SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Self-Indexed Grammar—-Based Compression by Edit
Sensitive Parsing

Maruyama, Shirou
Kyushu University

Sakamoto, Hiroshi
Kyushu Institute of Technology

Baba, Masahiro
Kyushu University

Ono, Hirotaka
Kyushu University

ftt

https://hdl. handle. net/2324/17913

HARIER : 2010-08-13
N—=I3

HEFIBAMR

Self-Indexed Grammar-Based Compression by
Edit Sensitive Parsing

Shirou Maruyama', Hiroshi Sakamoto?*, Masahiro Baba', Hirotaka Ono!,
Kunihiko Sadakane®, and Masafumi Yamashita!

! Kyushu University, 680-4 Kawazu, lizuka-shi, Fukuoka, 820-8502,
2 Kyushu Institute of Technology, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka
819-0395,

3 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430,
4 PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi,
Saitama 332-0012, JAPAN
{shiro.maruyama@i,mbaba@tcslab.csce,mak@csce. }.kyushu-u.ac.jp,
hiroshi@ai.kyutech.ac.jp, sada@nii.ac.jp

Abstract. A space-economical self-index on the grammar-based com-
pression is proposed. The algorithm by [20] approximates the optimum
compression for a given string within O(log*ulogu) ratio for the string
length u. Adopting this algorithm with a new succinct data structure for
full binary tree, a grammar-based compression represented by a CFG in
Chomsky normal form is transformed to a compressed index. The index
size is 2nlog n+hlog n+nlog h+4n+o(nlogn) bits, where n is the num-
ber of different variables in the grammar-based compression G and h is
the height of G bounded by O(log u). The time to count occurrences for a
pattern P of length m is estimated to O(m log® n+occ.(log nlog m+h)),
where occ. is the occurrence number of core of P, which is derived from
alphabet reduction in [7]. The parameter occ. is almost equal to the oc-
currence of P for sufficiently long P. Experiments for large text data
also show the time/space efficiency and the high performance for long
pattern search compared with other compact index structures.

1 Introduction

We propose a self-index based on a theory of grammar-based compression. The
proposed index is realized by a grammar-based compression described in a CFG
and the succinct data structure used in a full binary tree. This compressed index
differs from other compressed indexes, such as LZ-index [15], FM-index [8], and
Compressed Suffix Array [17], because no sorting for any suffixes is carried out.
Since our method avoids sorting issues, it is advanced in terms of long pattern
search efficacy, while the search time for frequent patterns does decline. On the
other hand, since it is suited for finding the occurrences of long patterns, it
is expected to be applicable toward such uses as compressing two documents,
comparing their similarities, and extracting common patterns.

First, we cover the theory of grammar-based compression, which is the ba-
sis of this research, as well as related research. The smallest grammar-based

compression problem is NP-hard, whereby the size of the CFG, which only
generates the given text, is minimized. It is believed impossible to carry out
O(«)-approximation for any constant «. In this problem, however, any string of
length u is O(logu)-approximable by several linear time algorithms [4, 16, 19].
Especially, the algorithm proposed in [20] is deeply relevant to this research. In
other algorithms, since random access for all substrings appearing in text and a
suffix tree is needed, the space complexity becomes 2(u).

The edit sensitive parsing based on the alphabet reduction is the most im-
portant concept of this research, and it is the key to working around the sort
problem while realizing rapid search from compressed data. Alphabet reduction
and related techniques were originally presented to approximate a variant of the
edit distance problem [1, 2, 18]. The alphabet reduction in [7] has been applied to
the compression algorithm in [20]. Our self-index is based on such the grammar-
based compression algorithm. Related to this work, [6] presented an algorithm
that combines the alphabet reduction and LZ77 algorithm to nearly optimize the
substring compression problem to decide the compression of a substring S[i, j]
by the compression of S only.

In order to build the self-indexed grammar-based compression while saving
space, this research presents the representation of a new succinct data structure
for full binary tree. The succinct data structures used until now within trees
involves a method of allocating balanced parentheses while traversing trees [3,
10,14]. Any tree of size n can be expressed by 2n + o(n) bits, where, o(n) is
the space of auxiliary data structures for traversing trees. The succinct data
structure presented in this research that is used for the parsing tree in the CFG
can further reduce this space. The CFG is limited by the Chomsky normal form;
thus, the parsing tree becomes a full binary tree. In other words, it becomes a
binary tree in which all internal nodes possess exactly two children. In order to
encode each node, it is sufficient to distinguish whether that is an internal node
or a leaf. For this reason, the size of the data structure can be kept to n + o(n)
bits. By expressing the parsing tree of the CFG by this succinct data structure,
a self-index can be built in a space less than that of the size of the text.

