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Abstract. We consider an online job scheduling problem on a single
machine with precedence constraints under uncertainty. In this problem,
for each trial t = 1, . . . , T , the player chooses a total order (permutation)
of n fixed jobs satisfying some prefixed precedence constraints. Then, the
adversary determines the processing time for each job, 9 and the player
incurs as loss the sum of the processing time and the waiting time. The
goal of the player is to perform as well as the best fixed total order of
jobs in hindsight. We formulate the problem as an online linear optimiza-
tion problem over the permutahedron (the convex hull of permutation
vectors) with specific linear constraints, in which the underlying decision
space is written with exponentially many linear constraints. We propose
a polynomial time online linear optimization algorithm; it predicts al-
most as well as the state-of-the-art offline approximation algorithms do
in hindsight. In preliminary experiments, our algorithm runs consider-
ably faster than the alternatives while performing competitively.

1 Introduction

Job scheduling is a fundamental problem in the field of computer science and
operations research, and it has been studied extensively for decades. It has broad
applications in operating systems, assignments of tasks to workers, manufactur-
ing systems, and many other areas.

Studies of how to schedule jobs that use a single machine under precedence
constraints is well studied in the mathematical programming literature. More
precisely, assume that there are n fixed jobs and a single processor. Let [n] =
{1, . . . , n} be the set of jobs. Each job i needs processing time `i to be completed
by the processor. A schedule is a permutation over n jobs, and the processor
does the jobs sequentially according to the schedule. For a given schedule, the
completion time of job i is the sum of the waiting time (the sum of the processing
times of the jobs finished before completing job i) and the processing time of
job i. There are precedence constraints over n jobs. For example, job 1 needs
to be completed before job 3, and job 2 needs to be completed before job 5.
The constraints are represented as a set of binary relations A ⊂ [n] × [n], e.g.,
A = {(1, 3), (2, 5)}. Given the processing time of n jobs and the precedence
constraints A, the typical goal is to find a schedule that minimizes the sum of
the (weighted) completion times of the n jobs, subject to the constraints A. This
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problem is categorized as 1|prec|
∑

j Cj in the literature1. It is known that this
problem is NP-hard [18,19].

For further developments, see, e.g., [2,9]. Several 2-approximation algorithms
have been proposed for the offline setting [6, 7, 14, 22, 25] and a stochastic set-
ting [24, 26]. In this paper, we consider a different scenario for the classical
problem. What if the processing time of each job is unknown when we deter-
mine the schedule? This question is quite natural in many application areas that
cope with uncertainty and in which the processing time of each job is uncertain
or varies in time. It is impossible to solve this problem directly without knowing
the processing time, so we consider an iterative scenario. Each day t = 1, . . . , T ,
we determine a total order of n fixed jobs satisfying some prefixed precedence
constraints. Then, after processing all n jobs according to the schedule, the
processing time of each job is revealed. The goal is to minimize the sum of the
completion times over all jobs and all T days under fixed precedence constraints,
where the completion time of job i at day t is the sum of processing times of all
jobs prior to i and the processing time of job i.

Now, let us formulate the problem in a formal way. A permutation σ is a
bijection from [n] to [n]. Another representation of a permutation σ over the
set [n] is a vector in [n]n, defined as σ = (σ(1), . . . , σ(n)), which corresponds
to σ. For example, (3, 2, 1, 4) is a representation of a permutation for n = 4.
The vector representation of permutations is convenient, since the sum of the
completion times of the jobs according to some permutation σ is expressed as
the inner product σ · `, where ` is the vector consisting of the processing times
of the jobs. For example, there are 4 jobs to be processed according to the order
4, 1, 2, 3. Each processing time is given as ` = (`1, `2, `3, `4). The completion
times of jobs i = 4, 1, 2, 3 are `4, `4 + `1, `4 + `1 + `2, and `4 + `1 + `2 + `3,
respectively, and the sum of completion times is 4`4 + 3`1 + 2`2 + `3. Note that
the completion time exactly corresponds to σ · `, the inner product of ` and
the permutation vector σ=(3, 2, 1, 4). Here, component σi of the permutation σ
represents the priority of job i.

