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Abstract: Polynomial stabilization method has important feature in PID tuning. It computa-
tionally characterizes the entire set of admissible PID gains for various control system configura-
tions. This paper shows a correction is needed in order to find all robust PID region controllers
that satisfy a given robust performance. We also provides selection procedure for searching the
best PID gains controllers in the obtained PID gains region. Then, the corrected polynomial
stabilization algorithm is applied on a short DC servo-driven belt conveyor system. Here, we
suggest a simple model for the system. The admissible PID gains are showed both in 2D plot
at specified value of kp, and in 3D plot for various values of kp. Hence, this paper provides a
viable and practical means for modeling and robust PID tuning for a short DC servo-driven belt
conveyor system.

Keywords: PID tuning, Robust performance, Short DC servo-driven belt conveyor system, Mod-
eling, Selection procedure, Correction of polynomial stabilization algorithm.

1. Introduction

The majority of control systems in this world are

operated by Proportional-Integral-Derivative (PID)

controllers. Meanwhile, belt conveyor systems have

been used in many industrial applications, espe-

cially in manufacture industries for transporting

material. Because of these reasons, we are inter-

ested on doing research in modeling and PID con-

trollers synthesis for belt conveyor system, by a sim-

ple method and computationally efficient so that it

can be applied in real applications.

The studies of belt conveyor system can be found

in the following works. The paper1) derived the

dynamical equations of a double conveyor system.

They considered the belt displacement as a simple

linear proportion to the motor angle. More compli-

cated model was described in 2). The belt was first

divided into N section and each them was modeled

as a spring-mass-damper system. All spring-mass-

damper parameters are assumed to be constants. In

this paper, we consider a model for DC short servo-

driven belt conveyor system.

We will use the Polynomial Stabilization (PS)

method to find PID region that meet our control

problem setup. This method, based on generalized

Hermite-Biehler theorem3),4), can provide computa-

tional characterization of all admissible PID gains
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controller for various control problems. PS algo-

rithm can cover the problem of stabilizing nomi-

nal PID controller in continuous time domain, dis-

crete time domain, system with time delay5); as well

as finding all robust PID controllers that satisfy a

given robust performance6). Such a characteriza-

tion for all admissible PID gains controller involves

the solution of sets linear programming problem.

The contributions of this paper are stated in the

follows. First, we make correction on the PS algo-

rithm for solving a given robust performance in 6).

This correction is based on the empirical observa-

tion and tests within the admissible PID gains re-

gion, created by the original and corrected PS al-

gorithm. We provides the selection procedure to

find the best PID controller from the admissible

PID controllers. We will apply the corrected PS al-

gorithm for a short DC servo-driven belt conveyor

system. We suggest a simple model for the system.

We will also model the uncertainties with conditions

that we may meet in practical application.

This paper is organized as follows. In Sec. 2, we

will show the control objectives and its solution ap-

proach. The correction and selection procedure of

PS method are given in Sec. 3. The nominal model

of belt conveyor system and its uncertainty model is

described in Sec. 4. Synthesis PID gains controller

for the belt conveyor system by using the corrected

PS method is given in Sec. 5. Finally, conclusion is

given in Sec. 6.
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2. Objectives and Solution Approach

Consider Single-Input Single-Output (SISO)

feedback control system in Fig. 1. Here, r is

reference input, y is output, and d is energy-

bounded disturbance. G(s) is nominal plant model

that we want to control. The plant model is in

form of G(s) = N(s)/D(s), where N(s) and

D(s) are coprime polynomial. ∆(s) is any stable

and proper transfer function with ||∆||∞ < 1.

W1(s) = N1(s)/D1(s) and W2(s) = N2(s)/D2(s)

are weighting functions for describing frequency-

domain characteristics of the performance and

model uncertainty of the system, respectively.

Moreover, D1(s) and D2(s) are Hurwitz polynomial.

The controller C(s) is PID controller, formalize

as

C(s) = kp +
ki

s
+ kds =

kds
2 + kps + ki

s
.

