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Abstract. In this article we consider linear operators satisfying a generalized commutation
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1 Introduction and Results

In this article we investigate a norm-inequality of the linear operators which obey a generalized weak
commutation relation of a type of the Heisenberg-Lie algebra, and consider its application to the theory of
the time operator [7, 2], and an abstract Dirac operatorXLet{X;}}.;, Y = {Y;}'\; andZ = {Z;}}\
be symmetric operators on a Hilbert spd€eThe weak commutator of operatdksandB is defined for
Y € D(A)ND(B) andgp € D(A*)ND(B*) by
Here the inner product has a linearity (@f, ay + Bo) = a(n,y)+B(n,e) for a,B € C. We assume
that(X,Y,Z) satisfies the following conditions.

(A.1) Zj, 1 < j <N, is bounded operator.

(A.2) Let Dx = niL; D(X;) andDy = ML, D(Y;). It follows that forg, ¢ € Dx N Dy,

X MY (@, g) = &1 (9,iZjy),
Xj,z2]"(e,¥) = [Y;,2]"(@,) = 0
X, XY (o, w) = Y ¥]"(e, @) = [Z;,2]"(,y) = 0.

Note that [Zj, 2]y = 0 follows for ¢ € H, sinceZ;, j =1,---,N, is bounded. In this article we
consider an generalization of the inequality
1 2 4 2
/RN|r|2|u(r)| dr < (N_Z)Z/RNmu(r)\ dr, N> 3
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This inequality is a basic one of Hardy’s uncertainty principle inequalities. For Hardy’s uncertainty
inequalities, refer to e.g. [5, 6, 13].

Let us introduce the additional conditions.
(A.3) Xj is self-adjoint for alll < j <N.

(A.4) X; andz strongly commutes forall < j <Nandl<I| <N.

SicneZ;j, j=1,---,N, is bounded self-adjoint operator, we canAgh(Z) andAmax(Z) by

Amin(Z) = 1Lr}i<nN info(Z;),
Amax(Z) = max supa(Z;),

whereo (O) denotes the spectrum of the operafor

Theorem 1 AssumdA.1)-(A.4). LetW € D(|X|~1) N Dx NDy. Then the following1) and(2) hold
(1) If NAmin(Z) —2Amax(Z) > 0O, it follows that

N
] < (NAmin<Z>szmax<2>>2 ,;HY’WHZ' .

H !X\_quH < ( 4 NlHYjWHZ. )

2Amin(Z) — NAmax(Z))? ]Z

Before proving Theorem 1, let us consider the replacemeKtafidY in Theorem 1. Let us introduce
the following conditions substitute f¢A.3) and(A.4).

(A.5)Y; is self-adjoint for alll < j <N.
(A.6)Y; andz strongly commutes forall < j <Nandl1<I|<N.
Itis seen from(A.2), that
[Yi, X" (@, 0) = 051 (0,1(=Z)y), @, € DxNDy. 3)

Note that info(—Zj) = —sup(Z;) and sup—Z;) = —infog(Z;) follow. Then we obtain a following
corollary :



Corollary 2 AssuméA.1)-(A.2) and(A.5)-(A.6). LetW € D(|Y|~1) N Dx NDy. Then the following1)
and(2) hold.

N
H IYlfle < (2/\mm(z)—4NAmax(Z>)2 ;HXNHZ. 4)

4 S ‘xijZ. (5)

[vime] < (NAmin(Z) — 2Amax(2))? ,Zl‘

(Proof of Theorem 1)
(LLetW € D(|X|"1)NnDx NDy. Fore > 0 andt > 0, it is seen that

(Y —itXj(X*+€)~ )tu” = VW2 —it]Yj, Xj(X®+e) V(W W) + tzlyxj(x2+s)*lw\|2. (6)
We see that
Y, X (X2 +8) (W, W) = [ XMW, 0 +e) W) +[Y;, P +e) T GW W), (7)
From(A.2) and(A.4), we obtain that
), X (W, (X2 +€)71W) = —i (X% +e) V2w, Z;(X2 + &) Y2w). (8)

Note that for a symmetric operatédrand the non-negative symmetric operddothe resolvent formula
A (B+A)"%(v,u) = [B,AY((B+A) v, (B+A)Lu) for A > 0follows. Then by using this formura,
(A.2) and(A.4) yield that

Y, (X2 +&) V(X W, W) = 2i(Xj(X?+¢&)"u, ZjX; (X2 +¢)tu) 9)
Since|| (Y; —itXj(X2+ &)~ )uH >0 andt > 0, we see from (7), (8) and (9) that
hadh
> —t2||X;(X2+ &) M| (X2 + &) M2, Zj(X2 4 ) "V2u) — 20(X[ (X2 4 £) ", ZXj (X2 + &) W)
> (2= 2ma(2) ) [P} &) 7H* + Arin(2)11 (X2 + £) 2. (10)

Then we have that

N
SIMWIZ > (- 2hnax2)) [IXI(X2+ &) W] +tNAmn(2) | (X2 + ) H2W)). (1)
=1

NotethatlimOH|X](X2+e)‘1LPH2 = ||IX|7tw|| andlimo||(X2+£)‘1/2L|JH = ||I[X|"*w|| = Ofollow from
E— £—
the spectral decomposition theorem. Then we have

z

Z ’YJLPHZ 2+(N)\m|n( ) — 2Amax(Z H X[~ 1WH (12)



By takingt = M > 0inthe right side of (12), we obtaifi).

