
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Research on Performance and Security
Improvements by Software Defined Network

ビン サフリ, ノル マスリ

https://doi.org/10.15017/1785422

出版情報：九州大学, 2016, 博士（工学）, 課程博士
バージョン：
権利関係：全文ファイル公表済

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

KYUSHU UNIVERSITY

DOCTORAL THESIS

Research on Performance and Security

Improvements by Software Defined

Network

Nor Masri SAHRI

2016

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

I hereby declare that this thesis entitled "Research on Performance and Security

Improvements by Software Defined Network " is the result of my own research except as cited

in the references. This dissertation has not been accepted for any degree and is not concurrently

submitted in candidature of any other degree.

Signature :

Student : Nor Masri SAHRI

Date : April 2016

Supervisor : Professor Koji OKAMURA

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

To my family; parents, wife (Norul Huda) and childrens (Alya, Dania, Iman and Isao).

I would not have done this without you. Thank you for your endless love, encouragement, and

support.

 i

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Abstract

Over the past decade, Internet and networking principles mostly remain unchanged.

Network devices such as switches and routers are being developed by many business entities

and the devices usually use copyrighted operating system and software. By using different types

and brands of network equipment force an organization to employ a specialist on every brand.

Different configuration of different systems also increases the possibility of network

misconfiguration which is highly dangerous situation for the organization itself. Thus, there is

a need for a new technology to make networks more scalable, dynamic and to allow easier

management of network devices from different vendors. Thus, there is an urgency for a new

innovation to make arranges more adaptable, element and to permit less demanding

administration of system gadgets from various vendors. These needs could be fulfilled by

programmable networks like Software Defined Networking (SDN).

SDN is currently ongoing developing technology that tracts consideration because of its

worldview, that parts the control plane from information sending plane and because of the high

programmability enable function, it is believed by many that it could replace traditional

networking. The whole idea is to reduce the distribution complexity of data plane devices, e. g.,

network switches, which is allow the forwarding plane to forward the network traffics according

to a set of actions that was defined by the specific software module in the control plane.

By having SDN, the differences in proprietary operating systems or interfaces of

network devices is eliminated and makes the network administration works less burden and

independent from data plane vendors. SDN also enables rapid development of network

applications from developers that can be part of the single control plane which can be managed

from a centralized interface and have access to all connected devices.

The control plane act as the network operating system which has the ability to control

the states of all connected network. Data plane, in the other hand, is to receive the instructions

from the control plane and simply just forward the data packets. Currently, a standard data plane

 ii

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

abstraction such as Openflow, enable the use of any type of data plane devices that available

since all of the connected network devices can be manage by a common open source protocol.

OpenFlow protocol is a clean slate project introduced by Stanford University back in

year 2008. OpenFlow was implemented as the first open standard interface SDN architecture.

In Openflow, the data path and the high level routing decision are made from two different

devices, which is the OpenFlow-enabled switch and controller, respectively. The central

controller provides the switches with the operational rules instructions, which is pushed by the

controller to the switch as individual or group flow entries via a secured channel between them

using OpenFlow protocol. Furthermore, Openflow actions function can be performed on

network flows that can be forward and drop packets or manipulating the packet header

informations.

The adjustability provided by SDN and Openflow create a sudden explosive of new

research area and applications such as application aware network, network flow virtualization,

real time QoS support, helping Internet of Things (IoT) to reduce the strains of data generated

by IoT devices, new ways to deteck DDoS attacks any many mores. Researchers believed that

a large number of new network applications will be introduced which will enhance the current

network operations.

Firstly, this thesis proposed a fast and efficient failover mechanism for redirecting traffic

flows to optimal path when there is a single link failure problem. Setting pre-established

alternative paths will result in a faster switchover compared to establishing new alternative

paths on-demand. This approach however may lead to the use of sub-optimal alternative backup

path. The combination of both fast rerouting with predefined backup path approach and optimal

path computation would be the best solution for service restoration. Using the ability of the

Openflow enabled switches to report link failure to the central controller, the proposed method

allows the controller to do the real time path computation and while the controller perform the

path calculations, the incoming traffics in the current switches was already rerouted to the

predefined backup path that was installed previously by the controller.

Secondly, this thesis proposed an adaptive sampling strategy that is able to provide

essential traffic statistics for more accurate anomaly detection in SDN. Extracting important

features for the application to analyse the anomaly detection problem, introduce significant

 iii

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

overhead on the way of switch handling. Furthermore, high volumes of network traffic

introduce notable issues that affect the performance and anomaly detection accuracy. Taking

advantage of centralized control plane of Software Defined Networking (SDN), the task to

handle the flow information is much more simplified programmatically. The accuracy of the

measured flow statistic plays important role in anomaly detection. While the use of sampling is

capable to lessen the scalability problem of traffic monitoring, the insufficiency of sampled

flow statistic may have led to inaccurate detection rate of anomaly. This thesis sampling

mechanism utilizes the clustering analysis, which is used to classify the attack in the network

to determine the severity of monitored traffic. By manipulating the type of service of incoming

packet together, these two important parameter formulate the sampling mechanism algorithm.

This thesis shows experimentally that by putting higher polling frequency on detected

anomalous flow, it to detect network attacks much more accurate.

 Lastly, this thesis proposed CAuth, a novel mechanism that autonomously block the

spoofing DNS query packet while authenticate the legitimate query. As DNS packet are mostly

UDP-based, make it as a perfect platform for hackers to launch a well-known type of distributed

denial of service (DDoS). The purpose of this attack is to saturate the DNS server availability

and resources with “unwanted” DNS query traffic. This type of attack utilizes a large number

of botnet and usually perform spoofing on the IP address of the targeted victim. While it is

difficult to identify which one is legitimate or attack traffic, this thesis takes a different approach

for spoofing detection and mitigation strategies to protect the DNS server by utilizing Software

Defined Networking (SDN). By manipulating Openflow control message, this thesis designs a

collaborative approach for DNS usage authentication between client and server network.

Whenever a server controller receives query packet, it will send an authentication packet back

to the client network and later the client controller also replies via authentication packet back

to the server controller. The server controller will only forward the query to the respective server

if it receives the replied authentication packet from the client. Most notably, the mechanism

designed with no changes in existing DNS application and Openflow protocol. From the

evaluation, CAuth instantly manage to block spoofing query packet while authenticate the

legitimate query as soon as the mechanism started.

 iv

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Acknowledgements

All praise is due to Allah almighty God for all the graces, and blessings bestowed upon

my family and me during my study in Kyushu University and living in Fukuoka, Japan. The

process of earning a doctorate and writing a dissertation is long and arduous. It is certainly not

done singlehandedly and beyond question, without guidance, loves and sacrifices.

First and foremost, I would like to thank my wife (Norul) and family (Alya, Dania, Iman

and Isao) for putting up with an absentee husband and father during this process. Norul has

been unfailingly supportive – and has borne the burdens which have fallen on her shoulder as I

spent my most of the time and energy pursuing goals that took me away from her and the family.

I would certainly be remiss to not mention and sincerely thank my Professor, supervisor

and mentor Professor Koji OKAMURA, whom without his help, wisdom, guidance, expertise

and encouragement, this research would not have happened.

I also would like to show my deep gratitude to my loving parents, who have been my

first teachers as they taught me about life, and have always been encouraging me to achieve

more and do my best.

In addition, I would like to express my gratitude to Professor Akihiro NAKAO,

Professor Yasuo OKABE, Professor Kenji ONO and Professor Hirohumi AMANO for their

kind support, guidance, and enlightening discussions throughout the meetings along my PhD

study. Meetings they attended were really pleasant and fruitful, thanks to their kind comments,

and advice that helped a lot to shape my work.

I would like to express my gratitude towards all members of Professor Okamura’s

laboratory; Mr Othman, Mr Chengming Li, Mr Alaa Allakany, Mr Yowaraj Chetri, Mr

Zhaolong Ning, Mr Zafran, Mr Ariel and all others that have their place in my memory. Thanks

a lot for your kind accompany, comments, encouragement, and support.

Last but not least, I would like to thank the Ministry of Higher Education of Malaysia

and University of Technology MARA Malaysia for supporting my study in Japan. Also, I would

 v

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

like to thank Kyushu University, and the Graduate School of Information Science and Electrical

Engineering, and all their Professors and Officials for their kind support.

 vi

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Table of Contents

Abstract ... i

Acknowledgements .. iiv

Contents ... iv

List of Figures ... viii

List of Tables ... xi

1. Introduction .. 1

1.1. Background ... 1

1.2. Motivation and goals ... 4

2. Literature Review ... 7

2.1. Architecture of SDN ... 7

2.2. Brief Introduction to OpenFlow .. 9

2.3. IP Fast Rerouting .. 12

2.3.1. Reliability in Network Design ... 12

2.3.2. IP Fast Reroute in Internet ... 13

2.3.3. Proposed Research Objective .. 14

2.4. Network Anomaly Behaviour Detection .. 15

2.4.1. Accuracy in Sampled Flow ... 15

2.4.2. Proposed Research Objective .. 17

2.5. DNS Flooding and Amplification Attacks .. 18

2.5.1. Defence Against Spoofing IP Addresses ... 19

2.5.2. Proposed Research Objective .. 20

3. Fast Failover with More Optimal Path – SDN Based .. 22

3.1. Introduction ... 22

 vii

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

3.2. Related Works ... 23

3.3. Fast Failover with More Optimal Path Mechanism 24

3.3.1. Backup Topology Decision ... 24

3.3.2. Optimal Path Calculation .. 25

3.3.3. Update Frequency .. 30

3.3.4. The Design of the Mechanism ... 31

3.3.5. Link Failure Scenarios ... 33

3.4. Performance Evaluation .. 34

3.4.1. Restoration Time ... 35

3.4.2. Average Number of Hops .. 37

3.5. Discussion of Implementation .. 38

3.6. Summary ... 39

4. Adaptive Query Rate for Anomaly Detection .. 40

4.1. Introduction ... 40

4.2. Related Works ... 41

4.3. Adaptive Query Methodology .. 42

4.3.1. Flow Collector ... 43

4.3.2. Flow Processing... 44

 4.3.2.1. Feature Extractor .. 45

 4.3.2.2. Anomaly Classifier .. 46

4.3.3. Sampling Decision... 47

 4.3.3.1. Anomaly Detection and Traffic Measurement 47

4.4. Performance Evaluation .. 50

4.4.1. Experimental Setup ... 50

4.4.2. Dataset and Traffic Generation ... 51

4.4.3. Training Time and Traffic Classification .. 52

 viii

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

4.4.4. Accuracy and Anomaly Classification .. 52

4.4.5. CPU Performance .. 54

4.5. Summary ... 56

5. Collaborative Spoofing Detection – SDN based looping authentication 57

5.1. Introduction .. 57

5.2. Related Works .. 59

5.3. Collaborative Authentication Protection ... 60

5.3.1. Main Component ... 60

5.3.2. CAuth Table Structure ... 61

5.3.3. Proposed Protection Method Workflow .. 61

5.4. Performance Evaluation .. 68

5.4.1. Emulation Parameter ... 68

5.4.2. Emulation Results ... 69

5.5. Discussion ... 71

5.6. Summary ... 73

6. Conclusion .. 74

References .. 80

Published Papers .. 88

 ix

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

List of Figures

Figure 1.1: Routing and forwarding task in a single network node. .. 2

Figure 2.1: SDN Architecture. ... 8

Figure 2.2: Openflow flow table .. 9

Figure 3.1: Non Optimal Backup Path Problem .. 24

Figure 3.2: Example of backup topology. .. 25

Figure 3.3: Smallest Link Utilization Path Selection Algorithm ... 27

Figure 3.4: Link utilization as a function of input traffic ... 29

Figure 3.5: Packet delay time as function of link utilization. .. 30

Figure 3.6: More Optimal Path Fast Reroute Workflow. ... 32

Figure 3.7: Example of single link failure scenario ... 33

Figure 3.8: Network Restoration Time. ... 36

Figure 3.9: Average Hop Count ... 37

Figure 3.10: Wasted Flow Entry .. 38

Figure 4.1: Main Skeleton of proposed architecture .. 43

Figure 4.2: Adaptive Poll Pseudo-code. ... 49

Figure 4.3: Sampling Decision in Timeline. .. 50

Figure 4.4: Simulation topology... 51

Figure 4.5: ROC Curve for TCP Portscan attack ... 53

Figure 4.6: ROC Curve for DDoS attack ... 54

Figure 5.1: Main CAuth architecture .. 60

Figure 5.2: Initial CAuth defense strategy in server network ... 63

 x

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 5.3: Initial CAuth defense strategy in client network .. 64

Figure 5.4: Server controller receive CAuth authentication packet ... 65

Figure 5.5: Client controller forward the DNS reply packet to client. 66

Figure 5.6: CAuth server controller defence .. 67

Figure 5.7: CAuth client controller defence ... 68

Figure 5.8: Emulation result. .. 70

Figure 5.9: DNS provider bandwidth effect. .. 71

Figure 5.10: Client bandwidth effect. ... 72

 xi

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

List of Tables

Table 2.1: Summary of key OpenFlow messages as Openflow 1.3 version. 11

Table 2.2: Objective of the Proposed Research Objective ... 14

Table 3.1: Switch Flow Entry .. 31

Table 4.1: Active Flow Collector Table in Controller ... 43

Table 4.2: Dataset training and classification time .. 52

Table 4.3: Parameter values used in experiment .. 52

Table 4.4: CPU performance comparison between the static polling rate versus our proposed

adaptive rated methodology ... 55

Table 5.1: Controller Inbound App-Table Structure .. 61

Chapter 1. Introduction 1

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Chapter 1

1. Introduction

In Internet, routing protocols played important roles in the whole packet forwarding

operation. Finding the best path for a packet to traverse to their destination is the most discussed

in research world. Many routing protocol had been proposed and used in routers to perform

autonomous routes configuration. Example of famous routing protocols such as Routing

Information Protocol (RIP) [1] [2], Open Shortest Path First (OSPF) [3], Intermediate System

to Intermediate System (IS-IS) [4], Border Gateway Protocol (BGP) [5], and many others.

1.1. Background

As stated before, the main function of a network is to transport packets. For this matter,

two important elements are decomposed: routing and forwarding. The routing task is

responsible to determine how many currently available network nodes, the state of their

interconnections, how many available resources and many other factors that the packets must

follow while traverse the network. The router also need to compute independently from others

on how each node in the network should forward the packets to create a forwarding behaviour

for the packets to follow. It is worth to note that the routing task must be running continuously

because of the online changing behaviour of network that can change at any moment. For

example, the interconnected link between network nodes might fail without warning or traffic

congestion may be build up due to sudden changing pattern on network traffics.

Routing task may involve a lot of more complex algorithm while on the other hand, the

forwarding task is much a simpler operation. In this task, each network nodes are responsible

to forward the packets base on the information provided by the routing task for that particular

node and a label is attached to every packet itself. Figure 1.1 illustrate the forwarding operation

in a single network element. One important element that reside on every node is the interface

between routing and forwarding. This element is a collection of data structures which is called

Forwarding Table (FT), one at each network element. The routing task responsible to maintain

Chapter 1. Introduction 2

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

the changing state of the FT while the forwarding task use the available information in the FT

to determine how to forward any incoming packets. The split operation into routing and

forwarding allow network nodes to optimized all available components for each task.

Nowadays, modern network requirements for the performance demand very good techniques

for forwarding packets to their destination.

Figure 1.1 Routing and forwarding task in a single network node

 As briefly explained in previous paragraph, current mechanism to control the network

via routing protocols imposes a tight coupling between the control plane and forwarding plane

which reside in every single network element. Every decision making is performed on the same

single network device that also perform the packet forwarding operation. With more complex

Internet architecture introduced, it has become difficult for engineers to deploy any new

network applications, protocols and functionalities. In traditional network operations, any new

functionalities need to be implemented directly into the network devices which can be a tedious

task, especially that all of those available network equipment vendors does not allow direct

Chapter 1. Introduction 3

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

privilege on their equipment. Due to business competition, vendors are also tending to keep

their functionalities close to others, thus making their equipment with limited capabilities.

One of the current research trends that tend to brake the tight coupling between data

plane and forwarding plane which aim to overcome the above stated problems. In this method,

the control plane and forwarding plane element of the network reside on different machine.

Software-Defined Networking (SDN), allows a network to customize the behaviour through

some centralized policies at a logically centralized network controller. In this technology, the

control plane act as the network operating system itself, which is responsible to control and

maintain the state of the whole network under the controller boundary. SDN replaces traditional

Internet that closed, tight coupled and riveted network function with much more generic packet

processing mechanism, open source program that control by software program through

centralized platform. This openness method opens the broad capabilities of network devices

and provide the customer with many types of manipulating the network and flexibilities in

managing network devices in their network.

In conjunction with SDN, the Openflow protocol [31] has made a drastically important

paradigm shift by establishing (1) a protocol that act as a two-way communication channel that

enable the centralized controller to install related forwarding rules, querying the current

network states and for the switch to notify the central controller for a various event such as

when no packet match rules in the switch forwarding table (2) a data path that presents a clean

flow table abstraction which contain a/many sets of packet field to match with and with

associated action.

The Openflow forwarding abstraction is meaningful enough to allow variety types of

packet processing functions that cannot be achieve with the traditional routing and forwarding

before. The Openflow provides a simplified interface for the centralize controller applications

and the central controller are also able to deploy the application to whole network under it. This

protocol realizing a dream for the network operators by writing a simple and centralized

network program with the global view of network states.

Chapter 1. Introduction 4

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

1.2. Motivation and Goals

Software Defined Networking (SDN) and Openflow seems to be the future Internet

technology that enable innovative and creative applications development that were unachieved

in current traditional Internet. By controlling the functions of every network node centrally, the

management and network programmability is much effortless and practical. To enable smarter

future Internet, a standard body [6] has dedicated to promote and adopt SDN through open

standards development. Despite SDN decouple the control plane and forwarding plane

separately and have more advantage than the traditional IP networking, it is still incomplete and

has some challenges unsolved in certain area of implementation.