Now that we let n be the number of variables in grammar compression G
used for string S of length u, and also let h be the height of parsing tree G,
the size of the index presented in this paper can be 2nlogn + hlogn + nlogh +
4n + o(nlogn) bits. By the result in [20], n is bounded by O(n.logu) for the
optimum solution size n, and h is bounded by O(log u). Therefore, if the text can
be adequately compressed, the index size and memory consumption will be less
than that of the text size. The time to count occurrences for pattern P of length
m is represented by O(m log® n + occ.(lognlogm + h)), Here occ. represents the
number of occurrences of cores of P. The core has theoretically been represented
as encoding substrings of P, which are sufficiently long, when P is long. For this
reason, occ. is almost equal to the number of occurrences of P.

Finally, we would cover the relation to other compressed indexes. According
to the method presented in this research, since the search time is bounded by
the grammar size, the text size w is not explicitly included in the search time.

Therefore, if there is an easily compressible text, the theoretical complexity
of the method presented herein possesses an advantage over other methods.
While theoretical results have been obtained from compression indexes such
as [5] that have integrated the advantages of grammar compression, it can be
shown that the compressed index presented in this research possesses not only
a good approximation of optimal compression but has also been effective in
comparative experiments with other compression indexes [8,17,15].

2 Preliminaries

We assume a finite set X' of alphabet symbols. The set of all strings over X' is
denoted by X*. The length of a string w € X* is denoted by |w]|. A string {a}*
of length at least two is called a repetition of a. S[i] and S[i, j] denote the i-th
symbol of S and the substring from S[i] to S[j], respectively.

The expression log™n denotes the maximum integer j which satisfies F(5) < n
for F(0) =1, and F(j) = 2¥0U=Y (j > 1). For instance, F(3) = 2* = 16,
F(4) = 216 = 65536, and F(5) = 26536, We thus treat log™n as a constant.

Our index is a compact representation obtained by the edit sensitive pars-
ing [7] based on a special transformation of string called alphabet reduction. We
first recall such important notions.

2.1 Alphabet reduction

A string S € X* of length n is partitioned into maximal nonoverlapping sub-
strings of three types:

Typel: a maximal repetition of a symbol;
Type2: a maximal substring longer than log*n not containing of a repetition;
Type3d: any other short substrings.

Each such substring is called a metablock. We focus on only Type2 metablocks
since the others are not related to the alphabet reduction. From a Type2 string
s, a label string label(s) is computed as follows.

Alphabet reduction: Consider s[i] and s[i — 1] represented as binary integers.
Denote by £ the least bit position in which s[i] differs from s[i — 1]. For instance,
if s[i] = 101,s[i — 1] = 100 then ¢ = 0, and if s[i] = 001,s[i — 1] = 101 then
£ = 2. Let bit(¢, s[i]) be the value of s[i] at the £th bit location. Then label(s[i])
is defined by label(s[i]) as 2€ + bit(£, s[i]).

By this procedure, we generate a string label(s) which is the sequence of
such label(s[i]). For the resulting label(s), we have the fact that label(s[i]) #
label(s[i + 1]) if s[i] # s[i + 1] for any i (See [7]). Thus the alphabet reduction is
recursively applicable to label(s), which is also Type2.

If the alphabet size in s is o, the new alphabet size in label(s) is 2logo. We
iterate this process for the resulting string label(s) until the size of the alphabet
no longer shrinks. This takes log*o iterations.

a d e g h e c a d e g

(Dstring in binary 000 011 100 110 111 100 010 000 OI1 100 110
(2) labels 001 000 011 001 000 011 010 001 000 O11
(3) labels as integers B 1 0 3 1 0 3 2 1 0 3

(4) final labels & landmarks — 0 1 @ 1 10

Fig. 1. Alphabet reduction: The line (1) is an original Type2 string s from the alphabet
{a,b,- -, h} with its binary representation. An underline denotes the least different bit
position to the left. (2) is the sequence of label(s[i]) formed from the alphabet {0, 1, 2,3}
whose size is less than 6, and (3) is its integer representation. (4) is the sequence of the
final labels reduced to {0, 1,2} and the landmarks indicated by squares.