(2) By computing| (YJ +itXj(X2+¢€)~ )WH fort > 0ande > 0, in a similar way of(1), we see that
;w2

> —t?||X;(X3+¢)" u|| t((X2+&)"Y2w, Z;(X? + &) Y2u) + 2t (X (X% + &) tu, Z; X (X2 + &) "1w)
> ( 24 2tAmin(Z )Hx, (X2 4 &) " M||* —tAmax(Z)[| (X2 4 £) 2w (13)

Then by takinge — 0 in the right side of (13), it follows that

N
gluvjwuz > (24 (2Amin(2) ~ Nama2))1) | 1X| 2] 14

By takingt = (2’\“”(2)_2'\"\"““(2)) > 0in (14), we obtain2). K.

2 Applications

2.1 Time-Energy Uncertainty inequality

In this subsection we consider an applicaion to the theory of time operators [2, 7]H,LE&t and
C be linear operators on a Hilbert spdde It is said thatH has the weak time operatdr with the
uncommutative factdC if (H,T,C) satisfy the following conditions.

(T.1) H andT are symmetric.
(T.2) C is bounded and self-adjoint.
(T.3) It follows that forg, ¢ € D(H)ND(T),

[T,H]"(o,y) = (o,Cy).

(T.4)
- [(W,CW)|
& = inf -— > 0.
peke)\(o}  [lYII?
Assume thatH, T,C) satisfieqT.1)-(T.4). Then by using|Au|| || Bul| > [Im(Au,Bu)| > 3 | [A,B]"(u,u)|,
it is seen that (H,T,C) satisfies the time-energy uncertainty inequality ([2], Proposmon4 1):
H <H> T-<T>
L ) ﬂ”z( DL %, g eDH)NDT),  (15)

where< O >y = (,0¢). From(2) in Theorem 1 andl) in Corollary 2, we obtain another type of the
inequality betweefM andH :



Corollary 3 (Time-Energy Uncertainty Inequalities
AssumdT.1)-(T.3). Then the followindi) and(ii) hold.
(i) If T is self-adjoint, C and T strongly commute, asuho (C) < 2infag(C), it follows that fory €
DTI™HND(T)ND(H),

| < 2
Yl = 2info(C) —supa(C)
(i) If H is self-adjoint, C and H strongly commute, asdpo (C) < 2infa(C), it follows that fory €
D(H|™HND(H)ND(T),

s [Hy]. (16)

2
’ = 2info(C) —supa(C)

w17 |7 an

2.2 Abstract Dirac Operators with Coulomb Potential

Next tlt us consider the application to abstract Dirac operators. We consider the self-adjoint operators
P = {P}}L; andQ = {Q;}}., on a Hilbert spacé(. Let us set a subspadec N;; (D(P)) N D(Q))).
It is said that{(JH, D, P,Q)n is the weak representaion of the CCR with ded¥ed D is dense irfH and
it follows that forg, ¢ € D,
P, QY(p, @) = 191 (0,W),
[Pja H]W((p7 LaU) = [Q17 QI]W((P7 LaU) = 0.

Let us define an abstract Dirac operator as follows. (2€é1D,P,Q)s be the weak representation of
the CCR with degree three. LAt= {AJ-}J3:1 andB be the bounded self-adjoint operators on a Hilbert

spaceX. HereA = {Aj}j3:1 andB satisfy the canonical anti-commutation relatids, A/} = 29,

{Aj,B} =0, B? = |4 wherely is the identity operator ofi. The state Hilbert space space is defined by
Hoirac = X ® H. The free abstract Dirac operator is defiend by

3
=1

Here we assume the following condition.

(D.1) P andR strongly commute foll < j <3,1<1<3. P}, 1< j <3, andM strongly
commute.

Then it is seen thatl3¥ = ( P?+M?) W for W € D. The abstract Dirac Operator with the Coulomb
potential is defined by
H(k) = Ho + Kl @ Q| ™,
wherek € R is a parameter called the coupling constant. We assume that the following condition
(D.2) It follows thatD ¢ D(Q|™1).

Then it follows from(1) in Theorem 1 that fogy € D,
3
llsc @ QI [|* < 4 [|PW]* < 4[[HoW||”.
=1

Hence by the Kato-Rellich theorem, we obtaine the following corollary.



Corollary 4 AssuméD.1)and(D.2). Then for|k| < % H(k) is essentially self-adjoint ofy.
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