九州大学学術情報リポジトリ Kyushu University Institutional Repository

静電駆動型MEMS光スキャナの振動特性の温度依 存性と走査角制御に関する研究

石河, 範明

https://hdl.handle.net/2324/1789430

出版情報:九州大学,2016,博士(工学),課程博士 バージョン: 権利関係:全文ファイル公表済

平成28年度 博士論文

静電駆動型MEMS光スキャナの 振動特性の温度依存性と 走査角制御に関する研究

指導教員 澤田廉士 九州大学大学院 システム生命科学専攻 学籍番号 3SL10074T

石河 範明

Sawada Lal

目次

第1章 序論	1
第2章 本論文で評価した MEMS 光スキャナの設計	11
2.1. 評価デバイスの構造	11
2.2. 評価デバイスの製造プロセス	14
2.3. 評価デバイスの固有振動数の理論計算	16
2.3.1. 評価デバイスの固有振動数	16
2.3.2. 梁のばね定数	17
2.3.3. 反射面の慣性モーメント	
2.4. FEM 解析ソフトによる固有振動数の解析	
第3章 評価デバイスの特性評価	
3.1. 評価デバイスの駆動方法	25
3.2. 評価デバイスの走査角検出	
3.2.1. 光学的な走査角測定方法	
3.2.2. 電気的な走査角測定方法	
3.3. 光学走査角の周波数応答特性の実験結果	46
3.3.1. 実験装置と実験条件	46
3.3.2. 実験結果	
3.4. 評価デバイスの固有振動数とQ値の実験結果	
3.4.1. 一般的な振動体の周波数応答特性	
3.4.2. 評価デバイスの固有振動数とQ値の測定	50
第4章 振動特性の温度依存性の測定	56
4.1. 実験装置	56
4.2. 周波数応答特性の温度依存性の評価結果	58
4.3. 固有振動数とQ値の温度依存性の評価結果	60
第5章 温度依存性の理論検討	63
5.1. シリコンの弾性係数の温度依存性	64

5.2. シリコンの熱膨張
5.3. 固有振動数の温度依存性75
5.4. 空気の粘性
5.4.1. 運動している物体が流体から受ける粘性力
5.4.2. 気体の粘度の温度依存性
5.5. Q 値の温度依存性の計算結果
第6章 周波数応答特性の印加電圧依存性80
6.1. 実験装置と実験条件80
6.2. 直流電圧依存性の実験結果
6.3. 交流電圧依存性の実験結果
第7章 走査角の制御
7.1. 走査角制御回路の原理
7.2. 走查角制御回路
7.3. 走査角制御実験の実験条件
7.4. 走査角制御実験の実験結果96
第8章 結論100
参考文献101
謝辞106

第1章 序論

MEMS (Micro Electro Mechanical Systems) とは、アクチュエータ、センサ、 電子回路などを1つのチップ上に集積化する技術であり、MEMS 技術を適用し た MEMS デバイスは「通信」、「光学」、「バイオ」、「センサ」など様々な分野に 応用されている。MEMS 光スキャナ (図 1-1) は光学分野で使用される MEMS デバイスの1 つであり、回転振動している反射面でレーザーを反射することで レーザーを走査する。従来のガルバノミラー、ポリゴンミラー (図 1-2) と比較 して、高速走査、小型といった特徴があり、機器の小型化、高機能化への貢献 が期待できる。既に、レーザープロジェクタ[1]-[4]、バーコードリーダー[5], [6]、 バイオメディカルイメージング[7]-[9]など様々な機器への適用が検討され、一部 は実用化されている。

図 1-1 MEMS 光スキャナの構造(1 軸型)

MEMS 光スキャナの反射面を駆動する方法として、静電引力で駆動する静電 | 方式[10]-[14]、電磁力で駆動する電磁方式[16]-[20]、圧電素子が変形する力で駆 動する圧電方式[21]-[25]、バイモルフが変形する力で駆動する電熱方式[26]-[31] などが報告されている。静電方式は反射面と微小空隙を介して駆動電極が対向 して配置されており、反射面と駆動電極の間に電位差を与えると、反射面を駆 動電極に引き付ける方向に静電引力が作用する。この静電引力を駆動力として 反射面を駆動する。電磁方式は「反射面にコイルを形成する方式(可動コイル 型)」と「反射面に磁石を形成する方式(可動磁石型)」の2種類の方式がある。 反射面にコイルを形成する方式は、反射面の横に永久磁石を配置し、コイルに 流れる電流と永久磁石の磁場の相互作用により発生するローレンツ力を駆動力 として反射面を駆動する。反射面に磁石を形成する方式は、反射面の横にコイ ルを配置し、反射面の磁石を吸引する、もしくは、反発する電磁力を駆動力と して反射面を駆動する。圧電方式と電熱方式は、圧電素子、バイモルフが反射 面を支持する梁、フレーム部に形成されており、これらが変形することで反射 面を駆動する。駆動方式ごとに長所、短所があり、MEMS 光スキャナを適用す る機器ごとに、適当な駆動方式を選択する必要がある(表 1-1)。静電方式と電

磁方式の MEMS 光スキャナの例として、表 1-2 に Opus Microsystems 社製の静電 駆動型 1 軸 MEMS 光スキャナ「BA0050」(図 1-3)と日本信号株式会社製の電磁 駆動型 1 軸 MEMS 光スキャナ「ECO SCAN: ESS115」の比較を示す。

方式	長所	短所	
静電方式	・小型、高速	・駆動力が小さい	
	・消費電力が少ない	・駆動電圧が高い	
電磁方式	・駆動力が大きい	・外部に磁石が必要である	
(可動コイル)		ため大型化	
		・消費電力が多い	
電磁方式	・駆動力が大きい	・反射面に永久磁石を製膜	
(可動磁石)		することが難しい	
		・消費電力が多い	
圧電方式	 ・高速 	・ヒステリシス	
	・消費電力が少ない	・圧電素子の製膜が難しい	
	・駆動力が大きい		
電熱方式	・低い駆動電圧	・低速	
	・駆動力が大きい	・消費電力が多い	
		・外部温度の影響	

表 1-1 MEMS 光スキャナの駆動方式の特徴

	「BA0050」	「ECO SCAN: ESS115」
メーカー	Opus Microsystems	日本信号株式会社
駆動方式	静電方式	電磁方式
反射面 A	2.5mm×3mm	4.5mm×5.5mm
素子サイズ B	4mm×6.5mm	24mm×20mm
	(チップサイズ)	(磁石とヨークを含めたサイズ)
B/A(面積比)	3.5	19.4
駆動電圧	$45 V_{pp}$	6.72V _{pp}
		(=駆動電流 33.6mApp×抵抗值 200Ω)
固有振動数	500Hz	565Hz
光学走査角	50 度	60度

表 1-2 「BA0050」と「ECO SCAN: ESS115」の比較

図 1-3 Opus Microsystems 社製「BA0050」

図 1-4 日本信号株式会社製「ECO SCAN: ESS115」

本研究室では、共焦点蛍光顕微鏡の原理を応用したプローブ型共焦点内視鏡 を研究しており、プローブ型共焦点内視鏡のレーザーを2次元に走査する機構 に MEMS 光スキャナを適用することで、内視鏡の鉗子チャネル(内径φ3mm 程 度)に挿入可能な大きさに細径化することを目指している。これにより、従来 困難であった疾患部位を細胞レベル(細胞核を観察可能なレベル:分解能 2µm 以下、視野 100µm□以上)で直接診断、処置を同時に行うことで、患者への負 担を大幅に軽減した治療が期待できる。

プローブ型共焦点内視鏡の筐体は外径¢3mmの筒状であり、この中に MEMS 光スキャナを内蔵する必要があるため、MEMS 光スキャナを小型化することが 可能である静電方式の MEMS 光スキャナを選択し、開発を進めている。さらに、 前述した様々な用途への適用拡大を検討している。これらの用途に適用する場 合、レーザーを一定の周波数で一定の幅で走査することが求められる。例えば プローブ型共焦点内視鏡の場合、レーザーを走査する周波数が変動すると、疾 患部位に各点にレーザーを照射するタイミングが設定値からずれるため、疾患 部位を正しく画像化することができなくなる。また、レーザーの走査幅が変動 すると、疾患部位にレーザーを照射する範囲が変化するため、視野の大きさが 変動する。しかしながら、反射面の振動特性はデバイスの温度によって変動す ることが報告されている。

Park と Akedo は aerosol-deposit PZT film によって駆動される SUS304 で作製さ れた MEMS 光スキャナの共振周波数の温度依存性について報告している[32]。 彼らの光スキャナは SUS 板を機械的にパンチングすることによって作製され、 PZT film は反射面を支持するフレーム部に形成されている。温度が高くなると反 射面の共振周波数は低くなり、-20°C で 8.470kHz、80°C で 8.323kHz、変化率は -1.42Hz/°C である。

図 1-5 Akedo らの MEMS 光スキャナ[32]

Zhang らは 2 軸 MEMS 光スキャナの共振周波数の温度依存性について報告し ている[33]。彼らの MEMS 光スキャナはシリコンで作製されており、反射面は 梁を介して駆動部に支持されている。駆動部には圧電素子が接着されており、 駆動部を圧電素子で励振することで反射面がねじれモードおよび曲げモードで 振動する。ねじれモード、曲げモードの共振周波数は温度が高くなると低下し、 ねじれモードと曲げモードの共振周波数は、それぞれ、-20℃ のとき 219Hz と 468Hz、80℃ のとき、215Hz と 460Hz である。また、振動モードの共振周波数 の変化率は、それぞれ、-0.04Hz/℃ および-0.08Hz/℃ である。

図 1-6 Zhang らの MEMS 光スキャナ[21]

彼らの MEMS 光スキャナは共振周波数においてのみ非常に大きく振動するため(図1-8、図1-9)、一定の周波数で駆動したとき、温度によって共振周波数が 変動すると走査角が非常に小さくなるという問題がある。共振周波数以外の周 波数で大きな走査角を得ようとした場合、非常に大きな駆動電圧が必要であり、 実用的ではない。

図 1-8 Akedo らの MEMS 光スキャナの周波数応答特性[32]

図 1-9 Zhang らの MEMS 光スキャナの周波数応答特性[33]

一方、静電方式の MEMS 光スキャナは広い周波数範囲で大きく振動すること が知られている(図 1-10)[15]。これは、静電方式の MEMS 光スキャナのばね 定数が非線形性を示すことによる。反射面は広い周波数範囲で大きく振動する ため、固有振動数が温度によって変化しても、変化量がこの周波数の範囲内で あれば、走査角が大きく変動することはないと考えられる。そのため、反射面 の走査角を検出し、駆動電圧を制御することで、一定の周波数で一定の幅で走 査することが可能である。しかしながら、静電方式の MEMS 光スキャナの振動 特性の温度依存性は詳細に検討されていない。

本論文では、静電方式の MEMS 光スキャナの振動特性の温度依存性を理論と 実験の両側面より検討し、静電方式の MEMS 光スキャナの振動特性の温度依存 性を明らかにした。また、MEMS 光スキャナの反射面の走査角を測定し走査角 を一定に保持する制御回路を作製し、温度によらず走査角を一定に保持するこ とを試みた。

図 1-10 静電方式の MEMS 光スキャナの周波数応答特性[15]

本論文は全8章で構成される。第2章では本論文で振動特性の温度依存性を 評価した静電方式の1軸 MEMS 光スキャナ(以下、評価デバイス)の構造、作 製方法について述べる。第3章では第2章における評価デバイスの設計結果の 妥当性を検証するため、室温20°Cにおける評価デバイスの振動特性(周波数応 答特性、固有振動数およびQ値)を測定した。第4章では評価デバイスの振動 特性が温度によってどのように変動するか、実験的に検討した。第5章では評 価デバイスの振動特性の温度依存性の原因を検討するため、温度と振動特性の 関係を理論的に検討した。第6章では評価デバイスの反射面の走査角を制御す ることを目的として、反射面を駆動するために印加する駆動信号の電圧と周波 数応答特性の関係を測定した。第7章では反射面の走査角を一定に保持するこ とを目的として、反射面の走査角を電気的に検出し、走査角が一定となるよう に駆動信号を制御する制御回路を設計し、その機能を確認した。第8章では本 論文の結論について述べる。

第2章 本論文で評価した MEMS 光スキャナの設計

本章では、本論文で振動特性の温度依存性を評価した評価デバイスの構造、 作製方法を示す。2.1 節では評価デバイスの構造について、2.2 節では評価デバ イスの製造プロセスについて述べる。2.3 節では評価デバイスの固有振動数の理 論計算結果について述べる。2.4 節では固有振動数を FEM (Finite Element Method:有限要素法)解析で計算し、理論計算結果との比較結果について述べ る。

