1below.) In
a long time frame, on the other hand, it is close to a Brownian motion; ash ↑+∞, another scaled Meixner process{

cos(β/2)
α

√
2

hδ

(
Xht −ht

(
µ +αδ tan

β
2

))
: t ≥ 0

}
approaches to the standard Brownian motion. (These can be proved in a similar manner to [4, 11].) The stable-type
and Gaussian-type behaviors above have long been considered to be very appealing in various applications.

2 Local Asymptotic Behavior of Likelihood Function

Consider the sample(Xtn,1,Xtn,2, . . . ,Xtn,n) observed at equidistant observation points in time,

tn,k := k∆n, k= 1, . . . ,n,

with a sequence{∆n}n∈N of positive stepsizes satisfying

∆n ↓ 0 and n∆n ↑ ∞, asn ↑+∞. (2.1)

Let us state the main claim of this article. To maintain the flow, we defer the proof to Section3.1.

Theorem 2.1. The LAN property (1.1) holds for eachθ ∈ Θ, with

Rn = diag

(
1√
n
,

1√
n∆n

,
1√
n
,

1√
n

)
,

I (θ) =


1

2α2 0 1
2αδ 0

0 δ
2cos2(β/2)

0 0
1

2αδ 0 1
2δ 2 0

0 0 0 1
2α2δ 2

 . (2.2)
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Observe that the Fisher information matrix (2.2) is singular, that is,|I (θ)| ≡ 0 for eachθ ∈ Θ. Due to this fact,
on the one hand, the conventional asymptotic optimality theory is not applicable to the full joint estimation of the four
parameters. On the other hand, it is clear that the singularity is caused solely by the off-diagonal elements between
α andδ . Nevertheless, as soon asα or δ is fixed, the Fisher information matrix then reduces toR3×3 and purely
diagonal. This ensures that the maximum likelihood estimators are asymptotically independent.

Let us discuss the singularity issue for Meixner Lévy processes in terms of sampling scheme. First, it will shortly
turn out (based on Lemma3.2) that under low-frequency sampling with∆n ≡ ∆ > 0, the Fisher information matrix
remains involved with infinite sums. It seems difficult to judge in an analytical manner whether the matrix is singular.
(See also [3].) Next, it is worthwhile to compare with the continuous sampling setting, based upon the following
result.

Proposition 2.2. Let T> 0 and letθk := (αk,βk,δk,µk) ∈ Θ, k= 1,2. The probability measuresPθ1|FT andPθ2|FT

are equivalent iffα1δ1 = α2δ2 andµ1 = µ2.

This proposition implies that singularity in studying likelihood becomes more noteworthy in the continuously observed
case than in the high-frequency sampling case: in the latter case, the likelihood itself does exist for every admissible
parameter values, while the Fisher information may be singular; in the former case, the likelihood itself may not exist.
Especially what is interesting is that the location parameterµ is required to be fixed.

Let us next discuss the singularity issue for different classes of Lévy processes under high-frequency sampling.
It is well known that a similar phenomenon is observed in the case of non-Gaussian stable Lévy process. Precisely,
the joint maximum-likelihood estimation of the stability index and the scale parameter leads to a constantly singular
Fisher information matrix. (See [1, 10], for example.) Inferring from this, we suspect that the singularity arises from
every Ĺevy process whose short-range behavior can be approximated in law by a stable process with unknown stability
index and scale parameter. Typical examples are tempered stable processes [11] and layered stable processes [4]. In
this direction, the present setting of Meixner processes is not directly relevant since its short-time stability index is
necessarily 1 (see Lemma3.1 later). As observed in the Fisher information matrix (2.2), the singularity issue in our
framework comes instead from(α,δ ).

In principle, unlike the low-frequency sampling case, the high-frequency sampling scheme yields different optimal
rates of convergence for different characterizing parameters. There exist several case studies in the literature that
address the joint LAN property for univariate Lévy processes. The most well known case is the scaled Wiener process
with drift, Xt = tµ +σWt , where the LAN property holds true for(µ ,σ) at rate(

√
n∆n,

√
n) with a diagonal Fisher

information matrix. In the case of inverse Gaussian subordinators or gamma processes, both of which are characterized
by the two parameters(δ ,γ), the LAN property holds true at rate(

√
n,
√

n∆n) with a diagonal Fisher information
matrix. (See Masuda [9] for details.) More recently, the authors derive in [5] the LAN property for the normal inverse
Gaussian (NIG) process, which is characterized by the four parameters(α,β ,δ ,µ). Again, the LAN property holds
true at rate(

√
n∆n,

√
n∆n,

√
n,
√

n) with a block-diagonal Fisher information matrix. Interestingly, the NIG process
suffers no singularity issue, while, when suitably normalized, sharing the same short-range behavior of Cauchy type
with the Meixner process.