Let Sn be the set of all permutations over [n], i.e., Sn = {σ ∈ [n]n| σ is a
permutation over [n]}. In particular, the convex hull of all permutations is called
the permutahedron, denoted as Pn. The set A of precedence constraints is given
as A = {(ik, jk) ∈ [n] × [n] | ik 6= jk, k = 1, . . . ,m}, meaning that object ik is
preferred to object jk. The set A induces the set defined by the linear constraints
Precons(A) = {p ∈ Rn

+ | pi ≥ pj for (i, j) ∈ A}. We further assume that there
exists a linear ordering consistent with A. In other words, we assume there to
exist a permutation σ ∈ Sn ∩ Precons(A).

The online job scheduling problem can be formulated as the following online
linear optimization problem over Sn ∩ Precons(A). For each trial t = 1, . . . , T ,
(i) the player predicts a permutation σt ∈ Sn ∩ Precons(A), (ii) the adversary
returns a loss vector `t ∈ [0, 1]n, and (iii) the player incurs loss σt · `t. The goal

1 The weighted version is known as 1|prec|
∑

j wjCj .
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of the player is to minimize the α-regret for some small α ≥ 1:

α-Regret =

T∑
t=1

σt · `t − α min
σ∈Sn∩Precons(A)

T∑
t=1

σ · `t.

In this paper, we propose an online linear optimization algorithm over Pn ∩
Precons(A) whose the α-regret is O(n2

√
T ) for α = 2−2/(n+1). For each trial,

our algorithm runs in polynomial time in n and m. More precisely, the running
time at each trial is O(n4). Further, we show that a lower bound of the 1-regret
is Ω(n2

√
T ).

In addition, we prove that there is no polynomial time algorithm with α-
regret poly(n,m)

√
T with α < 2 − 2/(n + 1) unless there exists a randomized

approximation algorithm with approximation α < 2 − 2/(n + 1) for the cor-
responding offline problem. Thus far, the state-of-the-art approximation algo-
rithms have an approximation ratio 2− 2/(n+ 1), and it is a longstanding open
problem to find an approximation algorithm with a better ratio [30]. It has been
determined that there is no polynomial-time (1 + ε)-approximation algorithm
(PTAS) for any constant ε > 0 under some standard assumption of the com-
plexity theory [3]. Therefore, the regret bound is optimal among any polynomial
algorithms unless there exists a better approximation algorithm for the offline
problem.

Note that our online algorithm is deterministic, so some reader might worry
that the algorithm works without any randomization. We show that our problem
can be reduced to online problem over continuous space and rounding problem.
For the online algorithm, some deterministic algorithms are known and can
achieve a good regret bound. Therefore, there is no reason that our algorithm is
stochastic.

2 Related Research

There has been related research on the online prediction of permutations. The
earliest approach was to directly design online prediction algorithms for permuta-
tions. Helmbold and Warmuth [15] were the first to do this, and in their setting, a
permutation is given as a permutation matrix, which is a more generic expression
than a permutation vector (i.e., permutation matrices can encode permutation
vectors). Thus, their algorithm can be used for our problem without precedence
constraints. Yasutake et al. [31] proposed an online linear optimization algorithm
over the permutahedron when there are no precedence constraints. Ailon pro-
posed another online optimization algorithm with improved regret bound and
time complexity [1]. Suehiro et al. [28] extended the result of Yasutake et al. [31]
to the submodular base polyhedron; this can be used not only for permuta-
tions, but also for other combinatorial objects, such as spanning trees. These
algorithms, however, are not designed for precedence-constrained problems.

The second approach is to transform an offline algorithm to an online op-
timization algorithm. By using the conversion method of Kakade et al. [16] or
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that of Fujita et al. [13], we can construct online optimization algorithms with
α-regret that are similar to ours.