2.1. 評価デバイスの構造

図 2-1 に評価デバイスの平面図を、図 2-2 に図 2-1 の評価デバイスの A-A'面の 断面構造を示す。評価デバイスは SOI (Silicon-on-insulator) ウエハで作製されて いる。SOI 基板はシリコン基板(活性層) とシリコン基板(支持層)の間に酸化 膜(絶縁層)を介して張り合わせた基板であり、活性層に評価デバイスの構造 を作製する。そのため、評価デバイスの各機構の厚さは SOI ウエハの活性層の 厚さで決まる。本研究で使用した SOI ウエハは活性層が 100µm、絶縁層が 1µm、 支持層が 350µm である。

反射面は一対の梁で固定部に支持されている。梁はねじりばねとして作用し、 反射面は梁を回転軸として共振モードで回転振動する。固定電極は、2個の駆動 電極、4個の検出電極、4個の GND 電極で構成されており、これらの電極は反 射面の中心に対して点対称、回転軸に対して線対称に配置されている。これは、 反射面に作用するトルクが均一となるようにするためのレイアウトである。固 定電極は反射面と 10µm の空隙を介して対向して配置されており、固定電極と反 射面の間は、大きなトルクを得るため櫛歯電極が形成されている。

反射面のサイズは 1770µm×1000µm であり、その表面はレーザーの反射率を 上げるためにアルミニウムでコートされている。反射面および固定電極の間の 櫛歯電極のサイズは幅が 10µm、長さが 150µm である。梁はスキャナチップの サイズを小さくするためミアンダ構造(折り返し構造)の梁を採用している。 梁は2回折り返されており、梁の幅は 10µm、中央の梁の長さは 240µm である。

図 2-1 評価デバイスの構造

反射面と固定電極の間の静電容量を C_R 、反射面の傾斜角度を Θ_T 、反射面と固 定電極との間に電位差を ΔE とすると、反射面に作用するトルク N_E は次の式で 与えられる[35]。

$$N_E = \frac{1}{2} \frac{dC_R}{d\theta_T} \Delta E^2 \tag{2-1}$$

 N_E は $dC_R/d\theta_T$ に比例するため、 θ_T に対して C_R の変化が大きいほど大きな N_E を 得ることができる。そのため、評価デバイスでは反射面と固定電極の間に櫛歯 電極構造を適用している。図 2-3 に櫛歯電極と並行平板電極の構造を示す。櫛歯 電極は櫛歯構造の側面も反射面と固定電極が対向するため、平行平板電極より も静電容量が大きい。そのため、より大きなトルクを得ることができる。

図 2-2 評価デバイスの断面構造(図 2-1 の A-A'面)

図 2-3 櫛歯電極と平行平板電極の構造

2.2. 評価デバイスの製造プロセス

図 2-4 に評価デバイスの作製フローを示す。評価デバイスは富士電機株式会社 の製造ラインで作製した。SOI ウエハ(図 2-4(i))の活性層および支持層の表面 に Ti/Au をスパッタし(図 2-4(ii))、活性層にワイヤボンディングをするための 電極を、支持層に裏面電極をパターニングした(図 2-4(iii))。裏面電極は支持層 と評価デバイスを実装するセラミックパッケージを電気的に導通するための電 極である。反射面の Al 膜はリフトオフプロセスで形成した。SOI 基板の表面に レジストを塗布した後(図 2-4(iv))、Al 反射面を製膜する部分をパターニングし た(図 2-4(v))。レジスト上に Al を蒸着した後(図 2-4(vi))、レジストを除去す ることで反射面に Al 反射面を形成した(図 2-4(vi))、レジストを除去す し(図 2-4(viii)および(ix))、ミラーの裏面の絶縁層を除去することでミラー面を リリースした(図 2-4(x))。株式会社メムス・コアでステルスダイシングによっ てチップ化し、最後に、富士電機株式会社においてセラミックパッケージ(京 セラ株式会社製)にチップをダイボンディングした。

図 2-5 に評価デバイスの SEM (Scanning Electron Microscope: 走査型電子顕微 鏡)画像を示す。所望の構造が作製されていることを確認した。

図 2-4 評価デバイスの製造フロー

2.3. 評価デバイスの固有振動数の理論計算

2.3.1. 評価デバイスの固有振動数

図 2-6 に評価デバイスの振動の説明図を示す。反射面が初期位置から角度 θr 傾斜すると、それぞれの梁より初期位置に戻す方向に復元力 Ns を受ける。評価 デバイスの反射面の慣性モーメントを IM、片側の梁のばね定数を kr、時間を t とすると、評価デバイスの運動方程式は、

$$I_M \frac{d^2 \theta_T}{dt^2} + 2k_T \theta_T = 0$$
(2-2)

と表すことができる。(2-2)式を解くと、評価デバイスの固有振動数fNを得る。

$$f_N = \frac{1}{2\pi} \sqrt{\frac{2k_T}{I_M}}$$
(2-3)

評価デバイスの k_Tと I_Mの理論計算結果はそれぞれ 3.21×10⁻⁶Nm、4.52×10⁻¹⁴m⁴であり、f_Nは 1898.2Hz となる。k_Tと I_Mに関しては 2.3.2 項および 2.3.3 項にて述べる。

図 2-6 評価デバイスの振動

2.3.2. 梁のばね定数

図 2-7 に直線形状の梁の説明図を示す。長さ L、幅 b、厚さ h の直方体形状の 梁の一端を固定し、反対側の一端にトルク N を加えたとき、N と梁のねじれ角 の関係は次の式で与えられる。

$$N = k\theta \tag{2-4}$$

ただし、kはばね定数であり、剛性率(横弾性係数)をG、ねじり定数をJとすると、

$$k = \frac{GJ}{L} \tag{2-5}$$

という関係にある。Jはねじりばねの断面形状に依存する定数であり、等方性材料のねじり定数 Jiso は次の式で与えられる。

$$J_{iso} = \frac{b^3 h}{3} \left[1 - \frac{192b}{\pi^5 h} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \tanh \frac{(2n-1)\pi h}{2b} \right]$$
(2-6)

等方性材料であるため、bとhを入れ替えても Jiso は同じ値となる。

図 2-7 直線形状のねじりばね

一方、単結晶シリコンのような異方性材料のねじり定数 Janiso は、

$$\beta \equiv \sqrt{\frac{G_{xz}}{G_{xy}}}$$
(2-7)

$$G \equiv G_{xz} \tag{2-8}$$

と定義すると、

$$J_{aniso} \cong \begin{cases} \frac{h^3 b}{3} \left(1 - \frac{192}{\pi^5} \frac{h}{\beta b} \tanh \frac{\pi \beta b}{2h} \right) & \left(\frac{\beta b}{h} \ge 1 \right) \\ \frac{h^3 b}{3} \left(\frac{\beta b}{h} \right)^2 \left(1 - \frac{192}{\pi^5} \frac{\beta b}{h} \tanh \frac{\pi h}{2\beta b} \right) & \left(\frac{\beta b}{h} < 1 \right) \end{cases}$$

(2-9)

と近似することができる[34]。 G_{xz} と G_{xy} が異なるとき、bとhを入れ替えると J_{aniso} は異なる値となる。

2.1節で述べたように、評価デバイスの梁は直線形状の梁ではなくミアンダ形状の梁を採用している。図 2-8 にミアンダ形状のねじり梁の説明図を示す。ミアンダ形状の梁は、折り返し構造の角部分を無視するとねじり変形する部分と曲 げ変形する部分で構成される。曲げ変形する部分のばね定数はねじり変形する 部分のばね定数よりも十分大きいため、曲げ変形する部分は無視することができる。ねじり変形する梁が直列に接続されていると考えることができるため、 ミアンダ形状の梁の場合、(2-5)式のLはねじれ変形する部分の長さの合計 LMで 近似することができる。図 2-8 のミアンダ形状の梁の場合、

$$L_{M} = L_{1} + L_{2} + L_{3} \tag{2-10}$$

である。表 2-1 に評価デバイスの梁のばね定数のパラメータを示す。このパラメータを用いて評価デバイスのばね定数 *kr*を求めると 3.21×10⁻⁶Nm を得る。

図 2-8 ミアンダ形状の梁

パラメータ	記号	設計値	
幅	В	10µm	
長さ	L	760µm	
		(260µm+240µm+260µm)	
厚さ	Н	100µm	
剛性率	G_{xz}	79.6GPa	
	G_{xy}	50.9GPa	

表 2-1 評価デバイスのばね定数の理論計算で用いたパラメータ

2.3.3. 反射面の慣性モーメント

図 2-9(i)に反射面の説明図を示す。w_Mは反射面の幅、l_Mは反射面の長さ、m_c は櫛歯電極の幅、n_cを櫛歯電極の長さ、N_cは櫛歯電極の本数、g_Aは櫛歯電極の 間の空隙の幅である。なお、N_cは、

$$N_{C} = \frac{l_{M} - m_{C}}{2(m_{C} + g_{A})} + 1$$
(2-11)

という関係にある。反射面は直方体の集合と考えることができるため、反射面 を図 2-9(ii)のように変形する。図 2-9(i)と図 2-9(ii)の慣性モーメントは等しく、 反射面の慣性モーメント *I_M*は図 2-9(ii)の 2 個の直方体(直方体(A)と直方体(B)) の慣性モーメント *I_R*と *I_S*の和で表すことができる。

$$I_M = I_R + I_S \tag{2-12}$$

直方体の慣性モーメントは図 2-10 のように表されるため、IRと Isは、

$$I_{R} = \frac{1}{12} \left\{ \left(w_{M} + 2n_{S} \right)^{2} + h_{M}^{2} \right\} M_{R}$$
(2-13)

$$I_{S} = \frac{1}{12} \left\{ w_{M}^{2} + h_{M}^{2} \right\} M_{S}$$
(2-14)

と表される。シリコンの密度を*psil* とすると、直方体(A)と直方体(B)の質量 *M_R* と *Ms* は、

$$M_{R} = \{N_{C}m_{C}(w_{M} + 2n_{C})h_{M}\}\rho_{sil}$$
(2-15)

$$M_{S} = \{ (l_{M} - N_{C}m_{C})w_{M}h_{M} \} \rho_{sil}$$
(2-16)

である。 表 2-2 に評価デバイスの反射面の設計パラメータを示す。 このパラメー タを用いて評価デバイスの反射面の慣性モーメント I_M を求めると $4.52 \times 10^{-14} \text{m}^4$ を得る。

図 2-9 反射面の説明図

図 2-10 直方体の慣性モーメント

	÷		
パラメータ		記号	設計値
反射面	反射面の幅	WM	1000µm
	反射面の長さ	l_M	1770µm
	反射面の厚さ	h_M	100µm
	櫛歯電極の幅	m_C	10µm
	櫛歯電極の長さ	nc	150µm
	櫛歯電極の本数	N_C	45 本
密度		$ ho_{sil}$	2330kg/m ³
ギャップ		<i>g</i> _A	10µm

表 2-2 評価デバイスの慣性モーメントの理論計算で用いたパラメータ

2.4. FEM 解析ソフトによる固有振動数の解析

本節では MEMS 用統合解析ソフト「CoventorWareTM 2010」(FEM 解析ソフト) で評価デバイスの固有振動数を計算した。図 2-11 にメッシュ分割後の評価デバ イスの 3D 解析モデルを示す。変形が小さい反射面はメッシュを粗く、変形が大 きい梁はメッシュを細かく分割した。

図 2-12 に CoventorWare による固有振動数の計算結果を示す。固有振動数は4 次の振動モードまで計算し、回転モードの固有振動数は2022.8Hz であった。固 有振動数の理論計算結果は1898.2Hz であり、理論計算結果と CoventorWare によ る計算結果は概ね一致した。

図 2-11 評価デバイスの解析モデル(メッシュ分割後)

(i) 1次モード (2022.8Hz)

(ii) 2次モード (5860.9Hz)

(iii) 3次モード(9969.6Hz)

(iv) 4次モード (22026.4Hz)

第3章 評価デバイスの特性評価

第2章において評価デバイスの構造と固有振動数の理論計算結果および FEM 解析結果について述べ、それぞれ 1898.2Hz、2022.8Hz であった。本章では、第 2章の計算結果の妥当性を検証するため、室温 20℃ における評価デバイスの光 学走査角の周波数応答特性、固有振動数および Q 値を測定した。3.1節では評価 デバイスの駆動方法について、3.2節では走査角の測定方法について述べる。3.3 節では評価デバイスの光学走査角の周波数応答特性の測定結果について述べる。 3.4節では固有振動数と Q 値の測定結果を示し、第2章における理論計算結果と 比較結果について述べる。

3.1. 評価デバイスの駆動方法

図 3-1 に評価デバイスの駆動・振動検出回路を示す。反射面に直流電圧 V_{DC}、 駆動電極に交流電圧 V_{AC}を印加し、反射面と検出電極との間の静電容量 C_{Det}をチ ャージアンプで測定することで反射面の走査角を検知する。駆動電極と検出電 極の間の容量結合を低減するために駆動電極と検出電極の間に GND 電極を配置 されている。しかし、容量結合を完全にゼロにすることはできないため、駆動 電極と検出電極は寄生容量 C_Pによって容量結合される。