Then, the complementary sensitivity function

(T (s)) and the sensitivity function (S(s)) are,

T (s) =
C(s)G(s)

1 + C(s)G(s)
, S(s) =

1

1 + C(s)G(s)
.

Define the characteristic equation of nominal feed-

back system as

α(s, kp, ki, kd) , sD(s) + (kds
2 + kps + ki)N(s).

The control objectives are:

1. Find all stabilizing PID controller for nominal

feedback system.

2. For the system with multiplicative uncer-

tainty, we want the plant satisfy the robust per-

formance specification, that is

‖|W1(s)S(s)| + |W2(s)T (s)|‖
∞

≤ 1. (1)

The solution approach for PID stabilization of

nominal feedback system is equivalent with placing

all the closed loop characteristic polynomial poles to

W2(s) ∆(s)

G(s)

W1(s)

C(s)r y

d

+ +

+

+

+

−

Fig. 1 The feedback control system configuration.

the open left half plane of s plane. In other word,

the following requirement has to be fulfilled.

α(s, kp, ki, kd) (2)

is Hurwitz.

In order to solve robust performance specification

in Eq. (1), the paper6) suggests the following lemma

to convert Eq. (1) into PS.

Lemma 1 Let

A(s)

B(s)
=

a0 + a1s + ... + axsx

b0 + b1s + ... + bxsx

and

E(s)

F (s)
=

e0 + e1s + ... + eysy

f0 + f1s + ... + fysy

be stable and proper rational functions with bx 6= 0

and fy 6= 0. Then

w

w

w

w

∣

∣

∣

∣

A(s)

B(s)

∣

∣

∣

∣

+

∣

∣

∣

∣

E(s)

F (s)

∣

∣

∣

∣

w

w

w

w

∞

≤ 1,

if and only if

• B(s)F (s)+ejθA(s)F (s)+ejφE(s)B(s) is Hur-

witz for all θ and φ ∈ [0, 2π).

• |ax/bx| + |ey/fy| ≤ 1.

�

If we fit the robust performance specification into

the result of Lemma 1, the conversion from robust

performance condition into PS, can be written as

β(s, kp , ki, kd, θ, φ) , sD1(s)D2(s)D(s)

+ ejθsN1(s)D2(s)D(s)

+ (kds
2 + kps + ki)[D1(s)D2(s)N(s) (3)

+ ejφD1(s)N2(s)N(s)]

is Hurwitz for all θ and φ ∈ [0, 2π), and

|W1(∞)S(∞)| + |W2(∞)T (∞)| ≤ 1. (4)

The solution of the control objectives on PID tun-

ing, is the combination of Eq. (2), (3), and (4).

Equivalently, we have to solve the following condi-

tion (a), (b), and (c).

(a) α(s, kp, ki, kd) is Hurwitz.

(b) β(s, kp, ki, kd) is Hurwitz for all θ and

ø ∈ [0, 2π).

(c) |W1(∞)S(∞)| + |W2(∞)T (∞)| ≤ 1.

Condition (c) is easy to solve while for condition (a)

and (b), we have to stabilize the polynomials using

to PS which are described in 5) and 6).
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3. Correction and Selection Procedure

The Lemma 1 is just mathematical tool to con-

vert infinity norm expression into polynomial form.

Hence, Lemma 1 does not preserve the proper-

ties within the robust performance. In other word,

we can not just apply PS to solve robust perfor-

mance criterion in nominal model only, and expect

that the obtained PID gains controller will hold ro-

bust performance specification for every designed

perturbed systems. Therefore, in order to find the

PID gain controllers that satisfy Eq. (1) via PS, we

have to solve the condition (b) and (c) for nominal

and its perturbations plant. Then, we seek for in-

tersection of PID gains regions which is created by

PS algorithm for nominal parameter and its pertur-

bation. This intersection region is solution region

that satisfy robust performance criterion, given in

Eq. (1). This statement has been validated through

frequency test on Eq. (1), for the controller regions

that are obtained through the original and the cor-

rected PS algorithm.