However, with the method of Kakade et al. [16], the resulting time complexity
per trial is linear in T , which is not desirable. For the method of Fujita et al., the
α-regret is proved to be α = 2− 2/(n− 1) + ε, which is slightly inferior to that
of our method. The running time per trial is poly(n, 1/ε), which is independent
of T but depends on 1/ε. Also, Fujita et al. showed that if an offline algorithm
use an LP-relaxation and a metarounding, then FPL with the algorithm can
achieve good bounds on the α-regret. But, the LP-relaxation based algorithm of
previous work cannot be directly applied to our problem, because its rounding
algorithm is not metarounding.

Our approach is completely different from previous offline algorithms. The
known offline approximation algorithms rely on formulations that use completion-
time variables or linear-ordering variables. In the first formulation, n variables
indicate the time at which the job is completed. In this case, the relaxed prob-
lem is formulated as a linear program with exponentially many constraints (see,
e.g., [14, 25]). The problem can be approximately solved in polynomial time by
using the ellipsoid method. In the second case, there are

(
n
2

)
variables, which

represent relative comparisons between pairs of jobs. The relaxed problem is
also formulated as a linear program with O(n2) variables and O(n3) linear con-
straints (e.g., [7]). In both formulations, the set of linear constraints and asso-
ciated rounding methods require knowledge of the processing times of the jobs,
and these are not available in the online setting. Our approach uses some ge-
ometric properties of the permutahedron, and thus it is totally different from
the previous approaches. As a result, our rounding algorithm does not require
knowledge of the processing times of the jobs. Thus, our approach is suitable for
the online problem. On the other hand, a shortcoming of our approach is that it
is only able to deal with the online problem of minimizing the unweighted total
sum of the completion times.

Online learning approaches for job scheduling problems are not new. In par-
ticular, Even-Dar et al. [10] considered an online optimization problem with
global functions, and its applications schedule jobs for several machines in or-
der to minimize the makespan (the time at which the final job is completed).
Both the objectives and the techniques of Even-Dar et al. [10] are different from
ours. For online multi-task learning, Lugosi et al. considered some class of con-
straints [20]. For some natural class of constraints, they showed that the online
task can be reduced to the shortest path problem, which is efficiently solvable.
However, the constraints in our setting are much complicated and their method
does not seem to be applicable to our problem.

3 Online Linear Optimization Algorithm over the
Permutations

In this section, we propose our algorithm PermLearnPrec and prove its α-regret
bound. We will use the notion of the permutahedron. The permutahedron Pn
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is the convex hull of the set of permutations Sn. It is known that Pn can be

represented as the set of points p ∈ Rn
+ satisfying

∑
i∈S pi ≤

∑|S|
i=1(n + 1 −

i) for any S ⊂ [n], and
∑n

i=1 pi = n(n+ 1)/2. For further discussion of the
permutahedron, see, e.g., [12, 32].

3.1 Main Structure

Our algorithm PermLearnPrec is shown as Algorithm 1. The algorithm maintains
a weight vector pt in Rn

+, which represents a mixture of the permutations in Sn.
At each trial t, it “rounds” (see next section for description) a vector pt into
a permutation σt so that σt ≤ αpt for some α ≥ 1. After the loss vector
`t is given, PermLearnPrec updates the weight vector pt in an additive way
and successively projects it onto the set of linear constraints representing the
precedence constraints Precons(A) and the intersection of the permutahedron
Pn and Precons(A).

The main structure of our algorithm is built on a standard online convex opti-
mization algorithm known as online gradient descent (OGD) [33]. OGD consists
of an additive update of the weight vectors, followed by projection to some con-
vex set of interest. In our case, the convex set is Pn ∩ Precons(A). Using these
procedures, the regret bound of OGD can be proved to be O(n2

√
T ). Thus,

the successive projections are apparently redundant, and only one projection to
Pn ∩Precons(A) would suffice. However, the projection onto Pn ∩Precons(A) is
not known to be tractable, and it contains exponentially many linear constraints.
Thus, we take a different approach. Instead of performing the projection directly,
we use successive projections onto Precons(A) and Pn ∩ Precons(A). Below, we
will show that these successive projections are the key to an efficient implemen-
tation of our algorithm. First, we will prove an α-regret bound of the proposed
algorithm, and then we will show that our algorithm can be efficiently realized.