図 3-2 に G_F と反射面に作用するトルク N_E の関係を示す。反射面を最も効率よ く駆動するためには、反射面が駆動電極に近づくときに N_E が強く、反射面が固 定電極から離れるときは N_E が作用するようにする。反射面が 1 周期振動する間 に、反射面が固定電極に近づくタイミングは 2 回あるため、 N_E の周波数、すな わち、 V_{AC} の周波数(以下、駆動周波数)は反射面が振動する周波数(以下、振 動周波数)の 2 倍の周波数に設定すると、反射面を最も効率よく駆動すること ができる[36]。

25

図 3-1 評価デバイスの駆動・振動検出回路

図 3-2 反射面の傾斜角度とトルクの関係

*N_E*による周期的な駆動力のほかに、反射面と検出電極、反射面と GND 電極の 間にも *V_{DC}* が印加されるため、直流的なトルクが発生する。これらのトルクに は *θ* に比例するばねとして作用するトルクを含む(以下、ばねとして作用する トルクを静電ばねと称す)。図 3-3 に反射面に作用する静電ばねの説明図を示す。 *θ* が 0 度のとき静電ばねは最も大きく、*θ* が大きくなるほど反射面と固定電極 の間の距離が離れるため静電ばねは小さくなる。*θ* が大きくなるほど静電ばね のばね定数が小さくなるため、これをソフトスプリング効果と呼ぶ。反射面に はこの静電ばねによる復元力と梁による機械的な復元力を合計した復元力が作 用する。なお、梁のばね定数は*θ*によらずほぼ一定である。

図 3-4 に一般的な静電駆動型 MEMS 光スキャナの周波数応答特性の説明図を 示す。静電ばねのソフトスプリング効果による非線形性のため、駆動信号の周 波数を掃引する方向によって異なる周波数応答特性を示す[15]。周波数を上げる 方向に掃引した場合、周波数 fi で振動を開始し、周波数を上げるに従い徐々に 走査角が小さくなる。一方、周波数を下げる方向に掃引した場合、走査角は徐々 に大きくなり、fiよりも低い周波数fcで最大値となる。そして、周波数をfcより も小さくすると振動は停止する。このように、静電駆動型 MEMS 光スキャナは 駆動信号の周波数を掃引する方向によって異なる周波数応答特性を示す。また、 広い周波数範囲 WR で大きく振動する。静電ばねが強く作用するほど、この非線 形性の影響が大きくなる。

図 3-3 反射面に作用する静電ばね

図 3-4 静電駆動型 MEMS 光スキャナの周波数応答特性

3.2. 評価デバイスの走査角検出

本研究では、実験内容により、次の2種類の方法で走査角を測定した。

(1) 評価デバイスによって走査されたレーザーを光学的に直接測定

(2) 評価デバイスの反射面の走査角をチャージアンプで電気的に測定3.2.1 項において(1)の測定方法を、3.2.2 項において(2)の測定方法を説明する。

3.2.1. 光学的な走査角測定方法

図 3-5 に光学的な走査角測定方法の説明図を示す。レーザーダイオードより出 射されたレーザー光を評価デバイスで 1 次元に走査する。評価デバイスの反射 面から距離 *d_{ms}*における走査幅を *w_{sc}*とすると、評価デバイスによるレーザーの 走査角(全角) *θ_{op}*は、

$$\theta_{op} = 2\tan^{-1}\frac{w_{sc}}{2d_{ms}} \tag{3-1}$$

と表すことができる。なお、評価デバイスの反射面の機械的な走査角(全角) $\theta_{mech} \ge \theta_{op}$ は、

$$\theta_{op} = 2\theta_{mech} \tag{3-2}$$

という関係にある。本論文では、wscを目視、もしくは、PSDで測定した。

図 3-5、図 3-6 に目視による測定方法の説明図を示す。評価デバイスによって 走査されたレーザーをスクリーン(方眼紙)に投影し、wsc を目視で測定した(図 3-7)。走査されたレーザーの中央部が強く光っているが、これは wsc を正確に測 定するため、スクリーン上でレーザーの焦点を結ぶようにレンズを調整したた めである(図 3-8)。スキャナチップ上において、反射面の大きさよりもレーザ ーのスポットサイズが大きくなるため、反射面以外の固定部で反射されたレー ザーが走査されたレーザーの中央部に常に照射される。

図 3-5 光学的な走査角測定方法

レーザーダイオード

図 3-6 目視によるレーザーの走査幅の測定(スクリーンに投影)

図 3-7 スクリーン上に走査されたレーザー光

PSD (Position Sensitive Detector:光位置センサ)はフォトダイオードの表面抵 抗を利用した位置センサであり、PSD の受光面に入射したレーザー光線の重心 を電圧値として出力する。レーザー光線の強度分布はガウシアン分布であるた め、レーザー光線の中心位置が重心と考えることができる。ただし、外乱光が 入射すると外乱光も含めた重心の位置が出力されるため、レーザー光の中心位 置と出力電圧がずれる。そのため、外乱光を十分遮断する必要がある。また、 PSD で測定する場合は、反射面の表面でレーザーの焦点を結ぶようにレーザー ダイオードのコリメータレンズの位置を調整した(図 3-10)。これは、反射面以 外で反射した光が外乱光となるため、これを防ぐためである。本論文では浜松 ホトニクス製 2 次元 PSD (C7339)を利用した。図 3-9 に C7339 の外観を示す。 PSD のセンササイズは 10mm×10mm である。

図 3-9 PSD (C7339)の外観

図 3-10 レーザー光の焦点の位置(PSD で測定)
3.2.2. 電気的な走査角測定方法

3.2.2.1. 反射面の傾斜角度と検出電極の静電容量の関係

評価デバイスの反射面と検出電極の間の静電容量を測定することで、間接的 にレーザーの走査幅を測定する。図 3-11 に反射面の傾斜角度 θ_{f} と反射面と検出 電極の間の静電容量 C_{Det} の関係を示す。反射面が $+\theta_{I}$ 傾斜した場合と $-\theta_{I}$ 傾斜し た場合で C_{Det} は等しいため、 θ_{f} と C_{Det} の関係をプロットすると縦軸($\theta_{f}=0$) に 対して対称なグラフとなる。図 3-11 に示すように、反射面の振動周波数に対し て C_{Det} は 2 倍の周波数で変化する。また、 θ_{f} と C_{Det} の関係は $\theta_{f}=0$ 付近では線形 ではないため、 C_{Det} の変化は歪んだ波形となる。

図 3-11 「反射面の傾斜角度」と「反射面と検出電極の間の静電容量」の関係

3.2.2.2. チャージアンプによる静電容量測定方法

図 3-1 (26 頁)の評価デバイスの駆動・検出回路の振動検出回路部を等価回路 で表すと、図 3-12 のように表すことができる。なお、反射面、梁はシリコンで 作製されているため抵抗値を持つが、その抵抗値は十分小さくチャージアンプ の出力電圧 V_{ch}に影響を与えないため無視する。チャージアンプはオペアンプ、 帰還抵抗 R_fおよび帰還容量 C_fで構成される。実際のオペアンプでは入力端子に バイアス電流が流れ込み、信号が入力されていなくても出力電圧が生じるため C_fが飽和する。R_fはバイアス電流を放電し、C_fの飽和を防ぐための抵抗である。 C_{Det}が測定対象の静電容量であり、直流電圧 V_{DC}が印加されている。C_{Det}とチャ ージアンプの出力電圧 V_{ch}の関係は、

$$V_{ch}\left(\frac{1}{R_f} + j\omega C_f\right) = -j\omega C_{Det}V_{DC}$$
(3-3)

と表される。ただし、jは虚数単位、 ω は周波数である。 C_{Det} が変動するため、 C_{Det} を入力、 V_{ch} を出力として伝達関数 $G(j\omega)$ を求めると、

$$G(j\omega) = \frac{V_{ch}}{C_{Det}}$$

$$= \frac{\omega R_f}{1 - (\omega C_f R_f)^2} \left(-\omega C_f R_f V_{DC} - j V_{DC}\right)$$
(3-4)

を得る。図 **3-12** に $G(j\omega)$ のボーデ線図を示す。反射面が振動していないとき、 すなわち、 C_{Det} が一定値である場合、 V_{ch} は 0V となる。反射面の振動周波数が十 分高い(C_{Det} の周波数が十分高い)とき、 $G(j\omega)$ の利得|G|はほぼ一定となり、

$$\left|G\right| \cong \frac{\left|V_{DC}\right|}{C_{f}} \tag{3-5}$$

と近似することができる。位相は Vocの極性によって異なり、Vocが正電圧であるとき位相は逆位相、負電圧であるとき位相は同位相となる。3.2.2.1 項で述べたように、反射面の振動周波数に対して Coet は 2 倍の周波数であるため、Vch も反射面の振動周波数の 2 倍の周波数となる。

図 3-12 チャージアンプによる静電容量検出回路

図 3-13 G(jw)のボーデ線図: R_f=2GΩ、C_f=2pF

3.2.2.3. チャージアンプによる静電容量測定方法の課題と対策

3.1 節で述べたように、GND 電極によって駆動電極と検出電極の容量結合を低減しているが、容量結合を完全にゼロにすることは出来ない。そのため、駆動電極と検出電極の寄生容量 *C_P*を介して、交流電圧 *V_{AC}がチャージアンプの出力 V_{ch}*に出力される。図 3-12 に *C_P*を介した駆動信号の混信の等価回路を示す。*V_{AC}* と *V_{ch}*の関係は、

$$V_{ch}\left(\frac{1}{R_f} + j\omega C_f\right) = -j\omega C_P V_{AC}$$
(3-6)

と表される。 V_{AC} が変動するため、(3-6)式の V_{AC} を入力、 V_{ch} を出力として伝達関数 $H(j\omega)$ を求めると、

$$H(j\omega) \equiv \frac{V_{ch}}{V_{AC}}$$

$$= \frac{\omega C_P R_f}{1 + (\omega C_f R_f)^2} \left(-\omega C_f R_f - j\right)$$
(3-7)

を得る。周波数が十分高いとき、利得|H(j ω)|は、

$$\left|H(j\omega)\right| \cong -\frac{C_P}{C_f} \tag{3-8}$$

で表される。図 3-15 に H(jω)のボーデ線図を示す。駆動信号と位相が反転した 信号が出力される(以下、この信号を駆動信号の混信と称す)。そのため、反射 面の走査角を正確に測定するためにはこの駆動信号の混信を除去する必要があ る。

図 3-14 駆動電圧の混信の等価回路

図 **3-15** *H*(*j*ω)のボーデ線図: *R_f*=2GΩ、*C_f*=2pF、*C_P*=0.5pF

図 3-16 に駆動信号の混信を除去する原理を、図 3-17 に混信除去回路を示す。 V_{ch} は反射面の振動 (C_{Det} の変化) による信号(A)と C_P を介した駆動信号の混信 信号(B)を加算した信号となる。混信信号(B)を除去するために、反転増幅回路で 交流電圧 V_{Ac} の位相を反転し、コンデンサ C_Q を介してチャージアンプに出力さ せる (信号(C))。混信信号(B)と除去信号(C)の位相は逆位相であるため、混信信 号(B)と相殺され、混信信号(B)は除去される。ただし、混信信号(B)と除去信号(C) の位相は完全に一致しないため、完全に混信の影響を除去することはできない。

図 3-16 駆動信号の混信除去の原理

図 3-17 駆動信号の混信除去回路

図 3-18 に矩形波信号を印加したときの混信除去回路の出力信号の測定結果を示す。矩形波信号 20V_{pp}に対して混信信号は 3.24V_{pp}が出力されている。一方、 混信除去回路の出力信号は矩形波信号の立ち上がりと立ち下がりにおけるひげ 状のノイズを無視すると 0.110 V_{pp}であり、約 29 分の 1 に低減した。図 3-19 に 正弦波信号を印加したときの混信除去回路の出力信号の測定結果を示す。正弦 波信号 20V_{pp}に対して混信信号は 3.38V_{pp}であり、矩形波信号の場合と同程度の 混信レベルである。混信除去回路の出力信号は 0.242V_{pp}であり、約 14 分の 1 に 低減した。矩形波信号の場合と比較して混信信号の低減率は低いが、ひげ状の ノイズが発生しない利点がある。

図 3-18 駆動信号の混信信号(矩形波電圧)

図 3-19 混信除去回路の混信信号(駆動信号:正弦波)

図 3-20 に正弦波信号を印加して反射面を駆動したときの光学走査角と混信除 去回路の出力信号の関係の実験結果を示す。なお、正弦波信号の電圧は 20V_{pp}、 V_{DC} は -30V に設定した。