Finally, let us note that the LAN property may be investigated, either singular or non-singular, only when the
likelihood function are available in a sufficiently tractable form, such as (3.1) and (3.2). But, this is very rare. For
example, the likelihood function for tempered stable processes is unknown in a closed form. Note also that the
availability of an explicit likelihood function may not be enough. For example, without the reproducing property such
as (1.3), even the explicit likelihood function is intractable in the high-frequency sampling framework. (A typical
example is the generalized hyperbolic Lévy process.) This also ensures the importance of case studies.

3 Proofs

Throughout the proofs, we denote byΓ(z) the Gamma functionΓ(z) :=
∫ +∞

0 xz−1e−xdx, wherez is a complex number
with a positive real part, denote byζ the Riemann zeta function, that is,ζ (s) := ∑+∞

k=1k−s, s> 1, and writeγ :=
limn↑+∞(∑n

k=1k−1− lnn)≈ 0.5772 for the Euler-Mascheroni constant.

3.1 Proof of Theorem2.1

It holds by (1.3) that for eachn∈ N,

xn,k := Xtn,k −Xtn,k−1 ∼ Meixner(α ,β ,∆nδ ,∆nµ), k= 1, . . . ,n.
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In view of this fact and the probability density function (1.2), define for eachn∈ N andk= 1, . . . ,n,

ln,k(θ) := 2∆nδ ln

(
2cos

β
2

)
− ln(2πα)− lnΓ(2∆nδ )+

β
α
(
xn,k−∆nµ

)
+ ln

∣∣∣∣Γ(∆nδ + i
xn,k−∆nµ

α

)∣∣∣∣2 . (3.1)

Thanks to the stationarity and independence of increments of Lévy processes, the log-likelihood function to be maxi-
mized with discrete observations{Xtn,k}k=1,...,n is as simple as

Ln(θ) :=
n

∑
k=1

ln,k(θ). (3.2)

1) We begin with the local Cauchy approximation. We define a sequence{εn,k}k=1,...,n of iid random variables by

εn,k := εn,k(α,δ ,µ,∆n) :=
xn,k−∆nµ

∆nαδ
∼ Meixner

(
1

∆nδ
,β ,∆nδ ,0

)
. (3.3)

In the pathwise sense, the random variables{εn,k}k=1,...,n depend on(α,δ ,µ,∆n) and is independent ofβ . In contrast,
the lawL (εn,1) depends on(β ,δ ,∆n) and is independent of(α ,µ). We can show that the lawL (εn,1) has the mean,
the variance, the skewness and the kurtosis, respectively,

tan
β
2
,

1
2∆nδ cos2(β/2)

, sin
β
2

√
2

∆nδ
, 3+

2−cos(β )
∆nδ

.

(See, for example, Grigelionis [2].) It then follows that asn ↑+∞, the first four moments are of orderO(1), O(∆−1
n ),

O(∆−3/2
n ) andO(∆−2

n ) if β ̸= 0, while 0,O(∆−1
n ), 0 andO(∆−2

n ) if β = 0.
We denote bythe standard Cauchy distributionthe infinitely divisible distribution with characteristic function

y 7→ e−|y| and the probability density function

φ(x) :=
1

π(1+x2)
, x∈ R. (3.4)

The following lemma indicates that the random variablesεn,k act as suitably normalized increments.

Lemma 3.1. The lawL (εn,1) converges to the standard Cauchy distribution, as n↑+∞.