We begin our analysis of PermLearnPrec with the following lemma. The
lemma guarantees the progression of pt towards any vector in Pn ∩Precons(A),
as measured by the Euclidean norm squared.

Lemma 1 For any q ∈ Pn ∩ Precons(A) and for any t ≥ 1,

‖q − pt‖22 − ‖q − pt+1‖22 ≥ 2η(q − pt) · `t − η2‖`t‖22.

Proof. By using the generalized Pythagorean theorem (e.g., [5]),

‖q − pt+ 2
3
‖22 ≥ ‖q − pt+1‖22 + ‖pt+1 − pt+ 2

3
‖22

and

‖q − pt+ 1
3
‖22 ≥ ‖q − pt+ 2

3
‖22 + ‖pt+ 2

3
− pt+ 1

3
‖22.

By combining these, we obtain

‖q − pt‖22 − ‖q − pt+1‖22
≥ ‖q − pt‖22 − ‖q − pt+ 1

3
‖22 + ‖pt+1 − pt+ 2

3
‖22 + ‖pt+ 2

3
− pt+ 1

3
‖22

≥ ‖q − pt‖22 − ‖q − pt+ 1
3
‖22, (1)
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Algorithm 1 PermLearnPrec
Input: parameter η > 0.

1. Let p1 = ((n+ 1)/2, . . . , (n+ 1)/2) ∈ [0, n]n.
2. For t = 1, . . . , T

(a) (Rounding) Run Rounding(pt) and get σt ∈ Sn such that σt ≤ (2− 2/(n+
1))pt.

(b) Incur a loss σt · `t.
(c) Update pt+ 1

3
as pt+ 1

3
= pt − η`t.

(d) (1st projection) Let pt+ 2
3

be the Euclidean projection onto the set Precons(A),

.i.e.,
pt+ 2

3
= arg min

p∈Precons(A)
‖p− pt+ 1

3
‖22.

(e) (2nd projection) Let pt+1 be the projection of pt+ 2
3

onto the set Pn ∩
Precons(A), that is,

pt+1 = arg min
p∈Pn∩Precons(A)

‖p− pt+ 2
3
‖22.

where the last inequality follows since Euclidean distance is nonnegative.
Then, because pt+ 1

3
= pt − η`t, the right-hand side of inequality (1) is

‖q − pt‖22 − ‖q − pt+ 1
3
‖22 = 2η(q − pt) · `t − η2‖`t‖22. (2)

By combining (1) and (2), we complete the proof.

Lemma 2 (Cf. Zinkevich [33]) For any T ≥ 1 and η = (n+ 1)/(2
√
T ),

T∑
t=1

pt · `t ≤ min
p∈Pn∩Precons(A)

T∑
t=1

p · `t +
n(n+ 1)

2

√
T .

Proof. By Lemma 1, summing the inequality from t = 1 to T and rearranging,
we obtain that for any q ∈ Pn ∩ Precons(A),

T∑
t=1

(pt − q) · `t ≤
1

2η

T∑
t=1

(‖q − pt‖22 − ‖q − pt+1‖22) +
η

2

T∑
t=1

‖`t‖22

=
1

2η
(‖q − p1‖22 − ‖q − pT ‖22) +

η

2

T∑
t=1

‖`t‖22

≤ 1

2η
n(
n+ 1

2
)2 +

η

2
nT,

where the last inequality holds since for any i ∈ [n], (qi − pi,1)2 is at most

p21,i = (n+1
2 )2, and `t ∈ [0, 1]n. By setting η = (n + 1)/(2

√
T ), we have the

cumulative loss bound as desired.
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4 Efficient Implementations of Projection and Rounding

In this section, we propose efficient algorithms for successive projections onto
Precons(A) and Pn ∩ Precons(A). We then show an implementation of the pro-
cedure Rounding.