光学走査角が 2 度以下である場合、混信信号が大きく混信除去回路の出力信 号は概ね一定値となっているが、光学走査角が 2 度以上では光学走査角に応じ て混信除去回路の出力電圧が大きくなっており、混信除去回路の出力信号より 光学走査角を測定することが可能である。図 3-21 に図 3-20 の A 点(光学走査角 7.3 度)における矩形波信号と混信除去回路の出力信号の波形を示す。混信除去 回路の出力信号は歪んだ正弦波であり、3.4.2.1 項で述べた理論と一致するこ戸 を確認した

図 3-20 光学走査角と混信除去回路の出力電圧の関係: V_{DC} = −30V, V_{AC} = 20V_{pp}(正弦波)

図 3-21 混信除去回路の出力信号(図 3-20 の A 点)

3.3. 光学走査角の周波数応答特性の実験結果

3.3.1. 実験装置と実験条件

以下に実験装置と実験条件を示す。

·光学系:

図 3-5 (29 頁) で示した光学的で光学走査角を測定した。レーザーの走査 幅 wsc は目視で測定し、評価デバイスからスクリーンまでの距離 dms は 175mm とした。

·温度条件:

20°C(室温)

· 電圧条件:

図 3-1 (26 頁) で示したように電圧を印加し、反射面に印加する直流信号 *V_{DC}*は-20V、駆動電極に印加する交流信号*V_{AC}*は 20*V_{pp}*の矩形波とした。

3.3.2. 実験結果

図 3-22 に光学走査角の周波数応答特性の測定結果を示す。なお、図 3-22 に横軸は反射面の振動周波数であり、V_{AC}の周波数はこの 2 倍の周波数である(3.1 節)。

- ・ 駆動周波数を上げる方向に掃引した場合(図 3-22 の「up sweep」)、1989.5Hz
 で振動を開始し、2005Hz で振動は停止した。
- ・ 駆動周波数を下げる方向に掃引した場合(図 3-22 の「down sweep」)、光
 学走査角は徐々に大きくなり、1981.5Hz で最大値 12.7 度となった。さらに
 振動周波数を下げると振動は停止した。

以上のように、評価デバイスの光学走査角の周波数応答特性は駆動周波数の掃 引方向によって異なり、従来報告されている静電駆動型 MEMS 光スキャナの周 波数応答特性(図 3-4)と同様の特性を示すことを確認した。

図 3-22 周波数応答特性の測定結果(室温)

3.4. 評価デバイスの固有振動数とQ値の実験結果

評価デバイスの光学走査角の周波数応答特性は、ばね定数が一定である一般 的な振動体の周波数応答特性と異なるため、周波数応答特性から固有振動数とQ 値を求めることが難しい。本論文では、反射面の減衰振動を測定し、その波形 から固有振動数およびQ値を求めた。3.4.1項で一般的な振動隊の周波数応答特 性とQ値について、3.4.2項で評価デバイスの固有振動数とQ値の測定方法につ いて述べる。

3.4.1. 一般的な振動体の周波数応答特性

図 3-23 に運動方程式が、

$$I\frac{d^{2}\theta}{dt^{2}} + c\frac{d\theta}{dt} + k\theta = N_{m}\cos\omega t$$
(3-9)

と表される「ばねーマスーダンパー系」の回転振動体の周波数応答特性を示す。 ただし、Iは慣性モーメント、cは粘性係数、kはばね定数、 θ は角度、tは時間、 N_m はトルク、 ω は角速度である。共振周波数 f_R で大きく振動し、固有振動数 f_N と f_R は次の関係にある。

$$f_R = f_N \sqrt{1 - \frac{1}{2Q_N^2}}$$
(3-10)

Q 値 Q_N が概ね 10 以上であれば、 $f_R \ge f_N$ はほぼ一致する。また、振動のエネル ギーが $\frac{1}{2}$ (振動のエネルギーは角度の 2 乗に比例するため、角度で表すと $\frac{1}{\sqrt{2}}$) となる周波数を fi、f2 とすると、Qは

$$Q = \frac{f_R}{f_2 - f_1}$$
(3-11)

と表される。以上のように、一般的な振動系の場合、周波数応答特性より f_N と Qを求めることができる。

図 3-23 ばね定数が一定である「ばねーマスーダンパー系」の周波数応答特性

3.4.2. 評価デバイスの固有振動数とQ値の測定

3.4.2.1. 評価デバイスの固有振動数とQ値の測定方法

図 3-24 に減衰自由振動による固有振動数とQ値の測定方法の説明図を示す。 まず、評価デバイスの反射面に直流電圧V_{DC}、駆動電極に交流信号V_{AC}を印加す ることで反射面を強制振動させる。次に、反射面と固定電極の電位をGNDにス イッチすると、反射面は駆動力を失うため減衰自由振動を始める。反射面と固 定電極の電位は全てGNDであり、反射面と固定電極の間に静電引力は作用しな いためばね定数は一定であり、一般的な振動体の減衰振動と同じ式で表すこと ができる。反射面の慣性モーメントをI_M、反射面が受ける減衰力の減衰係数を c_M、片側の梁のばね定数をk_T、反射面の傾斜角度をθ_r、tを時間とすると、反射 面の減衰振動の運動方程式は、

$$I_M \frac{d^2 \theta_T}{dt^2} + c_M \frac{d \theta_T}{dt} + 2k_T \theta_T = 0$$
(3-12)

と表される。(3-12)式を解く、と、

$$\theta_{opt} = A_0 e^{-\omega_N \zeta t} \sin\left(\omega_N \sqrt{1 - \zeta^2} t + \phi\right)$$
(3-13)

を得る。ただし、Aoは減衰振動の初期値、*o*vは固有振動数、*o*は位相差、*G*は減 衰係数であり、

$$\omega_N = \sqrt{\frac{2k_T}{I_M}} \tag{3-14}$$

$$\zeta = \frac{c_M}{2\sqrt{2I_M k_T}} \tag{3-15}$$

$$0 < \zeta < 1 \tag{3-16}$$

という関係にある。また、反射面のQ値 Q_M と ζ の関係は、

$$Q_M = \frac{1}{2\zeta} \tag{3-17}$$

であるため、(3-17)式に(3-15)式を代入すると、

$$Q_M = \frac{\sqrt{2I_M k_T}}{c_M} \tag{3-18}$$

を得る。以上のように、反射面の減衰振動は ω_N および Q_M の関数であり、減衰振動の波形を解析することで ω_N および Q_M を求めることができる。

図 3-24 反射面の減衰自由振動

3.4.2.2. 評価デバイスの減衰振動の測定とデータ解析

以下に実験装置と実験条件を示す。

•光学系:

図 3-5 (29 頁) で示した光学的で光学走査角を適用した。レーザーの走査 幅 w_{sc}は PSD で測定し、評価デバイスから PSD までの距離 d_{ms}は 40mm とした。

·温度条件:

20°C(室温)

• 電圧条件:

図 3-25 に減衰振動を測定するための回路を示す。反射面および駆動電極 に印加する電圧の切り替えは、2 極双投型スイッチを用いた。なお、チャ ージアンプが接続されている検出電極の電位も GND であるため、2 極双 投型スイッチを切り替えると反射面と全ての固定電極の電位が GND とな り、反射面は駆動力を失い、減衰振動を始める。反射面に印加する直流 信号 V_{DC}は-20V、駆動電極に印加する交流信号 V_{AC}は 20V_{PP}の矩形波とし た。

図 3-25 実験回路(減衰振動の測定)

図 3-26 に評価デバイスの減衰振動の波形の測定結果を示す。減衰振動の波形は Excel2010 のソルバー機能を用いて実験結果を(3-13)式に最小2 乗法でフィッティングした。以下、解析手順を示す。

- ① PSD で取得した減衰振動の波形(図 3-26)から、光学走査幅 wms が初期値の 25%から 75%の間のデータを抽出する。これは、スイッチを切り替えた瞬間は振動が不安定になり、また、光学走査角が 0 度付近ではノイズの影響を受けるため、その影響を除くためである。
- ② wmsを(2-14)式と(2-15)式より光学走査角のpに変換する。
- ③ Excel2010 のソルバー機能を用いて、最小2 乗法で実験結果を(3-13)式に フィッティングする。

図 3-26 評価デバイスの減衰自由振動の測定結果

図 3-27 に減衰振動のフィッティング結果を示す。R²値を比較すると、ソルバー 実行前は 0.20、ソルバー実行後は 0.999 であり、減衰振動の測定結果を(3-13)式 にフィッティングできていると考えられる。固有振動数は 1971.5Hz、Q 値は 222.1 であった。第2章で述べた理論的に解析した固有振動数の計算結果は 1898.2Hz、 FEM 解析ソフトによる計算結果は 2022.8Hz であり、上記測定結果と概ね一致し ている。そのため第2章における理論検討結果は妥当な結果であると考えられ る。

図 3-27 減衰振動のフィッティング結果

第4章 振動特性の温度依存性の測定

第3章において、室温(20℃)における評価デバイスの振動特性の測定結果 について述べた。評価デバイスを実際に使用する環境では、周囲環境の温度変 化に応じて評価デバイスの温度も変動するため、評価デバイスの振動特性が変 化する。本章では、振動特性の温度依存性を実験的に検討した。4.1節では実験 装置について述べる。4.2節では周波数応答特性の温度依存性の実験結果につい て、4.3節では固有振動数とQ値の温度依存性の実験結果について述べる。

4.1. 実験装置

以下に実験装置と実験条件を示す。

•光学系:

周波数応答特性は 3.3 節と、固有振動数と Q 値の測定は 3.4 節と同様の光 学系で測定した。

- ·温度条件:
 - ・設定温度:20℃、30℃、40℃、50℃、60℃、70℃、80℃
 - ・評価デバイスの温度の制御方法は後述する。

• 電圧条件:

周波数応答特性は 3.3 節と、固有振動数と Q 値の測定は 3.4 節と同様の電 圧条件で測定した。

評価デバイスの温度は、評価デバイスを実装したセラミックパッケージの裏 面に接着したニクロム線ヒーター(図 4-1)で昇温し、温度はセラミックパッケ ージの表面に接着した熱電対で測定した(図 4-2)。セラミックパッケージ内で 温度分布が発生すると考えられるが、セラミックパッケージ全体が均一な温度 に制御されていると仮定した。また、本論文では評価デバイスの振動特性の温 度依存性のみ評価するため、評価デバイスを実装したセラミックパッケージ以 外の機器(電源、評価回路、PSD など)は室温で実験した。

図4-1 ニクロム線ヒーター

(i) 表面

(ii) 裏面

図 4-2 ニクロム線ヒーターと熱電対を接着したセラミックパッケージ

4.2. 周波数応答特性の温度依存性の評価結果

図 4-3 に周波数応答特性の温度依存性の実験結果を示す。

- ・ 温度が 20℃ から 80℃ に上がったとき、周波数応答特性は低周波数側に
 3.9Hz シフトした。
- ・ 光学走査角の最大値に着目すると、温度が高くなると最大値は小さくなり、20℃のとき 12.9 度、80℃のとき 10.6 度であった。
- ・ 温度が 20℃ から 80℃ に上がったとき、走査角が最大値となる周波数 f2
 は低周波数側に 1.75Hz シフトした。
- 一定の周波数で駆動したとき、温度が高くなると走査角は小さくなった。
 例えば、1985Hz で駆動したとき、光学走査角は 20℃ のとき 10.3 度、80℃
 のとき 7.7 度となった。

以上のように、温度が高くなると周波数応答特性が低周波数側にシフトした。 ただし、反射面が大きく振動する周波数の範囲よりも周波数応答特性のシフト 量のほうが小さく、温度が変動しても反射面が大きく振動する周波数の範囲は 重なることが判明した。そのため、周波数応答特性が重なっている周波数範囲 であれば、評価デバイスに印加する電圧を制御することで、光学走査角を制御 することが可能であると考えられる。また、周波数応答特性全体のシフト量 3.9Hz に対して、f2のシフト量は1.75Hz であった。これは、最大値が小さくなる ことでf2が高周波数側にシフトしたことが原因であると考えられる。

図 4-3 周波数応答特性の温度依存性の測定結果

4.3. 固有振動数とQ値の温度依存性の評価結果

図 4-4 に固有振動数の温度依存性の測定結果を、図 4-5 に Q 値の温度依存性の 測定結果を示す。

- ・ 温度が高くなると固有振動数とQ値は概ね線形に低下した。
- ・ 固有振動数は 20℃ のとき 1971.6Hz、80℃ のとき 1968.7Hz であり、4.3Hz 低くなった。変化率は-0.050Hz/℃ である。
- ・ Q値は 20℃ のとき 224、80℃ のとき 198 であり、26 低くなった。変化率 は-0.43℃⁻¹である。

以上のように、温度が高くなると固有振動数と Q 値は概ね線形に低下するという結果を得た。4.2 節において温度が 20℃ から 80 ℃ に高くなると、周波数応答特性は低周波数側に 3.9Hz シフトすることを述べた。固有振動数の変化量と周波数応答特性のシフト値は概ね一致しており、周波数応答特性が低周波数側にシフトした原因は、固有振動数が低くなったことが原因であると考えられる。また、光学走査角の最大値は 12.9 度から 10.6 度に 2.3 度小さくなることを述べた。 図 4-6 に Q 値と光学走査角の最大値の関係を示す。概ね線形に変化しており、温度が高くなることで Q 値が低くなったことため、光学走査角の最大値が小さくなったと考えられる。