Proof. The claim can be deduced readily by observing that, for eachy∈ R,

Eθ
[
eiyεn,1

]
=

(
cos(β/2)

cosh((y/(∆nδ )− iβ )/2)

)2∆nδ

=

(
2

ey/(2∆nδ )(1− i tan(β/2))+e−y/(2∆nδ )(1+ i tan(β/2))

)2∆nδ

∼


(

2
1−i tan(β/2)

)2∆nδ
e−y, if y> 0,(

2
1+i tan(β/2)

)2∆nδ
ey, if y< 0,

→ e−|y|,

asn ↑+∞, with the help of the Ĺevy continuity theorem.

2) The likelihood function (3.2) in question is smooth inθ . We can rewrite (3.1) as

ln,k(θ) = 2∆nδ ln [2cos(β/2)]− ln(2πα)− lnΓ(2∆nδ )+∆nβδεn,k+ ln
∣∣Γ(∆nδ

(
1+ iεn,k

))∣∣2 .
In our proof of Theorem2.1, we will need to specify the partial derivatives up to the second order. To this end, we
define an array{gn,k(θ)}n∈N;k=1,...,n of random vectors inR4 by gn,k(θ) := ∇θ

(
ln,k(θ)

)
, where

gn,k(θ) :=


g(1)n,k

g(2)n,k

g(3)n,k

g(4)n,k

 :=


− 1

α − ∆nβδ
α εn,k+

2∆nδ
α εn,kIm

(
Γ′(∆nδ (1+iεn,k))

Γ(∆nδ (1+iεn,k))

)
∆nδ

(
εn,k− tan(β/2)

)
2∆n ln [2cos(β/2)]−2∆n

Γ′(2∆nδ )
Γ(2∆nδ ) +2∆nRe

(
Γ′(∆nδ (1+iεn,k))

Γ(∆nδ (1+iεn,k))

)
−∆n

β
α +∆n

2
α Im

(
Γ′(∆nδ (1+iεn,k))

Γ(∆nδ (1+iεn,k))

)

 . (3.5)
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(See Grigoletto and Provasi [3, Appendix A] for derivation of the gradient.) We also prepare the following asymptotics.

Lemma 3.2. It holds almost surely that

∂
∂α

Im

(
Γ′(∆nδ (1+ iεn,1))

Γ(∆nδ (1+ iεn,1))

)
=−

∆nδεn,1

α

+∞

∑
k=0

(k+∆nδ )2− (∆nδεn,1)
2

((k+∆nδ )2+(∆nδεn,1)2)2

∼−
∆nδεn,1

α

(
1

(∆nδ )2

1− ε2
n,1

(1+ ε2
n,1)

2
+ζ (2)

)
,

∂
∂δ

Im

(
Γ′(∆nδ (1+ iεn,1))

Γ(∆nδ (1+ iεn,1))

)
=−2∆2

nδεn,1

+∞

∑
k=0

k+∆nδ
((k+∆nδ )2+(∆nδεn,1)2)2

∼−2∆2
nδεn,1

(
1

(∆nδ )3(1+ ε2
n,1)

2
+ζ (3)

)
,

∂
∂ µ

Im

(
Γ′(∆nδ (1+ iεn,1))

Γ(∆nδ (1+ iεn,1))

)
=−∆n

α

+∞

∑
k=0

(k+∆nδ )2− (∆nδεn,1)
2

((k+∆nδ )2+(∆nδεn,1)2)2

∼−∆n

α

(
1

(∆nδ )2

1− ε2
n,1

(1+ ε2
n,1)

2
+ζ (2)

)
,

∂
∂α

Re

(
Γ′(∆nδ (1+ iεn,1))

Γ(∆nδ (1+ iεn,1))

)
=−

2(∆nδεn,1)
2

α

+∞

∑
k=0

k+∆nδ
((k+∆nδ )2+(∆nδεn,1)2)2

∼−
2(∆nδεn,1)

2

α

(
1

(∆nδ )3

1

(1+ ε2
n,1)

2
+ζ (3)

)
,

∂
∂δ

Re

(
Γ′(∆nδ (1+ iεn,1))

Γ(∆nδ (1+ iεn,1))

)
= ∆n

+∞

∑
k=0

(k+∆nδ )2− (∆nδεn,1)
2

((k+∆nδ )2+(∆nδεn,1)2)2

∼ ∆n

(
1

(∆nδ )2

1− ε2
n,1

(1+ ε2
n,1)

2
+ζ (2)

)
,

∂
∂ µ

Re

(
Γ′(∆nδ (1+ iεn,1))

Γ(∆nδ (1+ iεn,1))

)
=−2∆n

α

+∞

∑
k=0

k+∆nδ
((k+∆nδ )2+(∆nδεn,1)2)2

∼−2∆n

α

(
1

(∆nδ )3

1

(1+ ε2
n,1)

2
+ζ (3)

)
,

where all the asymptotics hold when n↑+∞.

