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ABSTRACT 
Landslide is one of the most serious natural hazards. It can be triggered by 

larger earthquakes or heavy rainfalls. For example, more than 700 landslides were 
triggered by the 2016 Kumamoto earthquake in Japan, they were responsible for 
30% of total fatalities caused by the earthquake. Therefore, it is necessary to 
mitigate landslide disasters. Landslide hazard map can play an important role in 
decision-making of effective disaster prevention measures since it shows the 
landslide prone slopes and susceptible areas. 

With the advancement of GIS (Geographic Information System), a variety of 
landslide hazard mapping (LHM) approaches have been proposed in the past 
decades, which can be classified into statistical approaches and physically-based 
approaches. Since a variety of LHM methods become available, there is an 
increasing awareness toward the need of an integrated landslide hazard mapping 
system so as to use these methods effectively and appropriately. And furthermore, 
there are the following 4 issues to be solved: (1) how to prepare the necessary 
landslide event data effectively; (2) how to improving the accuracy of landslide 
prone slope identification; (3) how to determine peak ground acceleration (PGA) in 
considering earthquake loading and (4) how to estimate the affected area of a 
landslide. 

This study aims at (1) developing a GIS-based integrated landslide hazard 
mapping system (GeoILHMS) with three functional modules (GeoLHM-S, 
GeoLHM-P and GeoLHM-R), (2) solving the above mentioned issues by improving 
some existing methods and proposing some new methods, and (3) using 
GeoILHMS to analyze the 2016 Kumamoto earthquake induced landslides in Japan. 
The GeoLHM-S and the GeoLHM-P can be effectively used for LHM based on 
statistical approaches and a physically-based approach separately. The GeoLHM-R 
can be used for LHM by considering the affected area of a landslide based on the 
run-out simulation. 

The thesis comprises the following chapters: 
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Chapter 1 introduces landslide disasters and mitigations, the problems in 
landslide hazard mapping, the scope and objectives of this study, and the 
organization of the thesis. 

Chapter 2 reviews the existing LHM methods and clarifies the unresolved 
issues. The terminologies used in landslide hazard mapping are also described in 
this chapter. 

Chapter 3 develops the functional module GeoLHM-S for effective landslide 
hazard mapping using statistical approach. At first, the issue of how to prepare the 
necessary landslide event data effectively is solved by proposing a method for 
landslide inventory mapping using online high-resolution images. The new method 
is incorporated into the functional module GeoLHM-Sb. And then, in order to solve 
the issue of how to improving the accuracy of landslide prone slope identification, 
(1) the four widely-used statistical methods: Information Value (IV), Weight of 
Evidence (WoE), Logistic Regression (LR), and Support Vector Machine (SVM), 
are incorporated into the functional module GeoLHM-S, which makes it possible 
to perform the LHM using different methods simultaneously, (2) a close comparison 
between the four methods, the merits, demerits and limitations of each method are 
clarified, which is very helpful for choosing the most suitable method based on the 
data availability and the characteristic of the study area, (3) four new methods are 
proposed by combining one of IV and WoE methods with one of the LR and SVM 
methods. Finally, the developed GeoLHM-S is used to make landslide hazard maps 
by using the four widely-used methods and the newly proposed combined method 
for the 2013 Lushan Earthquake event in China, and it has been shown that landslide 
hazard map by using the proposed technique is of the highest accuracy. 

Chapter 4 develops the second functional module GeoLHM-P for effective 
landslide hazard mapping using a physically-based approach. Slope stability 
analysis is an effective and well-used method to identify the landslide prone slopes, 
since earthquakes loading can be considered directly in the limit equilibrium. 
However, how to determine PGA is still a very difficult problem in LHM. In this 
chapter, at first, a method is proposed to estimate the PGA value for each cell in the 
LHM area from a specified fault or the target fault based on the Next Generation of 
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Ground-Motion Attenuation Models for the western United States (NGA-West2). 
And then, the pseudo-static method based on an infinite slope stability model using 
PGA is incorporated into the functional module GeoLHM-P for calculating the 
factor of safety of each cell. Furthermore, the Monte Carlo simulation is applied for 
dealing with the uncertainties of geological parameters. Finally, the GeoLHM-P is 
used to make landslide hazard maps by considering expected earthquakes with 
different magnitudes from the Shuangshi-Dachuan fault in Lushan, China and its 
practicality has been verified. 