(3) edit sensitive parsing %
(2) position blocks E EE E E E E
(1) landmarks - 0 1 @ 1 1 0

Fig. 2. Edit sensitive parsing (ESP): This figure is one iteration of ESP for the string
in Fig. 1. The line (1) is the computed final labels and landmarks from the Type2 string
s. (2) shows the groups of all positions in s having two or three around the landmarks.
(3) is the corresponding ESP using suitable new symbols A,B,C, and D.

After the final iteration of alphabet reduction, the alphabet size is reduced to
at most 6 like {0,--- ,5} (See [7]). Finally we transform label(s) € {0,---,5}* to
the same length string in label(s) € {0,1,2}* by replacing each 3 with the least
integer in {0, 1,2} that does not neighbor the 3, and doing the same replacement
for each 4 and 5. We note that the final string label(s) is also Type2 string.

Landmark: For a final string label(s), we pick out special locations called
landmarks that are sufficiently close together. We select any position i as a
landmark if label(s[i]) is a local maximum. Following this, we select any position
j as a landmark if label(s[j]) is local minimum and both j — 1,5 + 1 are not
selected yet. We display the whole process of the alphabet reduction and finding
landmarks from a sample Type2 string in Fig. 1.

2.2 Edit sensitive parsing

After computing the sequence label(s) of final labels and landmarks for a Type2
string s, we next partition s into blocks of length two or three around the land-
marks in the manner: We make each position part of the block generated by its
closest landmark, breaking ties to the right.

As was shown in [7], for any two successive landmark positions i and j, we
have 2 < |i — j| < 3. Thus, each position block is of length two or three. The
string s is transformed to a shorter string s’ by replacing any block of two or
three symbols to a new suitable symbol. Here “suitable” means that any two
blocks partitioning a same substring in s must be replaced by a same symbol.
This parsing is called edit sensitive parsing. Such renaming can be performed
in O(1) time with high provability by a hash function like [11]. These parsing
process is shown in Fig. 2.

Finally, we mention the parsing manner for Typel or Type3 string s. If
|s| > 2, we parse the leftmost two symbols of s as a block and iterate on the
remainder and if the length of it is three, then we parse the three symbols as
a block. We note that no Typel s in length one exists. The remained case is
Type3 s and |s| = 1, which appears in a context a*bc*. If |a*| = 2, b is parsed
as the block aab. If |a*| > 2, b is parsed as the block ab. If |a*| = 0, b is parsed
with ¢* analogously.

For an input string S, if it is partitioned into si, ..., s of Typel, Type2, or
Type3 substrings. After parsing them, the transformed strings s are concate-
nated together. This process iterated until |s - - - s}| = 1, i.e. a parsing tree for S
is constructed. By the parsing manner for all types of substrings, we can obtain
a balanced 2 — 3 tree, in which any internal node has two or three children.

3 Self-Indexed Grammar-Based Compression

We introduce a compact representation of ESP tree. Here we define several
notations used in this section. Given an ESP tree for an input string, each symbol
attached to an internal node is called a variable. Since each internal node has
two or three children, an ESP tree is identical to a context-free grammar (CFG),
whose production rules are denoted by X — AB or Y — ABC.

A data structure D to access AB from X (or ABC from Y) is called a
dictionary, and another data structure D® to access X from AB (or Y from
ABC) is called a reverse dictionary.

3.1 Pattern matching on ESP tree

We consider a special property of the ESP tree T for a text S: There exist
positive integers k, £ such that for any pattern P, if S[i,j] = P, then T has the
internal node labeled by a variable X generating the substring S[i + k,i + k + ¢
of S[i,j]. If we can always take such a common variable X for all occurrences
of P and ¢, which is the length of the encoded substring by X, is sufficiently
long, this property is available as a necessary condition for searching P, i.e. any
occurrence of P in S is restricted around X. In this subsection we show that
such a maximal variable, called a core of P for S, exists provided 7" and P are
sufficiently long, and we can decide it by parsing P using D for a text S.

Lemma 1. There exists a constant 0 < o < 1 such that for any occurrence of
P in S, its core is encoding a substring longer than a|P)|.