図 4-4 固有振動数の温度依存性の測定結果

図 4-5 Q 値の温度依存性の測定結果

図4-6 Q値と光学走査角の最大値の関係

第5章 温度依存性の理論検討

第4章において評価デバイスの固有振動数 f_N および Q 値 Q_M の温度依存性を 測定し、温度が高くなると f_N および Q_M は小さくなるという結果を得た。本章で は、 f_N および Q_M の温度依存性を理論的に計算し、 f_N および Q_M が温度によって 変動した原因を検討した。

2.3.1 項および 3.4.2 項で述べたように、fNと QM は次の式で表される。

$$f_N(k_T, I_M) = \frac{1}{2\pi} \sqrt{\frac{2k_T}{I_M}}$$
(5-1)

$$Q_M(k_T, I_M, c_M) = \frac{\sqrt{2I_M k_T}}{c_M}$$
(5-2)

 f_N は梁のばね定数 k_T および反射面の慣性モーメント I_M の関数、 Q_M は k_T 、 I_M および反射面が受ける減衰係数 c_M の関数であり、これらのパラメータが温度によって変動したことで、 f_N と Q_M の値が変化したと考えられる。

表 2-2 に温度が k_T 、 I_M および c_M に与える影響を示す。 k_T は梁の形状と剛性率の関数(2.3.2 項)、 I_M は反射面の形状と質量 Mの関数であり、それぞれ、温度変化によって表 2-2 に示した影響を受ける。また、 c_M は大気圧下では空気の粘性が温度によって変化する。

5.1 節でシリコンの弾性係数の温度依存性、5.2 節でシリコンの線膨張係数の 温度依存性について述べる。5.3 節では 5.1 節と 5.2 節の検討結果に基づき固有 振動数の温度依存性を理論的に計算し、固有振動数が温度によって変動する原 因について述べる。5.4 節で空気の粘性抵抗の温度依存性について述べ、5.5 節 では 5.4 節の検討結果に基づき Q 値の温度依存性を計算し、Q 値が温度によっ て変動する原因について述べる。

パラメータ		変数		温度変化が与える影響
ばね定数	k_T	梁の形状		シリコンの熱膨張による
				形状変化
		剛性率	G	Gの温度依存性
慣性モーメント	I _M	反射面の形状		シリコンの熱膨張による
				形状変化
		質量	М	変動なし
粘性係数	СМ			大気圧では空気抵抗が支配的
				空気の粘性抵抗の温度依存性

表 5-1 温度が各パラメータに与える影響

5.1. シリコンの弾性係数の温度依存性

弾性係数を C とすると、フックの法則より応力 σ とひずみ ϵ の関係は次の式で与えられる。

$$\sigma = C\varepsilon$$

(5-3)

異方性材料の σ と ϵ はそれぞれ 2 階のテンソル σ_{ij} 、 ϵ_{ij} あるため、Cは 4 階のテンソ ル C_{ijkl} で表される[37]。

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$$

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{zx} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} c_{xxxx} & c_{xxyy} & c_{xxzz} & c_{xxyz} & c_{xxzx} & c_{xxxy} \\ c_{yyxx} & c_{yyyy} & c_{yyzz} & c_{yyyz} & c_{yyxy} \\ c_{zzxx} & c_{zzyy} & c_{zzzz} & c_{zzyz} & c_{zzxy} \\ c_{yzxx} & c_{yzyy} & c_{yzzz} & c_{yzyz} & c_{yzxy} \\ c_{zxxx} & c_{zxyy} & c_{zxzz} & c_{zxyz} & c_{yzxy} \\ c_{zxxx} & c_{zxyy} & c_{zxzz} & c_{zxyz} & c_{zxxy} \\ c_{xyxx} & c_{xyyy} & c_{xyzz} & c_{xyyz} & c_{xyzx} & c_{xyyy} \end{bmatrix} \begin{bmatrix} \mathcal{E}_{xx} \\ \mathcal{E}_{yy} \\ \mathcal{E}_{zz} \\ \mathcal{E}_{yz} \\ \mathcal{E}_{zx} \\ \mathcal{E}_{xy} \end{bmatrix}$$

$$(5-4)$$

なお、 σ_{ij} は*i*面に*j*方向に加えた応力であり、*i*と*j*が等しい場合は垂直応力、 異なる場合はせん断応力を表す。ここで、 c_{ijkl} は、

$$\begin{cases} c_{ijkl} = c_{jikl} \\ c_{ijkl} = c_{jilk} \\ c_{ijkl} = c_{klij} \end{cases}$$
(5-5)

という関係があるため、Cijklの独立な弾性係数は最大 21 個である。

1

図 5-1 にシリコンの結晶構造を示す。シリコンは立方晶であり、結晶方位[100]、 [010]、[001]をそれぞれ x 軸方向、y 軸方向および z 軸方向に定義したとき(以 下、この結晶方位を基準結晶方位と称す)、立方晶の対称性から C_{ijkl} は 3 個の独 立な弾性係数 c₁₁、c₁₂ および c₄₄ で表すことができる[**37**]。

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{zx} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{11} & 0 & 0 & 0 \\ c_{12} & c_{11} & c_{12} & 0 & 0 & 0 \\ c_{12} & c_{12} & c_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{44} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{yz} \\ \varepsilon_{zx} \\ \varepsilon_{xy} \end{bmatrix}$$
(5-6)

各弾性係数は温度によって変動し[38]、*c*₁₁、*c*₁₂および *c*₄₄ は次の式で近似することができる[39]。

$$c_{ij} = c_{ij}^{0} - s / \{ \exp(t/T) - 1 \}$$
(5-7)

Tは絶対温度であり、 c_{ij}^0 、sおよびtは材料固有の値である。表 5-2 にシリコンの c_{ij}^0 、sおよびtの値を示す。

図 5-1 シリコンの結晶構造(立方晶の結晶構造)

4		$j = \mathcal{O} \mathcal{O} \mathcal{O}_{ij}$	
	c_{ij}^0 [10 ¹⁰ Pa]	s [10 ¹⁰ Pa]	T [K]
C11	16.75	0.533	407.0
<i>C</i> ₁₂	6.501	0.231	334.8
C44	8.007	0.225	497.4

表 5-2 単結晶シリコンの *c*⁰_i、*s* および *T* [39]

図 5-2 (100)ウエハの結晶方位

しかし、MEMS 光スキャナを含む MEMS デバイスで一般的に使用されるシリ コンウエハは(100)ウエハであり、評価デバイスも(100)ウエハで作製されている。 図 5-2 に(100)ウエハの結晶方向を示す。(100)ウエハの x 軸方向、y 軸方向およ び z 軸方向の結晶方位はそれぞれ、[110]、[110]、[001]であり、基準結晶方位と は結晶方位が異なる。弾性係数は結晶方位によって異なるため、(5-6)式および (5-7)式の関係をそのまま適用することは出来ず、基準結晶方位の式を(100)ウエ ハの結晶方位の式に変換する必要がある。

座標系は方向余弦を利用して変換することができる。図 5-3 は方向余弦の説明 図であり、ベクトル \vec{r} と x 軸、y 軸および z 軸となす角を θ_x 、 θ_y 、 θ_c とすると、 ベクトル \vec{r} の方向余弦はそれぞれ、

$$\begin{cases} l_d = \cos \theta_x \\ m_d = \cos \theta_y \\ n_d = \cos \theta_z \end{cases}$$
(5-8)

と定義される。

図 5-3 ベクトルrの方向余弦

ここで、(5-6)式の Ciikl の各弾性係数を次式のように置き換える。

$$\begin{bmatrix} c_{11} & c_{12} & c_{12} & 0 & 0 & 0 \\ c_{12} & c_{11} & c_{12} & 0 & 0 & 0 \\ c_{12} & c_{12} & c_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{44} \end{bmatrix} = \begin{bmatrix} p_{xx} & p_{xy} & p_{xz} & 0 & 0 & 0 \\ p_{yx} & p_{yy} & p_{yz} & 0 & 0 & 0 \\ p_{zx} & p_{zy} & p_{zz} & 0 & 0 & 0 \\ 0 & 0 & 0 & q_{yz} & 0 & 0 \\ 0 & 0 & 0 & 0 & q_{zx} & 0 \\ 0 & 0 & 0 & 0 & 0 & q_{xy} \end{bmatrix}$$

(5-9)

座標を変換する前の弾性係数を p_{ij} および q_{ij} 、変換後の弾性係数を p'_{ij} および q'_{ij} とすると、 p'_{ij} および q'_{ij} は次式で変換することができる[**40**]。

$$p'_{ii} = c_{11} + c_c \left(l_i^4 + m_i^4 + n_i^4 - 1 \right)$$
(5-10)

$$p'_{ij} = c_{12} + c_c \left(l_i^2 l_j^2 + m_i^2 m_j^2 + n_i^2 n_j^2 \right)$$
(5-11)

$$q'_{ij} = c_{44} + c_c \left(l_i^2 l_j^2 + m_i^2 m_j^2 + n_i^2 n_j^2 \right)$$
(5-12)

$$c_c = \left(c_{11} - c_{12} - 2c_{44}\right) \tag{5-13}$$

ただし、*l_i、l_j、m_i、m_j、n_i、n_j*は変換後の各座標軸の変換前の座標軸に対する方 向余弦である。基準結晶方位の結晶方位を Z 軸を回転軸として 45 度回転すると (100)ウエハの結晶方位と一致する。座標軸を 45 度回転させるための方向余弦を **表 5-3** に示す。**表 5-3** の *x、y、z* が変換前の基準結晶方位の座標軸、*x'、y'、z'*が (100)ウエハの座標軸である。(5-9)式から(5-13)式より、(100)ウエハの弾性係数 *C'*_{ijkl} は次の式で表される。

表 5-3 (100)ウエハの座標系への変換

$$C'_{ijkl} = \begin{bmatrix} \frac{1}{2}c_{11} + \frac{1}{2}c_{12} + c_{44} & \frac{1}{2}c_{11} + \frac{1}{2}c_{12} - c_{44} & c_{12} & 0 & 0 & 0\\ \frac{1}{2}c_{11} + \frac{1}{2}c_{12} - c_{44} & \frac{1}{2}c_{11} + \frac{1}{2}c_{12} + c_{44} & c_{12} & 0 & 0 & 0\\ c_{12} & c_{12} & c_{12} & c_{11} & 0 & 0 & 0\\ 0 & 0 & 0 & c_{44} & 0 & 0\\ 0 & 0 & 0 & 0 & c_{44} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}c_{11} - \frac{1}{2}c_{12} \end{bmatrix}$$
(5-14)

C'_{ijkl}の逆行列 S'_{ijkl}を

$$S'_{ijkl} = \begin{bmatrix} s'_{11} & s'_{12} & s'_{13} & 0 & 0 & 0 \\ s'_{21} & s'_{22} & s'_{23} & 0 & 0 & 0 \\ s'_{31} & s'_{32} & s'_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & s'_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & s'_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & s'_{66} \end{bmatrix}$$
(5-15)

とすると、 S'_{ijkl} とヤング率E、ポアソン比v、剛性率Gは次の関係にある[**37**]。

$$\begin{bmatrix} s'_{11} & s'_{12} & s'_{13} & 0 & 0 & 0 \\ s'_{21} & s'_{22} & s'_{23} & 0 & 0 & 0 \\ s'_{31} & s'_{32} & s'_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & s'_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & s'_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & s'_{66} \end{bmatrix} = \begin{bmatrix} \frac{1}{E_x} & -\frac{V_{yx}}{E_y} & -\frac{V_{zx}}{E_z} & 0 & 0 & 0 \\ -\frac{V_{xy}}{E_x} & \frac{1}{E_y} & -\frac{V_{zx}}{E_z} & 0 & 0 & 0 \\ -\frac{V_{xz}}{E_x} & -\frac{V_{yz}}{E_y} & \frac{1}{E_z} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G_{yz}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{zx}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G_{zy}} \end{bmatrix}$$
(5-16)

図 5-4 に(100)ウエハの E および G の温度依存性の理論計算結果、参考文献[41] で報告されているシリコンのヤング率([100]方向、[110]方向)の実験結果を示 す。

- ヤング率の理論計算結果と実験結果は概ね一致している。
- ・ ヤング率と剛性率は温度が高くなると小さくなり、-20℃から+150℃の
 温度範囲では概ね線形に変化する(表 5-4)。
- ヤング率の実験結果の変化率は理論計算結果の変化率よりも大きく、
 [100]方向は 1.37 倍、[110]方向は 2.34 倍である。