Chapter 5 develops the third functional module GeoLHM-R for landslide 
hazard mapping by considering the affected area of a landslide based on the run-out 
simulation. Up to now, most of LHM methods only focus on the landslide prone 
slopes, and the affected areas are not included. Some LHM include the affected 
areas but they are estimated empirically based on slope heights. For example, the 
affected area is generally estimated based on the way given by Sediment Disaster 
Countermeasures for Sediment Disaster Prone Areas Act in Japan. It is a big 
challenge to estimate the affected area based on kinematics in LHM. In this chapter, 
a run-out simulation technique is developed based on modified multiple flow 
algorithm and the law of conservation of energy. The elevation difference between 
cells is taken into account for determining the possible directions towards which 
the landslide can move with a certain probability. The law of conservation of energy 
is used to determine the distance of sediment movement. When the mechanical 
energy from both the kinetic and potential energy becomes less than the friction-
induced energy loss, the movement of landslide will stop so that the maximum 
affected area can be estimated. The method is incorporated into the functional 
module GeoLHM-R. A practical example is made by using the module and its 
practicality has been verified. 

Chapter 6 presents a practical application of the GeoILHMS to analysis of the 
2016 Kumamoto Earthquake in Japan. Firstly, an inventory map of 665 landslides 
induced by the earthquake is produced. Then, landslide hazard maps are produced 
by using each of statistical methods available in the GeoLHM-S. Also, landslide 
hazard maps with expected earthquakes of different magnitudes occurring along the 
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Futagawa fault and the Hinagu fault are produced by using the GeoLHM-P. Finally, 
the run-out analysis is carried out by using the GeoLHM-R and a landslide hazard 
map with the affected area is produced. The produced landslide hazard provides 
essential frameworks for the development planning and reconstruction of the study 
area as they present a spatial division of the study area of different levels of potential 
landslide threat, including the landslide prone areas and the potential affected areas. 

Chapter 7 summarizes and concludes the results and achievements of the 
study. Problems are also highlighted for future studies. 
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CHAPTER  1 

1. INTRODUCTION 
1.1 BACKGROUND 

Landslide is a geological terminology to describe the mass movement of rock, 
soils, debris or earth down from a slope, under the driving force of gravity (Varnes 
1984; Cruden and Varnes 1996a; Cruden and Varnes 1996b; Hungr et al. 2014). 
Landslides can be triggered by different phenomenon, including the heavy rainfalls, 
large earthquakes, rapid snow melting and human activities, such as the excavation 
on slopes (Corominas and Moya 2008; Reid et al. 2008; Harp et al. 2011; McColl 
2014). Types of landslides mainly involve the falling, toppling, sliding, flowing and 
a mixture of them (Cruden and Varnes 1996a; Cruden and Varnes 1996b; Ibsen and 
Casagli 2004; Reid et al. 2008; Piegari et al. 2009; McColl 2014). 

The rapid urbanization associated with explosive population growth has 
brought great challenges to the environment and intensified pressures on land 
demand. During the process of land resource exploitation in mountainous terrain, 
fragile ecosystem and complex terrain conditions make these areas more 
susceptible to severe environmental disasters (Swenson and Franklin 2000; 
Bathrellos et al. 2012a; Bathrellos et al. 2012b). Landslides are especially prevalent 
in mountainous terrains (Lateltin et al. 2005; Cascini 2008; Fell et al. 2008a; Fell et 
al. 2008b), which always induce serious economic, human and environmental 
losses throughout the world. From 1900 to 2014, landslides accounted for nearly 
40% of global natural hazards according to the International Disaster 
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Database(http://www.emdat.be). 

1.1.1. CATASTROPHIC LANDSLIDES IN RECENT DECADES 
It is widely accepted that landslide represents one of the most serious natural 

hazards globally, especially in mountainous regions, such as West China, Japan et 
al. This is particular in mountainous areas where earthquake activities are frequent 
and heavy. Landslides in these regions have posed severe dangers to the different 
components of mountainous societies. For example, in the May 12, 2008 Wenchuan 
earthquake with a magnitude of Ms8.0 in China. It was estimated that about 60,000 
landslides were triggered by this earthquake and more than 10,000 people were 
killed by these landslides(Sato and Harp 2009; Yin et al. 2009; Gorum et al. 2011; 
Wang et al. 2014) . 

In general, landslides masses travel down the slope and hit the buildings or 
humans down of the slope. Sometimes, landslides are capable of burying entire 
villages and killing thousands of people in a single event, and often endanger human 
lives and infrastructure facilities. For example, in the case of the 2010 Beichuan 
Middle School landslides triggered by the Wenchuan Earthquake in China (Figure 
1-2a), 1600 residents were killed by the devastating landslides, and economic loss 
was up to 212 million RMB (Yuan et al. 2010; Tang et al. 2011a; Tang et al. 2011b). 
Another example is the Aso Bridge landslides triggered by the 2016 Kumamoto 
Earthquake in Japan (Figure 1-2b), at least 9 residents were reported dead in the 
event. 
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Figure 1-1 Number of landslides-induced fatalities. (a) the total fatalities that I 
have recorded from 2003 to 2010, including losses from landslides triggered by 
earthquakes. (b) the same data but with the two huge landslide-inducing 
earthquakes (2005 Kashmir and 2008 Wenchuan) (Source data from 
http://blogs.agu.org/landslideblog/2011/02/05/global-deaths-from-landslides-in-
2010/) 

 
Figure 1-2 Catastrophic landslide disasters in this decade. (a). Image of the New 
Beichuan Middle School landslides triggered by the 2008 Wenchuan Earthquake 

in China. Source from NASA. (b). Image of the Aso Bridge landslide triggered by 
the 2016 Kumamoto Earthquake in Japan, data from www.ibtimes.com. 

Table 1-1 Catastrophic landslides in recent decades 
Event Date /County LN#1 LA(km2)#2 Reference 
New Zealand Rainfall 2004/02/16 New Zealand 60,000 16,000 www.niwa.co.nz 
Typhoon 
Rainfall 

2011/09 
Japan 

30 About 500 Hitoshi Saito 
(2012) 

Wenchuan 
Earthquake 

2008/05/12 
China 

Over 60,000 41,750  Dai et al., (2011) 
Lushan 
Earthquake 

2013/04/20 
China 

3,810 13,323 Tang et al.,(2015) 
Tohoku 
Earthquake 

2012/03/09 
Japan 

3,477 28,380 Joseph Wartman., 
et al. 2013 

Kumamoto 
Earthquake 

2016/04/16 
Japan 

Over 700 1,500 This study 
#1LN: Landslide Number; 
#2LA: Landslide distribution area 

A recent study by Dave Petley (http://blogs.agu.org) has reviewed recent landslides 
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events with 70,000 fatalities on a global scale from 2003 to 2010. As shown in 
Figure 1-1, it comes to a conclusion that fatal landslide events are increasing year 
by year during the past decade. Also in the past decade, a lot of catastrophic 
landslides events were reported (Table 1.1). 

1.1.2. FACTORS RELATED TO LANDSLIDES 
Generally speaking, factors related to the occurrence of landslides can be 

grouped into two main categories: one is the controlling factors and the other is the 
triggering factors(Zhou et al. 2002; Khazai and Sitar 2004; Knapen et al. 2006; 
Masson et al. 2006; Chang et al. 2007; Shiels et al. 2008; Broothaerts et al. 2012; 
Sidle and Ochiai 2013). Geomorphic factors and local geology are classified as the 
controlling factors of landslides, while rainfall, earthquake, and human activities 
are considered as the triggering factors(Parise and Jibson 2000a; Wang et al. 2007; 
Qi et al. 2010; Zhou et al. 2015). 

To find out the effects of factors on landslide occurrence, various statistical 
analysis of landslides with respect to these factors have been carried in the past few 
decades(Keefer 1984; Keefer 2002; Malamud et al. 2004). Most studies have 
concentrated on general correlations of landslides occurrence with slope gradient, 
distance to epicenter, to seismogenic fault, and to drainage and geology unit (Khazai 
and Sitar 2004). For example, Xu et al. 2013 examined distribution of landslides 
triggered by Ms7.1, Yushu, China earthquake and found strongly positive 
correlations between landslide occurrence and slope gradient, while Coe et al. 2003; 
Sassa et al. 2007 and Saez et al. 2013 show that the largest occurrence of landslides 
falls within an interval of slope angles ranging from 9 to 14°. More recently, 
coupling effect of controlling factors and triggers become popular. Topographic 
amplification effects of seismic force had been studied by many authors (Rodríguez 
et al. 1999; Bommer and Rodríguez 2002; Nishimura 2013),and typical example of 
them is as follows: Lenti and Martino (2013) studied the coupling effect of 
topography and seismic waves on landslide dynamics, revealing the fundamental 
role of topography in both amplifying and de-amplifying ground motion. 