Proof. The proof entails rather lengthy algebra of somewhat routine nature. To avoid overloading this proof, we only
consider the first claim and omit all the rest. To this end, we have only to justify the interchange of the differentiation
and the infinite sum as

∂
∂α

+∞

∑
k=1

1
(k+∆nδ )2+((xn,1−∆nµ)/α)2 =

+∞

∑
k=1

∂
∂α

1
(k+∆nδ )2+((xn,1−∆nµ)/α)2 .

For convenience, we use the notation

H(k;α) :=
1

(k+∆nδ )2+((x−∆nµ)/α)2 ,
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with x∈ R, δ , µ , ∆n fixed. It holds by the Taylor theorem that forλ > 0 and for eachk∈ N,∣∣∣∣H(k;α +λ )−H(k;α)

λ

∣∣∣∣= ∣∣∣∣∫ 1

0

∂
∂α

H(k;α +λs)ds

∣∣∣∣
≤
∫ 1

0

2
α +λs

(
(x−∆nµ)/(α +λs)

(k+∆nδ )2+((x−∆nµ)/(α +λs))2

)2

ds

≤ 2
α3

(x−∆nµ)2

(k+∆nδ )4 .

Hence, we get

+∞

∑
k=1

∣∣∣∣H(k;α +λ )−H(k;α)

λ

∣∣∣∣≤ 2(x−∆nµ)2

α3

+∞

∑
k=1

1
(k+∆nδ )4 ≤ 2(x−∆nµ)2

α3 ζ (4),

which justifies the interchange with the help of the dominated convergence theorem. The asymptotics are straight-
forward by splitting the sum into two partsk = 0 andk ≥ 1 with the help of the definition of the Riemann zeta
function.

3) Note that using the expressions (3.5), we can show that

I (θ) = lim
n↑+∞

n

∑
k=1

RnEθ

[
gn,k(θ)gn,k(θ)⊤

]
Rn.

In order to complete the proof of Theorem2.1, it suffices to prove the following two lemmas (see Section 4.1 in Kawai
and Masuda [5] and the references therein for details).

Lemma 3.3. The symmetric matrixI (θ) is well defined and is given by (2.2).

Lemma 3.4. (i) It holds that

lim
n↑+∞

Rn

(
n

∑
k=1

Eθ
[
gn,k(θ)

]
Eθ
[
gn,k(θ)

]⊤)
Rn = 0,

where the right hand side indicates the zero matrix inR4×4.
(ii) It holds that

lim
n↑+∞

sup
θ∈Θ

n

∑
k=1

(
Eθ

[∣∣Rngn,k(θ)
∣∣4]+Eθ

[∣∣RnHessθ (ln,k(θ))Rn
∣∣2])= 0.

Note that (ii) in particular verifies the Lindeberg condition: for everya> 0,

lim
n↑+∞

n

∑
k=1

Eθ

[∣∣Rngn,k(θ)
∣∣21(∣∣Rngn,k(θ)

∣∣≥ a
)]

= 0.

4) We here prove Lemma3.3. Recall the definition of the digamma function

Γ′(z)
Γ(z)

=−1
z
− γ −

+∞

∑
l=1

(
1

l +z
− 1

l

)
, z∈ C,

and also that for eachx> 0 andy∈ R,

Re

(
Γ′(x+ iy)
Γ(x+ iy)

)
=− x

x2+y2 − γ −
+∞

∑
l=1

(
l +x

(l +x)2+y2 − 1
l

)
,

Im

(
Γ′(x+ iy)
Γ(x+ iy)

)
=

+∞

∑
l=0

y
(l +x)2+y2 ,

6



where the both infinite sums are well defined. Note that with respect to the variabley, the former is even, while the
latter is odd. It is straightforward that asn ↑+∞,

−2∆n
Γ′(2∆nδ )
Γ(2∆nδ )