ヤング率と剛性率は密接な関係にあるため、実際の剛性率の温度依存性も理論 計算結果よりも温度変化は2倍程度大きくなる可能性がある。

図 5-4 ヤング率および剛性率の温度依存性の理論計算結果

弹性係数	理論計算結果	実験結果
E_{xx} E_y	-9.34×10 ⁻³ GPa/°C	-21.8×10 ⁻³ GPa/°C
E_z	-7.28×10 ⁻³ GPa/°C	-9.60×10 ⁻³ GPa/°C
G_{yz} , G_{zx}	-3.76×10 ⁻³ GPa/°C	
G_{xy}	-2.61×10 ⁻³ GPa/°C	

表 5-4 (100) ウエハの弾性係数の変化率(-20°C~+150°C)

5.2. シリコンの熱膨張

シリコンの線膨張係数は 125K 以上で正の値となるため[42]、実用の温度では 温度が高くなるとシリコンは膨張する。温度 T_0 において長さ L_0 の物体が温度 Tに変化したとき、線膨張係数を α とすると、Tにおける長さ L は次の式で表され る。

 $L = L_0 \left\{ 1 + \int_{T_0}^T \alpha(t) dt \right\}$ (5-17)

シリコンの線膨張係数 asil は次の式で近似することができる[43]。

$$\alpha_{sil}(t) = \left[3.725\left\{1 - e^{-5.88 \times 10^{-3}(t-124)}\right\} + 5.548 \times 10^{-4}t\right] \times 10^{-6} (5-18)$$

t は絶対温度であり、120K から 1500K の温度範囲で成り立つ。図 5-5 にシリコンの線膨張係数の計算値を示す。125K 以上では正の値であるため、実用的な温度範囲では、温度が高くなるとマイクロスキャナの反射面および梁の形状は大きくなる。

図 5-5 シリコンの線膨張係数の計算値

(5-18)式を t で積分すると、

$$\int \alpha_{sil}(t) dt = \left[3.725 \left\{ t + \frac{1}{5.88 \times 10^{-3}} e^{-5.88 \times 10^{-3}(t-124)} \right\} + 2.774 \times 10^{-4} t^2 \right] \times 10^{-6}$$
(5-19)

であるため、基準温度 T₀を 30 度(303.15K)とすると、α_{sil}の積分値は図 5-6 のようになる。

図 5-6 シリコンの線膨張係数の積分値

5.3. 固有振動数の温度依存性

評価デバイスはシリコンとは線膨張係数が異なるセラミックパッケージに実装されているため、温度が変化すると熱応力が発生し、複雑に変形すると考えられる。しかし、熱応力による変形を計算することは非常に難しい。本論文では、線膨張係数の違いによる熱応力は無視し、(5-17)式に従って均一に熱膨張すると仮定して固有振動数の温度依存性を検討した。基準温度 To は 30°C とし、30°C のとき図 2-1 に示した寸法になると定義した。また、密度ρは 30°C において 2330kg/m³とした。本節では「熱膨張に形状変化」と「剛性率の温度依存性」のそれぞれの寄与を検証するため、表 5-5 に示した 3 条件で計算した。

	計算条件
(A)	「剛性率の温度依存性」と「熱膨張による形状変化」の両方
	を考慮
(B)	「剛性率の温度依存性」のみ考慮
	梁と反射面の寸法は一定値(T_0 における寸法)に設定
(C)	「熱膨張による形状変化」のみ考慮
	剛性率は一定値に設定(Toにおける剛性率:Gxy=50.87 GPa、
	<i>G_{vz}=G_{zx}=79.53</i> GPa)に設定

表 5-5 温度依存性の計算条件

図 5-7 に固有振動数の温度依存性の理論計算結果を示す。

- ・ 条件(A)の場合、温度が高くなると固有振動数は低下し、20℃ のとき、 1898.6Hz、80℃ のとき 1896.1Hz となった。変化量は-2.51Hz であり、変化 率は-0.042Hz/℃ である。
- ・ 条件(A)と条件(B)は概ね一致した。

以上より、固有振動数の温度依存性は剛性率の温度依存性が支配的であると考 えられる。固有振動数の変化率の実験結果は-0.066Hz/°Cであり、理論計算結果 は実験結果よりも変化率が小さい。5.1節において実験結果は理論計算結果より も大きいことを説明した。剛性率はヤング率と密接な関係にあるため、実際の 剛性率の温度依存性は理論計算結果よりも大きいと推定できる。そのため、固 有振動数の温度依存性の実験結果は理論計算結果よりも大きい変化率になった と考えられる。

図 5-7 固有振動数の温度依存性の理論計算結果

5.4. 空気の粘性

5.4.1. 運動している物体が流体から受ける粘性力

速度 v で並進運動している物体が流体から受ける粘性力 F_{vis}は、次元解析より 次の式で与えられる[44]。

$$F_{vis} = \frac{\eta^2}{\rho} \sum_{n=1}^{\infty} K_n \left(\frac{v\rho D}{\eta}\right)^n$$
$$= \frac{\eta^2}{\rho} K_1 \frac{\rho D}{\eta} v + \frac{\eta^2}{\rho} K_2 \left(\frac{\rho D}{\eta}\right)^2 v^2 + \frac{\eta^2}{\rho} K_3 \left(\frac{\rho D}{\eta}\right)^3 v^3 + \cdots$$

(5-20)

ただし、 η は流体の粘度、 ρ は流体の密度、 K_n は係数、Dは物質の大きさに依存 する定数である。 F_{vis} が回転軸から距離 r_M の一点に加わっていると仮定したとき、 反射面に作用するトルク N_{vis} は、

$$N_{vis} = r_M F_{vis}$$

= $r_M \frac{\eta^2}{\rho} K_1 \frac{\rho D}{\eta} v + r_M \frac{\eta^2}{\rho} K_2 \left(\frac{\rho D}{\eta}\right)^2 v^2 + r_M \frac{\eta^2}{\rho} K_3 \left(\frac{\rho D}{\eta}\right)^3 v^3 + \cdots$

(5-21)

と表すことができる。3.4.2項において反射面の減衰振動の実測値は v に比例する粘性力を考えたときの減衰振動の式と一致したことから、(5-21)式の v に比例する項だけを考えると、

$$N_{vis} = r_M K_1 D \eta v$$

$$\equiv c_\eta v \tag{5-22}$$

と表される。ただし、cnは流体による減衰の減衰係数であり、

$$c_{\eta} \equiv r_M K_1 D \eta \tag{5-23}$$

である。(5-23)式の $r_M K_1 D$ は物体の形状に依存する定数であるため、 c_η は η に比例して大きくなり、 ρ には依存しない。

5.4.2. 気体の粘度の温度依存性

温度が高くなると気体の粘度は大きくなり、理想気体の温度 *t* と粘度 ηの関係 はサザーランドの式で近似することができる[45]。

$$\eta(t) = \eta_0 \left(\frac{t}{T_0}\right)^{\frac{3}{2}} \frac{T_0 + S}{t + S}$$
(5-24)

ただし、 η_0 は温度 T_0 における粘度、Sはサザーランドの定数である。流体が空気である場合、 T_0 が 25℃のとき η_0 は 18.2×10⁻⁶Pa・s、Sは 117 であるので、空気の粘度 η_{Air} は、

$$\eta_{Air}(t) = \frac{1.468t^{\frac{3}{2}} \times 10^{-6}}{t+117}$$
(5-25)

と表すことができる。図 **5-8** に空気の粘度の温度依存性の計算結果を示す。20℃ のとき 18.0×10⁻⁶Pa・s、80℃ のとき 20.7×10⁻⁶Pa・s である。

図 5-8 空気の粘度の温度依存性の計算結果

5.5.Q値の温度依存性の計算結果

(5-23)式の *RK*₁*D* を *D*'と置き換え、(5-23)式を(5-2)式の減衰係数 *c*_M に代入すると、

$$Q_M = \frac{\sqrt{2I_M k_T}}{D' \eta_{air}}$$
(5-26)

を得る。ただし、 I_M は反射面の慣性モーメント、 k_T は梁のばね定数、 η_{air} は空気の粘性である。図 5-9 に Q 値の理論計算結果を示す。なお、(5-26)式の D'は理論的に計算することが困難であるため、20°C の実験結果より求めた値を用いた。実験結果と理論計算結果は概ね一致しており、温度が高くなると Q_M が低くなった原因は、評価デバイスの周囲の空気が加熱され、粘度が高くなったことが原因であると考えられる。

図 5-9 Q 値の理論計算結果

第6章 周波数応答特性の印加電圧依存性

第4章において評価デバイスの振動特性の温度依存性を実験的に検証し、一 定周波数で駆動すると光学走査角が小さくなることを示した。例えば、1985Hz で駆動したとき、光学走査角は20℃のとき10.3度、80℃のとき7.7度となった。 この変動幅は十分小さく、評価デバイスに印加する電圧を制御することで、制 御可能な範囲であると考えられる。

本章では、評価デバイスに印加する交流信号、直流電圧と周波数応答特性の 関係を測定し、光学走査角を制御することが可能であるか検討した。6.1節で実 験装置と実験条件について述べる。6.2節では周波数応答特性の直流電圧依存性 の実験結果について、6.3節では周波数応答特性の交流電圧依存性の実験結果に ついて述べる。

6.1. 実験装置と実験条件

以下に実験装置と実験条件を示す。

·光学系:

3.3節と同様の光学系で測定した。

·温度条件:

20°C (室温)

·電圧条件:

図 3-1 (26 頁) で示したように電圧を印加し、評価デバイスの反射面に直流信号 V_{DC}、駆動電極に交流電圧 V_{AC}を印加することで反射面を駆動する。 表 6-1 に印加電圧条件を示す。V_{DC} 依存性、V_{AC} 依存性ともに 3 条件ずつ 測定した。

表 6-1 印加電圧の条件

	V_{DC}	V _{AC}
V _{DC} 依存性	20V、30V、40V	20V _{pp} (矩形波)
VAC依存性	20V	20Vpp、30Vpp、40Vpp(矩形波)

6.2. 直流電圧依存性の実験結果

図 6-1 に光学走査角の周波数応答特性と V_{DC}の関係の実験結果を示す。

- *V_{DC}*が高いほど反射面が振動する周波数範囲が広くなり、反射面が振動する周波数範囲は、20Vのとき1981Hzから2005Hz、30Vのとき1984.6Hzから2036Hz、40Vのとき1988.5Hzから2077Hzであった。
- 一定の振動周波数で駆動したとき V_{DC} が高いほど光学走査角も大きくなり、例えば、振動周波数が 1995Hz のとき、20V で 5.07 度、30V で 12.6 度、40V で 21.2 度であった。一方、振動周波数が 1985Hz のとき、20V で 10.3 度、30V で 20.2 度であるが、40V では停止した。

以上より、温度変化による光学走査角の変化よりも、V_{DC}を変化させたときの光 学走査角の変化のほうが大きく、V_{DC}を制御することで光学走査角を制御するこ とが可能であることが判明した。ただし、V_{DC}が高くなると光学走査角が最大値 となる周波数が高周波数側にシフトしており、上記 1985Hz で駆動する場合のよ うに、V_{DC}が上げることで振動が停止する場合があることが判明した。

反射面が振動する周波数範囲が広くなる要因は、静電ばねの影響が大きくなったためであると考えられる。*Voc*大きくすると反射面と固定電極の間の直流の 電位差が大きくなるため、静電ばねの効果が大きくなり、ばね定数の非線形性 も大きくなる。

図 6-1 直流電圧依存性の測定結果(室温)

6.3. 交流電圧依存性の実験結果

図 6-2 に光学走査角の周波数応答特性と VACの関係の実験結果を示す。

- *V_{Ac}*が高いほど反射面が振動する周波数範囲が広くなり、反射面が振動する周波数範囲は、20V_{pp}のとき 1981Hz から 2005Hz、30V_{pp}のとき 1978.5Hz から 2013.5Hz、40V_{pp}のとき 1978Hz から 2025.5Hz であった。
- 一定の振動周波数で駆動したとき V_{AC}が高いほど光学走査角も大きくなり、
 例えば、振動周波数が 1985Hz のとき、20V で 10.3 度、30V で 13.2 度、40V
 で 17.2 度であった。
- *V_{AC}*が高いほど光学走査角の最大値は大きくなり、20V で 12.7 度、30V で 19.3 度、40V で 28.1 度であった。また、振動が停止する周波数が高周波側 にシフトし、20V で 1981Hz、30V で 1978.5Hz、40V で 1978Hz であった。

以上より、温度変化による光学走査角の変化よりも、V_{AC}を変化させたときの光 学走査角の変化のほうが大きく、V_{AC}を制御することで光学走査角を制御するこ とが可能であることが判明した。V_{AC}依存性は 6.2 節で述べた V_{DC}依存性と同様 の傾向となったが、振動する周波数の範囲の変化は V_{DC} 依存性よりも小さい。 これは、V_{DC}を変化させる場合よりも、直流の電位差の変化が小さく、静電ばね の変動も小さいためであると考えられる。