4.1 Projection onto the Set Precons(A) of the Precedence
Constraints

The problem of projection onto Precons(A) is described as follows:

min
p∈Rn

‖p− q‖22

sub.to: pi ≥ pj , for (i, j) ∈ A.

This problem is known as the isotonic regression problem [21, 23, 27]. Previ-
ously known algorithms for the isotonic regression run in O(mn2 log n) or O(n4)
time (see [21] for details), where m = |A|.

4.2 Projection of a point in Precons(A) onto Pn ∩ Precons(A)

In this subsection, we show an efficient algorithm, which we will call Projection,
for computing the projection a point in Precons(A) onto the intersection of the
permutahedron Pn and the set Precons(A) of the precedence constraints. In fact,
we will show that the problem can be reduced to projection onto Pn only, and
thus we can use the algorithm of Suehiro et al. [28] for finding the projection
onto Pn. This is shown as Algorithm 2.

Formally, the problem is stated as follows:

min
p∈Rn

‖p− q‖22

sub. to:
∑
j∈S

pj ≤
|S|∑
j=1

(n+ 1− j), for any S ⊂ [n],

n∑
j=1

pj =
n(n+ 1)

2
,

pi ≥ pj , for (i, j) ∈ A.

Without loss of generality, we may assume that elements in q are sorted
in descending order, i.e., q1 ≥ q2 ≥ · · · ≥ qn. This can be achieved in time
O(n log n) by sorting q. First, we show that this projection preserves the order
in q.

Lemma 3 (Order Preserving Lemma [28]) Let p∗ be the projection of q
onto Pn s.t. q1 ≥ q2 ≥ · · · ≥ qn. Then, the projection p∗ also satisfies p∗1 ≥ p∗2 ≥
... ≥ p∗n.
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Furthermore, we need to show that the projection onto Pn preserves equality,
and this is guaranteed by the following lemma.

Lemma 4 (Equality Preserving Lemma) Let p∗ be the projection of q onto
Pn. Then, the projection p∗ satisfies pi = pj if qi = qj.

Proof. Assume that the lemma is false. Then, there exists a pair i and j such that
qi = qj and p∗i < p∗j . Let p′ be the vector obtained by letting p′i = p′j = (p∗i +p∗j )/2
and p′k = p∗k for k 6= i, j. It can be easily verified that p′s ∈ Pn. Now, observe
that

‖p∗ − q‖22 − ‖p′ − q‖22 =p∗2i + p∗2j − p
′2
i − p

′2
j + 2p′ · q − 2p∗ · q

=p∗2i + p∗2j − (p∗i + p∗j )2/2 + 2(p′i − p∗i )qi + 2(p′j − p∗j )qj

=
1

2
(p∗i − p∗j )2 + 2(p′i + p′j − p∗i − p∗j )qi

=
1

2
(p∗i − p∗j )2 > 0,

which contradicts the fact that p∗ is the projection.

Now we are ready to show one of our main technical lemmas.

Lemma 5 For any q ∈ Precons(A),

arg min
p∈Pn

‖p− q‖ = arg min
p∈Pn∩Precons(A)

‖p− q‖.

Proof. Let p∗ = arg minp∈Pn ‖p − q‖. By definition of the projection, for any
p ∈ Pn∩Precons(A) ⊆ Pn, ‖p−q‖ ≥ ‖p∗−q‖. Further, by Lemmas 3 and 4, p∗

preserves the order and equality in q. That is, p∗ also satisfies the constraints
defined by Precons(A). Therefore, we have p∗ ∈ Precons(A). These facts imply
that p∗ is indeed the projection of q onto Pn ∩ Precons(A).

So, by Lemma 2, when a vector q ∈ Precons(A) is given, we can compute
the projection of q onto Pn ∩ Precons(A) by computing the projection of q
onto Pn only. By applying the projection algorithm of Suehiro et al. [28] for the
base polyhedron (which generalizes the permutahedron), we obtain the following
result.

Theorem 1 There exists an algorithm with input q ∈ Precons(A) that outputs
the projection of q onto Pn ∩ Precons(A) in time O(n2) and space O(n).