PS algorithm provides all robust PID controllers

for a system. Now there is a question on how to

choose the best PID parameter from those admis-

sible robust PID controllers. The best robust PID

controller is the PID parameter that gives minimum

value of the infinity norm of robust performance in

Eq. (1). For a simple bounded polygon region of

admissible PID controller, the following results is

found from empirical observation. In the boundary

of admissible region, the infinity norm in Eq. (1) is

equal one. This norm will be reduced as we move

away from the boundary of region. For such kind of

controller region shape, the farthest point from the

boundary is centroid of polygon. Therefore, in or-

der to find the best PID controller, we have to find

the largest admissible region at a specific value of

kp, and find the centroid in that region. This point

will give us the lowest infinity norm in Eq. (1).

4. Belt Conveyor System Model

In this section, we develop mathematical models

of a short DC servo-driven belt conveyor system.

First, the nominal model of the belt conveyor sys-

tem is presented in Sec. 4.1. Then, the procedure

of finding the weighting function W2 for describing

uncertainties of the belt conveyor model, is given in

Sec 4.2. We will use those models to apply the cor-

rected PS method that solve the control objectives

in Sec. 2.

Table1 Parameters of the belt conveyor system.

Parameter Value Unit

Rotor inertia (J) 1.2 × 10−6 Kg ·m2

Torque constant (Km) 13.3 × 10−1 N·m/A

Back emf. constant (Kb) 13.3 × 10−1 Volt/rad

Resistance (R) 2.17 Ω

Inductance (L) 1.17 × 10−2 H

Friction torque (B) 2.5 × 10−3 N·m·s

Motor radius (r) 17.4 mm

Belt elastic modulus (k) 4.5 × 10−2 N/m

Belt mass (Mb) 0.2 kg

Material mass (Mm) 1 kg

4.1 Nominal Model

We suggest mathematical model of DC servo-

driven belt conveyor system can be divided into two

primary parts, i.e., DC motor and conveyor load,

as depicted in Fig. 2. The conveyor load trans-

fer function Glo, consists of the transfer function of

the conveyor belt and the load mass which is trans-

ported by the belt. Here, we consider the Glo is the

feedback loop from the motor angle to the motor

torque. The output of Glo is torque force τlo, that

has the effect of reducing torque τ produce by the

motor. The input of the belt conveyor system u is

the voltage, and the output y is the motor angle θ.

We neglect friction within the belt conveyor system

since its considerably produce small effect for the

model. The other model parameter in the nominal

model are explained in Table 1.

For a short belt conveyor system, we model Glo

as single spring-mass system, as shown in Fig. 3.

The spring represents the tension or elasticity of the

belt. The mass (M) consists of belt mass (Mb), and

material mass carried (Mm) by the system. Based

on this model, the load transfer function is

Glo =
τlo(s)

θ(s)
= s2(Mm + Mb)r + kr.

Combine the transfer function of the load and DC
motor, we obtain mathematical model of the nomi-
nal belt conveyor system as the following.

1

Js + B

1

Ls + R

1

s

Kb

Km

Glo

u θτ

τlo

+

−

+
−

ω

DC motor

Conveyor load

Fig. 2 The nominal model of the belt conveyor system.
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Mrθ̈
krθ

τlo

Fig. 3 The conveyor load model.

G0 =
N0(s)

D0(s)
(5)

=
Km

Glo(Ls + R) + KmKbs + s(Js + B)(Ls + R)
.

4.2 Model with Uncertainty

Multiplicative uncertainty can be calculated by

the following relative error between nominal plant

G0(jω) and its all possible perturbations Ĝ(jω),

lI(jω) =

∣

∣

∣

∣

∣

Ĝ(jω) − G0(jω)

G0(jω)

∣

∣

∣

∣

∣

.

Uncertainty weight function W2(jω) is chosen such

that

|W2(jω)| ≥ lI(jω), ∀ω.

5. Simulation Results

Before we synthesizes the admissible robust PID

controller for the system, we decides the W1(s) and

W2(s). The W1(s) is formulated as suggested in 7),

in the form of

W1(s) =
s/Ms + ωb

s + ωbǫ
.