第7章 走査角の制御

第4章において評価デバイスの振動特性の温度依存性を実験的に検討し、反 射面を一定の周波数で駆動したとき、温度が高くなると光学走査角が小さくな ることを述べた。光学走査幅の精度の要求値は用途によって異なるが、例えば、 現在適用を検討している工業計測用途の場合、基準値に対して±5%以内の変動 に抑える必要がある。光学走査角を制御することを目的として、第6章におい て評価デバイスに印加する信号の電圧値と光学走査角の周波数応答特性の関係 を実験的に検討し、電圧値を制御することで光学走査角を一定に保持すること が可能であることを述べた。

本章では、評価デバイスの反射面の走査角を電気的に測定し、評価デバイス に印加する信号の電圧を制御する制御回路を設計し、機能を確認した。7.1節で 走査角制御回路の原理について、7.2節で走査角制御回路について述べる。7.3 節で走査角制御実験の実験条件について、7.4節で走査角制御回路の実験結果に ついて述べる。

7.1. 走査角制御回路の原理

第6章で述べたように、評価デバイスに印加する直流信号もしくは交流信号 の電圧値を制御することで反射面の走査角を制御することが可能であるが、本 論文では、制御が簡単な直流信号の電圧値を制御した。

図 7-1 に評価デバイスの制御回路の電圧印加方法を示す。反射面に直流信号 *V*_{DC}、駆動電極に交流信号 *V*_{AC} と制御信号(直流信号)*V*_R を加算した信号を印加 することで反射面を駆動する。チャージアンプで反射面の走査角θ_{mech}を検出し、 *V*_R を制御することで反射面の走査角をコントロールする。チャージアンプの利 得 *G*_{ch} は反射面と検出電極の間の電位差Δ*E*_{Det} に比例するため、*V*_{DC} を制御するこ とで反射面の走査角をコントロールすると *G*_{ch} が変化し、反射面の走査角θ_{mech} とチャージアンプ *V*_{ch}の関係が変化する。図 7-1 のように電圧を印加し、*V*_R を制 御することで、*G*_{ch} を一定に保持しつつ反射面の走査角をコントロールすること ができる。*V*_{DC} を負の電圧に設定することで、*V*_R を大きくすると反射面と駆動電 極の間の電位差Δ*E*_{Dri} が大きくなるため、θ_{mech} が大きくなる方向に制御される。

図 7-1 評価デバイスの制御回路の電圧印加方法

図 7-2 に V_R と光学走査角 θ_{op} の関係の実験結果を示す。なお、 V_{DC} は-20V、 V_{AC} は 20 V_{pp} 、4120Hz の矩形波とした。 V_R に対して θ_{op} は概ね線形に変動しており、 V_R を変えることで θ_{op} を制御することが可能であることを確認した。

図7-2 制御電圧と光学走査角の関係の測定結果

7.2. 走查角制御回路

図 7-3 に走査角制御回路のブロック図を、図 7-4 に走査角制御回路の各ブロックの出力電圧を示す。以下、走査角制御回路の機能について説明する。

- ① 反射面および駆動電極に駆動信号を印加することで反射面を駆動する。
- ② チャージアンプで反射面の傾斜角度で測定する(図 7-4(i))。
- ③ チャージアンプの出力 V_{ch} は反射面の走査角に応じた交流信号であるため、整流回路と平滑化回路で正電圧側(整流回路(P)と平滑回路(P))と負電 圧側(整流回路(N)と平滑回路(N))をそれぞれ整流、平滑することで、V_{ch}のピーク値に対応した直流電圧を得る(図 7-4(ii)および(iii))。
- ④ 減算回路で平滑回路(P)と平滑回路(N)の出力 V_{ch(+)}、V_{ch(-)}の差分を取ること
 で、V_{ch}のピークピーク値に応じた直流信号 V_{Sub}を得る。
- ⑤ 比較回路で *V_{Sub}* と参照電圧 *V_{Ref}* を比較し、*V_{Sub}* と *V_{Ref}* が等しくなるように
 PI 制御回路で *V_R* の電圧値を制御する。

図 7-3 走査角制御回路のブロック図

図 7-5 に整流回路、平滑回路、減算回路の回路図を、図 7-6 に比較回路、PI 制御回路、加算回路の回路図を示す。以下、各回路について説明する。

① 整流回路

オペアンプとダイオードで構成した。オペアンプを利用することで、ダイオードによる電圧降下の影響をキャンセルすることができる。整流回路によってチャージアンプの出力電圧 V_{ch}の正の電圧、負の電圧をそれぞれ半波整流した電圧 V_{Rec(P)}、V_{Rec(N)}を得る。

② 平滑回路

10k Ω の抵抗と 0.1 μ F のコンデンサで構成した。100k Ω の抵抗はコンデンサの電荷を放電するための抵抗である。 $V_{Rec(P)}$ 、 $V_{Rec(N)}$ のピーク値に応じた直流電圧(脈波) $V_{Sm(P)}$ 、 $V_{Sm(N)}$ を得る。

③ 減算回路

減算回路で *V*_{sm(+)}、*V*_{sm(-)}の差を取ることで、*V*_{ch}のピークピーク値に対応した直 流電圧 *V*_{Sub}を得る。図 7-5 の減算回路の場合、*V*_{Sub}、*V*_{sm(P)}および *V*_{sm(N)}は次の関 係にある。

$$V_{Sub} = 2 \left(V_{sm(+)} - V_{sm(-)} \right)$$
(7-1)

なお、平滑回路と減算回路の間にボルテージホロワを挿入することで回路を分離している。これは、電流が平滑回路のコンデンサではなく減算回路側に流れ ることで、正しく平滑できなくなることを防ぐためである。

④ 比較回路

比較回路は減算回路であり、*V_{Sub}*と参照電圧 *V_{Ref}を減算した電圧 V_{comp}*を出力 する。**図 7-5**の比較回路の場合、*V_{comp}、V_{Ref}および V_{Sub}は次の関係にある。*

$$V_{comp} = 2 \left(V_{Sub} - V_{Ref} \right) \tag{7-2}$$

⑤ PI 制御回路

PI 制御回路は抵抗 R_K 、 R_L 、 R_{dis} 、コンデンサ C_{In} 、オペアンプで構成される。 R_{dis} は C_P の飽和を防止するための抵抗である。 R_{dis} を無視すると、PI 制御回路の 入力電圧 V_{comp} と PI 制御回路の出力電圧 V_{PI} は次の関係にある。

$$V_{PI} = -\frac{R_L}{R_K} V_{comp} - \frac{1}{R_K C_{In}} \int V_{comp} dt$$
(7-3)

 V_{PI} は V_{comp} に比例係数 $\frac{R_L}{R_K}$ を掛けた電圧と、 V_{comp} を時間積分した電圧を加算した電圧となる。

⑥ 加算回路

加算回路は抵抗 R_{rdA} 、 R_{rdB} 、コンデンサ C_{rd} で構成される。PI 制御回路の出力 電圧 V_{PI} と交流信号 V_{AC} を加算し、評価デバイスの駆動電極に印加する。VAC の 周波数を ω とし、 $\omega C_{rd} R_{rdA}$ が1よりも十分大きいとき、加算回路の出力電圧 V_{Dri} は次の式で与えられる。

$$V_{Dri} = \frac{R_{rdB}}{R_{rdA} + R_{rdB}} V_{PI} + V_{AC}$$
(7-4)

(7-4)式の
$$\frac{R_{rdB}}{R_{rdA} + R_{rdB}}$$
 V_{PI} が制御電圧 V_R に相当する。

図 7-5 整流回路、平滑回路、減算回路

図 7-6 比較回路、PI 制御回路、加算回路

図 7-7 に整流回路、平滑回路、減算回路の出力電圧の実測値を示す。*V*_{Sm(P)}および *V*_{Sm(N)}は *V*_{ch}のピーク値に対応した直流電圧であり、所望の特性を得られている。また、*V*_{Sub}は *V*_{Sm(P)}と *V*_{Sm(N)}の差 1.209V の約 2 倍の 2.46V であり、(7-2)式に従った電圧が出力されていることを確認した。

図7-7 整流回路・平滑回路の出力電圧

7.3. 走査角制御実験の実験条件

以下に実験装置と実験条件を示す。

•光学系:

図 3-5 (29 頁) で示した光学的で光学走査角を適用した。レーザーの走査 幅 wsc は目視で測定し、測定誤差を低減するため評価デバイスからスクリ ーンまでの距離 dms は 1650mm とした。

- 温度条件:
 - ・設定温度:20℃、30℃、40℃、50℃、60℃、70℃、80℃
 - ・評価デバイスの温度は第4章と同様に制御した。
- · 電圧条件:
 - ・*V_{AC}*: 20V_{pp}の正弦波
 - V_{DC} : -30V
 - V_{Ref} : 2.1V

7.4. 走査角制御実験の実験結果

図 7-8 に光学走査角と温度の関係の測定結果を、図 7-9 に PI 制御回路の出力 電圧(制御電圧)を示す。

- ・ 走査角を制御しなかった場合(V_R = 0V で固定)、20.4℃のとき 11.72 度、
 81.2℃のとき 9.44 度であり、19.5%低くなった。温度に対して概ね線形に変化し、変化量は 2.28 度、変化率は-0.039 度/℃である。
- ・ 走査角を制御した場合、20.1℃のとき 11.72 度、79.6℃のとき 11.56 度であり、1.4%低くなった。温度に対して概ね線形に変化し、変化量は 0.16 度、変化率は-0.0027 度/℃である。また、制御電圧は、20.4℃のとき 0V、79.4℃のとき 4.48V であった。

以上のように、走査角を制御しなかった場合に対して走査角を制御した場合は 温度に対する走査角の変化率を約10分の1に低減することができた。温度が高 くなると走査角が小さくなるため、PI 制御回路の出力電圧(制御電圧)を高く することで、走査角が一定になるように制御しており、理論と一致する。しか し、走査角を制御した場合でも制御の誤差が残っており、温度が高くなると徐々 に光学走査角が小さくなっている。この原因として、以下の2点が考えられる。

- (1) 制御回路が正しく機能していない
- (2) シリコンの熱膨張によって櫛歯電極が変形し、反射面の走査角 *θ_{mech}* と反射面と検出電極の間の静電容量 *C_{Det}* との関係が変化した

各温度における減算回路の出力電圧は 2.10~2.11V であり、制御電圧 2.1V とほ ぼ一致しているため、制御回路は正常に機能している。そのため、シリコンの 熱膨張によって櫛歯電極が変形したことが原因であると考えられる。例えば、 温度が高くなったことで*θmech*に対する *CDet*の変化量*ΔCDet*が大きくなったと仮定 すると、反射面が同じ角度振動しても、チャージアンプの出力電圧 *Vch*のピーク ピーク値が大きくなる (図 7-10)。そのため、PI 制御回路は*θmech*が小さくなるよ うに制御電圧を制御する。このように、温度のよって光学走査角が変動したと 考えられる。この影響は静電容量の温度依存性の回路による補正、櫛歯電極の 静電容量の温度依存性を低減する構造の適用などによって低減することが可能 である。

図7-8 光学走査角と温度の関係

図 7-9 温度と PI 制御回路の出力電圧の関係

図 7-10 θ_{mech} と C_{Det}の関係が変動したときの温度と V_{ch}の関係 (θ_{mech} は一定)

第8章 結論

本論文では、単結晶シリコンで作製された静電方式の1軸 MEMS 光スキャナ について、光学走査角の周波数応答特性、反射面の固有振動数およびQ値の温 度依存性を実験的および理論的に検討した。また、MEMS 光スキャナの反射面 の走査角を検出して走査角が一定となるように駆動電圧を制御する制御回路を 設計し、その機能を確認した。

実験結果より、温度が高くなると固有振動数とQ値は概ね線形に低下することが判明した。20°Cから80°Cに温度が高くなると、固有振動数の実験結果は1971.6Hzから1968.7Hzに4.3Hz、理論計算結果は1898.6Hzから1896.1Hzに2.51Hz低下し、実験結果と理論計算結果の変化量は概ね一致した。そのため、本論文で検討した理論計算は妥当な結果であると考えられる。理論計算結果より、温度が高くなると固有振動数が高くなる原因は、シリコンの剛性率が低くなることが主要因であると判明した。Q値の実験結果は224から198に26、理論計算結果は225から195に30低下し、実験結果と理論計算結果の変化量は概ね一致した。理論計算結果より、MEMS光スキャナ周辺の空気が加熱され、粘性が高くなることでQ値が低下したと判明した。

周波数応答特性は、20℃から 80℃ に温度が高くなると、周波数応答特性は低 周波数側に約3.9Hzシフトした。固有振動数の変化量4.3Hzと概ね一致しており、 周波数応答特性がシフトした原因は、固有振動数が低下したことが原因である と判明した。また、一定の周波数 1985Hz で反射面を駆動したとき、レーザーの 走査角は 10.3 度から 7.7 度に 2.6 度小さくなった。しかし、この変化量は駆動電 圧を制御することで走査角を一定に保持することが可能な範囲内である。