→ 1
δ
,

and that almost surely asn ↑+∞,

Re

(
Γ′(∆nδ (1+ iεn,1))

Γ(∆nδ (1+ iεn,1))

)
=− 1

∆nδ
1

1+ ε2
n,1

− γ −
+∞

∑
l=1

(
l +∆nδ

(l +∆nδ )2+(∆nδεn,1)2 − 1
l

)
∼− 1

∆nδ
1

1+ ε2
n,1

,

Im

(
Γ′(∆nδ (1+ iεn,1))

Γ(∆nδ (1+ iεn,1))

)
=

1
∆nδ

εn,1

1+ ε2
n,1

+
+∞

∑
l=1

∆nδεn,1

(l +∆nδ )2+(∆nδεn,1)2 ∼ 1
∆nδ

εn,1

1+ ε2
n,1

.

By using the above results, we get

g(1)n,1(θ)∼− 1
α

1− ε2
n,1

1+ ε2
n,1

,

g(2)n,1(θ) = ∆nδ
(

εn,1− tan
β
2

)
,

g(3)n,1(θ)∼− 1
δ

1− ε2
n,1

1+ ε2
n,1

,

g(4)n,1(θ)∼
2

αδ
εn,1

1+ ε2
n,1

,

asn ↑+∞. By denoting byIl1,l2(θ) the(l1, l2)-entry ofI (θ), we readily deduce by means of the LLN that

I1,1(θ) =
1

α2

∫
R

(
1−x2

1+x2

)2

φ(x)dx=
1

2α2 ,

I2,2(θ) =
δ

2(cos(β/2))2 ,

I3,3(θ) =
1

δ 2

∫
R

(
1−x2

1+x2

)2

φ(x)dx=
1

2δ 2 ,

I4,4(θ) =
4

α2δ 2

∫
R

(
x

1+x2

)2

φ(x)dx=
1

2α2δ 2 ,

I1,2(θ) = I2,1(θ) = 0,

I2,3(θ) = I3,2(θ) = 0,

I3,4(θ) = I4,3(θ) =− 2
αδ 2

∫
R

1−x2

1+x2

x
1+x2 φ(x)dx= 0,

I1,3(θ) = I3,1(θ) =
1

αδ

∫
R

1−x2

1+x2

1−x2

1+x2 φ(x)dx=
1

2αδ
,

I2,4(θ) = I4,2(θ) = 0,

I1,4(θ) = I4,1(θ) =− 2
α2δ

∫
R

1−x2

1+x2

x
1+x2 φ(x)dx= 0.

This completes the proof of Lemma3.3.

5) It remains to prove Lemma3.4.
(i) With the help of Lemma3.2and the asymptotic behaviors ofgn,1(θ) given in the proof of Lemma3.3together with
the bounded convergence theorem, it holds that asn ↑+∞,

√
nRnEθ [gn,1(θ)]∼


− 1

α
∫
R

1−x2

1+x2 φ(x)dx
0

− 1
δ
∫
R

1−x2

1+x2 φ(x)dx
2

αδ
∫
R

x
1+x2 φ(x)dx

= 0,
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which is enough to prove the claim.

(ii) With the help of the asymptotic behaviors ofgn,1(θ) given in the proof of Lemma3.3and notationr(2)n := 1/
√

n∆n

andr(k)n := 1/
√

n for k= 1,3,4, it suffices to check that

n

∑
k=1

Eθ

[∣∣∣r(1)n g(1)n,k(θ)
∣∣∣4]∼ 1

nα4

∫
R

(
1−x2

1+x2

)4

φ(x)dx=
3

8nα4 ,

n

∑
k=1

Eθ

[∣∣∣r(2)n g(2)n,1(θ)
∣∣∣4]= 1

n∆n

3δ∆n+2−cosβ
4δ 3(cos(β/2))4 ,

n

∑
k=1

Eθ

[∣∣∣r(3)n g(3)n,1(θ)
∣∣∣4]∼ 1

n2δ 4

∫
R

(
1−x2

1+x2

)4

φ(x)dx=
3

8nδ 4 ,

n

∑
k=1

Eθ

[∣∣∣r(4)n g(4)n,1(θ)
∣∣∣4]∼ 1

n2

(
2

αδ

)4∫
R

(
x

1+x2

)4

φ(x)dx=
3

8nα4δ 4 ,

each of which tends to zero asn ↑+∞. Thanks to the compactness of the setΘ, it follows that

lim
n↑+∞

sup
θ∈Θ

n

∑
k=1

Eθ

[∣∣Rngn,k(θ)
∣∣4]= 0.