4.3 Rounding

Algorithm 3 is Rounding. The algorithm is simple. Roughly speaking, if the
input p ∈ Pn ∩ Precons(A) is sorted as p1 ≥ · · · ≥ pn, the algorithm outputs σ
such that σ1 ≥ · · · ≥ σn, i.e., σ = (n, n− 1, . . . , 1). Note that we need to break
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Algorithm 2 Projection onto Pn ∩ Precons(A)

Input: q ∈ Precons(A) s.t. q1 ≥ q2 ≥ · · · ≥ qn.
Output: projection x of q onto Pn.

1. Let i0 = 0.
2. For k = 1, . . . ,

(a) Let Ck(i) =
g(i)−g(ik−1)−

∑i
j=ik−1+1 qj

i−ik−1
,

where g(i) =
∑i

j=1(n+ 1− j),
and ik = arg mini:ik−1+1≤i≤n C

k(i);
if there are multiple minimizers, choose the largest one as ik.

(b) Set xi = qi + Ct(ik) (for ik−1 + 1 ≤ i ≤ ik).
(c) If ik = n, then break.

3. Output x.

Algorithm 3 Rounding

Input: p ∈ Pn ∩ Precons(A) satisfying p1 ≥ p2 ≥ · · · ≥ pn and the transitive closure
A∗ of A
Output: Permutation σ ∈ Sn ∩ Precons(A)

1. Sort elements of p in the descending order, where for elements i, j such that pi = pj ,
i is larger than j if (i, j) ∈ A∗, otherwise beak the tie arbitrarily.

2. Output the permutation σ s.t. σi = (n+ 1)− ri, where ri is the ordinal of i in the
above order.

ties in p to construct σ. Let A∗ be the transitive closure of A. Then, given an
equivalence set {j | pi = pj}, we break ties so that if (i, j) ∈ A∗, σi ≥ σj . This
can be done by, e.g., quicksort. First, we will show that Rounding guarantees
that for each i ∈ [n], σi ≤ (2−2/(n+1))pi, and then discuss its time complexity.

We prove the following lemma for Rounding.

Lemma 6 For any p ∈ Pn ∩Precons(A) s.t. p1 ≥ · · · ≥ pn, given p, the output
σ of Rounding satisfies that for each i ∈ [n], σi ≤ (2− 2/(n+ 1))pi.

Proof. For each i ∈ [n], by definition of the permutahedron, we have

i∑
j=1

pj ≤
i−1∑
j=1

j =
i(i− 1)

2
. (3)

By the assumption that p1 ≥ · · · ≥ pn, the average of pi + pi+1 + · · ·+ pn is not
larger than pi. Thus, we have

pi ≥
∑n

j=i pj

n+ 1− i
=

∑n
j=1 pj −

∑i−1
j=1 pj

n+ 1− i
≥ (n+ i)(n+ 1− i)

2(n+ 1− i)
=
n+ i

2
,
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where the second inequality follows from (3). Thus, for each i ∈ [n],

σi
pi
≤ n− i+ 1

1
2 (n+ i)

=
2(n+ i− 1)

n+ i
= 2− 4i− 2

n+ i
.

Here, the second term 4i−2
n+i is minimized when i = 1. Therefore, σi/pi ≤ 2 −

2/(n+ 1), as claimed.

For computing Rounding, we need to construct the transitive closure A∗ of
A before the protocol begins. It is well known that a transitive closure can be
computed by using algorithms for all-pairs shortest paths. For this problem, the
Floyd-Warshall algorithm can be used; it runs in time O(n3) and space O(n2)
(see, e.g., [8]). When A is small, for example, m << n2, we can use Johnson’s
algorithm, which runs in time O(n2 log n+ nm) and space O(m2).

The time complexity of Rounding is O(n2), which is due to the sorting.
The space complexity is O(n2), if we use the Floyd-Warshall algorithm with an
adjacency matrix. The space complexity can be reduced to O(m2) if we employ
Johnson’s algorithm, which uses an adjacency list. On the other hand, we need
an extra O(logm) factor in the time complexity since we need O(logm) time to
check if (i, j) ∈ A∗ when A∗ is given as an adjacency list.