The first goal of this thesis is to provide fast traffic recovery upon link failures for

important network applications. In [7], upon any single link failure, the service restoration time

for the impacted traffic flows should be below 50 milliseconds. Since SDN architecture is

managed by a network controller centrally and the forwarding nodes capabilities is restricted to

only listen the instruction from the controller, natively the SDN cannot guarantee the failure

recovery to be below 50 milliseconds to support the network enterprise architecture. By

constructing multiple routing table as in framework [8], different paths for unicast traffic,

multicast traffic and different classes of service based on some flexible criteria is achieved. On

the other hand, in real Internet environment, no IP fast reroute using backup topologies had

been implemented. In reality, IP fast rerouting require the complexity and the ability to

coordinate forwarding functions to a forwarding hardware.

The second goal of this thesis is provide more accurate network attack events to reduce

the false alarm on network attack detection. To detect the unusual network traffics, [9] and [10]

have recommended the use of packet sampling rather than capturing every packet to do the

analysis. Capturing every packet requires too much network overhead such as high processing

capability and high network resources used.

Chapter 1. Introduction 5

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Network anomaly detection techniques [11,12,13] is based on analysis on network

traffic and the characteristic of the dynamic statistic features in order to detect network

abnormalities quickly and accurately. It is paramount to balance the trade-off between accuracy

of anomaly detection and overhead introduced from the flow traffic measurements (e.g.-

scalability). Sampling decision should have some intelligent ability to address some of the

requirement such as to reach low false alarm and low computation convolution objective.

Therefore, we utilize Openflow and SDN capabilities to control the network topology centrally

with the main objective is to provide more accurate network attack detection.

The final goal of this thesis is to detect and mitigate the spoofing IP addresses that

exploit UDP protocol to launch the botnet attack to the most critical application in Internet, the

DNS services. Connectionless and lightweight protocol make the UDP as the perfect tool for

attackers to exploit to launch botnet attacks [14]. To make UDP flood attack effective, attackers

overwhelm a large number of random ports on the targeted host with the spoofed IP address

UDP datagrams. Thus, as more and more UDP packets are received and answered, the targeted

system such as DNS server, loaded with request and at last unresponsive to other legitimate

clients [15,16]. Moreover, during large scale of DDoS attacks, the victims drop all of the

packets destined to them.

To protect from spoofing attacks, many protection method has been introduced such as

ingress filtering [17], rate limiting [18], packet marking [19,20,21], encryption, PKI, IPSec

authentication [22], access control. However, it is known that those methods increase the

network overhead. In this thesis, we aim to design a low cost authentication method for DNS

services so that the DNS provider can clearly distinguish attack packets and legitimate DNS

queries utilizing SDN paradigm.

The reminder of this thesis is organized as follows. Chapter 2 illustrates technical

background and network architecture on SDN. Fast failover with more optimal path – SDN

based is presented in Chapter 3. Chapter 4 describes an adaptive query rate method for anomaly

Chapter 1. Introduction 6

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

detection with SDN. Collaborative spoofing detection – SDN based looping authentication for

DNS is proposed in Chapter 5. At last, Chapter 6 concludes all the works.

Chapter 2. Literature review 7

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Chapter 2

2. Literature Review

This chapter provide more details briefly on the major topics touched in this study

which are; the Software Defined Networks architecture as well as the Openflow protocol,

the limitation in IP fast rerouting in the current Internet architecture and network security

topics which are the effect of flow sampling in anomaly detection techniques and the

effectiveness of current DNS services protection against DDoS attacks that manipulate

spoofing the victim IP addresses. It is paramount important to understand the following parts

of this study.

2.1. Architecture of SDN

At first, it is important to shed the light of SDN itself. SDN is proposed to provide

an “industry-wide” standardized protocol that allows a higher-level of abstraction and

manipulation of network control to configure the forwarding plane and also to interact with

the forwarding element at the same time. SDN promises innovation in networks which the

forwarding protocol would allow innovative network management methods to be

implemented on network devices without requiring expensive standardization process.

The separate forwarding element in SDN should be flexible enough so that various

ways and method of control algorithms can be implemented with it. For example, it is not

enough to forward packets based on Ethernet packets destination address only, since some

of the applications might need to be forwarded using their source address as well. Also, it is

not adequate for the network devices only allows the routing task to define a single outgoing

port for any given packets, since some of the applications might need the ability to anycast

or multicast.

Many specialized network devices function can be eliminated if the generality of

forwarding abstraction are enough to support variety of network functions beyond the simple

Layer 2 or layer 3 forwarding such as the ability to provide more access control rules and

also more accurate network traffic monitoring. The use of much simpler packet processing

Chapter 2. Literature review 8

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

device may simplify the task of network management, improved the resources utilization of

the equipment and also could decrease the operation cost for the network operators.

As proposed by Open Networking Foundation (ONF) in [6], SDN architecture

decoupled the network control from the forwarding and it is directly and highly

programmable. The network intelligence logically centralized in software-based network

controller, which responsible to maintain a global view of the underlying network. The SDN

architecture is depicted in Figure 2.1. With the central controller introduced, the network

viewed by the applications and policy engines as one single and logical switches entity. It

enables the network operator to control the entire network from a single point of view which

greatly simplifies the network design and operation. SDN also make the network devices

less complicated since they are no longer have to process and understand different protocols

standard but just only accept instructions from the centralized controller.

Figure 2.1 SDN Architecture (as shown in [6])

The lowest layer in SDN which is Infrastructure Layer, is a form of interconnected

network devices. This layer communicates directly with the lower layer which is called

Control Layer through a Control Data Plane interface. This interface is open standard such

Chapter 2. Literature review 9

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

as Openflow protocol. The Control Layer is the heart of SDN operation where it consists all

kind of network services and the SDN controller that control the network devices itself. The

highest layer which is Application Layer where one or more network applications are stored.

Those applications communicate to the Control Layer through set of APIs.

2.2. Brief Introduction to Openflow

Figure 2.2: Openflow flow table.

Openflow protocol has become de facto standard for the SDN switch-controller

protocol and forwarding plane abstraction. Variety of enthralling network control functions

has been introduced utilizing Openflow protocol such as server load balancing [23], campus

network access control policies [24], load balancing routing algorithms in data centres [25]

and many others. Initially, an Openflow switch establish communication with their network

controller through a secured communication channel. Then, this channel is used to exchange

information between the switch and the controller and also to allow the controller to install

rules into switches flow table to determine the switch forwarding behaviour.

As depicted in Figure 2.2, a flow table consists of a collection of pre-defined rules,

where each of this rule consists of a match condition that defines which type of packets the

rules apply to. This field is to mask what packet fields to match with, for example, to match

with the VLAN ID field. Next important parameter is action field. This field define how the

associate packets that match the rule should be processed. When there are any incoming

packets into the Openflow switches, it will find the highest priority rule to match first. The

flow entries with highest rule will be processed by the switch first. It then executes the action

Chapter 2. Literature review 10

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

associated with the rule. The stats field is a counter that hold the flow entries current packet

and bytes statistics. If the incoming packets dose not match any pre-defined rules, the packet

is encapsulated in an Openflow message called Packet-In and sent to the controller for

further decision making. This message indicates to the controller that particular packet

requires further rules to be decided.

As depicted in previous Figure 2.2, many packet header fields can be as matching

criteria for incoming network packets. Openflow 1.0 allows 12 type of packet header fields

from layer 2,3 and 4. One type of rule that put no condition on one or more fields is

introduced which called wildcard rule. This type of rule can be used to reduce the control

traffic in network. Openflow rules allows variety of actions, such as modifying the

destination address of the incoming packets to reroute to other destination, forwarding packet

to more than one destination or replicate the incoming packets. Thus, the network controller

can program L2 and L3 routing, do customization on network policies and QoS related

forwarding decision. Moreover, each flow entry in switch flow table can be configured with

two type of timeouts which is hard and soft timeout. Any rules defined with hard timeout

will be removed from switch after t seconds have elapsed since the rule installation. Any

rules defined with soft timeout, the rule will be removed after t seconds no packet match the

rule.

Openflow protocol support three major type of messages, controller-to-switch,

asynchronous and symmetric. Controller-to-switch messages initiated by the network

controller and used to directly manage or inspect the switch state. Asynchronous messages

are initiated from the switch and it is responsible to update or give information to controller

about any network event and changes to the switch state. Lastly, symmetric messages are

initiated by either the switch or the controller and sent without solicitation. The message

types used by Openflow are summarized in a Table 2.1 below.

Chapter 2. Literature review 11

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Table 2.1: Summary of key OpenFlow messages as Openflow 1.3 version.

Message Type Sender Description

Feature Request controller Controller requests switch identity and capabilities

(i.e. port information)

Configuration controller Controller set or query configuration parameter in

switch.

Modify-State controller Insert, modify, or delete flow table entries

Read-State controller To collect information such as current

configuration, statistics and capabilities from

switch

Packet-Out controller Send packets out of a specified ports on the switch

Flow removed switch A flow entry was removed due to timer expiration

or flow entry delete command.

Packet In switch Notification that the given packet arrived at the

switch either because it failed to match in flow

table or it matched a rule whose action directed

the packet to the controller.

Port-status switch Inform controller for changes on a port

Stats reply switch Report of port or flow statistics of the switch.

Flow-monitor switch Inform controller of any changes in flow table

Chapter 2. Literature review 12

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

2.3. IP Fast Rerouting

2.3.1. Reliability in Network Design

Reliable network design is classified into two main categories: proactive protection and

dynamic restoration [75]. In protection, alternative paths are pre-defined and pre-computed. By

doing this, fast restoration against network failure is achieved by avoiding reactive option. Vice

versa, reactive restoration performs the computation of backup routes after the failure happen.

Even though backup route is optimized in accordance to the network changing behaviour,

reactive restoration require more time compared to protection technology. Proactive protection

is realized in MPLS [76] while dynamic restoration is realized by IP protocol such as OSPF

[77].

In OSPF, each individual router has the whole network topology information and the

synchronization of information is performed among routers. In order for a packet to reach their

destination, route is computed based on a link metric and the shortest patch which has the lowest

metric is assigned as the route. For the IP services reactive restoration, main issue in terms of

improving IP resilience is its long restoration time.

Many previous researches focusing on optimization of IP services restoration time is

proposed. Minimization of convergence time [78] and the computation time [79] for OSPF is

proposed and evaluated. For example, by limiting the notification area in OSPF flooding,

network convergence is shortened [80]. IP fast reroute which embed the concept of MPLS

proactive restoration mechanism to IP is proposed. The basic strategy of IP fast reroute is to

pre-defined backup routes as in MPLS path protection, and able to switch to backup path if the

primary path service is disrupted. IP fast reroute approaches require extension to the current IP

framework since there are no schemes to maintain the pre-defined backup routes in pure IP

network.

For example, backup topology-based approach [81,82] has multiple routing tables

stored in a router, and uses them in accordance to changes in network state. For other IP fast

Chapter 2. Literature review 13

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

rerouting [83–86], even-though the mechanism of failure detection and packet forwarding are

different, the general strategy in this previous work is to prepare backup tables, which store

precomputed backup paths.

2.3.2. IP Fast Reroute in Internet

For IP services to respond fast to any link disruption in the network, it requires to use

backup topologies. Each of this backup topologies are pre-defined and installed in the

forwarding nodes. Each router computes the shortest path and then create the main path to reach

their destination and also for their backup topology. When the router detects a link failure, it

will independently search for the backup topology that protect the failed link.

Motivation of IP fast rerouting is to achieve millisecond-order restoration time without

alternate packet forwarding techniques such as MPLS. However, the current IP services

restoration take longer time to recover. Self-organizing and distribute network control is

introduced in OSPF and since then, it is widely used as the mainstream IP routing protocol in

the Internet. However, when there is a link failure, the convergence process is slow because of

their nature; reactive and global [69]. Thus, OSPF cannot support the requirement to be a carrier

grade network since the carrier grade network require below 50ms network recovery [70]. The

fast rerouting concept then is introduced in MPLS to achieve the carrier grade network recovery

requirement.

In MPLS, the alternative approach to realize the IP fast rerouting concept is introduced

where the router has the ability to pre-compute the backup path routes that will allow the link

failure to be repaired locally by the router that detect the failure without the immediate need to

inform other router in the line about the link failure event. In this case, the network disruption

time is being limited to only small amount of time to trigger the backup routes. But, the

implementation of fast rerouting in pure IP network is not widely implemented since it requires

the adaptation of any commodity hardware/routers to the forwarding function since the

mechanism to employ backup routes is very different from MPLS.

Chapter 2. Literature review 14

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

The problem of fast rerouting using backup topology in IP network is to minimize the

number of backup topology information in the router itself to ensure the scalability and

relevance to actual condition. This is because the size of routing table in the router is

proportional to the number of pre-computed backup topologies. In SDN, the central controller

has the ability to modify/delete/remove any flow entries in the router on the fly. The control

function is place in a software controller and the routing table which called flow table can be

program by the controller, which means that the control of the network does not limited on

hardware implementation.

2.3.3. Proposed Research Objective

As discussed in previous sub-chapter (2.3.1 and 2.3.2), IP is used to realize reactive

restoration in terms of reliability of the network. As a result, the main disadvantage of IP is

restoration time is longer even-though the IP services can handle unexpected network changes

by its autonomous and reactive property. Although there were many previous studies to shorten

the IP restoration time based on IP reactive property, the network restoration time is still not

achieved the level of MPLS proactive protection.

Table 2.2 Objective of proposed research (Chapter 3).

 IP Network

Reactive Restoration Current Technology

Proactive Protection Objective (Chapter 3)

1. Carrier-grade fast restoration

2. More optimal path selection for backup routes

Motivate by the above mentioned current state of IP fast rerouting, we set our objective

to show the feasibility of IP fast rerouting in the actual use. To modify hardware nodes seems

to be impossible and may become a proprietary technology. By focusing on SDN based protocol,

Openflow can provide the ease to program a network to realize the specific forwarding for IP

fast restoration.

Chapter 2. Literature review 15

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Furthermore, by setting pre-established alternative paths, results in a faster

switchover compared to establishing new alternative paths on-demand. Fast rerouting may

lead to the use of sub-optimal alternative backup path. The combination of both fast rerouting

and optimal path computation would be the best solution for service restoration.

2.4. Network Anomaly Behaviour Detection

Anomaly detection is the problem to find patterns in the network data that do not

conform the expected normal behaviour. Two commonly used term in anomaly detection

context is anomalies and outliers; sometimes interchangeably. Variety of applications use

anomaly detection techniques to find anomalous behaviour in their activity such as fraud

detection for credit card and intrusion detection for cyber-security events. The importance of

this methodology is due to the fact that any anomalies in data often translate to significant action

in wide variety of applications area. For example, an anomalous traffic pattern in a computer

network could mean that a hacked computer is sending out sensitive data to an unauthorized

destination [87].

Over time, a variety of anomaly detection techniques have been developed in several

research communities especially focusing in detecting anomalies in network traffic such as [43-

45].

2.4.1 Accuracy of Sampled Flow

Flow-based monitoring is the most common tool used to analyse the network traffic to

collect information on bandwidth utilization and network resources as well as network

dysfunctionalities and attacks. The infrastructure consists two parts:

1. the data collector which responsible to receive any exported flow from the data

sources and stores them for future analysis.

2. The data source that responsible to analyse the traverse packets in the network and

also responsible to create flows.

Chapter 2. Literature review 16

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

The data source analyser is usually implemented individually inside the network device

itself, such as routers and switches, and it takes the advantage of the vast amount of its resources

to analyse the packets and also store the information while those packet is active in the network.

The extracted flows from the data source are sent to the data collector periodically through the

same network that is being monitored. The communication between the flow collector and the

data source is typically done by the use of some proprietary protocol such as sFlow, Jflow,

Netflow or IPFIX, an IETF standard.

Using these devices to monitor the network has several advantages since it is not

necessary to add extra component. The entire packet processing is done inside the network

devices such as routers and switches and the communication to the data collector is performed

using the same network. However, in the context of high-speed networks, they exhibit the

following drawbacks that are not possible to mitigate:

 Routers and switches require extra processing overhead especially in analysing

high load networks and can lead to overloading their resources. When this

devices overload, they also tend to skipped the flow monitoring in order to utilize

their remaining resources to route packets, thus might losing important flow-

based information.

 As discussed before, communication between the data collector and the data

source use the same network that is being monitored. This could lead to network

overloading and also to incorrect information since production traffic is mixed

with network measurement traffic.

 Current routers and switches are closed and proprietary platform, the

administrator are not free to modify how flows are defined or what type of flow

information to be collected.

Chapter 2. Literature review 17

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

2.4.2 Proposed Research Objective

In order to overcome the limitations listed above, a flexible open-source platform to

collect the flow-based information suitable for high-speed networks is needed. It is also

desirable that the measurement traffic technique does not become intrusive on the network that

is being monitored and does not impact on the network devices either. A separate

communication channel between the data source and the data collector is also needed to not

overloading the current network devices on their packet processing jobs.

To detect anomalous behaviour in the network, analysing the data via sampling is the

key to determine things whether it is unusual or normal network. For example, Netflow is a

sampling mechanism introduced by Cisco for a network administrator to determine thing such

as the source and destination of traffic, causes of a network congestion and etc. Therefore,

impact of sampling method on anomaly detection are widely discussed. In [73] and [74], the

author shows that sampling degrade the performance of some type of anomaly detection

algorithms and also introduce different type of network distortion.

Flow sampling influence the accuracy of any anomaly detection techniques. With the

increasing amount of network traffic, sampling techniques have become widely employed

allowing monitoring and analysis of high-speed network links. Despite of all benefits, sampling

methods negatively influence the accuracy of anomaly detection techniques and other

subsequent processing. If too frequent sampling process is being done to the network traffic, it

might lead to high network resource usage. By contrast, if too much gap in sampling time

interval is use to find anomaly, it might lead to loss of important traffic feature for the

administrator to analyze.

In SDN, the ability of the controller to have the whole view of a network bring a lot of

benefit whether to sample every flow or selective flow easily. By separating control plane and

data plane feature, the network production traffic can be separated with the network

measurement traffic as well, thus the control to not overloading the flow forwarding is also

Chapter 2. Literature review 18

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

possible. Furthermore, with the capability to extract many important packet header information

form the incoming packet to the network such as source port information deepen the advantage

of SDN to overcome the discussed drawback in anomaly detection in IP network. Since SDN

use polling method in order to analyze the statistic of any flow in their network, the frequency

of polling of every type of flows should be addressed properly to balance the tradeoff between

the accuracy of anomaly detection and the scalability of the network resources that was used

for the analysis purposes.

2.5. DNS Flooding and Amplification Attacks

The most crucial service in the Internet is DNS application since most of the network

applications and services require a translation from domain name to IP addresses. As

consequences, even if the service is unavailable for a short period of time, it has a significant

impact to the communication in the Internet itself. Furthermore, since DNS use UDP protocol

for the DNS queries and responses makes DNS vulnerable to spoofing-based Denial of Service

(DoS) attack. Moreover, with the introduction of public DNS such as OpenDNS and Google

DNS, every IP in the Internet are eligible to use the service and the spoofing-based DOS attack

can easily exploit the platform to launch a famous DNS amplification attack with the objective

to exhaust the victim network resources and interrupt the services for any legitimate users.

Therefore, it is impossible for the DNS server to differentiate between legitimate and attack

DNS query packet from the requesting host.

The hackers usually employ a large number of botnets to attack the DNS application.

The botnet then is configured to generate small DNS queries with forged source IP addresses

which can generate a large volume of network traffic since DNS response messages may be

substantially larger than DNS query messages. Then this large volume of network traffic is

directed towards the targeted system to paralyze it.

The employed botnet IP addresses are usually spoofed under the control of the attacker,

which makes it very difficult to traceback the attack traffic even to the botnet itself. Because of

Chapter 2. Literature review 19

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

this problem, the DNS server has no choice but to handle all incoming DNS request and it will

start to drop incoming request when the server itself is overloaded with quite number of requests.

As a consequence, the legitimate requester will see the drops sign as a congestion problem and

it will rearrange for another transmission, thus it will drastically decrease the number of

legitimate DNS queries served by the overloaded DNS server.

2.5.1. Defence Against Spoofing IP Addresses

By the time a DDoS flooding attack is detected, there is nothing that can be done except

to disconnect the victim from the network and manually troubleshoot and fix the problem.

Hence, the ultimate goal of any DDoS defence is to detect and stop the attacks as close as

possible to their sources.

The current IP protocol allows any source hosts to alter their source addresses in the IP

packets. Thus, it creates a huge problem in detecting DDoS flooding attacks since the victim

does not have the ability to distinguish attack packets from legitimate one if only to be based

on their source addresses. IPSec protocol [88], [89] is introduced to help on this problem by

authenticating the source of any IP, but this method is not widely deployed among the service

providers because of its large network overhead.

Hop count filtering mechanism [90] record the information about a source IP address

and the number of hops from its destination when the destination is not under attack. Once the

attack alarm is notified, the method will inspect the incoming packets source IP addresses and

their corresponding hops to identify and make decision to decide whether the incoming packet

is legitimate or spoofed packets. However, attackers can spoof the IP addresses with the same

hop count as their machines do. Furthermore, the legitimate packets are also can be classified

if their hop count to IP mapping is incorrect or there is delay in the mapping database update

[91].

The other possible solution for this matter is to be able to identify the legitimate source

for the incoming DNS queries; spoof detection and prevention mechanism likes the ones

Chapter 2. Literature review 20

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

proposed in [61], where the author proposed a method to detect the spoofing DNS query packets.

The method requires the DNS server to generate some type of cookies embedded in the DNS

response packets. However, it only can authenticate the requests between the resolver and the

DNS servers. The main attack tools that is from the general DNS clients, cannot been verified.

DNSSEC is then introduced as an extension to DNS which provide to DNS clients

(resolvers) the origin authentication of DNS data, authenticated denial of existence, and data

integrity instead of authenticating the DNS requester. It has no protection against DoS attacks

thus it does not offer efficient countermeasure against flooding attacks as already argued in [71].

Furthermore, any DNS packet signed with DNSSEC will result in much larger DNS response

packets than the normal DNS response packet (unsigned) and often exceed the maximal trans-

mission unit (MTU) [72].

2.5.2. Proposed Research Objective

As highlighted in [87], the author discussed the need of collaborative defence approach

against DDoS flooding attacks. Since the attackers collaborate with the botnets to launch the

flooding attacks, the defenders are also encouraged to from alliance and cooperate each other

to defeat the DDoS attacks. The author also believes that by combining the source address

authentication and filtering mechanism is the most effective countermeasure against attacks.

Motivate by the proposed idea in [87], this thesis proposed a collaborative

authentication of source IP addresses between the server and the client network. At the same

time, to be effective in filtering and able to differentiate between attacks and legitimate DNS

queries packets is also desired.

In SDN, with the ability to modify/replicate/copy any packet in the network, the

controller has the ability to manipulate any incoming DNS queries before it reaches any DNS

server for name resolution purposes. Moreover, in any existing firewall or routers, TCAM is a

main issue because of its limitation and expensiveness. In general, rules or access list has to be

manually pre-configured in the devices earlier, thus the memory consumption of the routers are

Chapter 2. Literature review 21

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

the main problem. With the capability to modify/delete flow entries on the fly, the rules to block

or allow any incoming packet can be install only when needed, thus reduce the memory

consumption problem in the router resources.

Chapter 3. Fast Failover with More Optimal Path – SDN Based 22

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Chapter 3

3. Fast Failover with More Optimal Path – SDN Based

3.1. Introduction

In order to elaborate more on our fast failover mechanism, it is important to put the highlight

on OpenFlow which is a clean slate project introduced by Stanford University. OpenFlow was

implemented as the first open standard interface for Software-Defined Network (SDN)

architecture. SDN enable network administrators with a central programmable management

interface, which is decoupled from the underlying network infrastructure for current layer 2 and

layer 3 switches. This function removes the hardness to do any testing with new protocols in

real network infrastructure. In OpenFlow, the data path and the high level routing decision are

made from two different devices, which is the OpenFlow-enabled switch and controller,

respectively. The central controller provides the switches with the operational rules instructions,

which is pushed by the controller to the switch as individual flow entries via a secured channel

between them using Openflow protocol. The switches search the flow table corresponding

entries and if there is any rules match, it will process the packets according to the pre-specified

actions in the entries.

The incoming packet in Openflow-enabled switches is matched against the flow table

and the associated actions are taken into action: similar to the existing conventional switches.

The main difference is that if the packet has not match any rule in the flow table, the packet

would be drop or Openflow-enabled switch encapsulate the packet and push the packet to the

controller. Then the controller uses the flexibility of software to do further analysis and then

decide what to do with the packets. The controller then passes the packets back to the switch

together with associated action.

To ensure application services are not interrupted during flight in the network, SDN

must impose a mechanism to continue to forward traffic whenever there is a link or node failure.

Therefore, as in traditional networks, SDN adapt to failures by forwarding the traffic flows over

alternative path similarly to any link-state routing protocol – reconverge after link failure is

Chapter 3. Fast Failover with More Optimal Path – SDN Based 23

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

detected. In SDN, central controller does the computation of path and to achieve high

throughput, it can be done in advance to predetermined the backup path in the case of any link

failure. In a carrier-grade network, single failure event can cause huge amount of network traffic

disrupted. Therefore, network reliability is an important feature to taken care of and fast

recovery of the network is strictly required.

3.2. Related Works

Recently, there are some proposals for network fail over mechanism in the SDN is

proposed. The author of [26] designed a network restoration method if there is link failure in

SDN. In the proposed method, the OpenFlow- enabled switches that detect the link failure for

the particular flow will inform the controller about the situation. Upon receiving this

notification, the controller will first examine if the precompute old path is affected by this

changes. If it is, it will then calculate a new backup path for the affected flow and update the

OpenFlow switch about the new information. The author also shows that the network

restoration time is around 200 ms. However, the centralize controller could be overloaded with

recovery messages and thus might introduce scalability issues.

In [27], the author introduces an OpenFlow-based fast recovery in optical transport

networks. The centralized controller configures main and backup path and that information are

provided to OpenFlow switches in one single flow table but with different priority levels. The

main path is configured with the highest priority and the backup path sits in the next place.

When failures happen, the affected switches will use auto-reject message to delete the main

path entries and switch to the next backup path. However, the pre-configured backup path is

not always the optimal path and the process of switching from main path to backup path would

also introduce a significant delay.

From Figure 3.1, consider a scenario where the main and backup path are precomputed

by the OpenFlow controller and added to the flow table of respective OpenFlow switches (main

and backup path are calculated based on shortest path algorithm). When link between source

node s and node C is fail, the incoming traffic will redirect to the next configured backup path,

which is link s-E-F-d (the next best shortest path). The link utilization of backup path is already

achieving 90% of the total bandwidth provided. When the traffic is redirect to preconfigure

backup path and when the incoming packet is using this backup path, the path is already

congested and might affect the overall performance. As enormous amount of traffic of data

Chapter 3. Fast Failover with More Optimal Path – SDN Based 24

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

communication within the data center projected by Cisco [28], clearly traffic delay is not a

tolerable issue. Inspired by the problem stated in Figure 3.1, we design a fast failover

mechanism for SDN using Openflow to provide a link protection, fast failure restoration in the

case of link failure and to ensure the traffic are route through more optimal available path.

Figure 3.1. Non Optimal Backup Path Problem

3.3. Fast Failover with More Optimal Path Mechanism

3.3.1. Backup Topology Decision

A designed flow table scheme must be proactive; able to preconfigure the backup

routing information in advance before the network fail and local; the process of rerouting can

be done without any failure notification in order to achieve fast reroute. By constructing

multiple routing table, as standardized by IETF [29], it can ensure a fast restoration when a

single link fail. There are many works done in literature focusing on determining backup path

to ensure network reliability, most notably [26]. The author proposed a fast convergence by

preconfiguring a node next-hop backup and allow packet to reroute immediately after a failure

detection. The proposed method use a multiple backup routing table installed in every node and

the routing table selection decision is based on the network state.

In Figure 3.2 shows the example of backup topologies. Links in red are called protected

links and the backup topology provides detour routes on the failures of those links. Every link

is required to be a protected link in at least one backup topology and backup topology is defined

Chapter 3. Fast Failover with More Optimal Path – SDN Based 25

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

as a connected graph that does not contain the protected links. In this way, we can achieve fast

recovery against any single link failure by using backup topologies.

In this paper, we adopt Openflow protocol [31] which can provide the programming

flexibility of network to realize our IP fast rerouting forwarding in SDN. Combination of both

optimal path discovery and fast reroute mechanism is known to provide the best solution for

network service restoration [32].

Figure 3.2. Example of backup topology

3.3.2. Optimal Path Calculation

We define optimal path as network load over a path as the average rate of bytes that

goes through the link and correctly received by the other node that attached to it. Therefore, the

link load utilization is expressed as the current link usage over the maximum link capacity and

is a number from zero to one. When the utilization is zero it means the link is not used and

when it reaches one it means the link is fully saturated [33]. We use Load Sensitive for Software

Defined Networking (LSSDN) terminology to denote the proposed load sensitive metric at each

link.

To get the link load utilization, the formula are as follows

Chapter 3. Fast Failover with More Optimal Path – SDN Based 26

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

(
𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒
) * 100 (1)

The throughput is measured by the sum of incoming and outgoing bytes. In Openflow,

the needed information (byte count) is available from Openflow switch port counter [34]. To

measure the link load utilization, the Openflow controller needs to monitor all switches port

traffics, cache all of the number of incoming and outgoing bytes through their interface for

further calculation.

Assuming that L links are available between two nodes. The bandwidth of ith link

between nodem and noden is 𝐵𝑚→𝑛
𝑖 (i=1,…L). If the total number of bytes going through an

interface denote as T, then we can calculate the traffic utilization as follows. We define the link

load utilization of a node interface, U over linki from nodem to noden as the current total of

throughput through the interface at certain time over the link transmission rate. The formula

can be simplified as below.

𝑈𝑖 = (
∑(𝑇𝑖)

𝑚→𝑛

𝐵𝑚→𝑛
) ∗ 100 (2)

The path weight of the LSSDN metric is defined as (consider end to end path including

H hops),

𝜔𝑈𝑖 = ∑ 𝑈𝑖
𝐻
𝑖=1 (3)

Note that the LSSDN metric given in (3) is under the assumption that all the packets

can continuously go through all the path hop-by-hop without any node or link failure.

Let vector [𝐵𝑚→𝑛
𝑖 , 𝑇𝑚→𝑛

𝑖 ,L] is characteristic of link between nodem and noden.

𝐵𝑚→𝑛
𝑖 denote the bandwidth of ith channel between nodem and noden, L is the number of

available links and 𝑇𝑚→𝑛
𝑖 is the total throughput of ith link between nodem and noden . For a

given network of G (V, E), and the source node Ns and destination Nd, the LSSDN algorithm

include the following steps:

Step 1: Calculate the bandwidth capacity (𝐵𝑚→𝑛
𝑖) for every link in network G (V, E).

Step 2: Calculate the total throughput (in bytes) over a link 𝑇𝑚→𝑛
𝑖 for every link in

network G (V, E).

Chapter 3. Fast Failover with More Optimal Path – SDN Based 27

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Step 3: Calculate the weight 𝜔𝑈𝑖 for every link in G (V, E) according to Eq. (3)

Step 4: Use Dijsktra Algorithm to find the smallest sum of weight in the paths of G

(V,E) from node Ns to node Nd. The details of LSSDN are given in Figure 3.3.

Input: 𝐵𝑚→𝑛
𝑖 , 𝑇𝑚→𝑛

𝑖 , (i=1,…L);

V={v1,v2,…,vn} :The set of nodes;

Ns 𝜖S: source node;

Nd 𝜖V: destination node;

for j=1 to N do

 for k=1 to N do

 for =1 to M do

find 𝐵𝑚→𝑛
𝑖 ;

 find 𝑇𝑚→𝑛
𝑖 ;

calculate 𝜔𝑈𝑖;
 end for

 end for

end for

S: The current set of nodes (from Ns to Nd.) which has smallest load path

𝑇(𝑉𝑖): The current sum of link load of the links on the smallest weight path from Ns to

Nd.

for =1 to N do

𝑇(𝑉𝑖) = ∞;
𝑇(𝑁𝑠) = 0;
S = ∅;
end for

while 𝑁𝑑 ∈ 𝑆

{

u=v; //𝑉𝑖 ∈ 𝑆 and () 𝑇(𝑉𝑖) is smallest load in all nodes in V→S

S = 𝑆 ∪ {𝑢};
for all 𝑣𝑘 ∈ 𝑉 → 𝑆

𝑖𝑓 (𝑇(𝑣𝑖) + 𝜔𝑈𝑚→𝑛 ≤ 𝑇(𝑉𝑘))

𝑇(𝑉𝑘) = 𝑇 (𝑉𝑖) + 𝑇(𝑉𝑘) + 𝜔𝑈𝑚→𝑛;
}

Figure 3.3: Smallest Link Utilization Path Selection Algorithm

Besides the update frequency, the number of transmitted and received bytes’

information affects the estimation of link utilization for the LSSDN metric. The number of

throughput changes instantaneously. If we use the value directly for link utilization calculation,

frequent rerouting might have occurred. To avoid the problem, we maintain a weighted average

link utilization in the controller, denoted as 𝑈̅ and controller use this weighted average value as

Chapter 3. Fast Failover with More Optimal Path – SDN Based 28

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

the backlog information instead of instantaneous sample value for the LSSDN computation.

Specifically, the controller samples the instantaneous throughput according to a schedule, and

let Un denote the nth sample. The average link load utilization, 𝑈̅ by incorporating the

instantaneous link utilization Un, according to the exponential weighted moving average

scheme [10], is

𝑈̅ = (1 − 𝛼)𝑈𝑜𝑙𝑑 + 𝛼 ∗ 𝑈𝑛 (4)

𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝛼 ≤ 1 //𝑈𝑛 = nth sample

To show the need to include link utilization as a metric in SDN forwarding decision, we

demonstrate the relation between link utilization and the input load using simple simulation. In

the simulation, we tried to vary the aggregate input load traffic and measured the usage of the

bandwidth. To simplify the network, the packet size was set to 1000 bytes and the link data rate

was set to 1Mbps. The chart as illustrated in Figure 3.4 is to emphasize the impact of the link

load utilization on forwarding packet to their destination. From the figure, it clearly shows that

the link load utilization is proportional to the traffic that sent through the link. It is observed

that the bandwidth utilization is increase linearly with the input load and then it gets saturated

as the input load reach approximately 800 Kbps. When the link is saturated, the link load

utilization is almost constant even though the input load increases and it is happened because

the available link bandwidth is almost fully utilized. The higher the value of link load utilization,

the lesser traffic can be send over the link.

Chapter 3. Fast Failover with More Optimal Path – SDN Based 29

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 3.4. Link utilization as a function of input traffic

We also carried another simulation to study the capability of a link for to tolerate more

traffic at different link load utilization. We simulate 5 pair of nodes exchanging data with

another and we can derive the relation between link load utilization and delay of packet. As

illustrated in Figure 3.5, we observed that the packet delay time increase dramatically when the

link utilization starts to climb at 90 percent of link utilized. This shows that the need to consider

the link load is vitally important at high link utilization but its effect may also be ignored when

the link load in under-utilized.

Chapter 3. Fast Failover with More Optimal Path – SDN Based 30

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 3.5. Packet delay time as function of link utilization

3.3.3. Update Frequency

Our proposed LSSDN forwarding metric can be viewed as a load sensitive metric as it

is heavily depending on the switch port information. The Openflow controller is require to

perform recalculation by updating the traffic status to avoid usage of the congested link in the

network. To balance the trade-off between performance and the overhead, the route update

frequency is a critical factor. More frequent updates of network state will introduce unnecessary

overhead. On the other hand, large gap of update frequency will prevent the route from timely

tracing the network status, and the network performance may have dropped. We adopt the

multipart message provided in Openflow feature which use to encode request or replies to or

from the controller to switches. We simulate the feature to get port statistic for all of the

switches to calculate our proposed link load metric in the controller. In our proposed algorithm,

the message collect byte count information to measure the packets going in and going out

through a particular port. In our simulations, we set the time for the Openflow switches to

update the controller with the needed information automatically every 5 seconds. After the

controller receive the new information it will perform recalculation based on our proposed

metric to define the most optimal next forwarding path. In Openflow, the controller able to

modify the existing flow entries action field that installed in the Openflow switches via flow

table modification message that modify all flow that match.

Chapter 3. Fast Failover with More Optimal Path – SDN Based 31

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

3.3.4. The Design of the Mechanism

In our proposed design, one single backup path for every main path in switch flow table

is pre-configured. Once the controller path calculation algorithm decides the main and backup

path, it will install both of them to correspondence switches. As in Table 3.1, the main and

backup path is differentiated by priority field where main path has higher precedence than

backup path, thus every incoming packet traffic that match the criteria will be forwarded to

their next destination using the flow entry with the highest priority field.

Table 3.1. Switch Flow Entry

Whenever there is any port in the Openflow switches is added, deleted or modified,

OFPT_PORT_STATUS message is sent to central controller indicating any changes of the port

status. To support fast failover, a local controller for every Openflow switches is proposed.

Instead of sending the port status to central controller only, we configure the port status message

to also send the port changes information to the local controller. The central controller

responsible to perform the path calculation and decide the main and backup path of a particular

flow while the local controller perform the local rerouting to backup flow entry. The local

controller network restoration does not depend on the centralize network state.

Chapter 3. Fast Failover with More Optimal Path – SDN Based 32

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 3.6. More Optimal Path Fast Reroute Workflow

As in Figure 3.6, when a link fail, at t=1, the local controller will perform function to

switch the incoming traffic to use the pre-defined backup path. While at the same time, the port-

status message is sent to the controller. When the central controller receives the message, it will

perform another path calculation to decide the best available path for that particular flow,

excluding the unusable port that reported by the affected switches for their next calculation.

After the central controller decide the new main and backup path for the affected flow, it will

install both flow entry into affected switches, at t=2. In our work, whenever the central

controller receives the port status message, it will recalculate path and install two entries back;

the main and backup path with different priority level as explained before. We describe the

proposed working mechanism in the following section with example given.

Chapter 3. Fast Failover with More Optimal Path – SDN Based 33

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

3.3.5. Link failure scenario

Figure 3.7. Example of single link failure scenario

This section describes our fast rerouting mechanism using Openflow protocol. We

illustrate the steps to achieve our objective using example in Figure 3.7. In normal condition,

entries in the flow table specify the outgoing interface for every flows in action field. At the

same time, each switches also stored backup path for all flows that use main path in the flow

table entries. In Figure 3.7(a), when the local controller detects a link failure, we configure the

local controller to receive the OFPT_PORT_STATUS message from the affected port. The

local controller finds the list of flows in their database that use the failed port and begin the

operation to delete the affected entry from their flow entries lists. Local controller performs

delete operation for all flows that use the affected port as their forwarding interface. Note that

the deleted entry is main path with the highest priority precedence field. By doing this, fast

rerouting is performed without need to wait for global route calculation from the centralize

controller. Thus, the incoming packet will autonomously reroute to backup path entry that

previously installed by the central controller. Rerouting processes using the local controller are

only performed at the switch that detects the link failure.

Chapter 3. Fast Failover with More Optimal Path – SDN Based 34

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

In Figure 3.7(b), when a link fail, the OFPT_PORT_STATUS message was also sent

by the switches to the controller. It is worth to note that during this process, the subsequent

packet that previously use main path entry for forwarding has already routed using the backup

path since there is a match in earlier predefined flow entry. Once the central controller receives

this message, it performs same initial step like the local controller did. Central controller holds

the global routing information of the network. The central controller will calculate the new path

for the affected flows. This time, once the central controller identified the flows that use the

affected port as their forwarding port, it removes the affected port from the new path calculation.

By doing this, the central controller ensure that the new path will not include the fail port to

route the flows to their next destination. The central controller again performs route calculation

process two times. The second time calculation will not include the first port that had been

identified as main forwarder interface. In Figure 3.7(d), once the central controller had

identified the new main and backup path for the affected flows, it installs both entries into

respected switches flow table. In this example, the central controller decides the best path for

the affected flows is through port 3. Then it installs the entry with high priority into the

respective switches. In Openflow, whenever there are two identical entries but with different

priority precedence, the flows will automatically always use the entry with higher priority to

reach their next destination. In this case, the flows will autonomously reroute to port 3.

3.4. Performance Evaluation

To show the ability of our fast rerouting mechanism, we evaluate the proposed

mechanism using two parameters which utilizes the Openflow framework. Our objective is to

achieve the main fundamental for fast rerouting; able to reroute within 50 milliseconds [35].

We also compare our proposal to the related works [26] which require the central controller to

acknowledge the link failure and make decision to install the backup path into the switches and

[27] which also implemented pre-defined backup path without the centralize controller

involvement.

The simulations are performed using Omnet++ with Openflow protocol enabled [36].

Openflow component are integrated into the Omnet ++ network simulation environment with

the support from INET framework [37]. For the network topology, we use power-law model

[38]. In this model, most of the network nodes have small number of connected links, while a

small number of network nodes have a large number of connected links. We simulate

Chapter 3. Fast Failover with More Optimal Path – SDN Based 35

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

incremental number of network nodes ranges from 20 to 200 nodes and each node is configured

to have four connected links on average.

3.4.1. Restoration Time

The first parameter is restoration time. To find the restoration time for the affected flows

to recover from a link failure, the link failure detection, 𝑇𝑑𝑒𝑡𝑒𝑐𝑡 and updating flows to use

backup path, 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 are formulated as follows:

𝑇𝑙𝑜𝑐𝑎𝑙 = 𝑇𝑑𝑒𝑡𝑒𝑐𝑡+ 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 (5)

For the failure detection 𝑇𝑑𝑒𝑡𝑒𝑐𝑡 , we define as the time for the logical controller to

receive the OFPT_PORT_STATUS message before make decision to do the restoration process.

𝑇𝑢𝑝𝑑𝑎𝑡𝑒 is define as forwarding table update which force the affected flows to reroute using the

pre-configured backup path. From the equation (5), we are able to calculate the time taken for

the local controller to take action to reroute flows locally.

To find restoration time in [10], they formulated the restoration time as follows:

𝑇𝑐𝑒𝑛𝑡𝑟𝑎𝑙 = 𝑇𝑑𝑒𝑡𝑒𝑐𝑡+ 𝑇𝑐𝑎𝑙𝑐+ 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 (6)

𝑇𝑑𝑒𝑡𝑒𝑐𝑡 is the time when the failure notification message is sent to the central controller.

When the central controller is notified by the switches about the failure, the central controller

will find the affected flows and the new path are calculated, 𝑇𝑐𝑎𝑙𝑐. After that, the switches

receive the flow-mod message from controller to update the flow entry. When the flows are

redirected to new path, 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 is calculated.

Chapter 3. Fast Failover with More Optimal Path – SDN Based 36

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 3.8. Network Restoration Time

Figure 3.8 shows the restoration time with three conditions. The first require switches

to notify the central controller for the link failure event and no pre-defined backup path is

configured in switches. The second case use pre-installed backup path and perform local

rerouting when there is a link failure without the involvement of central controller. The third

which is our method, is a hybrid mechanism where both local and central controller

contributions are required when a link is fail between devices. Whenever a link fail and the

switches need to involve the central controller for rerouting decision, clearly the method does

not achieve the 50 milliseconds carrier grade restoration time. From the figure, the restoration

time takes approximately 200 milliseconds on average for the network to recover from link

failure. In our method, the restoration time achieve below 50 milliseconds carrier-grade network

where it takes 35 milliseconds on average to restore from a link failure. Our fast rerouting,

which performs rerouting locally, does not require the global acknowledgement. Thus it always

achieves below 50 milliseconds restoration. While for the case of local rerouting without the

intervention from central controller, the method also achieves below 50 milliseconds restoration

but the rerouting to predefined backup path is not always an optimum solution. We show the

drawback of this kind of method in the following section.

Chapter 3. Fast Failover with More Optimal Path – SDN Based 37

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

3.4.2. Average Number of Hops

In this section, we compare the average number of hops taken over paths from each

source and destination pair in the network. We find the average value for the following three

cases, (i) flows are rerouted using most optimal link decided by the central controller without

any link failure (ii) flows are rerouted using pre-defined backup path decided by the central

controller when link fail happen and then (iii) flows are rerouted through the best recomputed

path when there is link failure. In this work, we assume that a single link failure does not leave

the network disconnected.

Figure 3.9. Average Hop Count

Average number of hops for all of three cases as mentioned above are plotted in Figure

3.9, for a network topology with increasing number of network nodes ranging from 10 to 40

nodes. As can be seen from the figure above, clearly the average number of hops for our method

which is the case (iii) are slightly lower than flows that rerouted to pre-defined backup path

when the link fail. It shows that when all flows are rerouted to the recomputed path when the

link is fail is able to reach their destination faster. However, in turn the average number of hops

for our method is higher than using the main optimal path when there is no link failure.

In the case of a network link failure, it is expected that the network size decreases due

to the lost link availability. The path availability is always dependent on network load and it is

Chapter 3. Fast Failover with More Optimal Path – SDN Based 38

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

varying inversely with average number of hop count. This is because the number of available

path will decrease because of the link, thus give impact on the routing performance overall.

3.5. Discussion of Implementation

Figure 3.10. Wasted Flow Entry

Our method always ensure the central controller make decision to elect both main and

backup path during the path calculation process. This is to support the fast rerouting to all flows

that go through the Openflow switches. While it is the best to have pre-defined backup path for

all flows in switches, our method come with an effect to the switches performance. Referring

to example in Figure 3.10, the local controller had previously updated the affected flows that

use the port 1 as their forwarding port rerouted to pre-defined backup path which is port 2. Note

that during this time, the central controller will update the topology with the new information.

In this example, central controller had identified that port 3 is more optimal than port 2, thus

the central controller elect port 3 as the main path for the flows to reroute with. Then the central

controller installed two flow entries into the affected switches with different priority precedence.

Once both entries are installed, the affected flows autonomously rerouted to their next

destination using port 3 as their main path instead of port 2. Previously, local controller had

performed local reroute to use port 2 as the next destination. Now, it is replaced by the central

controller that force flows to use port 3. In this case, they will be some redundant flow entries

in the particular switches which has the same match and action criteria which is forwarding

Chapter 3. Fast Failover with More Optimal Path – SDN Based 39

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

those flows to use port 2. It is clearly a waste of unused number of flow entries in the switches

which might lead to flow table explosion. In our case, we simply let the unused flow entries to

expired and deleted automatically from the switch flow table entry.

3.6. Summary

This work proposed autonomous fast rerouting to more optimal path using Openflow.

We combine both ability of central and local controller for the recovery processes. The scheme

relies on pre-configured backup path and also a global update of topology from the central

controller to reroute to most optimal path. When there is a link failure, the local controller

autonomously reroutes affected flows to their next destination without the need of help from

the central controller.

By utilizing both, in the experimental demonstration results shows our method achieves

below 50 milliseconds restoration time which is crucial for the IP services infrastructure to be

a carrier-grade network. It also shows that this method also requires less number of hops for the

affected flows to traverse through the available links after a link failure.

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 40

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Chapter 4

4. Adaptive Query Rate for Anomaly Detection with SDN

4.1. Introduction

Flow-based method lures the interest from researchers for the network analysis of high-

speed networks. With ever increasing load and network usage, clearly scalability is paramount

issue to be tackle. In order to perform analysis, statistic features need to be recorded and it

expose to unrestraint processing capacity and network bandwidth. For this reason, the accuracy

of anomaly detection as well as the need to balance the trade-off between the overhead and the

accuracy is crucial.

The emergence of SDN that promise the simplicity in managing networks seems to be

the future of the current Internet architecture. In fact, several organizations have adopted SDN

in place, most notably Google [39]. By separating the control plane that orchestrated by logical

network controller platform and data plane as a forwarding drive, SDN, however, expose to

network security threat that can be commence from outside as well as from inside attack of the

network.

Network traffic statistics data has been used as inputs for anomaly detection as security

analysis is critical for organization or network providers. In this paper, we emphasize on the

issues related with the effect of sampling on anomaly detection problem. Network anomaly

detection techniques [40] is based on analysis on network traffic and the characteristic of the

dynamic statistic features in order to detect network abnormalities quickly and accurately. It is

paramount to balance the trade-off between accuracy of anomaly detection and overhead

introduced from the flow traffic measurements (e.g.-scalability). Sampling decision should

have some intelligent ability to address some of the requirement such as to reach low false alarm

and low computation convolution objective. In this thesis, we proposed adaptive sampling

decision for the controller to capture the most dominant service type of DDoS attack in the

network where we aim to provide accurate anomaly detection while at the same time lowering

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 41

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

the number of false reported alarm. Our sampling decision method ensure malicious flows that

come from commonly used attack service port is given higher priority than others, thereby

addressing the accuracy parameter.

Previous related work is discussed in Section 4.2 then the following Section 4.3 gives a

brief detail of our adaptive query for anomaly detection purpose framework. Our flow collector

method is presented in Section 4.3.1 followed by Section 4.3.2 where we explained important

network features that are crucial for our anomaly detection. The methodology and algorithm of

our proposed sampling decision technique is explained in Section 4.3.3. The performance

evaluation results are shown in Section 4.4. Finally, we conclude our discussion in Section 4.5.

4.2. Related Works

Previously, many researchers started to give attention to the impact of sampling method

on anomaly detection. [41], the author has signified that the packet sampling degrades the

effectiveness of anomaly detection and dramatically increase the false positives. In [42], the

author compares two type of sampling which is random flow sampling [43] and sample-and-

hold technique [44]. The result shows that random flow sampling performs best for anomaly

detection. In [45] the authors used flow-based metrics such as the number of source IP addresses

for the detection and proved that the accuracy and performance of the anomaly detection

depends mainly on the sampling rate applied and the author also proved it is less dependent on

the sampling technique used.

Intrusion detection problem has not drawn so much intention from researcher despite

substantial amount of work in Openflow. The eminent work regarding anomaly detection in

SDN is reported in [46], [47] and [48]. In [46], the author utilizes the Openflow architecture for

detecting the Distributed Denial of Service (DDoS) on the data plane. Periodic sampling is used

for flow statistics collection retrieval and Self-Organized Map has been exploit for the intrusion

detection classification. In [47], the author uses multiple type of anomaly detection algorithm

in their research test where the author validates their algorithm in Small Office/Home Office

(SOHO) environment.

The author utilized Openflow for detecting network security problem close to the source

of abnormality using the idea of decentralization control of the network devices. The author

also uses periodic sampling for the flow statistics collection. Contrast to previous work, author

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 42

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

[48] decoupled the controller communication channel with Openflow switches where the sFlow

flow statistics collection method is used and the native Openflow communication channel is

used only for the forwarding purposed separately. The experimental results show significant

reduction in flow table size and the control plane load. However, the method used by the author

increase the false positives percentage in the intrusion detection.

4.3. Adaptive Query Methodology

To provide scalable and accurate sampling decision, we considered two important

parameters which is the anomaly detection and the traffic measurement. In our work, two

important method applied to the incoming packet into the controller. At first, the step is to be

able to classify the incoming packet is either anomalous or normal traffic while the second step

is responsible for our flow sampling decision. Our proposed architecture has been generalized

in Figure 4.1 where it contains 4 main components namely as Flow_Collector,

Flow_Processing, Sampling_Decision and Forwarding_Logic modules.

The components are developed to be part in the POX controller [49] that we use for our

simulation. In general, Flow_Collector module collect all active flows in the network while the

Flow_ Processing carried out flow-level analysis to find the anomaly behavior from the

network flow inspected. The module also responsible to provide attack event and also the type

of service of the incoming packet that has been identified. This two information are sent to the

Sampling_Decision module for the sampling decision making. The consideration of both the

type of service port number and the condition of traffic, our sampling decision is defined in

such a way that any malicious traffic service is given higher priority to be queried and sampled.

This is to ensure to improve the accuracy of the anomaly detection in SDN. We describe each

of the components function precisely in the following section.

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 43

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 4.1. Main Skeleton of proposed architecture

4.3.1. Flow Collector

It is important to describe how Openflow mechanism works when a new packet of a

particular flow arrive in the switch. First, when any new packet reaches the switch, matching

process operation are performed. The switch will check whether the flow entry that installed

previously match with the incoming packet. If there is a match, the packet will follow the action

set for the related flow entry. Otherwise, the switch will send the packet to the controller for

further decision making. The controller receives the header information from a control message

namely as Packet_In from Openflow switch which is result from unmatched flow in the switch

flow table.

Furthermore, the controller will perform necessary decision and install the rules for the

flow into the switch flow table as a flow entry by using FlowMod control message. The switch

then forwards the packet to their destination and subsequent packet of that flow are forwarded

without interrupting the controller. In our proposed work, we record the flow information in an

active flow table in the controller that consist of all current active flows in the network. Our

structure of Flow_Collector can be described as in Table 4.1.

Table 4.1. Active Flow Collector Table in Controller

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 44

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

The table contains 2 main field namely as Flow and Counter. The Counter field is

further divided into Packet_Count, Total_Bytes and Duration field. After the controller receive

the incoming Packet_In and perform the rules and forwarding decision, our method adds the

new information to a list of active flows, flowl (in Flow field) which is associated with the

incoming port of flow. Then, controller installs the associated rules as a flow entry in switch

flow table via FlowMod message. When the flow information has been stored, the controller

will send ofp_flow_stats_request control message to every switch that has information about

the active flow in order to update the controller with their necessary statistic. The statistics are

as follows: we record the number of packet per flow, total bytes per flow and duration of the

flow. Controller kept previous time-window value record for the Counter and perform

calculation when get new statistic to update current time-window value. Our active flows

Counter are updated in controller when the Openflow switch reply to request message.

4.3.2. Flow Processing

As the controller manages the network in centralized fashion, it was able to monitor all

switches and further do analysis on their traffic for the anomaly detection problem. Our

Flow_Processing module contains 2 important sub-modules name as Feature Extractor and

Anomaly Classifier. The details of the sub-modules are explained in the following section.

4.3.2.1. Feature Extractor

Selection decision of different set from network traffic feature sets to be used is common

problem in anomaly detection. As an example, various types of features are widely known such

as detection based on packet headers, application layer protocol or content byte streaming. In

Openflow, the controller has the ability to check the packet header information. When the

switch cannot match the incoming packet with their predefined flow table, it will forward the

packet header information to the controller for further action.

Our Feature Extractor module extract flow information from the Active_Flows module

which are vital for our anomaly detection classification. All of the important features are derive

from the packet header (source port, destination port, source IP, destination IP and protocol).

In Openflow, we can get that information from control message namely as Packet In. The

important features are grouped into 5-tuples flow information in a hash table. In this stage, all

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 45

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

features selected is most likely that influence the judgment to classify network traffic as normal

or as an attack.The 5-tuples features are as follows:

1. Flow Byte, 𝐵𝑙 - the number of bytes of a particular flow capable to provide us a

useful information for anomaly event in network, such as port scan, and it is

normally small in size in order to increase the coherence of attacks.

2. Flow Size, 𝐹𝑙 - IP spoofing is one of main example of DoS attack that make the

task to detect the true source of spoofing is nearly impossible. The normal

operation of spoofing usually generates flows with a small number of packets.

This contradicts from normal network traffic where it usually generates a large

number of packets for a particular flow.

3. Number of different flows to same Destination IP, 𝑛(𝐷𝐼𝑃)- Flood attack are

created to consume the resources of victim host and usually will generate a high

number of flows. This feature will calculate the number of flows to same

victim’s destination IP address.

4. Number of flows to different Destination Ports, 𝑛(𝐷𝑝𝑜𝑟𝑡)- port scan attack is a

process that send requests to a number of server port addresses on a particular

host. The aim of this attack is to penetrate an active port on that host and any

large number of different destination port indicate the abnormality and shows

higher possibility of the network are under attack.

5. Number of different Source and Destination pair, 𝑛(𝑆𝐷𝑝𝑎𝑖𝑟)
1– this feature able

to spot the port and network scans as well as distributed type of attacks, which

spike the number of source and destination pairs. We define this 5 features as

𝑋𝑡 = 𝑓 (𝐹𝑙 , 𝐵𝑙, 𝑛(𝐷𝐼𝑃), 𝑛(𝐷𝑝𝑜𝑟𝑡), 𝑛(𝑆𝐷𝑝𝑎𝑖𝑟)) where 𝑋𝑡 is the observed value at

time t. Furthermore, this 5 features selected vector fed to our Anomaly Classifier

module. We purposely choose this 5 features since the number of packet and

bytes of a flow allow us to detect anomalies in traffic volume while the others

will show increment values in the number.

1 We consider port numbers and IP addresses in utilizing this feature

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 46

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

4.3.2.2. Anomaly Classifier

There are many notable algorithms that has been successfully proven to classify network

traffic for anomaly detection [50,51]. In our simulation, we adopt K-mean algorithm as our

anomaly classifier for simplicity and brevity purpose. This algorithm has the ability to learn

and detect anomalies from the audit data without the intrusion signature which is usually

provide by the security expert. The advantage of this machine learning algorithm is it can

automatically identify groups of similar objects in the training dataset. This clustering algorithm

groups multiple objects into predefined K disjoint clusters.

We summarize the steps of performing this algorithm in the followings:

1. Define the number of K clusters. In our anomaly detection problem, we set the K=2 where

we assume that legitimate and anomaly network traffic features are from different cluster

in space.

2. Initialize the randomly chosen K clusters and set to be as centroid (center of cluster).

3. The calculation process begins to find the distance from each objects to all centroids using

distance function method where the algorithm continues to read each objects from the data

set and assigns it to their nearest cluster.

4. Recalculate/iteration process is done after every new objects insertion to the algorithm to

get the new cluster centroids.

5. Step 3-4 are repeated until the centroids do not change.

In this algorithm, distance function is required to calculate the similarity between two

different objects. The following equation is Euclidean function which is commonly utilized to

compute the distance where 𝑎 = (𝑎𝑖, … 𝑎𝑚) and 𝑏 = (𝑏𝑖, … 𝑏𝑚) are the two input vector with

𝑚 features.

𝑑(𝑎, 𝑏) = √∑ (𝑎𝑖 − 𝑏𝑖)
2 𝑚

𝑖=1 (1)

Using this function however, the features must be normalized first since the features are

usually measured with different metrics. For the evaluation of our proposed adaptive anomaly

detection method, we use weighted Euclidean function as in the following equation:

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 47

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

𝑑(𝑎, 𝑏) = √∑
(𝑎𝑖−𝑏𝑖)

2

𝑠𝑖
 𝑚

𝑖=1 (2)

The 𝑠𝑖 is weight factor and empirical normalization and of the 𝑖𝑡ℎ feature. The

classification of the network traffic is done by the controller where it utilizes this algorithm to

detect the anomaly. Whenever the 5-tuples features are classified as attack, alerts are notices to

an administrator.

4.3.3. Sampling Decision

Accuracy and efficiency are two important factors that our formulation for the sampling

decision is based on. The effect of polling rate to anomaly detection and traffic measurement

derived from accuracy parameter. Higher polling rate is favourable to accurately detect the

network traffic abnormality within short period of time. On the contrary, efficiency factor

denotes the effect of the polling method to the controller memory and CPU resources. Since

high polling rate in the network lead to large number of sampled flows, it is crucial for the

controller to have the ability to vary the polling rate so that it will not drain the resources.

Therefore, our sampling decision must have the ability to dynamically adjust the polling rate,

𝑆[𝑡𝑖]𝑙 based on previous stated two parameters.

4.3.3.1. Anomaly Detection and Traffic Management

 According to a report from Akamai [52], the concentration of attack traffic is increased

during the second quarter of 2013 where the increased concentration was driven by indicatively

increases in attack volume targeting Ports 80 (WWW/ HTTP) and 443 (SSL/HTTPS). For our

objective of traffic measurement accuracy, we classify common attack port as the commonly

used source of attack port service over the overall flows population.

 We favor sampling to flows that had been attack with commonly used source port.

Consider a set of m flows of various source port service, 𝑠𝑟𝑐𝑝𝑜𝑟𝑡={𝑠𝑟𝑐(𝑝𝑜𝑟𝑡)𝑙: 𝑙 = 1, 2, …𝑚}

where 𝑙 ⊂ 𝑚. If the source port service of a particular flow, 𝑠𝑟𝑐(𝑝𝑜𝑟𝑡)𝑙 is port 80, we assume

that flow is using commonly used attack source port service. Priority is given to the network

traffic based on severity level and the service port of the particular flows where we define any

attacked flow with source port service is port 80 is given highest priority. Given a flow with

attack probability/event 𝐴̂𝑙 and the source port service of the flow is 𝑠𝑟𝑐(𝑝𝑜𝑟𝑡)𝑙 , the

prioritization can be expressed as following equation:

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 48

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

𝑃𝑟(𝑨̂𝒍) = 𝑥𝒍 ∗ 𝜔𝒍 (3)

We define 𝑥𝒍 as {(𝑨̂𝒍) ∗ 𝑠𝑟𝑐(𝑝𝑜𝑟𝑡)𝑙} and 𝜔𝒍 is a weight given to the 𝑥𝑙 . From the

equation above, a large 𝑥𝑙 value denote the severe network attack on a flow with commonly

used attack port service. Since both information are known parameters, the 𝜔𝒍 value is

constructed in such a way that higher value is given to abnormal flows. Thus, we ensure that

the flow with the priority is given more precedence compare to other flows. With the network

dynamically change from time to time, it is very challenging to determine the exact value of the

weight 𝜔𝒍 , for that reason and also for the simplicity, we manually define the value of the

weight. The appropriate value of the weight of a particular flow can be defined by using any

other heuristic algorithm. After the above steps are completed, our polling rate, 𝑆[𝑡𝑖]𝑙for a

particular flow are decided as following equation:

𝑆[𝑡𝑖]𝑙

{

𝑇

𝛼
 𝑓𝑜𝑟 𝑃𝑟(𝑨̂𝒍)

𝑇

𝛽
 𝑓𝑜𝑟 (𝑨̂𝒍)

 𝑇 ∗ 𝜕 𝑓𝑜𝑟 𝑛𝑜𝑟𝑚𝑎𝑙

 (4)

For flows with priority 𝑃𝑟(𝑨̂𝒍), we set to poll the statistic information with higher

frequency,
𝑇

𝛼
 and for the flow with attack that has lower severity, we poll the flow information

lower than the higher priority flow. We leverage the accuracy and scalability of the sampling

decision by lower down the poll frequency for legitimate traffic, 𝑇 ∗ 𝜕 . The decision for

ofp_flow_stats_request scheduling timer are set within predefined minimum and maximum

timeout value where 𝑇𝑚𝑖𝑛 ≤∝, 𝛽, 𝜕 ≤ 𝑇𝑚𝑎𝑥 . The pseudo-code is given in Figure 4.2. Note that

our sampling decision favour flows with certain bias criteria where higher priority is given to

malicious flows with commonly used attack service port number.

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 49

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 4.2. Adaptive Poll Pseudo-code

After the controller receive the Packet In message, it will send FlowMod message to install

the flow entry into the related switch. Then, we utilize Openflow standard message type [53]

OFPMP_FLOW_STATS request which is sent from controller to switches. Our poll

scheduling algorithm will start to send message to Openflow switch requesting the flow

statistics information. Furthermore, the classification of anomaly is done where the anomaly

flow will be marked as 𝐴̂𝑙, the sampling decision is made. The process of the sampling decision

is simplified for viewing in Figure 4.3.

1: Input xt, Feature : Active_Flows, A, C, control message,

C=C1 (Packet_In), C=C2 (ofp_flow_stat_request),

C=C3 (ofp_flow_stat_reply)

2: Function , 𝑆[𝑡𝑖]𝑙,

3: CHECK_INCOMING_PACKET_TYPE

4: if (C=C1)

5: store flow into A

6: for all flow

7: send C2 to flow switch, 𝑆[𝑡𝑖]𝑙 = T

8: end for

9: else if (C=C3)

10: for all flow in A, extract xt

11: execute (intrusion_detection_module)

12: then

 if 𝑃𝑟(𝐴̂𝑙) then 𝑆[𝑡𝑖]𝑙 at
𝑇

𝛼

end if

else if (𝐴̂𝑙) then 𝑆[𝑡𝑖]𝑙 at
𝑇

𝛽

end if

13: end if

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 50

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 4.3. Sampling Decision in Timeline

4.4. Performance Evaluation

In this section, we present our experimental setup and performance of our proposed

anomaly detection method. We focus on the accurateness level of anomaly detection with our

adaptive poll method and perform comparison with static poll mechanism. We also measure

the CPU performance for the controller in order to leverage the possible overhead introduced

using our proposed technique. We used Mininet [54] to emulate the network attack consisting

of Openflow switches, links and hosts on a single machine.

4.4.1. Experimental Setup

In our anomaly detection method, all of the algorithm is implemented on POX controller

which is written in Python language. For the simulation purpose, we choose Mininet network

emulator version 2.2.0 with software switch availability that support the Openflow standard

software switch which is OpenvSwitch [55]. We ran our experiments to emulate the network

attack scenario, as well as to train the K-mean classification algorithm, on a system with an

Intel core i3 CPU and 8 GB RAM memory capabilities. Figure 4.4 shows the topology setup

and the network attack scenario that has been used for our simulation. Victim network consist

of three Openflow standard switches that connected to POX controller via Openflow protocol

channel. We configure the link between Victim and Attacker network via a gateway with 1 Gbps

bandwidth and 20 milliseconds of delay and all other links are assumed to have 100Mbps

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 51

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

bandwidth. The network attack simulated is assumed origin from outside of Victim network and

all Victim host is connected directly to Openflow switch 3 (OFS3).

Figure 4.4. Simulation topology.

4.4.2. Dataset and Traffic Generation

In order to simulate high traffic network, we use CAIDA benign Internet trace [56]

aiming to evaluate our anomaly detection method with real network environment. Since the

dataset size is huge, we extract only 10% from the data which make up approximately 110Mbps

of packet and almost 6000 flows, enough to simulate high traffic behavior of high traffic

network. This dataset was used to evaluate the accurateness level of anomaly detection with the

adaptive method proposed. We use Tcpreplay tool [57] to replay the extracted CAIDA dataset

in the Mininet. This tool has the ability to do editing and replaying previously captured network

traffic and initially it is design to replay the malicious network traffic patterns to Intrusion

Detection/Prevention Systems. For the network attack traces, we utilized Scapy [58], a

computer network manipulation tools written in Python. This tool allows us to generate

sequence of traffic randomly, thus it can be used to simulate attack traffic behaviour. For port

scan attack scenario and to imitate the commonly behaviour of the attack, we generate and

injected packet with specific source and destination IP address. Furthermore, the source and

destination ports were randomly selected in each packet generated. Next, to emulate the DDoS

attack, SYN packets with a set of predefined destination port and IP address, together with a

constantly changed and random set of source port and IP address.

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 52

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

4.4.3. Training Time and Traffic Classification

In our anomaly detection, a model that represent the normal behavior of a particular

network is constructed. We train the benign CAIDA dataset with the weighted K-Mean

algorithm to learn the normal behavior of the data. For the testing phase, we manually inject

the attack packet and let the weighted K-Mean algorithm differentiate and classify the attack

packet as anomaly. In Table 4.2, we present the training and classification time take by the

algorithm to perform task such as training time and classification of the sample. From the 5

data feature set that we used, the training time takes around 7 hours and the classification time

takes around 315 miliseconds.

Table 4.2. Dataset training and classification time.

4.4.4. Accuracy and Anomaly Classification

Three important factor to evaluate our proposed mechanism is considered: (i) average

network traffic rate, (ii) the number of attack packet per second and (iii) polling rate as shown

in Table 4.3. We used a real 110Mbps Internet dataset derived from CAIDA. We injected attack

packets that emulate the DDoS and port scan attack at different packet rate. For our experiment

we replayed the benign 110Mbps dataset while injecting DDoS and port scan.

Table 4.3. Parameter values used in experiment.

Our objective in this experiment is to have a better accuracy in detecting network

anomalies by doing comparison using two different kind of network polling rate mechanism.

For the first experiment, we manually set the polling rate to collect the network statistic from

the Openflow switches at every 5 seconds and the next experiment we tested our proposed

𝑆[𝑡𝑖]𝑙 mechanism.

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 53

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

In anomaly detection problem, Receiver Operating Characteristic (ROC) curve is

usually used to measure the performance of the method. The ROC curve is a plot of intrusion

detection accuracy against the false positive probability. In Figure 5 and Figure 6, we present

the ROC curves that we have experimented with two different type of attacks with different

polling rate mechanism (Table 4.3). In this first experiment, we inject 200 network attack packet

per second.

Figure 4.5 ROC Curve for TCP Portscan attack.

Figure 4.5 depicts the ROC curves for TCP Portscan attack with the static and 𝑆[𝑡𝑖]𝑙

algorithm. We set the polling rate value of 𝛼 = 3, 𝛽 = 2 and 𝜕 = 1.1. From the graph, the K-

Mean anomaly classification algorithm achieve nearly 100% anomaly detection accuracy for

both type of polling rate mechanism. For the static polling rate, the False Positive is

approximately almost 52% whereas our proposed adaptive polling rate implementation

performed better where the False Positive of is almost 43%. This clearly shows that while the

detection rate is almost identical, our proposed method able to reduce the False Positive factor

where the legitimate traffic classified as attack which can lead to different action taken from

the network administrator.

Furthermore, it also can lead to unnecessary network service disruption for the real

customers. In Figure 4.6, the ROC curve illustrate our experiment with DDoS type of network

attack. In this experiment, we also injected 200 attack packet per second. When we experiment

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 54

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

the static polling rate, the False Positive is approximately almost 45% and when we tested our

algorithm, our proposed adaptive polling rate implementation performed better where the False

Positive value significantly drop to almost 34%. The main achievement of our method is that

when using adaptive poll rate, the anomaly detection rate is much faster and more accurate than

normal poll rate thus enable administrator to alert/mitigate anomalous or suspicious packet

efficiently.

Figure 4.6. ROC Curve for DDoS attack.

With the adaptive poll rate proposed, the algorithm might force the POX controller to

perform more computation processing thus could increase the CPU processing time since the

controller need to handle anomaly detection and forwarding decision at the same time.

Furthermore, it also could increase the communication between the controller and all Openflow

switches under control. We analysed the impact of the algorithm proposed on controller CPU

processing in the following Section 4.4.5.

4.4.5. CPU Performance

From our first experiment, where we use 110Mbps of traffic rate together with 200

attack packet injected per second, we further test the performance of the controller to find the

possible overhead that might introduced. We measure and compare the system resources of the

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 55

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

controller with two types of polling rate. From Table 4.4, we depict the positive factor of the

adaptive approach versus the static polling rate approach. We perform two type of test where

the first experiment is tested without the attack injected. In this first experiment, we make

comparison between the static and adaptive polling rate with the objective is to find the average

CPU percentage introduced while performing the polling mechanism. As we can see, the

required CPU cycles for our adaptive polling rate with the weighted K-mean classification

algorithm is reduced to only 45% when compared to the respective static polling rate approach

(57%).

For the next experiment, we inject 200 attack packet that depict the Portscan and DDoS

attack while replay the 110Mbps traffic rate. During the attack phase, the static polling rate

CPU utilization is increased from 57% to 74% (average of 17% increment of CPU power

needed to perform the algorithm. While with our adaptive method, the CPU increase from 45%

to 61% (14% different). As shown in Table 4.4, we can achieve a slightly decrease in the CPU

cycle usage of the POX controller with our adaptive polling rate methodology. In our method,

even though we poll more frequently for flow that classified as attack by the weighted K-Mean

algorithm, at the same time we leverage the polling rate for flow that not classified as attack to

be more relaxed. By doing this way, we can achieve lower increment in term of CPU usage

percentage for the controller.

Table 4.4 CPU performance comparison between the static polling rate versus our

proposed adaptive rated methodology.

Chapter 4. Adaptive Query Rate for Anomaly Detection with SDN 56

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

4.5. Summary

We presented our work on developing more accurate intrusion detection mechanism for

the network attack in SDN paradigm, ultimately allowing better defence against the network

cyber-attack for an organization. We showed that the adaptive query rate anomaly detection is

able to detect the abnormal traffic behaviour much more accurate compared with static interval

polling rate time. We prove that by using the adaptive method, the False Positive is reduced

significantly. Furthermore, by relaxing the polling rate for traffic that not classified by our

method as abnormal, we only introduce small increment in CPU percentage compared to static

polling rate that does not differentiate any type of flows.

As proven from our simulation, the classification K-Mean algorithm did not achieve

100% detection rate for the injected attack packets. To be exact, the algorithm only able to

detect 97.82% from total manipulated attack packets. We strongly believe that this algorithm is

not suitable to be used as any DDoS attack defence mechanism for classification. The important

achievement in this work is to prove that by giving higher polling frequency to any high

probability attack flows from the network, we are able to detect more accurate attack flows as

opposed to the previous related work [46,47] that use fix time periodic sampling for all type of

flows.

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 57

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Chapter 5

5. Collaborative Spoofing Detection – SDN based looping authentication

for DNS

5.1. Introduction

One of the major cyber-attacks that designated to cripple down the computer or network

resources is DDoS attack. Majority of recent large volume of DDoS attack use amplification

technique, such as exploiting DNS servers and Network Time Protocol (NTP) [59]. Since

almost every Internet services depend on DNS, it is much more damaging than the others are.

The introduction of Open Recursive DNS server such as OpenDNS2 spike security threat higher

to this type of attack since it permit any IP addresses to access their service for IP resolution.

The hackers can utilize a large number of botnet army with spoofing the victim IP address and

make a large number of DNS query attempt to flood the DNS server with request for services.

This will make it hard for the application servers to distinguish between attack and

legitimate query, since the application are designed to accept any IP addresses to process. As

a result, it would simply process all the DNS query from both of them and send the responses

which will limit the resources of the DNS server to process other legitimate request. The other

type of attack that manipulate the open recursive DNS server known as DNS Amplification

attacks.

This attack aims to amplify the attack traffic to a targeted victim. Since the open

recursive server accept any source to send query packet, hacker include victim IP address in the

DNS query packet (spoofing) and the query packet size is much smaller than the response

packet, so the attack is amplified to the victim with higher impact. Current protection against

this type of threat, such as IDS or firewall, is having difficulties of differentiate which response

packet is attack or legitimate. Furthermore, by using only the network statistic behavior, it is

2 Most of upstream resolvers that provide resolution service to any Internet client address are open/public services e.g.,

Google DNS and OpenDNS.

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 58

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

not enough to separate or blocking such intelligent attacks and most of the preventive action

has been left to the victim side [60].

The emergence of Software Defined Network (SDN) that promise the simplicity in

managing networks seems to be the future of the current Internet architecture. By separating

the control plane that orchestrated by logical network controller platform and data plane as a

forwarding drive, SDN, can play an important role as a network protection tool against DDoS

attacks. An effective defence against spoofing UDP based DDoS attacks on DNS servers

requires source address spoofing detection. Assuming the SDN-managed network is

implemented in where the DNS server reside can distinguish between spoofed DNS packets

from real queries, it can selectively drop those spoofed packets and authenticate the legitimate

DNS query packet with little collateral damage.

In this paper, we present spoof detection mechanism for DNS query packet. In our

approach, a server controller that reside in the DNS server domain sends an authentication

packet to each host that request for the DNS services. By validating the authentication packet

that replied by the requesting host, the server controller is able to determine if a DNS query

launch from the source address is indeed a legitimate query or attack packets. We developed a

module called CAuth, which can be implement without any changes in DNS application servers.

CAuth can be deployed at any time during DNS server runtime without require dataset training

or manual tuning from the administrators.

In this paper, we propose a novel mechanism that autonomously block the “unwanted”

DNS query packet that force the DNS servers to amplify the traffic to the victims. Therefore,

we did not use any statistical analysis of anomalous flow behaviour for the detection. In Section

II, we discuss the existing approaches for defending against amplification attacks and argue

why they are not adequate. With the granularity and the flexibility promised by SDN, we state

the objective of our proposed method and introduce the idea for the protection against spoofing

attack on DNS services in Section III. In Section IV, we empirically evaluate the effectiveness

of the approach and present the analysis of the experimental results. Finally, in Section VI, we

summarize the paper and list the future work.

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 59

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

5.2. Related Works

DNS, a UDP based network services is crucial and the services need to be offer to the

whole public. However, it is much easier for hackers to spoof the source IP address as UDP

itself is connectionless and does not require a handshake like TCP does. Therefore, it is

worthwhile to design a countermeasure against DDoS flooding that suited the DNS traffic.

Through the years, quite a number of DDoS attack detection method against the DNS server

has been proposed, but these methods have certain drawbacks such as no strong incentives for

the providers to employ since it protects the others network but not protect themselves from the

flooding attacks, false positive and false negative, etc.

In [61], the author proposed a method to detect the spoofing DNS query packets. The

method requires the DNS server to generate some type of cookies embedded in the DNS

response packets. However, it only can authenticate the requests between DNS servers. The

main attack tools that is from the general DNS clients, cannot been verified.

RFC 2827, a mechanism that deploy filters at the border of the network to block

incoming source IP addresses that not origin from the network itself. Unfortunately, the

effectiveness of this method depends on the global deployment across the Internet. This method

is “neighbourhood policy” than require all ISP to participate to provide the list of IP addresses

that does not belong to their network. No doubt, the spoofing IP problem can be solving by this

method but it requires the needed information to be pass between the ISP efficiently. In [60],

the author proposed amplification attack detection where they detect the attack using one to one

mapping between the DNS query and response.

However, vast amount of database size could increase rapidly when traffic rate is high

make the approach is not scalable. In Pushback [62], the mechanism allows network routers to

limit the effect of DDoS attack to some destinations. SIFF [63], Stateless Internet Flow Filter

permit the packet receiver to inform the router and selectively discard the flows from reaching

their network. All the above-discussed related works is a network based solutions and detections

method. The main issue in this type of solutions is the complexity of distributed environment,

which require quite a number of network resources to be sacrifice.

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 60

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

5.3. Collaborative Authentication Protection

In this section, we elaborate and present our approach that aims to detect the spoofing

DNS query packet that gave high impact on the server side resources and performance. The

approach exploits the ability of Openflow protocol [31] that provide secure communication

channel between the network controller and the router/switches inside their network. We depict

the main components of our architecture in Figure 5.1.

Figure 5.1. Main CAuth architecture

5.3.1. Main Component

Based on Figure 5.1, our protection architecture against DNS amplification attack

composed of a SDN network controller in both client and server network domain, POX

controller [49], the CAuth application that include as a component in the network controller and

Openflow switches that communicate with the controller via Openflow protocol. Our system

require collaboration between client and server side network. We make several assumptions

about the architecture components in order our protection application to suit the real

environment. The assumptions are as follows:

 The client controller holds a list of legitimate internal network IP addresses. The

controller uses the addresses to identify the inbound and outbound traffic that flow

in their network. The lists play a crucial part in our decision making whether to

forward or to accept the incoming DNS response packet. In real practice,

IDS/firewall might also have the list of legitimate internal IP addresses to make

filtering decision.

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 61

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

 The DNS flooding attack are initiated from botnet by spoofing the IP address of the

victim which made the decision to differentiate legitimate or attack traffic become

more challenging task. Moreover, the botnet did not show any anomaly behaviour

the network operator could easily detect and mitigate.

Based on these assumptions and the system architecture depicted in Figure 5.1, we

design a SDN-based DNS spoofing blocking application CAuth component.

5.3.2. CAuth Table Structure

In our proposed work, CAuth record the inbound flow information in an active flow

table. The main flow table contain all current active inbound flows in the network. The structure

of the table described as in Table 5.1. In this table, two important field created to record further

information about a particular inbound flow. In 𝑓𝑙𝑜𝑤𝑙, we record the 5-tuples (source port,

destination port, source IP, destination IP and the protocol) of inbound flow. The approach

records the 5-tuples packet header information that sent via Packet-In message as the input. The

5-tuples provided by the switch/router to the controller when the incoming flow has no match

to be found in their flow table entries.

In Openflow, when packets received by the datapath and sent to the controller, a control

message OFPT_PACKET_IN is used [50]. This control message embeds the packet header

together with other important fields to the controller for decision-making.

Table 5.1. Controller Inbound App-Table Structure

Next, 𝑃𝑖ℎ𝑖𝑡 counter, which is critical spoofing detection indication in our detection

method is introduced. This field record how many times the same 𝑓𝑙𝑜𝑤𝑙 information has been

receive by both client and server controller. We elaborate more details about this counter in the

next section.

5.3.3. Proposed Protection Method Workflow

Initially, when a new query from client (Figure 5.2, step 1) arrives at Openflow switches

at the server network, it does not match any flow entry in the switch flow table. As a result, the

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 62

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

switch will buffer the packet and send the copy of the packet to controller via Packet-In. When

the controller receives a Packet-In (Figure 5.2, step 2), assuming there is no information about

this particular flow, CAuth save the 5-tuples together with the packet buffer-id, 𝐵𝑖𝑑 in the CAuth

App Table (Figure 5.2, step 3).

The buffer-id is unique value used to track the location of the buffered packet in the

switch. Note that in this work, we did not consider the buffer arrangement problem in the open

Vswitches. Since the flow information is not in the server controller list before, CAuth update

the 𝑃𝑖ℎ𝑖𝑡 counter to 1. Initially, the value of 𝑃𝑖ℎ𝑖𝑡 is zero and maximum value is two.

Next, we manipulate the ability of the Openflow protocol to make changes to the packet

header information. In (Figure 5.2, step 4), CAuth replicate the Packet-In flow tuples received

with no changes to the original buffered packet. Then, CAuth modify the flow information at

the replicated packet to send this packet back to the client. As example, the originally initiated

DNS query packet source IP address is 1.1.1.1 with source port number 1234 sent to the DNS

server with IP address of 2.2.2.2.

CAuth then swapping the IP and UDP information of the Packet-In, with the objective

to send this packet back to the originator. Then, CAuth install the entry in the respected switch

with the action to forward this packet back to the source. The modified packet is use by our

method as an authentication mechanism to detect the spoofed DNS query packet. It is worth to

note that the original query packet still buffered in switch and the flow entry is yet to be installed.

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 63

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 5.2. Initial CAuth defense strategy in server network

The client controller also implements CAuth App Table (Figure 5.3) in their database.

When the authentication packet arrives at the client network, there will also no match for the

packet since it is new flow information to the client network, thus this packet is sent to controller

for further decision making via Packet-In (Figure 5.3, step 1). When the client controller

receives the modified packet from the server network, the authentication process start. First, the

client controller will check the destination IP address of the packet header (Figure 5.3, step 2).

The client controller will only perform the authentication process if the destination IP

is in their network domain; otherwise, it will forward the authentication packet to the next hop.

Here we assume that all client controller has a list of all known IP addresses in their domain.

Furthermore, the client controller also checks the source IP address of the authentication packet

(Figure 5.3, step 3). If the source IP address is from the server, the client controller further

checks in their CAuth App Table. Since it is new information for the client controller, the 5-

tuples information copied into the table and the 𝑃𝑖ℎ𝑖𝑡 counter updated to 1.

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 64

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 5.3. Initial CAuth defense strategy in client network

Next, the client controller modify the authentication packet received by swapping back

the IP and UDP information in the packet header (Figure 5.3, step 4). This time, this

authentication packet is aim to be redirect back to the DNS server. The client then checks the

modified authentication packet 5-tuples information with their existing outbound flow table

(Figure 5.4, step 5). If the client controller found a match, then the client controller confirms

that there are DNS query packet previously sent to server but still waiting for the reply.

Finally, client controller installs the flow entry in the switch with the action to forward

the packet to the server (Figure 5.3, step 6). By this means, the authentication packet that

originally sent by the server network is redirect back by the client network.

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 65

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 5.4. Server controller receive CAuth authentication packet

When the server controller receive the authentication packet sent from client (Figure

5.4, step 1), this packet information is not match any entry in the switch, since we did not install

the flow entry for the original DNS query packet yet. As a result, this packet is being forward

to the controller as Packet-in again (Figure 5.4, step 2). Then, the server controller refers the

incoming authentication packet header with the CAuth App Table (Figure 5.4, step 3). This time,

server controller found a match for the authentication packet with the previously created flow

information. Since there is exactly genuine first packet attempt to the server, the second time

controller receive the packet with the same flow 5-tuples information, it update the

𝑃𝑖ℎ𝑖𝑡 counter to 2.

After that, the server controller free the previously buffered authentic DNS query packet

by installing the flow entry into the switch in order to forward the DNS query to the respected

DNS server (Figure 5.4, step 4). Subsequently, CAuth authenticate the first attempt query packet

to use the DNS server services (Figure 5.4, step 5). In our work, we simply drop the duplicate

packet that we used for our authentication mechanism. The authentication packet that created

originally by the server controller and redirect back by the client controller are used only for

the server to authorize the DNS query packet to reach the DNS server.

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 66

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 5.5. Client controller forward the DNS reply packet to client

When the DNS server process the received query, it will find the related query

information as usual and reply with the DNS reply packet. Here, we did not modify any

application packet for the CAuth authentication process. The server controller will forward the

DNS reply packet to the client based on the header information. When the client network

receives the authentic DNS reply packet from server, again there will be no match found in the

switch and the packet sent to controller (Figure 5.5, step 1).

This time the client controller check that 5-tuple information is already created

previously in the CAuth App Flow Table (Figure 5.5, step 3). From this, the client controller

update the 𝑃𝑖ℎ𝑖𝑡 counter and install the flow entry in switch to enable the DNS reply packet to

reach the client successfully (Figure 5.5, step 4). We provide CAuth authentication method

pseudo-code for server and client network as in Figure 5.6 and 5.7.

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 67

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 5.6. CAuth server controller defence

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 68

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 5.7. CAuth client controller defence

5.4. Performance Evaluation

5.4.1. Emulation Parameter

To validate the effectiveness of the proposed method, we develop the algorithm to be

part of POX controller module. To emulate a large scale of DNS spoofing attack, we use

Mininet [67], a network emulator that illustrate SDN environment with the support of virtual

hosts, switches and network controller. The Mininet emulator use the real code for both the

Openflow and Open vSwitch code and with the great functionality, as it can easily connect to

the real networks. For our test, we use Mininet version 2.1.0 with the Openflow v1.3 supported.

To emulate a real DNS traffic, well-known BIND 9.8.1 server configured in separate Linux

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 69

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

stack to serve as the DNS server. Then, we bridge the Mininet SDN network domain to the

BIND server virtual machine.

For our experiments, we create two types of DNS enquirers, legitimate clients and spoof

attackers. The clients, attackers and the DNS server are design to be on different SDN network

domain and have their own POX controller. We simulate a large-scale botnet to launch DDoS

attacks on the protected DNS server in SDN environment. We set the legitimate clients to issue

DNS query rate, 𝑥̅𝑛𝑜𝑟𝑚 every 3 seconds whereas the bots, 𝑥̅𝑎𝑡𝑡𝑎𝑐𝑘 every 1 seconds. The reason

why we set query rate higher for the botnet attacks is for the botnet to more active than the

legitimate clients.

The DNS query issued with the Poisson exponential inter-arrival time distribution. For

the DNS query packet, we employ Scapy [68], a packet manipulation program that able to forge

DNS packets easily. In our test, we set the number of legitimate client, 𝑛𝑢𝑠𝑒𝑟𝑠 = 100 and the

number of botnet attackers, 𝑛𝑏𝑜𝑡𝑠 = 400 that issue the DNS query at their given ferocities. We

configure the BIND server to act as recursive server so that whenever the clients send DNS

query packet, the BIND server is assumed to be responsive, so the DNS response returned as

soon as possible.

5.4.2. Emulation Results

This section describes the evaluation results of the spoofing DNS query attack scenario;

we configure all botnet to send the query as soon as the emulation start. This condition is also

true for the legitimate clients. We deliberately generate a high throughput of DNS query packet

to test the effectiveness of our proposed CAuth mechanism that implemented as a module in

POX controller at both DNS server and client side. In this experiment, we measure the detection

time that the server controller takes to block the spoofed DNS query packet while authenticate

the query that issued by the legitimate clients. The botnets and legitimate clients launch DNS

query packet that have randomly generated source ports and query name so that every-time the

DNS server receive these query, it will act as a recursive. In Figure 5.8, the vertical axis is the

number of measured substance, which is the number of blocked bots and the number of

authenticated queries from the legitimate clients. We purposely launch the botnets to attack the

DNS server at t=30 seconds to investigate whether it has effect on the legitimate query packets.

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 70

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Figure 5.8. Emulation result

As can be seen at approximately t=33.2 seconds, the CAuth has start to perform the

detection mechanism to block the spoof queries. This indicate that CAuth are able to classify

and block the spoofed attempt at any time before the server controller forward the queries to

the DNS server. Even the attack packet generated at every t=1 second, the server controller

depends on the preconfigured timeout to drop the identified spoofed packet. In our case, the

server controller decides to drop the incoming DNS queries packet if it did not receive the

authentication packet reply from the clients in 2 seconds.

CAuth managed to block all botnets by roughly t=100 seconds. From the Figure 5.8

however, as the legitimate queries inter-arrival rate generated at every 3 seconds, even though

CAuth can differentiate between the spoofing and legitimate DNS queries, it takes a significant

amount of time to forward the legitimate packet to the DNS server. The reason of this behavior

is that CAuth require additional one round trip time (RTT) in order to authenticate the clients

to use the DNS services. The detection of botnet packets has no direct impact on the legitimate

queries packets. Starting from near t=4.1 seconds onwards, CAuth able to forward all of the

legitimate queries to the DNS server.

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 71

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

5.5. Discussion

As we can observe, once the DNS server network controller receive the query packet, it

will send an authentication packet out to the clients that initiate the communication. Here, we

assume that no spoofing botnet will receive the authentication packet sent by the server

controller. Since the well-known objective of spoofing is to saturate the legitimate victim

resources, the botnets will never receive any packet from the DNS server. In our works, the

CAuth decide to drop any 𝑓𝑙𝑜𝑤𝑙, 𝐵𝑖𝑑 that buffered and unprocessed DNS queries after the

server controller did not receive the authentication packet back from the client network in time

t=2 seconds. Another important issue to be highlight is the effect of the proposed method to the

DNS provider bandwidth. Our method requires one additional RTT for a client to perform DNS

query.

Figure 5.9 DNS provider bandwidth effect

As mentioned before, this additional delay used as an authentication packet in order for

the DNS provider to recognize between legitimate and attack packets. From the same emulation,

we study the average throughput of the DNS provider bandwidth. The purpose is to find the

impact to the provider bandwidth. As in Figure 5.9, as expected, even though our method can

differentiate between legitimate and attack packets and able to block the attacks before it

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 72

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

reaches the DNS server, our method consumes the usage of the bandwidth. Our method

increases on average 1.2 times higher comparing when there is no protection introduced.

Figure 5.10 Client bandwidth effect

We also perform another emulation to find the effect of our method to the client network.

Our method requires the server controller to send an authentication packet back to the source.

This critical function introduced in order for the server network to make decision whether to

accept or block the incoming packets that attempt to perform DNS queries. Botnet that launch

the attack packets will never receive the authentication packet sent by the server network, but

the legitimate client will. In this test, 100 hosts are configured to launch DNS query packets

towards the DNS server where the inter-arrival time of each packet is every 1 seconds. From

Figure 5.10, the client bandwidth consumption on average increased 1.7 times higher than a

network without protection. We believe that this effect does not much impact the client side

since we can guarantee that the client is secured from any spoofed packet attacks.

Chapter 5.Collaborative Spoofing Detection – SDN based looping authentication for DNS 73

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

5.6. Summary

In this paper, we proposed an efficient spoofing detection mechanism to detect spoofed

DNS query packets against DNS servers thus ensuring the DNS operator to be able to protect

their server resources. The key thwart of our spoofing detection method is to block all queries

from clients that did not reply back the authentication packet sent previously by the server

controller. Our method authenticates the same queries that enter the server network domain for

the second time. From the experiments, we can conclude that our method increases the

bandwidth consumption on both the client and the server network. It is worth to note that, the

UDP attack is fast since the size of the attack packets is small but it was not design to attack

bandwidth but to consume the victim resources.

This scheme is well suited to a SDN-administered network since the client and server

controllers need to collaborate for the process of creating the authentication packets.

Furthermore, our scheme does not require high computation algorithm to detect the spoofed

packet such as public key cryptography that usually used for authentication purpose. Moreover,

we did not introduce any new protocols and all interaction between the client and server

networks use standard Openflow protocol, make it as a lightweight spoofing detection method.

Chapter 6.Conclusion 74

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Chapter 6

6. Conclusion

Software Defined Networking (SDN) emerges as a future Internet network architecture.

The core feature of SDN is to decoupled the controlling function of network from the

forwarding function and the network is managed from a centralized network controller.

Through dynamic, cost-effective and easily adaptable, making it supreme for the dynamic

nature and high bandwidth of today’s network applications. Thus, this thesis focused on two

significant contributions of SDN: support IP fast rerouting to be able to restore the network

below 50 milliseconds when there is a single link failure in the network and network security

area which focusing on higher accuracy of anomaly detection strategies and low cost UDP

based spoofing DDoS attack mechanism.

This thesis firstly illustrated the backgrounds, motivation and our goals. Secondly,

related works according to fast rerouting and network security of SDN are reviewed. Then,

architecture of SDN and summarized the features of Openflow is presented. Lastly, the

corresponding methods were designed to solve these problems.

Any disruption to a link in a network has the potential to affect the important network

traffic communications and applications. The ability to recover fast has always been a central

objective in the current Internet. Routing protocol like OSPF are designed to update their

routing information based on the topology changes after failure. This convergence process is a

time consuming process since every router need to individually calculates new valid routing

path and usually lead to routing instability. Furthermore, to achieve a carrier grade network,

network service restoration is proposed to be sub-50 milliseconds which is not the case with the

existing IP services fast rerouting. This is further proven with undeveloped IP fast reroute

within current Internet infrastructure.

With the nature of SDN, where all of the control function managed centrally and the

network node only do the forwarding task, fast rerouting below sub-50 milliseconds is not

achieved. In Chapter 3, we present a fast rerouting mechanism for IP infrastructure in case of a

Chapter 6.Conclusion 75

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

single link failure utilizing the Openflow protocol. By providing the pre-configured backup

path in every switches for every flows, we ensure the affected path to reroute within 50

milliseconds with the help of Openflow switch. In our work, we introduced the concept of local

controller. Local controller is responsible for the deletion of affected flow in case of link failure

and by doing this, the affected flow will reroute to the pre-configure path autonomously. In

every Openflow switches, main path and backup path are differentiated by priority. Flow entry

with higher priority number is the main path and lower priority number is the backup path.

However, when the link fail, the remaining flow that use the pre-configured path to

reroute might use non-optimal backup path. Thus it will increase a significant delay to reach

their destination. To avoid this problem, we combine the ability of the local controller with the

Openflow switches to report of any event to the central controller. When the link fail, while the

local controller performs the autonomous rerouting locally, the switch sends port status

notification to the central controller and the central controller responsible to perform the new

path calculation.

When the central controller receives the notification from the affected switch, it will

recalculate the whole topology without the affected flow port. In our work, we ensure that every

time the central controller receives the event notification from switch, it will recalculate and

elect the new main and backup path for the affected path respectively. From the simulation, it

shows that our hybrid mechanism able to lower the hop count for every affected flow to reach

their target compared to packet that traverse to their destination using the pre-defined backup

path. Thus, we ensure the affected flows to autonomously reroute using much more optimal

path and also converge effectively below the carrier grade network restoration time.

Chapter 4 investigated intrusion detection mechanism for the network attacks to allow

better defence against cyber-attack for any organization. In anomaly detection, sampling

technique is usually used for the traffic analysis on finding any anomalous flow. While the use

of sampling is capable to lessen the scalability problem of traffic monitoring, the insufficiency

of sampled flow statistic may have led to inaccurate detection rate of anomaly. With increasing

amount of network traffic, sampling techniques have become widely used, allowing monitoring

and analysis of high-speed network. Despite of all benefits, sampling methods negatively

influence the accuracy of anomaly detection techniques and other subsequent processing.

Chapter 6.Conclusion 76

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Furthermore, it is paramount to balance the trade-off between accuracy of anomaly

detection and overhead introduced from the flow traffic measurements (e.g.-scalability).

Sampling decision should have some intelligent ability to address some of the requirement such

as to reach low false alarm and low computation convolution objective. If too frequent sampling

was being used in detection, the load or the processing overhead is increased while too

infrequent sampling will lead to loss of any important flow information to be analysed.

We presented our work on developing more accurate intrusion detection mechanism for

the network attack in SDN paradigm, ultimately allowing better defence against the network

cyber-attack for an organization. For the analysis, we choose 5 predefined feature set to be used

in our experiment. Flow size, 𝐹𝑙 (packet count) at ti interval, Flow byte, 𝐵𝑙 (byte sizes) at ti

interval, number of different flows to the same Destination IP, 𝑛(𝐷𝐼𝑃) 𝑎𝑡 ti interval, number

of flows to different Destination Ports, 𝑛(𝐷𝑃𝑜𝑟𝑡)𝑎𝑡 ti interval and number of different S-D pair,

𝑛(𝑆𝐷𝑝𝑎𝑖𝑟) 𝑎𝑡 ti interval is used. We utilized weighted K-Mean algorithm to differentiate the

anomaly and the normal flow traffic. Moreover, to balance the tradeoff between accuracy and

scalability, we tune the polling frequency for the network traffic to give more priority for the

frequently used attack source port. For any source port numbers that does not identified as attack

source port, we further lower down the polling frequency to stabilize the processing load for

other flows.

From the simulation results, the proposed method prove that the adaptive query rate

anomaly detection is able to detect the abnormal traffic behaviour much more accurate

compared with static interval polling rate time. We show that by using the adaptive method, the

False Positive is reduced significantly. The method proposed able to reduce 9% on false positive

for the injected port scan attacks and further 11% lower false positive for injected DDoS attacks.

Furthermore, by relaxing the polling rate for traffic that not classified by our method as

abnormal, we only introduce small increment in CPU percentage compared to static polling rate

that does not differentiate any type of flows. The proposed method improves the CPU utilization

of the controller to 5% lower than compared mechanism.

As proven from our simulation, the classification K-Mean algorithm did not achieve

100% detection rate for the injected attack packets. To be exact, the algorithm only able to

detect 97.82% from total manipulated attack packets. We strongly believe that this algorithm is

not suitable to be used as any DDoS attack defence mechanism for classification. The important

Chapter 6.Conclusion 77

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

achievement in this work is to prove that by giving higher polling frequency to any high

probability attack flows from the network, we are able to detect more accurate attack flows as

opposed to the previous related work [46,47] that use fix time periodic sampling for all type of

flows.

In Chapter 5, a spoofing detection method was introduced. In UDP attack, specifically

the DNS services, spoofing IP address of the victim is usually used to launch an enormous

amount of attack packets that targeting the victim with the objective to make the victim services

unavailable to the legitimate users. With the introduction of open resolvers such as OpenDNS

and Google DNS, this services enable any IP addresses to perform domain lookup. Thus, the

open resolver has problem on defining which is the legitimate and which one is attack DNS

query packets. Since the DNS attack seldom utilize a large number of botnets army that spoofed

the victim IP address, the DNS server network simply respond to those attack packets and

redirect the legitimate packet back to the victim itself, thus the victim suffers from the unwanted

DNS response packets that impact their application itself.

An effective defense against spoofing UDP based DDoS attacks on DNS servers

requires source address spoofing detection. Assuming the SDN-managed network is

implemented in where the DNS server reside can distinguish between spoofed DNS packets

from real queries, it can selectively drop the spoofed packets and authenticate the legitimate

DNS query packet with little collateral damage. In this paper, we present a novel spoofing

detection mechanism, CAuth. In this mechanism, server and client side require to have their

own network controller to collaborate between themselves to defeat the spoofing packets to the

DNS server and at the same time, it can guarantee the client not to suffer from the effect of the

attacks packet that targeted to them previously.

In general, once the DNS server side controller receive a DNS query packet, the

controller decides to replicate the DNS query packet and modify the UDP and IP header of the

replicated packet in order to destined this packet back to client. This replicated packet is used

as an authentication packet in order for the server controller to differentiate which one is

legitimate and which one is attacks DNS query packets. Legitimate client will receive this

Chapter 6.Conclusion 78

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

authentication packet and once they receive it, the client controller decides to redirect this

authentication packet back to DNS server network. It modifies the UDP and IP header

information of this authentication packet and install entry for this packet to make sure this

packet redirect back to the server network.

Once this authentication packet that redirected back by the client reach the server

controller, then the server controller identified that the previous original packet that still

buffered in the incoming switch is actually a legitimate query, thus it installs the flow entry for

the packet to make sure the query reaches the DNS application server. Any spoofing packets

will not receive the authentication packet that was sent by the server controller and the server

controller decide to drop the attempted attack before it reach the DNS application server itself.

In our work, if the server controller did not receive the authentication packet back from client

network in 2 seconds, the server controller decides to drop the buffered DNS query packet.

Once the DNS response reach the client network, this time, the controller found out that

this is the second time the client network receives the same flow information, thus, the client

controller identified this is the actual DNS response that was sent by the server network. From

this, client controller installs the entry for the incoming DNS response packet to route the packet

back to the client itself.

From the emulation, CAuth able to block all of the manually launch DNS query attack

packets without any impact on the legitimate query packets. Our mechanism able to identify

efficiently between attack and legitimated DNS query packets, thus guarantee the client to be

not affected. The detection time for spoofing packets is almost real-time since the controller

decide to block the spoofing packet if the server controller did not receive the redirect

authentication packet sent by the client controller within 2 seconds. From the simulation, the

proposed method able to block spoof DNS query packet less than 3 seconds.

From this method, the detection is done autonomously and application friendly.

However, the attack packets still will travel from their source to the destination which is the

Chapter 6.Conclusion 79

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

DNS server network, thus this method is not bandwidth friendly. From the simulation, since

the proposed authentication mechanism require additional one round trip time (RTT) to be able

to differentiate between the legitimate and spoofing attack packets, the legitimate client takes

around 1.1 seconds to get the DNS response packet from the DNS server.

Moreover, the client bandwidth is consumed 1.7 times higher, e.g.- without proposed

authentication, throughput is 26000 Kbps, with proposed authentication method, throughput

increased to 41500 Kbps. However, note that if there is no any protection used to defend the

DNS server from attacks, the attacks packet will reach the DNS server and consume the DNS

server resources itself, thus the DNS services will not be available to handle the legitimate DNS

request. The proposed method is not the case. Even though it increases the network bandwidth

overhead, the method proposed clearly able to identify the attack packets and drop the packets

before it reach the DNS server resources. Thus the DNS server resources is well protected.

References 80

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

References

[1] C. Hedrick, “RFC 1058: The Routing Information Protocol (RIP),” Internet Engineering

Task Force (IETF) Request For Comments, 1988.

[2] G. Malkin, “RFC 2453: Rip version 2,” Internet Engineering Task Force (IETF) Request

For Comments, 1998.

[3] J. Moy, “RFC 2328: OSPF Version 2,” Internet Engineering Task Force (IETF) Request

For Comments, 1998.

[4] D. Oran, “RFC 1142: OSI IS-IS Intra-domain Routing Protocol,” Internet Engineering Task

Force (IETF) Request For Comments, 1990.

[5] Y. Rekhter, T. Li and S. Hares, “RFC 4271: A Border Gateway Protocol 4 (BGP-4),”

Internet Engineering Task Force (IETF) Request For Comments, 2006.

[6] Open Networking Foundation, “Software-Defined Networking: The New Norm for

Networks,” Open Networking Foundation, 2012.

[7] J Boyle, “RFC 4105 - Requirements for Inter-Area MPLS Traffic Engineering”, Internet

Engineering Task Force (IETF) Request For Comments, 2005.

[8] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and P. Pillay-Esnault, “MT-OSPF: Multi-

topology (MT) routing in OSPF,” IETF, RFC4915, June 2007.

[9] E Boschi, “RFC 5153 - IP Flow Information Export (IPFIX) Implementation Guidelines”,

Internet Engineering Task Force (IETF) Request For Comments, 2008.

[10] B Claise, “RFC 5476 - Packet Sampling (PSAMP) Protocol Specifications”, Internet

Engineering Task Force (IETF) Request For Comments, 2009.

[11] BARFORD P., KLINE J., PLONKA D., ET AL.: ‘A signal analysis of network traffic

anomalies’. Proc. 2nd ACM SIGCOMM Workshop on Internet Measurement, Marseille,

France, November 2002, pp. 71–82

[12] YE N., EMRAN S., CHEN Q., ET AL.: ‘Multivariate statistical analysis of audit trails

for host-based intrusion detection’, IEEE Trans. Comput, 2002, 51, (7), pp. 810–820

[13] LEE W., XIANG D.: ‘Information-theoretic measures for anomaly detection’. Proc.

IEEE Symp. Security and Privacy, Oakland, CA, USA, May 2001, pp. 130–143

References 81

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

[14] CERT, Denial of Service Attacks, June 4, 2001, [online] http://www.cert.org/tech

tips/denial of service.html

[15] J. Mirkovic and P. Reiher, A taxonomy of DDoS attack and DDoS defense mechanisms,

ACM SIGCOMM Computer Communications Review, vol. 34, no. 2, pp. 39-53, April

2004.

[16] S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightly, DDoS-Resilient Scheduling to

Counter Application Layer Attacks under Imperfect Detection, IEEE INFOCOM’06, 2006.

[17] P. Ferguson, and D. Senie, Network Ingress Filtering: Defeating Denial of Service

Attacks that employ IP source address spoofing, Internet RFC 2827, 2000

[18] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker,

Controlling high bandwidth aggregates in the network, presented at Computer

Communication Review, pp.62-73, 2002.

[19] R. Chen, J. M. Park, and R. Marchany, RIM: Router interface marking for IP traceback,

in IEEE Global Telecommunications Conference (GLOBECOM’06), 2006.

[20] B. Al–Duwairi, and G. Manimaran, Novel Hybrid Schemes Employing Packet Marking

and Logging for IP Traceback, IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 5, pp. 403-

418, May 2006.

[21] S. Savage, D.Wetherall, A. Karlin, and T. Anderson, Practical Network Support for IP

Traceback, Technical report, Department of Computer Science and Engineering, University

of Washington, 2000.

[22] S. Kent, and R. Atkinson, Security Architecture for the Internet Protocol, IETF, RFC

2401, November 1998.

[23] Richard Wang, Dana Butnariu, and Jennifer Rexford. OpenFlow-based Server Load

Balancing Gone Wild. In Proceedings of the 11th USENIX Conference on Hot Topics in

Management of Internet, Cloud, and Enterprise Networks and Services, Hot-ICE’11, pages

12–12, Berkeley, CA, USA, 2011. USENIX Association.

[24] Ankur Kumar Nayak, Alex Reimers, Nick Feamster, and Russ Clark. Resonance:

Dynamic Access Control for Enterprise Networks. In Proceedings of the 1st ACM

Workshop on Research on Enterprise Networking, WREN ’09, pages 11–18, New York,

NY, USA, 2009. ACM

[25] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang,

and Amin Vahdat. Hedera: Dynamic Flow Scheduling for Data Center Networks. In

References 82

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Proceedings of the 7th USENIX Conference on Networked Systems Design and

Implementation, NSDI’10, pages 19–19, Berkeley, CA, USA, 2010. USENIX Association.

[26] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “Enabling fast failure

recovery in OpenFlow networks,” in 8th Int. Workshop on the Design of Reliable

Communication Networks (DRCN), Oct. 2011, pp. 164–171.

[27] Sgambelluri, A.; Giorgetti, A.; Cugini, F.; Paolucci, F.; Castoldi, P., "OpenFlow-based

segment protection in Ethernet networks," Optical Communications and Networking,

IEEE/OSA Journal of, vol.5, no.9, pp.1066,1075, Sept. 2013

[28] “Cisco Global Cloud Index, Forecast and Methodology, 2012-2017”Web site,

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-

gci/Cloud_Index_White_Paper.html

[29] M. Shand, “IP Fast Reroute Framework,” IETF Internet Draft (work in progress), June

2005, draft-ietf-rtgwg-ipfrr-framework-03.txt

[30] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H., PARULKAR, G.,

PETERSON, L., REXFORD, J., SHENKER, S., AND TURNER, J. OpenFlow: Enabling

Innovation in Campus Networks. SIGCOMM CCR 38, 2 (2008), 69–74.

[31] Hundessa, L.; Pascual, J.D., "Fast rerouting mechanism for a protected label switched

path," Computer Communications and Networks, 2001. Proceedings. Tenth International

Conference on IEEE Computer Communications and Networks (2001), vol., no.,

pp.527,530, 2001

[32] P. Chimento and J. Ishac. Defining Network Capacity. RFC 5136 (Informational),

February 2008

[33] Openflow specification version 1.1.0, http://www.openflow.org/documents/openflow-

spec-v1.1.0.pdf

[34] A. Kvalbein, A.F. Hansen, T. Cicic, S. Gjessing, and O. Lysne, “Fast IP network

recovery using multiple routing configurations,” Proc. INFOCOM, pp.23–29, April 2006.

[35] A. Varga and R. Hornig. An overview of the OMNeT++ simulation environment. In

International Conference on Simulation Tools and Techniques for Communications,

Networks and Systems, Mar 2008.

[36] A. Varga. INET Framework for the OMNeT++ Discrete Event Simulator.

http://github.com/inet-framework/inet, 2012.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf

References 83

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

[37] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An ap- proach to universal

topology generation,” Proc. IEEE MASCOTS, pp.346–353, Aug. 2001.

[38] S. Jain, A. Kumar, S.Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J.Wanderer,

J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart, and A. Vahdat, “B4: Experience with a

Globally-deployed Software DefinedWAN,” SIGCOMM Comput. Commun. Rev., vol. 43,

no. 4, pp. 3–14, Aug. 2013

[39] P. Barford and D. Plonka, “Characteristics of Network Traffic Flow Anomalies,” Proc.

1st ACM SIGCOMM Internet Measurement Wksp, San Francis- co, CA, Nov. 2001, pp.

69–74.

[40] MAI J., SRIDHARAN A., CHUAH C.N., ET AL.: ‘Impact of packet sampling on

portscan detection’, IEEE J. Sel. Areas Commun., 2006, 24, (12), pp. 2285–2298

[41] MAI J., SRIDHARAN A., CHUAH C.N., ET AL.: ‘Is sampled data sufficient for

anomaly detection?’. Internet Measurement Conf., Rio de Janeiro, Brazil, October 2006,

pp. 165–176

[42] DUFFIELD N.G., LUND C.: ‘Predicting resource usage and estimation accuracy in an

IP flow measurement collection infrastructure’. ACM SIGCOMM Internet Measurement

Conf., Miami, FL, USA, October 2003, pp. 179–191

[43] ESTAN C., VARGHESE G.: ‘New directions in traffic measurement and accounting’.

Proc. SIGCOMM’02, Pittsburgh, PN, USA, August 2002, pp. 323–336

[44] ANDROULIDAKIS G., CHATZIGIANNAKIS V., PAPAVASSILIOU S., ET AL.:

‘Understanding and evaluating the impact of sampling on anomaly detection techniques’.

IEEE Military Communications Conf.,Washington, DC, USA, October 2006

[45] Rodrigo Braga, Edjard Mota, Alexandre Passito, Lightweight DDoS flooding attack

detection using NOX/OpenFlow, in: LCN ‘10 Proceedings of the 2010 IEEE 35th

Conference on Local, Computer, 2010, pp. 408–415.

[46] Syed Akbar Mehdi, Junaid Khalid, Syed Ali Khayam, Revisiting traffic anomaly

detection using software defined networking, in: RAID’11 Proceedings of the 14th

International Conference on Recent Advances in Intrusion Detection, 2011, pp. 161–180.

[47] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris,

“Combining openflow and sflow for an effective and scalable anomaly detection and

mitigation mechanism on sdn environments,” Computer Networks, vol. 62, no. 0, pp. 122

– 136, 2014.

References 84

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

[48] POX.’An Openflow Controller’, Online Referencing,

http://www.noxrepo.org/pox/about-pox/ (2008, accessed May 2015).

[49] Y. Gu, A. McCallum, and D. Towsley, “Detecting anomalies in network traffic using

maximum entropy estimation,” in Proc. Internet Measurement Conference, 2005

[50] RAMADAS, M., OSTERMANN, S., AND TJADEN, B. C., “Detecting anomalous

network traffic with self-organizing maps.” In Proceedings of the Conference on Recent

Advances in Intrusion Detection. 2003, 36–54

[51] Ed. Belson David, “The State of the Internet,” Volume 6, Number 2, Akamai Internet

Quarterly Report, Online Referencing,

http://www.akamai.com/dl/documents/akamai_soti_q213.pdf (2013, accessed March

2015).

[52] Open Networking Foundation, "OpenFlow switch specification, version 1.3.", Online

Referencing, https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf (2012, accessed April

2015).

[53] Mininet, “An Instant Virtual Network on your Laptop”, Online Referencing,

http://mininet.org (2012, accessed April 2015).

[54] Ben Plaff et al., Extending networking into the virtualization layer, in: 8th ACM

Workshop on Hot Topics in Networks (HotNets-VIII), New York, City, 2009.

[55] CAIDA, “The CAIDA UCSD Anonymized Internet traces 2013.”, Online Referencing,

http://www.caida.org/data/passive/passive_2013_dataset.xml (2013, accessed August

2015).

[56] Tcpreplay, Online Referencing, http://tcpreplay.synfin.net(accessed June 2015).

[57] SCAPY, Online Referencing, http://hg.secdev.org/scapy (accessed June 2015).

[58] Arbor Networks. Q1 2015 Infrastructure Security Report. [Online]. Available:

http://preview.tinyurl.com/kvacqcv

[59] G. Kambourakis, T. Moschos, D. Geneiatakis, and S. Gritzalis, “Detecting DNS

Amplification Attacks,” in Workshop on Critical Information Infrastructures Security

(CRITIS), vol. 5141. Springer, 2008, pp. 185–196.

[60] F. Guo, J. Chen, and T. Chiueh, “Spoof detection for preventing DoS attacks against

DNS servers,” in IEEE ICDCS, 2006, pp. 37–37.

http://www.noxrepo.org/pox/about-pox/
http://www.akamai.com/dl/documents/akamai_soti_q213.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
http://mininet.org/
http://www.caida.org/data/passive/passive_2013_dataset.xml
http://tcpreplay.synfin.net/
http://hg.secdev.org/scapy
http://preview.tinyurl.com/kvacqcv

References 85

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

[61] J. Ioannidis and S. M. Bellovin, “Implementing pushback: Router-based defense against

ddos attacks,” in Proc. of the Symposium on Network and Distributed Systems Security

(NDSS 2002), 2002.

[62] A. Yaar, A. Perrig, and D. Song, “SIFF: A Stateless Internet Flow Filter to Mitigate

DDoS Flooding Attacks,” in Proc. of IEEE Symposium on Security and Privacy, 2004,

2004.

[63] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.

Shenker, and J. Turner. Openflow: Enabling innovation in campus networks. ACM

SIGCOMM Computer Communications Review, 38(2):69–74, 2008

[64] POX. [Online]. Available: http://www.noxrepo.org/pox/about-pox/

[65] OpenFlow Switch Specification, Version 1.3.0 (Wire Protocol 0x04). [Online].

Available: https://www.opennetworking.org/images/stories/

downloads/specification/openflow-spec-v1.3.0.pdf

[66] Mininet. (2013, Mar). An Instant Virtual Network on your Laptop (or other PC).

[Online]. Available: http://mininet.org

[67] SCAPY. <http://hg.secdev.org/scapy>.

[68] A. Kvalbein, A.F. Hansen, T. Cicic, S. Gjessing, and O. Lysne, “Fast IP network

recovery using multiple routing configurations,” Proc. INFOCOM, pp.23–29, April 2006.

[69] V. Sharma and F. Hellstrand, “Framework for multi-protocol label switching (MPLS)-

based recovery,” IETF, RFC 3469, Feb. 2003.

[70] Atkins, D., Austein, R., “Threat Analysis of the Domain Name System (DNS)”, RFC

3833, Auguest 2004.

[71] A. Herzberg and H. Shulman. DNS Authentication as a Service: Preventing

Amplification Attacks. In Computer Security Applications Conference, 2014. ACSAC’14.

Annual, December 2014

[72] Jianning Mai, Chen-Nee Chuah, Ashwin Seidharan, et al. Is sampled data sufficient for

anomaly detection//Proceedings of the 6th ACM SIGCOMM on Internet Measurement.

New York: ACM Press, 2006, pp. 165-176.

[73] Daniela Brauckhoff, Bernhard Tellenbach, Arno Wagner, et al. Impact of Packet

Sampling on Anomaly Detection Metrics Proceedings of the 6th ACM SIGCOMM on

Internet Measurement. New York: ACM Press, 2006, pp. 159-164.

http://www.noxrepo.org/pox/about-pox/

References 86

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

[74] S. Ramamurthy and B. Mukherjee, “Survivable WDM Mesh Networks, Part I -

Protection,” in Proc. of IEEE INFOCOM, vol. 2, pp. 744-751, Mar. 1999.

[75] V. Sharma and F. Hellstrand, “Framework for Multi-protocol Label Switching (MPLS)-

based Recovery,” in IETF, RFC 3469, Feb. 2003.

[76] J. Moy, “OSPF Version 2,” IETF RFC 2328, Apr. 1998.

[77] C. Alaettinoglu, V. Jacobson, and H. Yu, “Towards Millisecond IGP Conver- gence,”

in IETF Internet draft 2000.

[78] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni, “Incremental Algo- rithms for

Single-Source Shortest Path Trees,” in Proc. of Foundations of Software Tech. and

Theoretical Comp. Sci., Dec. 1994, pp. 113-24.

[79] P. Narvaez, “Routing Reconfiguration in IP Networks,” Ph.D. dissertation, MIT, June

2000.

[80] A. Kvalbein, T. Cicic and S. Gjessing, “Post-Failure Routing Performance with

Multiple Routing Configurations,” in Proc. of INFOCOM, May 2007.

[81] R. Takahashi, S. Tembo, K. Yukimatsu, S. Kamamura, T. Miyamura, and K. Shiomoto,

“Dispersing Hotspot Traffic in Backup Topology for IP Fast Reroute,” in Proc. of ICC, Jun.

2011.

[82] J. Wang, and S. Nelakuditi, “IP Fast Reroute with Failure Inferencing,” in Proc. of

INM’07, at ACM SIGCOMM, Aug. 2007.

[83] Kang Xi, H. J. C. “ESCAP: Efficient SCan for Alternate Paths to Achieve IP Fast

Rerouting” in Proc. of IEEE Globecom 2007.

[84] A. Tam, K. Xi, and H. J. Chao, “A Fast Reroute Scheme for IP Multicast,” in Proc. of

IEEE Globecom, Dec. 2009.

[85] Kang Xi, C. H. J., C. Guo, “Recovery from Shared Risk Link Group Failures Using IP

Fast Reroute,” in Proc. of IEEE ICCCN Aug. 2010.

[86] Tan, P.-N., Steinbach, M., and Kumar, V. 2005. Introduction to Data Mining. Addison-

Wesley.

[87] S.T. Zargar, J. Joshi, and D. Tipper. A Survey of Defense Mechanisms Against

Distributed Denial of Service (DDoS) Flooding Attacks. IEEE Communications Surveys &

Tutorials, 15(4):2046–2069, January 2013.

[88] S. Kent, and R. Atkinson, Security Architecture for the Internet Protocol, IETF, RFC

2401, November 1998.

References 87

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

[89] S. Kent, and R. Atkinson, IP Authentication Header, IETF, RFC 2402, November 1998

[90] H. Wang, C. Jin, and K. G. Shin, Defense Against Spoofed IP Traffic Using Hop-Count

Filtering, IEEE/ACM Trans. Netw., vol. 15, no. 1, pp.40-53, February 2007.

[91] M. Abliz, Internet Denial of Service Attacks and Defense Mechanisms, University of

Pittsburgh, Department of Computer Science, Technical Report. TR-11-178, March 2011

Published Papers 88

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

Published Papers

(1) N. M. SAHRI and Koji OKAMURA, “Fast failover mechanism for software defined

networking: Openflow based,” in Proceedings of the Ninth International Conference

on Future Internet Technologies, ser. CFI ’14. New York, NY, USA: ACM, 2014, pp.

16:1–16:2. http://dx.doi.org/10.1145/2619287.2619303

(2) N. M. SAHRI and Koji OKAMURA, “Openflow Path Fast Failover Fast Convergence

Mechanism,” Proceedings of the 38th Asia Pacific Advanced Network (APAN) on

Research Network Workshop, pp. 23-28 ISSN: 2227-3026, DOI:

http://dx.doi.org/10.7125/APAN.38.4, August 2014.

(3) N. M. SAHRI and Koji OKAMURA, “Load Sensitive Forwarding for Software

Defined Networking – Openflow Based,” ACSIJ Advances in Computer Science:

International Journal, Vol. 3, Issue 6, No.12, ISSN: 2322-5157, Journal published

November 2014

(4) N. M. SAHRI and Koji OKAMURA, "Adaptive Anomaly Detection for SDN",

Proceedings of the 40th Asia Pacific Advanced Network (APAN) on Research Network

Workshop, pp. 55-59 ISSN: 2227-3026, DOI: http://dx.doi.org/10.7125/40.9 , August

2015.

(5) N. M. SAHRI and Koji OKAMURA, "Collaborative Spoofing Detection and

Mitigation - SDN based looping authentication for DNS services", COMPSAC 2016:

The 40th IEEE Computer Society International Conference on Computers, Software

& Applications. Atlanta, Georgia, USA - June 10-14, 2016

(6) N. M. SAHRI and Koji OKAMURA, “Protecting DNS services from IP spoofing -

SDN collaborative authentication approach” in Proceedings of the 11th International

Conference on Future Internet Technologies, ser. CFI ’16. Nanjing, China: ACM,

2016

http://dx.doi.org/10.1145/2619287.2619303
http://dx.doi.org/10.7125/40.9

Published Papers 89

Kyushu University, Graduate School of Information Science and Electrical Engineering, Department of

Advanced Information Technology, PhD Course

(7) N. M. SAHRI and Koji OKAMURA, "Adaptive Query Rate for Anomaly Detection

with SDN", International Journal of Computer Science and Network Security, Vol. 16,

No. 6, 2016, ISSN: 1738-7906, Journal published June 2016

(8) N. M. SAHRI and Koji OKAMURA, " CAuth – Protecting DNS application from

spoofing attacks", International Journal of Computer Science and Network Security,

Vol. 16, No. 6, 2016, ISSN: 1738-7906, Journal published June 2016