反射面の走査角を電気的に測定し、駆動電圧を制御する走査角制御回路を設計、評価した。20℃から80℃に温度が高くなると、駆動電圧を制御しない場合11.72度から9.44度に19.5%、制御した場合は11.72度から11.56度に1.4%低くなった。駆動信号を制御したことで温度変化による走査角の変動を1/10以下に低減することができた。これにより、今後、様々な用途への応用が可能である。

参考文献

- [1] A. Aerslan, D. Brown, W. O. Davis, S. Holmström, S. K. Gokce and H. Urey, "Comb-actuated resonant torsional microscanner with mechanical amplification", *J. Microelectromech. Syst.*, 19, pp.936-943, 2010
- [2] U. Baran, D. Brown, S. Holmstrom, D. Balma, W. O. Davis, P. Muralt and H. Urey, "Resonant PZT MEMS scanner for high-resolution displays", J. *Microelectromech. Syst.*, 21, pp.1301-1310, 2012
- [3] T. Iseki, M. Okumura and T. Sugawara, "Shrinking design of a MEMS optical scanner having four torsion beams and arms", *Sensors Actuators A*, 164, pp.95-106, 2010
- [4] A. C. L. Hung, H. Y. H. Lai, S. G. Fu and M. S. Lu, "An electrostatically driven 2D micro-scanning mirror with capacitive sensing for projection display", *Sensors Actuators A*, 222, pp.122-129, 2015
- [5] M. H. Kiang, O. Solgaard, R. S. Muller and K. Y. Lau, "Surface-micromachined electrostatic-comb driven scanning micromirrors for barcode scanners", *Proc. IEEE Microelectromechnical Systems (San Diego)*, pp192-197, 1996
- [6] A. D. Yalcinkaya, O. Ergeneman and H. Urey, "polymer magnetic scanners for bar code applications", *Sensors Actuators A*, **135**, pp236-243, 2007
- [7] H. Miyajima, K. Murakami and M. Katashiro, "MEMS optical micro scanner for microscopes", *Sensors Actuators A*, 10, pp.236-243, 2004
- [8] H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella and O. Solgaard, "Two-dimensional MEMS scanner for dual-axes confocal microscopy", J. Microelectromech. Syst., 16, pp.969-976, 2007
- [9] H. Xie, Y. Pan and G. K. Fedder, "Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror", Sensors Actuators A, 103, pp.237-241, 2003
- [10] V. Milanović, "Multilevel beam SIO-MEMS fabrication and applications", J. Microelectromech. Syst., 13, pp.19-30, 2004

- [11] M. Yoda, K. Isamoto, C. Chong, H. Ito, A. Murata, S. Kamisuki, M. Atobe and H. Toshiyoshi, "A MEMS 1-D optical scanner for laser projection display using self-assembled vertical combs and scan-angle magnifying mechanism", Proc. Transducers 13th Int. Conf. Solid-State Sensors Actuators and Microsyst. (Piscataway), pp.968-971, 2005
- [12] U. Krishnamoorthy, D. Lee and O. Solgaard, "Self-aligned vertical electrostatic combdrives for micromirror actuation", J. Microelectromech. Syst., 12, pp.458-464, 2003
- [13] D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi and M. C. Wu, "Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors", *IEEE J. Sel. Top. Quantum Electron.*, **10**, pp.505-513, 2004
- [14] H. Li, Z. Qiu, X. Duan, K. R. Oldham, K. kurabayashi and T. D. Wang, "2D resonant microscanner for dual axes confocal fluorescence endomicroscope", *Proc. IEEE 27th Int. Conf. MEMS (Japan)*, pp.805-808, 2014
- [15] A. C. L. Hung, H. Y. H. Lai, T. W. Lin, S. G. fu and M. S. C. Lu, "An electrostatically driven 2D micro-scanning mirror with capacitive sensing for projection display", *Sensors Actuators A*, 222, pp.122-129, 2015
- [16] H. Miyajima, N. Asaoka, M. Arima, Y. Minamoto, K. Murakami, K. Tokuda and K. Matsumoto, "A durable, shock-resistant electromagnetic optical scanner with polyimide-based hinges", J. Microelectromech. Syst., 10, pp.418-424, 2001
- [17] A. D. Yalcinkaya, H. Urey and S. Holmstrom, "NiFe plated biaxial MEMS scanner for 2-D imaging", *IEEE Photonics Technol. Lett.*, **19**, pp.330-332, 2007
- [18] A. D. Yalcinkaya, H. urey, D. Brown, T. Montague and R. Sprague, "Two-axis electromagnetic microscanner for high resolution displays", *J. Microelectromech. Syst.*, 15, pp.786-793, 2006
- [19] C. H. Ji, M. Choi, S. C. Kim, K. C. Song, J. U. Bu and H. j. Nam, "Electromagnetic two-dimensional scanner using radial magnetic field", J. Microelectromech. Syst., 16, pp.989-995, 2007
- [20] J. Bernstein, W. P. Taylor, J. Brazzle, G. Kirkos, J. Odhner and M. Zai, "Two axis-of-rotation mirror array using electromagnetic MEMS", Proc. 16th Annual

Int. Conf. MEMS, pp.275-278, 2003

- [21] C. Zhang, G. Zhang and Z. You, "A two-dimensional micro scanner integrated with a piezoelectric actuator and piezoresistors", *Sensors*, 9, pp.631-644, 2009
- [22] K. H. Hoh, T. Kobayashi, F. L. Hsiao and C. lee, "Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors, *Sensors Actuators A*, 162, pp.336-347, 2010
- [23] T. Iseki, M. Okamura and T. Sugawara, "High-speed and wide-angle deflection optical MEMS scanner using piezoelectric actuation", *IEEJ Trans. Electron. Eng.*, 5, pp.362-368, 2010
- [24] T. Kobayashi, J. Tsaur and R. Maeda, "Fabrication of optical micro scanner driven by PZT actuators", *Japan J. Appl. Phys.*, 44, pp.7078-7082, 2005
- [25] T. Naono, T. Fujii, M. Esashi and S. Tanaka, "Non-resonant 2D piezoelectric MEMS thin film", Sensors Actuators A, 233, pp.147-157, 2015
- [26] A. jain, H. Qu, S. Todd and H. Xie, "A thermal bimorph micromirror with large bi-directional and vertical actuation", *Sensors Actuators A*, **122**, pp.9-15, 2005
- [27] S. Schweizer, S. Calmes, M. Laudon and P. Renaud, "Thermally actuated optical microscanner with large angle and low consumption", *Sensors Actuators A*, 76, pp.470-477, 1999
- [28] S. Schweizer, P. Cousseau, G. Lammel, S. Calmes and P. Renaud, "Two dimensional thermally actuated optical microprojector", *Sensors Actuators A*, 85, pp.423-429, 2000
- [29] J. Singh, T. Gan, A. Agarwal, A. Mohanraj and S. Liw, "3D free space thermally actuated micromirror device", *Sensors Actuators A*, 85, pp.468-475, 2005
- [30] A. Jain and H. Xie, "A single-crystal silicon micromirror for large bi-dimensional 2D scanning applications", *Sensors Actuators A*, **130**, pp.468-475, 2006
- [31] S. T. Todd, A. jain H. Qu and H. Xie, "A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators", J. Opt. A, 8, pp.352-359, 2006
- [32] J. H. Park and J. Akedo, "Fabrication and scanning-angle temperature dependence of metal-based, optical resonant scanner with PZT actuation", *IEEE Trans.*

Ultrason. Ferroelectr. Freq. Control., 55, pp.942-950, 2008

- [33] C. Zheng, H. Huang and Z. You, "Experimental research on temperature characteristics of two-dimensional micro scanner", *Proc. Eng.*, 5, pp.568-571, 2010
- [34] M. Masuda and J. Yamasaki, "On the measurement of shear modulus of an orthotropic plate by torsional testing", Zairyo/J. Soc. Mater. Sci. Japan, 23, pp973-979, 1974
- [35] C. Ataman and H. Urey, "Modeling and characterization of comb-actuated resonant microscanners", J. Micromech. Microeng., 16, pp.9-16, 2006
- [36] H. Shenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, U. Lakner and H. Kück, "Large deflecton micromechanical scanning mirror for linear scans pattern generation", *IEEE J. Sel. Top. Quantum Electron*, 6, pp.715-722, 2000
- [37] M. A. Hopcroft, W. D. Nix and T. W. Kenny, "What's is the Young's modulus of silicon?", J. Miceoelectromech. Syst., 19, pp.229-238, 2010
- [38] H. J. McSkimin, "Measurement of elastic constants at low temperature by means of ultrasonic wave-data for silicon and germanium single crystals, and for fused silica", J. Appl. Phys., 24, pp.988-997, 1953
- [39] Y. P. Varshni, "Temperature dependence of the elastic constant", Phys. Rev. B, 2, pp.3952-3957, 1970
- [40] J. J. Wortman and R. A. Evans, "Young's modulus, shear modulus, and poisson's ratio in silicon and germanium", J. Appl. Phys., 36, pp.153-156, 1965
- [41] C. H. Cho, "Characterization of Young's modulus of silicon versus temperature using a 'beam deflection' method with a four-point bending fixture", *Curr. Appl. Phys.*, **9**, pp.538-545, 2009
- [42] K. G. Lyon, G. L. Salinger and C. A. Swenson, "Linear thermal expansion measurements on silicon from 6 to 340 K", J. Appl. Phys., 48, pp.865-868, 1977
- [43] Y. Okada and Y. Tokumaru, "Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K", J. Appl. Phys., 56, pp.314-320, 1984
- [44] 伊藤敏雄『な~るほど!の力学』(学術図書出版社、1994)
- [45] 国立天文台編『理科年表(第87冊)』(丸善、2014)
- [46] H. Zhili, C. Rod, H. Jay, W. Michael and W. Brian, "Modeling air-damping effect in a bulk micromachined 2D tilt mirror", *Sensors Actuators A*, **102**, pp.42-48, 2002
- [47]「Opus Microsystems 社製の静電駆動型 1 軸 MEMS 光スキャナ「BA0050」
 の販売代理店ホームページ」
 https://www.ipros.jp/product/detail/2000198912/

 [48]「日本信号株式会社製の電磁駆動型 1 軸 MEMS 光スキャナ「ECO SCAN:
- [48] 「日本信号株式会社製の電磁駆動型 I 軸 MEMS 元スキャク 「ECO SCAN: ESS115」の取扱い説明書」 <http://www.signal.co.jp/vbc/mems/ecoscan/pdf/ESS115_t.pdf>

(2016/9/20 アクセス)

謝辞

本論文は、筆者が富士電機株式会社)技術開発本部に所属しながら、九州大 学大学院)システム生命科学府の社会人博士コースに籍を置き、澤田廉士教授 の指導のもとに行った研究成果をまとめたものである。

富士電機株式会社は2010年より九州大学先端融合医療レドックスナビ研究拠 点(文部科学省の先端融合領域イノベーション創出拠点形成プログラム)に参 画し、九州大学と共同でプローブ型共焦点内視鏡の開発を開始した。プローブ 型共焦点内視鏡のレーザー光線を2次元に走査する機構を小型化するにあたり、 2010年より光MEMS技術で高い技術を有する澤田教授と小型化が可能な静電駆 動型 MEMS 光スキャナの設計、評価技術に関する共同研究を実施している。

このような背景のもと、筆者は2012年より九州大学大学院)システム生命科 学府の社会人博士課程に入学し、文部科学省の「先端融合領域イノベーション 創出拠点形成プログラム」の助成を受け、澤田教授の指導のもと静電駆動型 MEMS 光スキャナの振動特性の温度依存性と制御に関する研究を進め、その結 果を学位論文としてまとめる機会を得た。本研究を行うにあたり、懇切なるご 指導を頂きました工学研究院機械工学部門の澤田廉士教授に心からお礼を申し 上げます。

本研究を進めるにあたり、筆者の所属組織の理解と支援を多くいただきました。本研究に対し上長として当初よりご理解とお支援を頂きました吉田收志氏、 清田透氏、川田辰実氏、河村幸則氏、熊田貴夫氏に深く感謝致します。特に河 村氏には技術的な面での議論、サポートに多くの時間を割いて頂きました。本 研究で評価した静電駆動型 MEMS 光スキャナは、富士電機株式会社の MEMS 加工装置を利用し、荒川純一氏、窪田正雄氏に作製して頂きました。また、回 路技術について鈴木健氏に多くの助言を頂きました。ありがとうございました。

ナノ・マイクロ医工学研究室にて静電駆動型 MEMS 光スキャナの応用を研究 している池田健太郎氏、岡崎公嗣氏、工藤歩氏をはじめとする学生の皆様には、 静電駆動型 MEMS 光スキャナの構造設計、評価など多くの協力を頂きました。 ありがとうございました。

最後に、社会人博士課程での研究、論文執筆にあたり、支えてくださいまし た家族に感謝いたします。