Here, ωb is closed loop bandwith and ǫ is steady
state error. Ms is peak sensitivity written as

Ms := ||S||∞ = |S(jωmax)| =
α

p

α2 + 4ξ2

p

(1 − α2)2 + 4ξ2α2
,

where α =

√

0.5 + 0.5
√

1 + 8ξ2 and ωmax = αωn,

ωn is natural frequency.

We define our nominal performance specifications

as the following.

• Steady state error is 0.001 [rad].

• In order to have damping ratio around 0.5, we

set peak sensitivity (Ms) less than 1.5.

• Closed loop bandwith frequency is 2 [rad/sec].
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Fig. 4 Uncertainty weighting function W2 plot (solid)

and its relative error lI plot (dotted).

Therefore, W1(s) can be formalized as

W1(s) =
s/1.5 + 2

s + 0.002
. (6)

The model uncertainties are determined under

various condition as follow.

• Material mass (Mm) is varied by ±100%.

• Belt elastic modulus (k) is varied by ±20%.

• Time delay within the system is 0.1 [sec].
Using parameters in Table 1, we plot relative er-
ror ll of the nominal belt conveyor system with its
determined perturbations in Fig. 4. Then, we can
choose the weighting function W2 for describing the
uncertainties as

W2 =
N2

D2
=

2.209s6 + 122.6s5 + 4199s4 + b

s6 + 112.7s5 + 9186s4 + c
b = 6375s3 + 1063s2 + 102s + 0.8992

c = (2.883 × 105)s3 + (3.758 × 106)s2 + 7241s + 6.807.

5.1 The Stabilizing PID Controllers

In this section, we conduct the PS algorithm to

find the stabilizing PID controller for the system,

or the solution of condition (a) in Sec. 2. For the

belt conveyor system with an input delay = 0.1s,

the nominal system in Eq. 5 is changed into

Gd(s) = e−0.1s ·
N0(s)

D0(s)
.

Before we can apply the PS algorithm for finding

the stabilizing PID gains controller for the system,

we need to make an approximation for the input

delay into polynomial form, by using Padè approxi-

mation. Using H∞ model matching method8) with

maximum error is 10−3, the first order Padè approx-

imation will suffice to model the input delay. Then,

Gd can be approximated as
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Fig. 5 The all stabilizing (ki, kd) gains of the belt con-

veyor system with delay time 0.1s, at various

value of kp.

Gd(s) =
(−s + 20) · N0(s)

(s + 20) · D0(s)
.

Using this nominal model approximation, We are

ready to using the PS algorithm for obtaining the

set of stabilizing PID gains. The all stabilizing PID

gains controllers for the nominal system at various

values of kp, is shown in Fig. 5.

5.2 The Robust PID Tuning

In order to solve the problem, we have to attain

the conditions (a) and (b) simultaneously, as men-

tioned in Sec. 2. It is easy to see that condition (c)

always gives us true inequality for the nominal sys-

tem and its perturbations, and therefore give us no

additional constraint. Hence, the robust PID gains

region defend only by condition (b), that can be

solved by using PS algorithm.

Based on Sec. 3, we need to find the intersection

region of nominal system and its perturbation for

obtaining the true robust PID controller. The ex-

ample of the intersection region at kp = 3.44 is given

in Fig. 6. Therefore, this intersection region is the

robust PID controllers at kp = 3.44. Sweeping at

the various values of kp, the all robust PID tuning

at various values of kp is shown in Fig. 7.

In order to find the minimum value of infinity

norm of a given robust performance, we select cen-

troid of the largest PID region from whole admis-

sible region in Fig. 7. The largest admissible PID

region is when kp equal 3.44. The centroid point at

this kp is (ki = 0.580, kd = 0.093). The position

of centroid is shown in Fig. 8.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

ki

k
d

Fig. 6 The intersection region (dark) of solution condi-

tion (b) for the nominal system and its perturba-

tions.

We perform robustness test in frequency domain

for the nominal model of belt conveyor system and

its perturbations, using the centroid point. The fre-

quency test result in Fig. 9 shows that our admis-

sible PID gains controller passes the test.