We can derive each entry of the Hessian matrix Hessθ (ln,k(θ)) of the likelihood as

∂ 2
α ln,k(θ) =

1
α2 +

2β∆nδεn,k

α
−

2(∆nδεn,k)
2

α2

+∞

∑
l=0

3(l +∆nδ )2+(∆nδεn,k)
2

((l +∆nδ )2+(∆nδεn,k)2)2

∼ 1
α2

1−4ε2
n,k− ε4

n,k

(1+ ε2
n,k)

2
,

∂ 2
β ln,k(θ) =−∆n

δ
2(cos(β/2))2 ,

∂ 2
δ ln,k(θ) =−4∆2

n

+∞

∑
l=0

1
(l +2∆nδ )2 +2∆2

n

+∞

∑
l=0

(l +∆nδ )2− (∆nδεn,k)
2

((l +∆nδ )2+(∆nδεn,k)2)2

∼− 1
δ 2

1−4ε2
n,k− ε4

n,k

(1+ ε2
n,k)

2
,

∂ 2
µ ln,k(θ) =

2∆2
n

α2

+∞

∑
l=0

−(l +∆nδ )2+(∆nδεn,k)
2

((l +∆nδ )2+(∆nδεn,k)2)2 ∼ 2
α2δ 2

−1+ ε2
n,k

(1+ ε2
n,k)

2
,

and

∂α ∂β ln,k(θ) =−∆nδ
α

εn,k,

∂α ∂δ ln,k(θ) =−4∆n

α

+∞

∑
l=0

(l +∆δ )(∆nδεn,k)
2

((l +∆δ )2+(∆δεn,k)2)2 ∼− 4
αδ

(
εn,k

1+ ε2
n,k

)2

,

∂α ∂µ ln,k(θ) =
β∆n

α2 − 4∆n

α2

+∞

∑
l=0

∆nδεn,k(l +∆nδ )2

((l +∆nδ )2+(∆nδεn,k)2)2 ∼− 4
α2δ

εn,k

(1+ ε2
n,k)

2
,

∂β ∂δ ln,k(θ) =−∆n
tan(β/2)

2
,

∂β ∂µ ln,k(θ) =−∆n
1
α
,

∂δ ∂µ ln,k(θ) =−4∆2
n

α

+∞

∑
l=0

(l +∆nδ )∆nδεn,k

((l +∆nδ )2+(∆nδεn,k)2)2 ∼− 4
αδ 2

εn,k

(1+ ε2
n,k)

2
,
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where all the asymptotics hold almost surely asn ↑+∞. It is straightforward to deduce that asn ↑+∞,

sup
θ∈Θ

n

∑
k=1

Eθ

[∣∣RnHessθ (ln,k(θ))Rn
∣∣2]=


O(1/n) O(∆n/n) O(1/n) O(1/n)
O(∆n/n) O(1/n) O(∆n/n) O(∆n/n)
O(1/n) O(∆n/n) O(1/n) O(1/n)
O(1/n) O(∆n/n) O(1/n) O(1/n)

 ,
where the squared norm inside the expectation are understood to be componentwise. The proof of Lemma3.4 is
complete.

3.2 Proof of Proposition2.2

The mean ofX1 is given byµ0(θ) := µ +αδ tan(β/2), so that we may write

Eθ
[
eiyX1

]
= exp

[
iyµ0(θ)+

∫
R0

(
eiyz−1− iyz

)
g(z;θ)dz

]
, y∈ R.

According to Sato [12, Theorem 33.1], for eachT > 0, the measuresPθ1|FT andPθ2|FT are equivalent iff the following
conditions are fulfilled:

(a) g(z;θ2) = γ(z;θ1,θ2)g(z;θ1) for some Borel functionγ(·;θ1,θ2) : R→ (0,∞);
(b) µ0(θ2) = µ0(θ1)+

∫
R z(γ(z;θ1,θ2)−1)g(z;θ1)dz;

(c)
∫
R(1−

√
γ(z;θ1,θ2))

2g(z;θ1)dz<+∞.