Proof. We first consider the case that P is a Type2 metablock. As shown in [7],
determining the closest landmark on S[i] depends on S[i — log™n + 5,i] and
Sliyi + 5]. Thus, if S[i,j] = P, then the final labels for the inside part S[i +
log™n + 5,j — 5] are the same for any occurrence position i of P. By this, each
substring equivalent to S[i + log™ + 5,5 — 5] is transformed to the same S'.
Since the ESP tree is balanced 2 — 3 tree, any variable in S’ encodes at least
two symbols. If S is Type2 again, then this process continues. Thus, after k
iterations, the length of the string encoded by a variable in S’ is at least 2*.
On the other hand, by one iteration, the common substring S’ loses its prefix
and suffix of length at most log™ + 5 and each lost variable has at most three
children. By this observation, we can take an internal node as a core of P for S,
whose height is the maximum k satisfying

2(log™n + 5)(3 + 32 + - -- 3¥) < (log™n + 5)3" 2 < |P|.

By this estimation, since log*n is regarded as a constant and a variable in height
k encodes a substring of length at least 2¥, we obtain a constant 0 < a < 1 and a
variable as a core of P encoding a substring of length at least a|P|. Generally P
is divided into m metablocks like P = P, P, - - - P,,. Typel and Type3 metablocks
in Py ---P,,_1 are uniquely parsed in its any occurrence. Thus we can assume
P = P, P, P; for a long Type2 metablock P, and Typel P;, P; as a worst case.
For any occurrence of Typel metablock, we can obtain a sufficiently large core.
Choosing a largest core from the three metablocks, the size is greater than «|P]|.

Using Lemma 1, the search problem for P is reduced to the search problem
for the sequence of adjacent cores.

Lemma 2. For a given ESP tree T of a text S and a pattern P, S[i,j] = P iff
there exist k = O(log |P|) adjacent subtrees in T rooted by variables x1,. ..,z
such that the concatenation of all strings encoded by them is equal to P.

Proof. If the bound k = O(log | P|) is not necessary, we can always obtain trivial
subtrees equal to the leaves S[i], S[i + 1],...,S[j]. By using Lemma 1, we can
find a core encoding a long substring of S[i, j] longer than «|j — i| for a fixed
0 < a < 1. The remained substrings are also covered by their own cores. Thus
we obtain the bound k& = O(log | P|).

By Lemma 1 and 2, we can obtain the sequence z1,... ,z; of cores for any
pattern P. Let x be one of them. For any node v labeled z, we can check whether
the adjacent subtrees rooted by z1, ...,z are embedded around v in O(log |P)|)
time by traversing at most O(log |P|) edges in the ESP tree from v. Practically,
we choose as large subtree z as possible.

An ESP tree T is represented by a pruned tree to merge common subtrees.
Any subtree is merged to the leftmost occurrence of the same subtree by a link
structure, and the pruned tree also contains the link to the next occurrence
of any subtree. This representation is illustrated in Fig. 3. We next propose a
succinct data structure for the representation.

leftmost
occurrence

pruned tree

original parsing tree

Fig. 3. Pruned parsing tree: This figure shows a parsing tree of a grammar-based
compression and its compact representation. For any deleted subtree, the root has two
pointers to the leftmost occurrence and the predecessor of the same subtree in the
original parsing tree. Here all pointers for leaves are omitted for simplicity.

3.2 Data structure using succinct representation

We define the succinct data structures for the rank/select/access operations.
Counsider a string S[1,n] from an alphabet X! $We define three operations for S
as follows:

rank.(S,4) returns the number of occurrences of ¢ € X' appearing in S[1, 1],
select.(S, 1) returns the position j such that rank.(S,j) =i, and
access(S, i) returns S[i].

A basic succinct data structure uses n + o(n) bits for | X| = o = 2 (See [13]),
which supports rank/select/access in O(1). For general case, there exists a data
structure for such queries in O(log o) time using n log o + o(n log o) bits, called
the wavelet tree [9]. We use them in this paper.

The proposed succinct data structure is based on the balanced parentheses
encoding [14], in which a tree is represented by a string B of balanced parentheses
in 2n bits for the number of nodes, n. A node v is represented by a pair of
matching parentheses '(-- '), and the interval of the /(" and ')’ represents the
subtree rooted v.

The findopen(B, i)/ findclose(B, 1) is the position of the closing/opening paren-
thesis that matches a given opening/closing parenthesis B[i]. To traverse tree,
the findopen/findclose is supported in O(1) time using 2n + o(n) bits on the
word RAM [14].