Addition observation can be made by using

the results. Our nominal belt conveyor sys-

tem with an input delay 0.1 [sec] has ulti-

mate gain Ku = 19.1173, and ultimate pe-

riod Tu = 0.4565. Hence, by using Zieler-

Nichols formula, the Ziegler-Nichols PID gain is

kp = 11.4704, ki = 50.2557, kd = 0.6545.

The PID gain obtained from the Ziegler-Nichols

method is lies outside the robust PID showed in

Fig. 7. Therefore, we can say that PID controller

via ziegler-Nichols for the belt conveyor system, is

fragile (opposite of robust) controller for our de-

signed robust performance.

The comparison of step responses for the nominal

system and its perturbation using Ziegler-Nichols
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Fig. 7 The all robust (ki, kd) gains of the belt conveyor

system, at various value of kp.
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Fig. 8 All PID gains controller satisfied robust perfor-

mance specification at kp = 3.44, and its best

PID gain controller (cross).

PID controller, with the best PID gain controller

obtained by corrected PS, is shown in the Fig. 10.

Our PID controller via PS method shows better per-

formance both for nominal and perturbation plant

comparing the one via Ziegler-Nichols method, and

relatively follows the designed performance.

6. Conclusion

We have presented the PID tuning process to find

the all stabilizing and robust PID controllers, based

on corrected PS algorithm. We applied the method

on a short DC servo-driven belt conveyor system.

A simple nominal and uncertainty model is given to

cover the practical aspect of the belt conveyor sys-

tem. Based on those models, we have synthesized

the all PID gains controller for the belt conveyor

system.

A best candidate of robust PID gains controller

was picked from the admissible region that satisfy

our design objectives. We conducted robustness

tests in frequency domain and step response test,
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Fig. 9 Frequency tests for the nominal and its pertur-

bation systems.
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Fig. 10 Step responses for nominal (bolt) the belt con-

veyor system and its perturbations, using PID

tuning via PS and via Ziegler-Nichols.

both for its nominal and perturbed systems. The

frequency response test indicates that robust per-

formance condition is achieved, whereas the step

responses show that the performances are reason-

ably follows the designed performance criterion.

In addition, we have shown our admissible robust

PID gains controller tuning has better performance

than PID gain controller tuning via Ziegler-Nichols

method.

References

1) M. E. Wroe and J. A. De Abreu-Garcia, “Analysis

and control of a double conveyor system with a take-

up loop”, Proc. 20th Int. Conf. on Industrial Elect.,

Contr., and Instrument., Vol.3, pp.2023–2026, 1994.

2) H. Takeuchi and K. Z. Liu, “Velocity control of a mine

truck system using rationally scaled H∞ control”, Proc.

of the 35th IEEE Dec. and Contr., Vol.1, pp.767–772,

1996.

3) M. T. Ho, A. Datta, and S. P. Bhattacharyya, “A gen-

eralization of the Hermite Biehler theorem”, Linear Al-

gebra and its Appl., Vol.312-303, pp.135–153, 1999.

4) M. T. Ho, A. Datta, and S. P. Bhattacharyya, “A gener-

alization of the Hermite Biehler theorem: the complex

case”, Linear Algebra and its Appl., Vol.320, pp.23–36,

2000.

5) M. T. Ho, G. Silva, A. Datta, and S. P. Bhattacharyya,

“Real and complex polynomial stabilization: stabiliza-

tion and performance”, Proc. Americ. Contr. Conf.,

pp.4126–4138, 2004.

6) M. T. Ho, and C. Y. Lin, “PID controller design for

robust performance”, IEEE Trans. Aut. Cont., Vol.48,

No.8, pp.1069–1075, 2003.

7) K. Zhou, and J. C. Doyle, Essentials of Robust Control,

pp.81–94, Prentice Hall, 1998.

8) J. C. Doyle, B. A. Francis, and A. R. Tannenbaum,

Feedback Control Theory, pp. 156–171, Macmilllan

Publishing Company, 1992.

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼




