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§ 0. Introduction

The purpose of this paper is to establish a rigorous derivation of the
two dimensional vorticity equation associated with the Navier-Stokes
equation from a many particle system as a propagation of chaos.

Let v(¢, z) (z=(x, ¥) ¢ R*) be the vorticity of an incompressible and
viscous two dimensional fluid, under the action of an external conservative
field. Then v is described by the following evolution equation

(0.1) o0+ w-Vyw—vdv=0, u(t, 2) =V +G)xu(t, 2),
where G(z)= —(2x) 'log |z|, * denotes convolution, V= (aa—x’ aa—y> and
pi_ (;7—%) Here »>0 denotes the viscosity constant. As far as

strong solutions concerns, (0.1) is equivalent to the Navier-Stokes equa-
tion. In fact, u(¢, z) turns to be the velocity field described by the Navier-
Stokes equation. Conversely we can get v from u as v=curl u. Since
the two dimensional Navier-Stokes equation is an equation of a vector
valued function, a probabilistic treatment is not easy, while the vorticity
equation (0.1) is nothing but a McKean’s type non-linear equation (see
[3]). Such an observation for the two dimensional Navier-Stokes equation
was made by Marchioro-Pulvirenti in [2].
Let {Z,} denote the McKean process associated with (0.1);

0.2) dZ,—odB, Y u(t, Z)dt  u(t,2)=(VG)x(Z, o P)(2)

where ¢*=2y, {B,} is a 2-dimensional Brownian motion. The precise
definition of the McKean process associated with (0.1) will be presented
in Section 2.

The n particle system associated with (0.1) are described by the
following SDEs,

©0.3) {dzg=ang+(n_1)-1 5 (VLG)(Zﬁ—Z{)dt}, 1<i<n,
J#1
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304 H. Osapa

where (B}, ---, BY) is a 2n-dimensional Brownian motion. Since the
coefficients of (0.3) have singularities at N=\_Jz,.; {z=(z,, - - -, z,) ¢ R*",
z,52,}, it is not trivial to see that the solution of (0.3) defines a conserva-
tive diffusion process on R*™. However, if it starts out side of N, it can
be shown that this diffusion process does not hit N (see Section 2 and
Osada [6]).

Now we prepare some notations. For a separable metric space S,
A (S) denotes the set of probalilities on S. For m e .#(S) and a measur-

able function f, we set {m, f) =j fdm. A sequence of symmetric pro-
8

babilities 7, on S™ is said to be m-chaotic for a probability m on S, if
for fi, -+, fi € Cy(S),

&
holds. If we denote by (X, ---, X,,) € S a random variable with the
distribution m,, it can be shown (see Tanaka [12], Sznitman [10]) that being
m-chaotic is equivalent to the convergence in law of X,=(1/n) >7_; dy,
towards the non-random m.

In the following, C will denote C([0, c0)—R?). Let {Z7=(Z}, ---,
Z%} (resp. {Z,}) be the solution of (0.3) ((0.2)) with an initial distribution
Vo(2y, v v, 2,)dzy - - - dz, (Y(2)dz) and P, (P) be the probability on C* (C)
induced by {Z7} ({Z,}). Now we state our main result:

Theorem. There exists a positive constant v, such that, if v>y,, then
P, is P-chaotic for all {\,dz,- - -dz,} which is \rdz-chaotic and satisfying

< o0

L (R21%)

0.4 lim

n—>c0

jRon—ziwndZi +1°77 'dzn

fori=1,2.

Marchioro-Pulvilenti [2] presented first this propagation of chaos
problem for the vorticity equation and Goodman [1] discussed also this
problem. Their results are valid for all v>>0. However their arguments
are not complete in two points. First they did not construct a diffusion
process associated with (0.3). Second they discussed the propagation of
chaos not from (0.3) but from another equation approximating (0.3). In
the above theorem, we have proved the original problem without any
modification.

As we shall remark in Section 2, Z, o P(dz) has a smooth density if
t>0. Hence u(t, z)=V+Gx(Z, o P)(z) is a smooth solution of the Navier-
Stokes equation.
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It is convenient to state the theorem in another way. Let
Zn=C;1 ; 5(2151,....27_36) (In={(ll, R iﬁ); léikén, l‘kql:ij lf k?ﬁ‘]})

and P,( e #(#(C?)) be the distribution of (Z,, P,), where C, denotes
the normalizing constant. Put P=dpg..or € A (#(C®). Then as we
explained above, Theorem is equivalent to

Theorem’. Assume {\r,dz,- - -dz,} and \dz satisfy the same condition
of Theorem. Letv>y, Then

0.5) lim P,=P  in M(M(C?)).

In Section I, we prepare some uniform estimates for fundamental
solution of parabolic equation to obtain a tightness result of {P,}. This
tightness result is valid for all »>>0. In Section 2, we obtain a uniqueness
result for a weak solution of (0.1) and give a precise meaning to (0.2). In
Section 3, we identify the limit of {P,} and complete the proof. In Sec-
tion 4 we prove a certain uniform estimate of moments of fundamental
solutions.

We explain the basic idea. Let L, be the generator of (0.3);

n

Ln:ud—}—(n—l)“ Z (VJ‘G)(Zz—Zj)'Vh
1]
1, J=1

where V,= (aix’ %), and for fixed v let
% %

L=yd—u-V  (u(t, 2)=V+Gxu(t, -)(2)),

which is the generator of (0.1) if we regard it as linear equation for fixed
v. The first point is to notice L, and L are of G.D.F.. (see Section 1
for the definition of G.D.F.), which follows from

(0.6) V.G=rV.,a+V,a, V,G=V,a,+V a,.
Here a,(z) are bounded functions defined by

a(z)= —x*y'[z|z|*
0.7) a\(2)= —3xy2z |z} + x*y[x|z|*
ay(2)= —3xy2z|z['+x)*[x|z}*
(G is unbounded ; nevertheless the derivative of G'is a sum of derivatives

of bounded functions). Hence we can use the uniform estimates of
fundamental solutions obtained in [8].
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306 . H. Osapa

Now we have to identify a limit point P,, of {P,}. As we show in
Section 3, for P, a.e. m € #(C®), m=Qr (i is the distribution of {Z}}),
and 771 is a martingale solution of (0.1). (See Section 1 for the definition
of martingale solution). If Z}o mi(dz) has a density v(¢, z, m)dz such that

(0.8) F,(m) :.r J.R v(s, z, m)’dzds< oo,

then such an # is unique (Proposition 2.2). The second point is to see
(0.8) follows from, for P, a.e. m,

09  Fm=(m | yzi~22 21-23 Zi-Z3ds)< o
0
(Z = 17 29 3):
where iy(z,, Z,, z)) = (|2, P +|2.[))~**|z,|*. Indeed, on account of m=m- -
&1, we have at least formally that

2
Fem=(m, [ 323~ 23, 2:-2).
0

We can obtain by applying Ito’s formula to R(Z,)= —1/(4x*|Z,[") that
WFEm)={m, RZ.—2’, Z.—Z))|;
—2(m, [ wRNZi-23, 22~ 2O GYZi- 2y
]

+2<m, J: (TRY(Z:— 22, Z;—Zi)(VlG)(Zi——Zg)ds>.

The second term is bounded from above because R<0 and «» ¢ L*(R?),
and the last two terms are dominated by Fy(m). Hence (0.8) follows
from (0.9). Since F, is lower semicontinuous, (0.9) follows from

(0.10) lim (P,, F,) =lim Fy(P,)<co.
Here we extend the domain of F, over .#(C™) naturally. We obtain
(0.10) by using Ito’s formula for the function

k=4,

The crucial points here are the singularity of 'k VLG is similar to that of
i,. Hence we can obtain (0.10) if the viscosity y is large enough. Thus
we need the assumption that y >y, in order to control the singularity of
the drift term.

We have to discuss the problem in .#(C®) instead of .#(C) because
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we have been able to prove the uniqueness result only of the form
Proposition 2.2. It is very hard to show the uniqueness under a weaker
condition such that u(#, -) is only a probability measure.

In [10] Sznitman considered the propagation of chaos for the Burgers
equation. There he had to treat singular drifts of §-function type and he
overcame this difficulty by introducing extra function spaces and by
Tanaka’s local time like arguments. Our method depends on Sznitman’s
ideas in the above two points.

The author would like to express his sincere thanks to Professor S.
Kotani for his valuable discussion.

§1. Preliminaries from analysis and tightness results

In this section we prepare analytical estimates which will be used
throughout this paper and obtain tightness results.
Let a,(t), a3,(t, x), ¢;,(, x) and m(x) be measurable functions. ~Set

(1.1) A:m-l{ilVia“Vj—l— ]?;ijj} ( zi)

i 0x;

& J=

where a,,(t, x)=a;,(t)+d}(t, x) and b,=>7,V,c,;. Here b, is not
always a function. Without loss of generality, we can assume qj;,=dj,.
A is said to be of generalized divergence form (G.D.F. in abbreviation)
if the coefficients satisfy the following conditions:

(G.1) div 5=0 in distribution, (b=(b,)),

(G2) aEPS 3T af8,<alef  forall E=(£) € RY,
iy7=1

(G3) @l leul<pin,  sup 37 labl<p,

(G.4) riZm<r,

where «, 8 and 7 are constants with «, 7>1 and g>>0.

We shall denote by G(n; a, B, 7) the totality of G.D.F.s satisfying the
above conditions, and by Gyn; @, B, 7) the subcollection of G(n; «, 8, T)
with smooth coefficients.

Let us consider the norm || - ||, ,;, defined by

[ 1/2
10lkes5= sup e, sy + ([ [ P axar)”.

We denote the function space equiped the norm || - |[r4,7 by Hpg sy u(t, X)
€ Hp, ,; is said to be a solution of the Cauchy problem of 9,—A4 on
[a, B] X R™ (a<b< o) with initial condition u(a, -) ¢ LA(R™) N L*(R") if
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Uu
Rn

t mdx—f J ud ;pmdxds
(1.2)

+f .[R" Z (a0 iV s — iVl 36— c; il ($)dxds=0

tyj=1

for all ¢ € [a, b] and all ¢ € Ci([a, ] X R™).
A continuous function p(s, x, ¢, ) (s<t, x,y € R") is said to be a
fundamental solution of 3, — 4, if it satisfies the following conditions:

an(s, x, t, ym(Mdy=1,  p(s, x, t, »)=0.

Moreover, set u(?, y)=J p(a, x, t, Y)u(a, x)m(x)dx for u(a, x) € L(R")N
R”l«

L'(R"). Then uis a solution of the Cauchy problem of 3,— A on [a, b] X
R" with an initial condition u(a, x).

We call p a regular fundamental solution of 3,—A4 (4 € G(n; a, B, 1))
if p is a fundamental solution of 9,—A and there exists a sequence
{4:}e=1,s,... of G.D.F.s satisfying

A, € Gyn; 2a, 28, 27) for all k&
and

lim p*(s, x, t, y)=p(s, x, t, y) compact uniformly,

k—oo

where p* is a fundamental solution of 9, —A4,.

Lemma 1.1. Let Ae G(n; a, B, 7). Then there exists a regular fun-
damental solution of 6,—A. Moreover, an arbitrary regular fundamental
solution p(s, x, t, y) satisfies

1.3 (s, x, 1, NS Ci(t—s) "2 exp [~ Cy|x — y[[(t—5)]

for all s<t and x,y € R™ with positive constants C, and C, depending only
onw, B, T and n, that

|P(S, X, I, y)—p(s’, x, t,a y/)l

14
(14 < Cls— 5/ x| — [P y— )

for all T<t—s, t' —s'< oo and x,y, x', ¥ € R*, where C; depends only on
o, B, 7, nand T(T>0), and § (0<9<1) depends only on e, 8, T and n.
See Theorem 1 and 2 in [8] for a proof.

Lemma 1.2. Let A be G.D.F. defined by (1.1). Let u(t, x) is a solu-
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Propagation of Chaos for N.-S. Eq. 309

tion of the Cauchy problem of 9,— A on [a, bB] X R™ with u(a, -) € L*(R")N
LY(R™). Suppose b, ¢ L} (R"™) and that

b
(1.5 j j |b;u* dxdt < co fori=1, ..., n
a J R™
Then u(t, x) is unigue.
See Proposition 4.1 in [8] for proof.

Lemma 1.3. Let p(s, x,t,y) be a regular fundamental solution of
0,—A{AdeGn; a,B,7). Then

(1.6) zf s, %, £, )| xi— 3, F dy < Ci(t—s)*"n
=1 R7

Jor all x=(x;) e R* and 0<t—s<oo, where C, is a positive constant
depending only on o, B, ¥ and k (k=1,2, - - -). Especially C, is independent
of the dimension n.

‘We shall prove Lemma 1.3 in Section 4.

Now let L, be the generator of the n-particle system (0.3). Then

(1.7) L=vd+(n—1)" 3] LG\ zi—z,)-V..
i+7
i,J=1

Let L, be the formal adjoint of L, with respect to Lebesgue measure.
Then

n

(1.8) Li=pd—(n—1" > TG\ z,—z) V..

]
i,7=1

Lemma 1.4. L, e G(2n; v, 2, 1). Moreover there exists a unique
regular fundamental solution p,(s, x, t, ) of 0, — L}, satisfying

P(Z7} e dy| Z7=x)=pa(s, X, 1, )y,
where {Z7} is the solution of (0.3).

See [6] and example 2 in Section 1 in [8] for proof.

As a corollary of Lemma 1.1 and Lemma 1'.4, we have the following
estimate, which will be used frequently in Section 3.

(1.9 Dalss X, 1, Y) S C(t—5) """ exp [— G| x— y[*/(t—5)]
forall x,y e R*, 0<t—s< o0.
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310 H. Osapa

We show finally tightness results for {Z7} appearing in Theorem.

Proposition 1.1.  Let {Z}"™} be the first m components of {Z?}. Then
(i) {ZP™} is tight in C([0, co)—R™).
(i) {P,} is tight.

Proof. By Lemma 1.3 and Lemma 1.4, we have
3 (P [ZE=ZSy = (mii) 33 (o | Zi— Zi[y < Com(—s)'

Here we used the symmetry of (Z%, .-, Z™). This proves (i). It is well
known that (ii) follows from (i).
§2. Uniqueness results for the non-linear process

Let {Z,} be a R* valued measurable process and {z,} be the distribu-
tion of {Z}. {g} is said to be a weak solution of (0.1) with an initial
distribution g, if {g,} satisfies the following conditions;

12
(W.1) L Im |2 2| dp(dz)dp(d2,)ds < oo,

o 905, )| [ Gt =086, )—vgls, )y
(W.2) e

13
~[ <u@u 7-0)a—2)- T, 2)ds=0
for all ¢ € C¥([0, oo) X R*) and 0<{t < oo. It should be noted that
@1 lim (3= 4y forall & C(RY)

follows from the definition immediately.
We present a uniqueness result for weak solutions of (0.1).

Proposition 2.1.  Assume {41} is a weak solution of (0.1) with an initial
condition p,. Suppose that p(dz) has a density (t, z)dz for a.e. t = 0 and
that p(dz)= p(2)dz with p, ¢ L=(R?). Assume further that there exists a
0>0 satisfying

2.2 j: (jm s, z)Zdz)l/2 (Lzz (s, 2)2+5dz>1/(2+5)ds< co

for all t>0. Then {p,} is unique and has a continuous density (1, z) on
(0, o0) X R? satisfying

1, D)= ol oo oy
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Remark. One can show (see [4]) that there exists a weak solution
(1, z)dz such that p(?, z) is smooth if # >0 for an arbitrary initial condi-
tion y, € M(R?). Moreover ult, z) satisfies (2.2) if y, has a density y,(2)
with g, € L*(R?).

We reduce Proposition 1.1 to the following lemma, due to Marchioro-
Pulvilenti [2].

Lemma 2.1. Let {u} be a weak solution of (0.1) with an initial condi-
tion p(z)dz. Suppose p, € L*(R?) and that p(dz) has a density p(t, z)dz
for all t >0 satisfying

sup [, +llzery < o0
0ss<t
Jor all 0<t <co. Then {u,} is unique.

Proof of Proposition 2.1. Let L, be the differential operator defined
by

(2.3) L,=vd—u-V (u=F+Gxp,).
The key point of the proof is to notice that
2.4 L,eG2;v,1/2, 1)

and that p is a solution of the Cauchy problem for L, in [s, ] X R* which
satisfies the uniqueness condition (1.5) in Lemma 1.2.
We show first (2.4). By (0.6) and the definition of u, we have

u(t, 2)=V % p,(2) +V 0% p1,(2)
uy(t, )= —V a5 p,(2) —V ,a,xp(2).
Since || a,(2)|| ooy <1/4 (i=1, 2, 3), we have
sup [l att ()= < 1/4-
Then L, satisfies (G.2). (G.1) follows from
divu=F -V+Gxp,=0.

Hence we obtain (2.4). Next we shall show that y is a solution of the
Cauchy problem for L, in [s, 1]X R* (0<<s<t < oo) which satisfies the
uniqueness condition (1.5) in Lemma 1.2. For this purpose it is enough
to check that

(2.5) sup Um uz, z)2dz} < o0, ﬂ Lﬂ \V iz, z)[fdzdr < oo,

$S£e5t
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312 H. Osapa

and that

©.6) ff |u(s, 2)Pacs. 2)dzds < oo
0J R2

By ]VlG(é)lg 1/2z|z] and u=FLGxy, we have

@.7) ut, D[ ue2pva) 1,

where C, is a positive constant depending on §. Hence by (2.2)

I : f 146 DI s, 2 dzds < oo,

which implies that L, satisfies (2.6).
Secondly we shall check (2.5). Let f(¢, z) be a non-negative smooth
function defined on (— oo, co) X R? with support in ¢*+4|zf<1/2 and

J-fm f(t, 2)dzdt=1. Define

Lo(2, z)=Jw I f(t—s, z—2") (s, 2')dz' ds,
0o JRe

where f,(t, 2)=p"*f(t/p, z/p). Then in [p, co) X R%, p, satisfies the follow-
ing equality;

(2.8) Outto=vdpt,—V b,

where b,(t, Z)=J°°J~ f(t—s, z— 2 pls, 2)u(s, 2 )dz’ds.  Multiplying g, to
0J R2
the both sides of (2.8) and integrate over [s, 1] X R* (0<<s), we have

2.9) F)(t)—F,()+vH,(s, )=L(s, 1).
Here we define

(2.10) FO=2) | w2y,

@11 Hs, z):ﬁ Im 7 1,(z, 2)Pded,
2.12) Ls, )= f t f by(e W p e, Dz,

On account of (2.6), we have

2.13) lim b,=up  in (0, {]X R*—R?)
p—0
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and
(2.14) T |1,(s, )| < G, Tim Hy(s, )",
-0 -0
where C, is the L? norm of uy over [0, #]X R%. Let F(t)=fﬂ(f, z)dz.
Then by (2.2), we have F(z)<oo a.e. t and that
(2.15) lim F,(t)=F(t) for a.e. t.
0 )

Combining these results with (2.9) yields

F(t)—F(s)+v lim Hys, 1)<C, {ﬁ H (s, t)}'/
p—0 p—0
for a.e. t—s >0, which shows
lim H,(s, 1)< 0.
p—0
Then we have

2.16)  H(s, z)_—_J‘J‘ \V iz, 2)Pdedz<co  for all 1—s>0.
. s J R2

Hence we obtain, for all t—s>0,

2.17) lim =g in H'(s (X R),
-

2.18) lim I,(s, t):jt J wl pdedz=0.
p—0 s J R2?

Here we used (2.13) and divu=0. Combining (2.16), (2.17) and (2.18)
with (2.9) yields

2.19) F(t)—F(s)-+vH(s, t)=0 for a.e. t—s>0.

A moment reflection tells that (2.19) holds for all s and ¢ with 0<s<{¢
< o0, which implies (2.5).

Thus y is a solution of the Cauchy problem for L, in [s, 1] X R* with
the initial condition u(s, z). Moreover we can apply Lemma 1.2 to see
that p is unique. Consequently

(2.20) ut.2)=[ s, 006, &, 1,21z,

where p is a regular fundamental solution of 9,— L, defined on {(s, &, 1, 2);
0<s<Zt<c0, & ze R*}. By means of Lemma 1.1, we see, for fixed (7, £),
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314 H. Osapa
2.21) 1815101 p(s, 2,1, &)= p(0, z, t, &) uniformly in z.
This together with (2.1) shows

uit, D=tim [ (s, (s, &, 1, 2

= [ u0.&)p0. &, 1, Daz.
Since j (s, z, t, &)dz=1 for all 0<s<t and &, we conclude
R2

(2.22) (8, 2) <1 40, 2|z ey
which completes the proof of Proposition 2.1.

We say P e #(C) is a martingale solution of (0.1) if
(2.24) ' <P®P, J: 1Z1— 725 )< oo
and, for all fe C}(R"
(2.25) £Z) _L LLA(Z.)ds

is P martingale with respect to the canonical filtration. Here g is the
distribution of (Z,, P) and L, is the operator defined by

(2.26) Li=vd+ul - (u(t, 2)=F+G)xp(2)).

The expression for L}, is formal, however owing to (2.24), the second
term of (2.25) has always a finite expectation.

We call this P e #(C) to be a McKean process associated with (0.1)
because we can show

Proposition 2.2. Let P be a martingale solution of (0.1) such that
Z,o P(dz) has a density p(t, z)dz for a.e. t =0 satisfying (2.2). Suppose
that 0, -) € L=(R?). Then P is unique.

Proof. Ttis clear that {u(t, z)dz} is a weak solution of (0.1). Then
it follows from Proposition 2.2 that {u(?, z)dz} is unique. Hence the
generator L, is determined uniquely. Since u(z, z) is bounded measurable,
the martingale problem for L, starting from (0, z) is well posed (see [9]).
Then we obtain the uniqueness of martingale solutions.
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§ 3. Identification of a limit

We have already known by Proposition 1.1 that {P,} is precompact
in A (A(C%). Throughout this section, we shall denote an arbitrary
convergent subsequence of {P,}, also, by {P,}, and its limit by P,,. The
purpose of this section is to show P, concentrates on P®-.--QP to
complete the proof of Theorem.

For m e A(C®), i (1 e A4(C)) denotes the distribution of the first
coordinate and 77, denotes Z} o 7.

Lemma 3.1,
(3.1) P.({me #A(C®: m is independent copies of m})=1.

The proof of Lemma 3.1 is elementary. Hence we omit it. See, for
example, Proposition 4.2 of [10].

Proposition 3.1. Suppose v>1/2r. Then, for P,, a.e.m, Wi is a mar-
tingale solution of (0.1).

We prepare first the following two lemmas to show the above pro-
position.

Lemma 3.2. Let 0=Za<1 and suppose v>1[2a(l—a). Then

N—sc

(3.2) m (P, r |z;_zg|—1-ads><oo
0
for all t. '

Proof. Let f(z)=|z|"'"* and g(z)=(—a)%|z|'"*. Define for 0.
<1,

fi@=min {f(2), [7'"*} and g,(2)= —Gxfi(2).

Here x denotes convolution. Then it is clear that dg=f and dg,=f,.
By Ito’s formula and symmetry of (Z1, . . -, Z7), we have

s=t
§=¢&

P 8Zs—Z))

2 = ’ 1 2 L 1 A
(33) =25 (P. | Fe)@:—22)- 0 GYZi- Z)as)

+2 <P,,, r f(Zi— zz)ds>.

By (1.9), we can apply Lebesgue’s convergence theorem to the both sides
of (3.3). Hence
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316 H. Osaba

2_3(p, [ wo@i-2) 0602 z9as)

n_.

+24P., | 2~ 22yds)

={2v— P, Zi—Z%ds

—(” n:(l—a))< If‘( 2 >

Here we used the symmetry of (Z3}, - - ., Z7) and
Ve(z)-V+G(z)| <{2z(1—a) |z ["|2,[}

§{27r(1—oz)}"( ail fz)+ ail f(22)>-

G4

3.5)

By Lemma 1.3, we have
3.6) (P, §(Z1—Z) \” <C(t—efn 42,

Here C is a positive constant independent of ¢, ¢ and n. Lemma 3.2
follows from (3.4) and (3.6) immediately.

For ¢(¢, z) € C¥([0, oo) X R?) set
H(t, z;, z)) =V +G)z,—z,) - T p)(t, z,).
Let H.(t, z,, z,) € Ci([0, c0) X R*X R?) such that
3.7 H.(t, z,, z)=H(t, z,, z,) if |z,—z|=e.
We can do this in such a way that
(3.9) |H.(t, z,, 2,)| < 2| H(t, 2y, 7,)|
for all (¢, z,, z,) € [0, o) X R*X R®. For m e #(C*) satisfying
<m, ﬂ |Z1— 72 1ds )< oo
for all £ =0, define
Fom)=(m, {(t. Z)— 505, 22
_ J ’ @up+vdd)(c, Z)+ H(z, Z, Zf)dr}l’f>.
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Propagation of Chaos for N.-S. Eq. 317

Otherwise we set F(m)= -+ co. Here ¥'=[[{.,¥(Z},) with 4, € Cy(R?)
and 0<,<s. Let

Fmy=(m, {9(1, Z)— (5, 2
- j 0ug-+vd9)(e, Z)+HL(5, 2 zz)df}af>.
Lemma 3.3.
(i) (Fn, |[F[>=0 for all n=4.

Moreover, assume v>>1/2z. Then for any 0<a<1 there exists C, such
that

t
Gi) (P, |F—FP< C,,s“<Pn, f 12;_Z§|-1-«ds>
0

holds for all t, n==4 and £¢>0.

Proof. On account of symmetry of (Z, - - -, Z}), we have

PulFh = b 3 (P ot 20— 20

—jb ((vA¢+6t¢)(r, Zy+—L S HG, 74, Zf))dr}lff>l —0,
s n—1 EF
which shows (i). Now we have

(P IF.—FYSC(Po, [ |(H—H)Ge, 28, 2D )
(3.9) "
=GC(Pn [ 12222 |22 22 ),

where C,=max, ,|y.(z)| and C,=max,,|¢(, z)]. Here we used (3.8).
(ii) follows from this immediately.

Proof of Proposition 3.1. 'We observe first

<P,,, J : |Z§—Z§|“‘“ds>=<}_’n, <m, J': lZi——Z§|‘1‘“ds>>.

Then, it follows from Lemma 3.2 that

(3.10) <P;,, <m, j: |z;_zz|-1ds>><oo,
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318 H. Osapa

which implies that # satisfies (2.24).
Since [F(m)|< C, + C2<m, J.t |Zi—Z §]‘1ds> with constants C, and C,,
0
we can apply Lebesgue’s convergence theorem to (P, |F,|>. Then

3.11) lim (P, |F.[>={(P.,, |F]).

Since F, is a bounded continuous function on .#(.#(C*)), we have

Combining (3.11) and (3.12) with Lemma 3.3 yields
(P, [F[)=0,
which implies (2.25). The proof is thus completed.

Propesition 3.2. There exists a positive constant y, such that, if v=v,,
then, for P, ae. m, m, has a density uv(t,z, m)dz=v,(z, m)dz for ae. t
satisfying

13 1/2 1/3
(.13) j {J vzdz} {j vgdz} ds<oo  forall t<oo,
0 R2 R2
We prepare first several notations. Let r, be the function defined by

rp(zp)Erp(zl, - zp)=(|21|2+ e +[Zpl2)-1/z’

where z,=(z,, - - -, z,) € R®. We set r(z,)=r(z,). Let * denote convolu-
tion as before and @ denote the following operation;

F®e=1(z -+ 2)8(Zp11 * * 5 Zpsg)
for functions f defined on R*? and g defined on R*. Define
hey=rix(r:@rf)  (0<a, B<2, a+p>1)
and
h=r3x(r’*Qr**Qr).
It is easy to see that

(.14 B, s(022) =0~ PRy, 5(20),
(3.15) h(6z:)=|61""h(z5)
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Propagation of Chaos for N.-S. Eq. 319

and that
(316) ha,,e(zn Zz):'ha,ﬂ(izl l: [ZZDa
(3.17) Wz, 25, 2)) =h(|21], |22, | 23 )-

Let p, (« € R) be the function on R* defined by p.(2)=|z|™* («>0), p.(2)
=max {—log|z|, 1} (¢=0) and p,(z)=1 (@<0). Also we set

Pa,ﬂ(zu Zz) :Pa(zl/lzzl) + pﬂ(ZZ/IZI D
and

Ea.(Z15 2, 2)=13(2 /|2 2| Z:)05,(215 22)-
Lemma 3.4. There exist positive constants C, and C, satisfying
(i) b f(Z2) S Cirs* P (25)00m1,5-1(22)
Jor all z, with |z,||z,|+#0, and
() 7(z) < Cord@){Er,1,12(215 2o Z9) +Euino(Zes 205 21) +Eaym0,12(Zs 215 22)}
for all z, with |z,||2,]|2,|50. Here C, and C, depends on « and .

Proof. Letee R* with |e|=1 and t=|z,—{,|"*. Then
G189 h o= @) [ e re—taritdtdc,

Since j rile, re—C)r(C)de, < C min {z~%, 1}, we have
R2

(319) oyl 0= C{[ re—tr@an [ re—tredc,

where S\={{;;|z,—{|<1} and S,=R*—S,. Here we used the assump-
tion @+ B+ 1>>2 to show the second term of the right hand side is finite.
Hence we obtain ‘

(3.20) B, 521> = Coplpa-1(2)) + 1}

with a positive constant C,, depending only on « and 8. Similarly we
have

(3.21) ha,ﬁ(es FA RS Caﬁ{pﬁ—1(22)+ 1}-

Combining these results with (3.14) yields (i).
Now we proceed the proof of (ii). Let p=ry(z,—,, z,—;). Then
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320 H. Osapa

Wa 2 0= 7rm@rHELdL, [ e ne—tyrEdc,

<c[_rreerecidsds,

Here we used I ri(e, pe —CHr(€)d, < Cy*. By (i), we have
R2

h(z,, z,, © < Cri(z,, ZZ)pl/Z,l/Z(le Z5).
Similarly we have

h(Z1> e, Zs)é Crg/z(zu Zz)Pl/z,o(Zv Z;)
and

he, z,, ;) X Cry™(z,, Zs)Pl/z,o(Zza Zy).
Combining these results with (3.15) yields (ii).

Let i, =r@r, i,=r**Q@r'” and j,=r* Qr**Q@r. Then, as a corollary
of Lemma 3.4, we have the following

Lemma 3.5. Let C, and C, be positive constants in Lemma 3.4. Then

(i) {hs/z,uz(zz)r(ZJ S Gilz, z) iz, 22)}
Pyjo1o(Z)r (2) £2C1iy(z,, 2,) (g=2,3),
(ii) {hm(zz)r(zl) < Ci{in(zy, 20) +ix(2s, 21)}
hy (z)r () S Cli(zy, 23) +1(2,, 25)},

h(z)r (2) < 6C, (2, 255 25)
(i) h(z)r (z) < C2{4j1(zla Zy, Z3) +2ji(2y, 2, Zz)}
h(zs)r(z4)§cz{4j1(z1a Zy, Z3) + Ji(2Z1, Zss 25) + Ji(2Zs 2oy 2}

‘We now have

Lemma 3.6. Let j,=ri®r and set y,=max {1/2x, C /", 48C,/"} (C,
and C, are constants appearing in Lemma 3.4). Suppose v>v,. Then

(i) <Pm, <m j: i(Z1— 2, zg_zg)ds>>< oo
(i) <P;,, <m, j: J(Zi—22, 2~ 7, zg—Z§)ds>>< o (p=1,2),

for q=1,2 and all t.
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Propagation of Chaos for N.-S. Egq. 321
Proof. Let if(z,)=i(z,)if |z;|<1 and |z|<1, and if(z,)=01if |z,|=1
or |z|=1 (g=1, 2). Define
k,=d4"}=—(/Az")rxi}.

k, is not of C*-class. However by the device similar to the proof of
Lemma 3.2, we can apply Ito’s formula for k, to obtain

(P, k(2 =272, Z' = Z7))

t
0
=(-1" 33 (P, [ O k)23~ 22 2229 7OV 2~ Z0)ds)
=2 0
+=D7 33 (P, || O (2223, 2120 - 6N ZE—Zds)
i=2 0

(22) -3 (P [ O R)ZI-28 21~ 22)- 0 GYZ:—Zds)
i=1 )

—(—=1" 3 (P, | CdeNZi- 22 21-2)- 7021~ ZDds)

i=1
+44P,, [ iz~ 23, 22— Z2)ds).
0
Let I, , (p=1,2, - - -, 6) denote the p-th term of (3.22). We first see that

SUP| 25122/ K (22)| < o0 and thatj |k (z2)|dz,<<oco. Then, by k,<0 and
lz21<1
(0.4), we have

(3.23) Iim I,.< —lim (P, k(Z—Z}, Zi—Z3)) < co.
It is clear
(3-24) |71k11§(1/2752)h1,1 and |Vlk2|§(1/2 ﬂz)hslz,l/z-

Then by Lemma 3.5 and symmetry of {(Z}, - - -, Z})}, we have for p=2,
3,-.-,5

1, 2QC/R0—D) Py [ 1(Zi-23 Zi—-Zds)

(3.25) L
+(CJw P [, 12— 22 23— Z0)ds)
0
and
1| S (Cia(n— D) Py, f ‘iZi—2, i~ Z3ds)
(3.26) ’

+(CJ P [ 23— 22, Zi— Z2ds).
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322 H. Osapa

Now 3 o1.0li,— ¥z, z) Sr(2) +r(2) - r¥(z,) +r'*(z,). Then by Lem-
ma 3.2, we have

G2 m ¥ P,,,j liy— i¥(Z1— 22, Z1— Z)ds )< co.

n—ow g=1,

Combining (3.25) and (3.26) with (3.22) yields

5 40— Cle)(Pu [ 12— 2 22— Zis)

g=1,2

<— 3 (P k(Zi-2, Z}-2D)
g=1,2

(3.28)
+(12G/7 (1= DX Py, j (23— 23, Zi— Zds)

13
iy 3T Pn,j i, —i*(Z1—Z2, zg—zg)ds>.
g=1,2 0
Now assume v>Cy/z*. Then (3.28) together with (3.23) and (3.27) yields
<Pn, j i(Z1— 22, Zi— Zs)ds>< oo,
n—oo q

which completes the proof of (i). (ii) can be shown similarly and (iii)
follows from (ii) immediately.

Let g(z)=(2xz2) "' exp (—|z|2/2,2) and g,(z;, « - -, Zp)= n€=1 g;(Zp)-

Lemma 3.7. Suppose v satisfies the same assumption in Lemma 3.6.
Then

(i) fim (P.., (m, j 871~ Zds )< oo,

(if) Iim (P.., (m, j §UZi— 7 21— 23, Zi—Zds) )< o,
A—0 1]

Jor all t<oo.

Proof. Set f,=—G=xg,. Then we have

(P, JAZ— Z2)>

2(”‘ 2) <ij FFNZi—Z2) - (T+G)(Z:— ZS)ds>
(3.29) +;_—1<”"’fo PF)Zi—Z)- (-G Zi—Z2)ds )

+2(Ps j &UZi=Z3)ds).
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Propagation of Chaos for N.-S. Eq. 323
Letting » to infinity yields
—_ 13
(P 12— 270,
_ t
(3.30) =2(P..(m, | W)@~ 20 02— Zds))
0
t
P 1__ 72
+2V<Pw7 <ma IO gZ(Zs Zs)ds>>

Here we used Lemma 3.2 to show the convergenée of the first two terms
of the right hand side of (3.29).

Now we see
(3.3D) —G(2)< f,(2)<fil2) for 0<<a<<¥
and
(3.32) FPHDIECr(z)  for 0<i< 0.

Indeed, (3.31) follows from V,f,=g,>0 immediately and the proof of
(3.32) is as follows. Let F;=|Ff,>. Then

ViF=2g,) TR Z2|Vg,| Fi".
Hence

Fr<F+ [ Pglds= cn,
0

where C=1/2 7r+-[°° |V g,|(z,)ds with |z,|=1. which shows (3.32).
0

Let I, (p=1, 2, 3) denote the p-th term of (3.30). Then by (3.31)
we have

(3.33) lim L,<(P., {m, —G(Z*—Z?)) <o,

Here we used Lemma 1.3 and (0.4) to show the second term of (3.33) is
bounded from above. By (i) of Lemma 3.6 and (3.32), we have lim,_, ||
< oo. Collecting these results yields (i). The proof of (i) is similar.to
that of (i). Hence we omit it.

Lemma 3.8. Let v(t, z, m) denote (g,0m,)Xz), For P, ae me
M(C®), m,(dz) has a density v(t, z, m) for a.e.t such that

() r j Wt, z, mpdzdi< oo for all T< oo,
0 JR2
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324 H. Osapa

Moreover for P, a.e.m

(ii) lim v,(¢, z, m)=u(t, z, m) in L*(0, T) X R?).
2—0

Proof. The key point of the proof is to notice that (i) of Lemma
3.7 follows from

(3.34) fim P“’rf v.(t, 7, mYdzdt )< oo
2-0 0 R2

for all T<oo. Indeed, by (3.34), we can choose a convergent sub-
sequence {v,} endowed with weak L*-topology with a limit v(t, z, m) €
LX(0. T)X R*X M(C*));

lim [ v, dtdzdP. = f vgdtdzdp.,

=0

for all ¢(¢, z, m) e L*((0, T) X R* X #(C®). Here the integration is taken
over (0, T) X R*X .#(C®. Then it is clear that for P, a.e. m,

u(t, z, m)dz=rn,(dz) for a.e.t.

Thus (i) of Lemma 3.7 follows from (3.34).
Now, by the semigroup property of g, and Lemma 3.1, we have

(m. [ euzi—zds)y=(m, [ | g2t~ 2)gi(z—Z2)deds)
0 0J R2

—_-th v,(s, z, m)*dzds.
0J R2

Then by (i) of Lemma 3.6, we obtain (3.34), which completes the proof
of (). It is clear that (ii) follows from (i).

Proof of Proposition 3.2. We observe first that g,,(z—§&, z—n) =
gyilz—(E+7)/2)g(§—7). Hence

_ ¢
(Pos(m, | sizi—23 Zi—Zds))
0
. t
—(Pos [ | 6= nanlss G2, myvan(s, & myvas(s, 7, mdsednds ).
It follows from Lemma 3.8 that for P, a.e.m

lzi—l:lol fm &(E—nvyu(s, (E+7)/2, muys, 5, mdp=u(s, &, m)* a.e. (s, §)
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Propagation of Chaos for N.-S. Eq. 325

and
lim v, (s, & m)=uv(s, &, m) in L¥(0, T) X R%.
-0

Then by Fatou’s lemma we obtain
11m P, <m, j P VA AR AR Z3)ds>>><Pw, I I u(s, z, m)adzds>
Combining this with (ii) of Lemma 3.7 yields
j : '[ " u(s, z, m)*dzds < co for P, a.e.m.

Proposition 3.2 follows from this immediately.

Proof of Theorem. By Proposition 2.1, 3.1 and 3.2, P, converges to
0pg...@r» Where P is the distribution of McKean process associated with
(0.1) which satisfies the uniqueness condition (W.3), which completes the
proof.

§ 4. Moment bound

The purpose of this section is to prove estimates for fundamental
solutions of G.D.F. which are independent of dimension n and to prove
Lemma 1.3. In case of divergence form Lemma 1.3 has been already
shown in [5]. Our argument here is based on that of in [5]. However,
we have to consider moments for p(x;) which is a smooth approximation of
|x,| because the space of test functions for G.D.F. is H*(R") (not H'(R")
and |x;| € Hi, N (HT,) .

We give a reduction of Lemma 1.3:

Proposition 4.1. Let A e Gyn; o, B, 7) and p be the fundamental
solution of 8,— A. Then

(4' 1) i p((), Oy 1> x)lxilkdx_g-_ Cn)
i=1J R»

where C is a positive constant depending only on a, B, T and k. Especially
C is independent of dimension n and smoothness of coefficients.

Indeed, let A=m™{3.; ,Via,V,+Wc.,)V;} e G(n; e, B, 7). Define
Aot =m(xle+h) {3, Va(xle+hW ;+ i (x[e+M)W,;}.  Then

4.2) A5 e G(n; a, B, 7) for all ¢ and 4.

Hence Lemma 1.3 follows from Proposition 4.1.
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326 H. Osapa

Since the coefficients of 4 are smooth, it follows that p is unique and
9,p exists. Moreover, for 0<t <T

(43) G "exp[—G|xP/t]< p(0, 0, 1, x) < Cyt "™ exp [— C,|x[/t],

where C,, - - -, C, are positive constants depending on the smoothness of
the coefficients, dimension » and 7.

Lemma 4.1. For t >0

(4.4) p(0,0, 1, )< (1),

where k is a positive constant depending only on o and 7.
See Lemma 3.1 in [8] for proof.

We now prepare notations. Let p(¢) be a smooth function on R!
satisfying the following conditions;

(1) 0ZpL|t] for — o<t < oo, p(t)y=p(—1),
(ii)  p'(0)=p(0)=0,
(iii) p(t)=t for t =1/2.

Define p;=p(x,), Y,=> 7,07 and Y?=(Y,)% Similarly we set X,=
7, |x; P and X?=(X,)*. It should be noted that

(4.5) =X, Y +n.

In the following, an integration with respect to space variable is always
taken over R™ and P denotes p(0, 0, ¢, x). For integers p and ¢, we define

M(p, q) =J‘ X, X Pmdx, M(p, q)=j Y,YPmdx,
E(p, ¢)= _j X,XP(log Pymdx,  E(p,q)=— j Y,Y*P(log P)mdx,
6(r, )= ¥,¥* 3|7 (log PP,
Hp, ¢ =J Y,Y(log Py Pdx, H(p, 9) =I X, X(log P)*Pdx.
Moreover
I, 0)=[ ¥,¥* 3 (7.P)log P)| Pax,

K(p, )= ¥,Y* 3 7.P|Pds,
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Propagation of Chaos for N.-S. Eq. 327

L(p, q) =I Y,YP|log P|dx.

The last three quantities are managed by M(p, q), G(p, ¢) and H(p, q).
In fact, by the Schwarz inequality we have

Lemma 4.2.
J(p, Y= (G(p, H(p, )",
K(p, D= (nrG(p, )M (p, )",
L(p, )< (nr M (p, ) H (p, ).
We set

M*(p,)=M(p, q) if p=0 and ¢=0, =0 if p<0 or ¢<0,

and similarly for E*(p, q), G*(p, q), - -+, L*(p, q¢). Throughout this
section C always denotes the unified symbol which represents a positive
constant depending only on p, ¢, «, B, 7 and the function p. Moreover,
f<g will denote f<Cg for some positive constant C as above. LetV,=

64 and V=W, ---,V,). We define
PA1=317.f| and [PPf|= 33 177 ,f]

We start with some simple calculations.

Lemma 4.3. Let (Y, Y)*=Y,Y%if p, =0 and (Y, Y)*=0 if p<0
or q<0. Then forp,g=0,1,2, ---

(i) PY, Y S(Y, YO+ (nY, Y N)*

(i) PPY, Y S (Y, oY O*+ (Y, Y )*+n(Y,_ Y )*
+n(Y, Y ) 4 n* (Y, Y %)%,

(iti) Let f be a smooth function defined on (0, oo) with

[T <o
Jfor some k>0. Then

IPHZCASEI MG
<[ @Y+ [ (4 fPax
+f(yp_lyq-l)*1 F(P)|dx+n I (Y, Y| £(P)| dx

i [ (1, Y 5% /(P .
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328 H. Osapa
Proof. The proof of (i) and (ii) is elementary. Hence we omit it.
[ Sravoap @y | =| [ 357 7.7, vai, f(Pyax|
07 ©J

< ; liaiiY"f(P)dxl 42 U fj Y)Y, f(P)dxl

+

I 7—; Y70, Y, f(P)dxl .

Here I, =p"(x,) po(x,)* "'+ po'(x,)’p(p— Dp(x,)? 2. This together with
sup 3 lal,|<p

yields (iii).

In the following succesive four lemmas, we shall estimate M(p, q)
from above.

Lemma 4.4. Let p and q be non-negative integers. Then
0, M(p, )| S U, +{nG*(p, g— 1) *(p, g— D}~
where

U,=M*(p—2, q)+M*(p—1, q)+ M*(p—1, g—1)+nM*(p, g—1)
+nM*(p, g—2)+n"K*(p—1, q).

Proof.
01(p, )= — [ SV LY, Y9 Pdx— [ 7Y, Y007 Pl
¥ %

(4.6)
+j > Vj(YpY‘?)c“Vide—kj STV (Y, Y e, Pdx.
7 ¥

Let I, denote the k-th term of the right-hand side of (4.6). Then by (iii)
of Lemma 4.3, we have

\L|S M*(p—2, q)+M*(p—1, 9)+ M*(p—1, g—1)
+nM*(p, g— 1) +n*M*(p, g—2).

By (i) of Lemma 4.3 we have

@.7

@8 ILISWUn) [ 1P Y)|IPPlarS UK *(—1, )+ K*(p, g— D).
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Similarly we have
|G| SA/mK*(p—1, )+ K*(p, g—1),
ILISm [ PPCY, Y o) Pdx

SUmMH(p—2, ) +(UmM*(p—1, )+ M*(p—1,9—1)
+ M *(p, g— 1) +nb*(p, g—2).
Combining these results with Lemma 4.2 concludes Lemma 4.4.
Lemma 4.5. Let p=0and g=1. Then for 0<t <1 we have
G(p, ¢— D <3.E(p, ¢— )+ Up+ Us+ U+ {nH *(p, g —2)G*(p, 49—},
where
Uy=n(llog t|+ D{#*(p—2, q— D+ M*(p—1, g—1)
+nM*(p, g—2)+nM*(p, ¢—3)},
Uy=n""J*(p—1,q—1)+n"'K*(p—1, g—1)+K*(p, 4—2),
U=n""J*(p—2,q— D) +L*(p—1, g—2)+nL*(p, —3).

Proof. We obtain
2,8(p, g—1)= —j Y,Y®-13,(P log P)mdsx

= f Y,Y®"'P 3 (7, log P)(7, log P)a, ,dx
2%

+I 2 V(Y Y Na; 7 (P log P)dx

(4.9) 2y
+| VY, Y Yat f (P log P)dx

g

—.[ ;: VJ( Yp Yq-l)cijVi(P log P)dx
_‘[ zZ]: ViVj(YPYq-l)Cij(P log P)dx.

Let I, denote the k-th term of the right-hand side of (4.9). Then by the
uniform ellipticity of {a;,} we have
(4.10) L=za™'G(p, q—1).

Moreover by (iii) of Lemma 4.3 and |log P|<n|log ¢|+n, which follows
from Lemma 4.1, we have
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(4.11) LS U

On account of |af,], |¢;;|< p/n and (i) of Lemma 4.3, we have

(L LI [ 1P, Y o) IP(Plog P)d

(4.12) SnT*(p—1, ¢—D)+n"K*(p—1,g—1)
+K*(p, q—2)+J*(p, g—2)
S Uy+{nH*(p, g—2G*(p, g— 2}

Here we used Lemma 4.2. By (ii) of Lemma 4.3 and |c;;|< /n, we have
4.13) |151§5n-1j PPY,Ye||P log P|dx=U,
Combining (4.10), - - -, (4.13) with (4.9) completes the proof.

Lemma 4.6. Let p>=0 and g=2. Then for 0<<t<1 we have
(i) H(p, q—2)<M(p, q)+n'(1+|log t[YM(p, g—2)+n".
where Uy=n*(1+]log t M (p, g—2)+n*'(1+log ¢ ).

5 Proof. See Lemma 2.3 in [5] for the proof of (i). On account of
H(p, —2)<H(p, q—2) and M(p, 9)<M(p, g)+n***, (ii) follows from
®.

By means of the previous three lemmas, we conclude the following:

Lemma 4.7. It holds that

6.4 (p, 9| < Ui+ M *(p, g— DP.E*(p, g— D+ U, + U+ U,
+(nG*(p, g—2){ M (p, )+ U}~
Now we estimate M(p, ¢) from below by E(p, g—1) and M(p, g—1).

Lemma 4.8. Let p, q=0. Then we have for 0<t <1

3 + E(pa q— l)—2nq“
(i) Cn* ‘SXP[ =M(p, 9).
CM(p,q—1)
(ii) Let F=E(0,0)—(n/2)log it =0. Then for 0<t <1

n*t*” exp [F/n'] < M (0, 1).

See Lemma 2.5 in [5] for proof.
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Proposition 4.2. Let p and q be non-negative integers. Then

(i) M(p, ) <n?*t @02 for 0<t <1,
1 ~
(if) [[omenm Bop, gl g
0
1
(i) [ 16%(p. a—vpear gneron,
0
1.
(i) [ %o, g—2atr <o,
0

Proof. We remark first that (i) and the following are equivalent:
04 M(p, YD Sn.
(i)” M (p, (1) Snet.

This follows from (4.2) and (4.5).
We introduce the following order — on the set {(p, ¢); p, =0, 1, - - - }.

() — (P, q")
if and only if
P+a<p'+q’
or
p+q=p'+q’ and p<p.

We shall prove Proposition 4.2 by induction on (p, ¢) with respect to this
order.

If (p, ) =0, every estimate is trivial. In case (p, ¢)=(0, 1), (iv) is
clear and the proof of the other statements is as follows: By Lemma 4.7,
we see

“.14) 3,/ (0, 1)|Sn*+n[d,E(0, 0 =n*+n[(@,F)+n*/2¢]'".

Here we used F=E(0,0)—(n/2)logxt and E(0,0)=E(0,0). Since
lim,_, M(0, 1)=0, we have

@.15 1, 1)(1)gn2+nr [26)"2(2n) 13, F 4 n(2t) "] 2dt S P+ F(1).

Here we used the fact that F>0 and that (a4 5)2<a/(2b'?)+b'* for
b>0and a+56>0. By (ii) of Lemma 4.8, we have

(4.16) n* exp [F(1)/n] < M (0, 1)(D).
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Since M < M, we obtain from (4.15) and (4.16) that
n* exp [F(1)/n* ] <n*+ F(1),
which implies
“4.17 F()gnt.
This together with (4.15) yields (i)i’ . (ii) follows from | E(0, 0)| < n?|log £t},
and (iii) follows from G(0, 0)<<a9,E(0, 0), (4.14), (4.15) and (4.17).

Next we consider the case =0 and p>0. In this case (ii), (iii) and
(iv) are trivial. By Lemma 4.4, we have

(4.18) [8,M(p, 0)|SU,=M*(p—2,0)+ M *(p—1, 0)+(1/m&*(p—1,0).
Applying the hypothesis of the induction to (4.18) yields
1
[[u@arzn,
0
which together with lim,_, M (p, 0)=0 shows (i)’
We finally consider the case ¢=>1 and (p, g)=+(0, 1).~ By applying

the hypothesis of the induction to Lemma 4.7 and lim,_, M(p, g)=0, we
have

~ 1 ~
4.19) sup M(p, q)éjo |8, M(p, q)|dt
3 ~
0<t£1 0
~ 172
-+ O 4 Cro @D sup M (p, q)) Z] :
o<t=1l
Now, we see

¢ -
[ sovvvra B p. g—1ys
Q

~ ¢ ~,
=l =9 E(p, g— D= (p+q—1) | 572 E(p, g s
0

By (4.3), we have lim,_, t®*¢"92E(p, g—1)=0. Moreover we have by
Lemma 4.1 and the hypothesis of the induction

420) E(p,q—1D)=m/2)M(p, g—1)log (k1) = —n*'  for 0<r<1.

Hence
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¢ ~
(p+a-1)/25 B —
@.21) i) {j o 5.E(r. l)ds}
< sup {E(p, g—1)—2n9* 1} 4 Cn?*%,
0<tgl

Now we prove (i)’ and (ii). For this, we divide the situation into
two cases. First we suppose that sup,.,<, {E(p, g—1)—2n?"}<0. Then
(4.19) and (4.21) gives

© sup M(p, q)Sn®*! [ @D 4 n* @+ D2 (sup M(p, q)) 1
0<tL1 . 0<e=1
(i)’ follows from this immediately. Combining (4.20) and
sup E(p, g—1)< 207
0<E=1
yields (ii). Next we suppose that
sup {E(p, g—1)—2n*1}>0.
0<t=1
Let
A= sup {E(p, g—1)—2n7*"} and 7= sup M(p, ¢)/ne+1.
0<tsl 0<t=1
Then we have by Lemma 4.8 and 1>0 that
(4.22) exp [C/n**']|< sup M(p, g)/n** Sy+1.
0<t<1
On the other hand, by (4.19) and (4.21) we have
(4.23) P L+ LAne 4 1R,
It follows from (4.22) and (4.23) that
AnT'<1 and <1,

which implies (i)”. This together with Lemma 4.1 yields (ii).

As for the proof of (iii) and (iv) we proceed as follows. (iv) is an
immediate consequence of (i) and Lemma 4.7. (iii) follows from (iv) and
Lemma 4.5. The proof of Proposition 4.2 is thus completed.

Proof of Proposition 4.1. Proposition 4.1 follows from Proposition
4.2 immediately.
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