Landslides were also considered closely related to regional geology and 
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geomorphic evolution. Hovius and Stark (2006), Korup et al. (2010), Roering (2012) 
and Larsen and Montgomery (2012) thought hillslope evolution is adjusted to rapid 
uplift and bedrock incision through both an increase in the rate of relief-limiting 
landsliding and gradual slope steepening in tectonic-active areas. Besides, on the 
basis of understanding these correlations, the susceptibility of each analysis unit to 
landslides during an earthquake has also been calculated and ranked through 
assigning quantified weights to factors and then combining these factors (Parise and 
Jibson 2000b). 

 
Figure 1-3 Pre- (Left) and Post-event (Right) Images showing the epicentral area 

of Wenchuan Earthquake (Tang et al., 2010) 
Large earthquakes and heavy rainfall are two main triggers for landslides. 

These two main triggers, in general, showed a chain effects of the environment 
while triggering landslides(Wu and Chen 2009; Cepeda et al. 2010; Turner et al. 
2010; Lee and Chi 2011; Berti et al. 2012). Heavy rainfall is one of the most 
common triggers for landslide occurrence. The pore pressures increases in the soil 
masses due to the rainfall infiltration during the raining periods will increase the 
driving force of the slope masses and reduce the resistance force of it. Such effects 
will result in instabilities of the slope mass. Additionally, a lot of previous studies 
had demonstrated that rainfall-induced landslides will turn to be debris flows under 
some favorable conditions(Glade 2000; Dahal and Hasegawa 2008; Minder et al. 
2009). 

Another main trigger for landslide is large earthquakes. Damages from 
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earthquake-induced landslides may sometimes exceed the ground shaking itself 
(Sato and Harp 2009; Schulz et al. 2009; Yin et al. 2009; Yuan et al. 2010; Gorum 
et al. 2011; Harp et al. 2011; Tang et al. 2011a; Tang et al. 2011b; Wang et al. 2014). 
Earthquake-induced landslides have recently drawn increasing attention from 
researchers in fields of tectonics, geomorphology, natural hazards, geographic 
information system (GIS) and remote sensing (RS). Damage from earthquake-
induced landslides were documented from at least as early as 1789 B.C. in China 
and 373 or 372 B.C. in Greece (Li Zhongsheng 2003). Earthquake-induced 
landslides have been responsible for the deaths of tens of thousands of people and 
economic losses of billions of dollars. Particularly in mountainous areas, the 
damage caused by earthquake-induced landslides and slope collapses might be 
more severe than the damage caused by the earthquake itself (Keefer 1984; Keefer 
2002). In the last decade, various studies of earthquake-induced landslides in 
mountainous areas have been carried out, including on the 2004 Niigata earthquake 
in Japan (Yin et al. 2009; Gorum et al. 2011) , the 2005 northern Pakistan 
earthquake (Saba et al. 2010), the 2008Wenchuan earthquake with a surface wave 
magnitude (Ms) of 8.0 in China (Yin et al. 2009; Gorum et al. 2011), 2011 Tohoku 
earthquake (Mw = 9.0) in Japan (Fraser et al. 2013; Chiaro et al. 2015) and 2013 
Lushan earthquake (Ms = 7.0) in China (Zhou et al. 2015). 