A grammar-based compression containing the production rule X — ABC has
an equivalent Chomsky normal form defined by X — AX' and X' — BC with
the intermediate variable X'. Such normal form is obtained by the compression
algorithm in [20]. In this algorithm, the height of each variable produced in i-th
loop is exactly ¢, and in the same loop, the name of variables are assigned from

01 23 4567 8 9101112131415

parentheses sequence b | (((((()))) ((())))]

12 3 45 678

wb4abba2l , F

leaves sequence L

virtual variables for internal nodes .:;::‘/ 15
in preorder labeling o

Fig. 4. Succinct representation of ESP: This figure shows a pruned ESP tree T with
virtual variables, and the corresponding parentheses sequence b and the sequences of

leaves denoted by L. We can traverse T by b with a small auxiliary data structure and
L is represented by a wavelet tree.

the left occurrence. Using the algorithm, an ESP tree can be simulated by a
full binary tree, i.e., a binary tree whose internal node has exactly two children.
Thus we propose a succinct representation of a full binary tree, which enable us
to traverse this tree in n + o(n) bits.

Succinct full binary tree representation: Let T be a full binary tree and
v1,...V, are the nodes of T in the preorder. Then the succinct representation
of T', denoted by b, is defined as b[0] =" (' as the virtual root, b[i] =" (" if v; is
an internal node, and b[i] =")’ otherwise for 1 < i < n. Note that b[0,n] is also

balanced parentheses. Thus, the following operations can be supported in O(1)
using the above operations.

1. isleaf (i) = yes iff b[i] =')’, to check if the node ¢ is the leaf,

2. parent(i) =i—1if b[i — 1] =’ (/, and parent(i) = findopen(i — 1) otherwise,
to return the parent of the node ¢,

leftchild (i) = i + 1, to return the left child of the node i,

4. rightchild (i) = findclose(i) + 1, to return the right child of the node i.

w

Since the representation have no information about the labeled on the nodes,
for traversing the pruned CFG tree T', we must get the variable of any node in
T, and access the next occurrence and the leftmost occurrence of any variable
in T with other auxiliary data structures.

Let b be the proposed parentheses sequence for a full binary tree T, and let
L be the sequence of labels of leaves in T" from the left. L is transformed to its
wavelet tree representation of size nlogn + o(nlogn) bits in O(nlogn) time.
Each internal node of T" has a virtual variable which is defined by the preorder
of internal nodes. These data structures are illustrated in Fig. 4. Based on such

b and L, we can support the following operations in O(1) time for (a), (b) and
in O(logn) time for (¢), (d).

original ESP tree original dictionary virtual dictionary virtual ESP tree

. X, >ab-. h V)
height 1 order-preserving N)l
. X =D | mapping within height |7 V', = V3,

Xy X St)3 V1V

Fig. 5. Virtual variables: This figure shows the correspondence of the original variables
and the virtual variables. A given variable z;, the corresponding virtual node y; is
computed the wavelet tree.

(a) The position in b corresponding to a virtual variable yy is inner(k) =
select((b,k + 1),

(b) The virtual variable corresponding to the position ¢ in b is variable(i) =
rank((b,i) — 1,

(¢) The label of a leaf corresponding to the position i in b is inleaf (i) =
access(L, rank) (b, 1)), and

(d) The position in b referred by a leaf i is refnode(i) = inner(inleaf (7)).

For any virtual variable y,., the next ¢-th occurrence of y, is obtained by
selecty(b,f) for £ = select,(L,i). For example, in Fig. 4, node 4 is the first
occurrence of y4. From node 4, the next occurrence (i = 1) of y4 is node 7, which
is obtained by selects(L,1) = 3 and selecty(b,3) = 7. Using these operations,
we can traverse the pruned ESP tree on its (b, L)-representation. For k leaves,
the required space is 2k + o(k) bits for b, klogk + o(klogk) bits for wavelet
tree representation of L, and o(k) bits for each rank/select and other operations.
Thus, the total space of this data structure is klogk + 2k + o(k log k) bits, and
we have the relation £ = n + 1 for the number n of different variables.

3.3 Time/Space analysis

The remained data structures for the self-indexed grammar-based compression
are the function f(x) = y from any original variable z to the corresponding
virtual variable y, and the reverse dictionary D to get the variable z from a
digram yz for the production rule x — yz.

For an ESP tree, the names of original variables are assigned by the order
of left-hand preference in the same height, and the names of virtual variables
are assigned by the preorder in the depth first search. Thus, the correspondence
between two types of variables are preserved in the same height, i.e. for any
original variables z < z' in a same height, the corresponding virtual variables y
for z and y' for ' satisfy y < y'. This relation is illustrated in Fig. 5.