4.4 Main Result

We are now ready to prove the main result. From Lemma 2, Lemma 6, Theorem 1
and the fact that for any x ∈ Rn

+, minp∈Pn∩Precons(A) p·x ≤ minσ∈Sn∩Precons(A) σ·
x, we immediately get the following theorem.

Theorem 2 There exists an online linear optimization algorithm over Pn ∩
Precons(A) such that

1. its (2− 2/(n+ 1))-regret is O(n2
√
T ), and

2. its per-trial running time is O(n4).

5 Lower Bound

In this section, we derive a lower bound for the regret for our online prediction
problem over the permutahedron Pn. Here, we consider the special case of no
precedence constraint being given.

Theorem 3 For our prediction problem over the permutahedron Pn, the 1-regret
is Ω(n2

√
T ).

Proof. We consider an adversary who makes random choices. More precisely, at
each trial t, the adversary randomly chooses a loss vector `t from `0, `1, where `0

(`1) is the loss vector in which the first n
2 elements are 0s (1s) and the remaining
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elements are 1s (0s). Then, for any online optimization algorithm that outputs
σt ∈ St at trial t,

E[

T∑
t=1

σt · `t] =
n(n+ 1)T

4
.

Now, let us consider the best fixed permutation. Let σ0 = (n, n − 1, n −
2, . . . , 1) and σ1 = (1, 2, 3, 4, . . . , n). Suppose that `0 appears more frequently
than `1 by k. The best permutation is σ0, and its cumulative loss is

n
2∑

i=1

i

(
T

2
+
k

2

)
+

n∑
i=n

2 +1

i

(
T

2
− k

2

)

=
n(n+ 1)T

4
+
k

2

(
2

n
2 (n

2 + 1)

2
− n(n+ 1)

2

)
k

2

=
n(n+ 1)T

4
− k

2
n

(
n+ 1

2
−

n
2 + 1

2

)
=
n(n+ 1)T

4
− k

2

n2

4
.

The same argument follows for the opposite case, where `1 is more frequent by
k. In fact, k can be expressed as k =

∑T
t=1 δt, where each δt is a discrete uniform

random variable that takes values of ±1. Then, the expected regret of any online

optimization algorithm is at least n2

8 E
[∣∣∣∑T

t=1 δt

∣∣∣]. By the central limit theorem,

the distribution of
∑T

t=1 δt converges to a Gaussian distribution with mean 0 and

variance
√
T . Thus, for sufficiently large T , Pr[|

∑T
t=1 δt| ≥

√
T ] is a constant: c

(0 < c < 1). Therefore, the expected regret bound has a lower bound of n2

8 c
√
T .

This implies that there exists a sequence of loss vectors that enforces any online
optimization algorithm to incur regret that is at least Ω(n2

√
T ).

In general, this lower bound on 1-regret is tight, since there are online algo-
rithms that achieve a 1-regret with O(n2

√
T ) ( [1, 28]).

It is natural to ask if the (2 − 2/(n + 1))-regret O(n2
√
T ) is tight under

precedence constraints. We do not yet have a lower bound for this case, but we
will show that our algorithm is optimal unless there is an offline algorithm with
an approximation ratio α < 2.

Theorem 4 If there exists a polynomial-time online linear optimization algo-
rithm with an α-regret of poly(n,m)

√
T , then there also exists a randomized

polynomial-time algorithm for the offline problem with an approximation ratio
α.

Proof. The proof is based on standard online-to-offline conversion methods that
can be found in the online learning literature (see, e.g., [11]). Let A be such an
online linear optimization algorithm, and let its output at each trial t be denoted
as σt. Let ` ∈ [0, 1]n be the loss vector in the offline problem. We consider an
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adversary who returns `t = ` at each trial t. Then, the cumulative loss of A
divided by T is bounded as follows:

1

T

T∑
t=1

σt · ` ≤ α min
σ∈Sn∩Precons(A)

σ · `+
poly(n,m)

T
.