Hence, it suffices to show that these three conditions hold true iffα1δ1 = α2δ2 andµ1 = µ2.
Concerning the behaviors of the Lévy densityg(z;θ) near the origin and at infinity, in view of the series expansion

z/sinh(z) = 1−z2/6+O(z4) as|z| → 0, it is easy to see that the Lévy densityg(z;θ) admits the following expansion

g(z;θ) =
αδ
πz2

(
1+

β
α

z+O(z2)

)
, (3.6)

as|z| → 0. Note that sinh(x) behaves likeex/2 asx ↑+∞, while it behaves like−e−x/2 asx ↓ −∞. We thus get

g(z;θ)∼
{

2δz−1exp{−(π −β )z/α}, z↑+∞,
2δ |z|−1exp{−(π +β )|z|/α}, z↓ −∞.

(3.7)

In particular, (3.6) as well as the fact thatg(z;θ)> 0 for everyz ̸= 0 ensures (a); more specifically, the singularities of
g(z;θ1) andg(z;θ2) at the origin are canceled out sinceg(z;θ2)/g(z;θ1)∼ α2δ2/(α2δ2) as|z| → 0.

We turn to (c) withγ(z;θ1,θ2) = g(z;θ2)/g(z;θ1). Due to (3.6) and (3.7), it holds that

(
1−
√

γ(z;θ1,θ2)
)2

g(z;θ1) =
(√

g(z;θ1)−
√

g(z;θ2)
)2

∼


1

π|z|2

((√
α1δ1−

√
α2δ2

)2
+
(√

α1δ1−
√

α2δ2
)(

β1

√
δ1
α1

−β2

√
δ2
α2

)
z+O(z2)

)
, |z| → 0,

C+z−1exp(−q+z), z↑+∞,
C−|z|−1exp(−q−|z|), z↓ −∞,

for some positive constantsC± andq±, depending on(θ1,θ2). Hence, (c) holds true iffα1δ1 = α2δ2, which we will
impose in the rest of this proof.

The remaining (b) is equivalent to

µ1+α1δ1 tan
β1

2
−µ2−α2δ2 tan

β2

2
=
∫
R0

(
δ1

exp(β1z/α1)

sinh(πz/α1)
−δ2

exp(β2z/α2)

sinh(πz/α2)

)
dz.

In the caseα1δ1 = α2δ2 =: C> 0, the last display can be rewritten as

µ1−µ2+C

(
tan

β1

2
− tan

β2

2

∫
R0

(
exp(β1z/α1)

α1sinh(πz/α1)
− exp(β2z/α2)

α2sinh(πz/α2)

)
dz

)
= 0.
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We now show that the function

f (α1,β1;α1,β2) := tan
β1

2
− tan

β2

2
−
∫
R0

(
exp(β1z/α1)

α1sinh(πz/α1)
− exp(β2z/α2)

α2sinh(πz/α2)

)
dz≡ 0,

rendering that (b) holds true iffµ1 = µ2, which completes the proof of the proposition. First, we observe that

f (α1,0;α2,0) =
∫
R0

(
1

α2sinh(πz/α2)
− 1

α1sinh(πz/α1)

)
dz≡ 0,

since the integrand is odd, continuous inR, and exponentially decreasing as|z| ↑ +∞. Next, using the fact that the
variance of Meixner(αk,βk,δk,µk) equals

∫
R z2g(z;θk)dz, we derive

1

α2
k

∫
R0

z
exp(βkz/αk)

sinh(πz/αk)
dz=

1
2cos2(βk/2)

.

Hence, we get

∂
∂β1

f (α1,β1;α1,β2) =
1

2(cos(β1/2))2 − 1

α2
1

∫
R0

z
exp(β1z/α1)

sinh(πz/α1)
dz≡ 0,

and(∂/∂β2) f (α1,β1;α1,β2)≡ 0 in a similar manner. These imply thatf (α1,β1;α1,β2)≡ 0. The proof is complete.
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served Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L2 a priori error estimates to the finite element solution of elliptic
problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek
polynomials

MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev in-
equality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predic-
tors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings



MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1
dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation
around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents
for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with
the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric τ-functions of the q-Painlevé system of type E
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