Using this characteristic, we can compute f(z;) = y; as follows. For the height
h of the ESP tree, let X H[1, h] be the array defined by X H[k] = i iff z; is the first
variable in the height £k = 1,... ,h. The size of X H is hlogn bits. Let THJ[1, n]

be the array defined by T H[i] = height(y;) for i = 1,... ,n. By the wavelet tree
representation for TH, we can compute TH[i] = access(TH, i), rank.(TH,1),
select.(TH,i) in O(logh) time. The size of TH in wavelet tree is nlogh +
o(nlogh) bits. Thus, we can compute f(z;) = y; by f(z;) = select.(TH,d)
for ¢ = height(z;) and d = i — TH[d] + 1. The reverse function is also defined by
the rank operation. Therefore, f(z;) = y; and f~'(y;) = x; are both computed
in O(log h) time and in nlogh + hlogn + o(nlogh) bits.

Finally we analyze the data structure for the reverse dictionary D, which is
defined by the hash function H(j, k) = 4 for any production rule z; — ;5. We
can compute H(j,k) in O(1) time with high probability by Karp-Rabin finger-
prints [11]. However, when we compress a pattern to extract its core, the hash
function is already deleted for space-saving. Thus, for the pattern compression,
we must restore the information about D by the ESP tree itself as follows.

A digram z'z" over the original variables is given, which is appearing in a
pattern to be compressed. The aim is to get the head z of z — z'z". We first
transform the digram to f(z') f(z") = y;jyx over the virtual variables. If we can
find y; — y;yk, then the head x is obtained by = = f~!(y;) without the reverse
dictionary for the original variables.

Using the bucket sort for the two keys j and k, all production rules y; = y;yx
(1 <i < n) are sorted in O(n) time since the bucket sort is a kind of stable sort.
Let HDI[1,n] be the array of the heads y; of the sorted production rules.

If a digram y;y; over the virtual variables is given, then we can decide the
subarray HD; of HD corresponding to the production rules * — y;* in O(1)
time using two bit vectors of length n for each and rank/select operation. For
each y;, its right hand side is computed by the virtual ESP tree in at most
O(logn) time. Thus we can decide the variable y; which generates y;y;, for some
HDI[/] = y; using the binary search on HD; in O(log® n) time.

Finally we can get the original variable from y; in in O(logh) time. The
required space for such computation is nlogn + 2n + o(n) bits. Consequently we
obtain the following statements for our self-indexed grammar-based compression.

Theorem 1. We can construct the self-indexed grammar-based compression in
O(u + nlogn) time and O(nlogn) bits space for the text length w and the
number n of different variables. The size of the index is 2nlogn + hlogn +
nlog h + 4n + o(nlogn) bits, and the time to count occurrences is O(m log® n +
occ.(lognlogm+h)), where h = O(log u) is the height of the grammar, m is the
pattern length, and occ, is the number of occurrences of the core for the pattern.

4 Experiments

In this section we compare the proposed method to other practical indexes. In
our practical implementation, the core is computed for a short prefix of a given
pattern. The compressed prefix is restricted at most length 100. This restriction
is effective for saving time to find the core.

Table 1. Index Size (MByte)

ours |LZ-Index|CSArray |[FM-Index
ENGLISH (209.7MB) | 210.0 323.7 95.3 72.2
DNA (209.7MB) | 206.5 236.2 101.0 61.7

Table 2. Construction Time (sec).

ours |LZ-Index|CSArray |[FM-Index
ENGLISH (209.7MB) | 134.8 74.3 288.1 623.1
DNA (209.7MB) | 104.5 44.3 308.0 420.7

We evaluate the performance of index size, construction time, and time to
count occurrences on the benchmarks in Pizza& Chili corpus®. The compared
methods are LZ-index [15], Compressed Suffix Array [17], and FM-index [8]. The
environment is gcc 4.2.1 on 2.53GHz Xeon E5540 CPU and 144GB RAM.

Table 1 shows the index size of two types of texts. For both cases, our index
sizes are greater than Compressed Suffix Array and FM-index but smaller than
LZ-index. Table 2 shows the construction time for the same texts. Conversely
to the result in Table 1, our method is faster than Compressed Suffix Array and
FM-index but slower than LZ-index. Thus, by these results, we conclude that
the scalability of our method is reasonable.