Now, let σ̂ be a uniformly and randomly chosen permutation from {σ1, . . . ,σT }.
Then,

E[σ̂ · `] ≤ α min
σ∈Sn∩Precons(A)

σ · `+
poly(n,m)

T
.

By setting T = poly(n,m), the expected cumulative loss of σ̂ is at most α times
the cumulative loss of the best permutation (with a constant additive term),
which completes the proof.

6 Experiments

In this section, we show preliminary experiments with artificial data sets in order
to compare the performance of our algorithm with other methods. The experi-
ments were performed on a server with four cores of Intel Xeon CPU X5560 2.80
GHz and a memory of 198 GB. We implemented the programs using Matlab with
its Optimization Toolbox. To generate the loss vector at each trial t, we indepen-
dently and randomly specified each element `t,i of the loss vector `t as follows:
Let `t,i = 1 with probability ri and `t,i = 0, otherwise. We set ri = i/n so that
E[`t] = (1/n, 2/n, ..., 1). We constructed random acyclic precedence constraints
on n jobs in the following way. First, we constructed a random total order over
n jobs (vertices). Then, we constructed an acyclic directed graph over n vertices
by adding

(
n
2

)
directed edges according to the total order. Finally, we kept each

edge (i, j) alive with probability π = 0.2, and otherwise, we removed the edge.
The resulting directed graph represented the set of precedence constraints.

Using the above method, for each fixed n and T , we constructed three random
sequences of loss vectors and three random sets of precedence constraints. The
results (cumulative loss or computation time) were then averaged.

We compared our algorithm PermLearnPrec (PLP) to the following algo-
rithms. We used the offline-to-online conversion techniques of Kakade et al. [16]
(KKL) and the metarounding technique of Fujita et al. [13] combined with (FPL)
( [17]; FPLM). For the metarounding of Fujita et al., we set ε = 0.01 to guar-
antee (α+ ε)-regret when using an α-approximation offline algorithm. We used
the linear programming (LP) relaxation-based scheduling algorithm of Chudak
and Hochbaum [7] as the offline algorithm. This algorithm solves a minimum-cut
problem on a network with O(n2) nodes and O(n3) arcs. We used the maxflow
algorithm of Boykov and Kolmogorov [4] to solve the minimum-cut problem.
In our PLP algorithm, we solved the isotonic regression by using the standard
quadratic programming (QP) solver in Matlab.
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Fig. 1. Upper panel: cumulative losses of the three algorithms with the artificial data
set for n = 50 and T = 10, 20, 50, 100, 200, 250; lower panel: total computation times
of the three algorithms with T = 50 with n = 10, 20, 50, 100, 200, 250.

In Figure 1, we summarize the cumulative losses and total computation times,
both averaged over three random data sets. As can be seen, the cumulative losses
of all of the algorithms are quite similar. KKL performed slightly better than the
other two algorithms, which is not surprising since they have almost identical
α-regret bounds. On the other hand, if we consider the computation times of the
algorithms, there is a very large difference. Our algorithm runs roughly 20 to 30
times faster than the other methods. The reason for this is that since the data are
relatively “easy,” the best permutation might not change frequently over time.
Thus, in many trials, the projections onto the set of precedence constraints are
already satisfied, and if this is the case, our algorithm can skip this step, whereas
the other methods must compute the precedence constraints for every trial.

7 Conclusion

In this paper, we propose a polynomial-time online linear optimization algorithm
over the permutahedron under precedence constraints. Our algorithm achieves
a (2 − 2/(n + 1))-regret bound O(n2

√
T ), which means that it can predict as

well as the state-of-the art offline approximation algorithms in hindsight. The
approximation algorithm for which the approximation ratio is strictly less than
2− 2/(n+ 1).

An interesting open question is how our online framework can be extended
to minimize the sum of weighted completion times. We note that Woeginger [29]
showed that the offline problem of minimizing the sum of weighted completion
time can be reduced to that of minimizing the unweighted sum. This reduction
might be useful for designing an online version.
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