The search time comparison is shown in Fig. 6. This result tells us that the
time to count occurrences for short pattern is slow since a core obtained from
a short pattern is small and such a core is frequent, but long pattern search is
very fast since sufficiently large cores are obtained from fixed length compression.
This result provides us the observation that large cores are found for patterns
over length 50 in ENGLISH and length 100 in DNA, and an occurrence of such
large core is expected to be very rare.

ENGLISH: Time to count occurrences (msec) DNA: Time to count occurrencess

10000 10000
1000 /./ 1000 //
100 100
/_/-/ / —o—ours -\ /./' /‘/‘ —o—ours

10 —B— 1 Z-Index 10 —B— LZ-Index

" ‘/'/://A/‘/- /9/9 —o—CSArray —o—CSArray
1 W —A—FM-Index i —A— FM-Index
o e o T

1 10 100 1000 10000 1 10 100 1000 10000

m

Pattern Length (5 - 10000) Pattern Length (5 - 10000)

Fig. 6. Time (ms) to count occurrences for ENGLISH and DNA.

! http://pizzachili.dcc.uchile.cl/

5

Conclusion

We proposed a self-indexed grammar-based compression using edit sensitive
parsing technique [7]. The first theoretical result of self-indexed grammar-based
compression is presented in [5]. The algorithm and data structure proposed in
this paper are considered as another framework for self-indexing of grammar-
based compression, which satisfies the requirements for efficiency theoretically
and practically. The proposed succinct data structure for full binary tree can
be applied to other grammar-based compressions like Straight-Line Program [5]
and Re-Pair [12] for reducing the size of the dictionary.

References

1.

2.

10.

11.

12.

13.
14.

15.

16.

17.

Z. Bar-Yossef, T. Jayram, R. Krauthgamer, and R. Kumar. Approximating edit
distance efficiently. In FOCS’04, pages 550-559, 2004.

T. Batu, F. Ergun, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld, and
R. Sami. A sublinear algorithm for weakly approximating edit distance. In
STOC’03, pages 316-324, 2003.

D.A. Benoit, E.D. Demaine, J.I. Munro, R. Raman, V. Raman, and S.S. Rao.
Representing trees of higher degree. Algorithmica, 43:275-292, 2005.

M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem. IEEE Transactions on Information
Theory, 51(7):2554-2576, 2005.

F. Claude and G. Navarro. Self-indexed text compression using straight-line pro-
grams. In MFCS09, pages 235-246, 2009. to appear in Fundamenta Informaticae.

. G. Cormode and S. Muthukrishnan. Substring compression problems. In SODA 05,

pages 321-330, 2005.
G. Cormode and S. Muthukrishnan. The string edit distance matching problem
with moves. ACM Trans. Algor., 3(1):Article 2, 2007.

. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In

FOCS00, pages 390-398, 2000.

R. Grossi, A. Gupta, and J.S. Vitter. High-order entropy-compressed text indexes.
In SODA04, pages 636645, 2004.

G. Jacobson. Space-efficient static trees and graphs. In FOCS’89, pages 549-554,
1989.

R.M. Karp and M.O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249-260, 1987.

N.J. Larsson and A. Moffat. Off-line dictionary-based compression. Proceedings of
the IEEE, 88(11):1722-1732, 2000.

J.I. Munro. Tables. In FSTTCS96, pages 37-42, 1996.

J.I. Munro and V. Raman. Succinct representation of balanced parentheses and
static trees. SIAM Journal on Computing, 31(3):762-776, 2001.

G. Navarro. Indexing text using the ziv-lempel tire. Journal of Discrete Algorithms,
2(1):87-114, 2004.

W. Rytter. Application of lempel-ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci., 302(1-3):211-222, 2003.

K. Sadakane. Compressed text databases with efficient query algorithms based on
the compressed suffix array. In ISAACO00, pages 410-421, 2000.

18.

19.

20.

S.C. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching of
patterns using a labeling paradigm. In FOCS’96, pages 320-328, 1996.

H. Sakamoto. A fully linear-time approximation algorithm for grammar-based
compression. J. Discrete Algorithms, 3(2-4):416-430, 2005.

H. Sakamoto, S. Maruyama, T. Kida, and S. Shimozono. A space-saving approxi-
mation algorithm for grammar-based compression. IEICE Trans. on Information
and Systems, E92-D(2):158-165, 2009.