Studies on earthquake-induced landslides have a major significance for better 
understandings of regional distribution patterns. In the past few decades, various 
studies focused on relations between landslide distribution and triggering seismic 
factors, these were done by analysis of historic inventories of several earthquake 
events. Through analysis of 40 historical earthquake events between 1958 and 1977 
around the world, Keefer (1984) firstly presented the general relations between the 
earthquake-induced landslides (such as spatial distribution, type and area coverage) 
and triggering seismic factors (such as distance to the epicenter, the distance to fault 
rupture earthquake magnitude and intensity). Rodríguez et al. (1999) made an 
extended Keefer (1984)’s study of the landslides triggered by 36 global earthquakes 
events from 1980-1997. As results of these studies, the minimum magnitude and 
intensity for triggering a landslide and the maximum area extent affected by 
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earthquake-induced landslides were estimated in Keefer (1984). Generally, a 
positive relation between landslide magnitude and seismic intensity and a negative 
relation between landslides concentration and distance to the epicenter and 
seismogenic fault were found Keefer (1984). Nevertheless, a few more recent 
studies found that earthquake-triggered landslides distribution was more related to 
the distance from the surface projection of the fault plane or the surface projection 
up-dip edge of the fault rather than the distance from the epicentre (Sassa et al. 
2007; Sato and Harp 2009). 

Seismogenic faults and their properties (such as geometry, focal mechanism 
and rupture process) strongly controlled the spatial distribution pattern of 
earthquake-induced landslides. A thrust fault earthquake released more energy than 
a strike-slip fault earthquake and subsequently caused large number of ground 
failures (Chen et al. 2011). Spatial distribution patterns of earthquake-induced 
landslides varied with different earthquake focal mechanisms. Negative relations 
between earthquake-induced landslide concentration and distance to seismogenic 
fault were found in many thrust-fault events, landslides triggered by which occurred 
most on its hanging wall and attenuated with the increasing distance to the 
seismogenic fault at a rate significantly lower than that on the footwall. Typical 
examples of thrust fault earthquakes are 1999 Chi-Chi earthquake (Hung 2000; Shin 
and Teng 2001), 2004 Chuetsu earthquakes(Wang et al. 2007; Chen et al. 2014) , 
the 2007 Niigata Chuetsu earthquake (Kayen et al. 2009; Collins et al. 2012) and 
the 2008 Wenchuan earthquake (Gorum et al. 2011) . As a comparison, landslides 
triggered by a strike-slip fault earthquake had similar distribution patterns on both 
sides of the seismogenic fault and were usually distributed close to the seismogenic 
fault, such as the 1973 Luhuo earthquake in Sichuan, China (Zhou et al. 1983; 
Nakanishi et al. 2004) and the 2010 Yushu earthquake (Xu et al. 2012).Seismic 
energy propagation and ground deformation differed with different fault geometry. 
Orientations of earthquake-induced landslides were related to the geometry of 
seismogenic fault, especially for thrust-fault earthquake events. Tibaldi et al. (1995) 
found that landslides preferentially occurred on slopes perpendicular to 
seismogenic fault plane and lying along its strike due to amplification of the ground 
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response, while slopes parallel to the seismogenic fault planes were almost 
unaffected by landsliding regardless of lithology and geological structure 
conditions. Distributions of landslides triggered by Wenchuan earthquake and 
Lushan earthquake also showed that the dominant orientations of landslides were 
in consistent with the movement direction of the seismogenic fault (Zhou et al. 
2015). All these studies show that the distribution of the landslides triggered by the 
fault rupture was complicated phenomenon. 

1.1.3. COMMONLY USED LANDSLIDE MITIGATION 
Analysis of the factors that contributes to the occurrence of landslide had 

provided the kinds of ways for landslide hazard mitigation and prevention work. 
One is the hardware works, the other is the software works. Before the occurrence 
of the landslides, use the hardware works to control the drainages or reinforce the 
potential landslides. Another possible way for landslide hazard mitigation is to 
identify the potential landslides before it happens. Such measures usually were 
carried out by the landslide warning system or landslide hazard mapping. Besides, 
the software works is one of the most economic ways for landslide hazard 
mitigation.  

 
Figure 1-4 The commonly used structural mitigation methods against landslide disasters 
(Ministry of Land, Infrastructure and Transport Infrastructure Development Institute – 
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Japan. Guidelines for construction technology transfer, 2004) 
As described above, the serious results of the landslides often pose great risks 

on human settlements and infrastructures in the mountainous regions, it is of great 
importance to do some countermeasure works to mitigate the landslide hazard 
(Figure 1-4). The commonly-used methods can be concluded as two categories, 
hardware ways and software ways (Fell 1994). Software ways usually include early 
warning systems, proper land-use strategy, and improvement of buildings. The 
purpose of software measures is to reduce the vulnerable to landslides, and 
consequently reduce the hazard risk. While hardware measures usually include 
constructing reinforcement in the landslide-prone slopes. The purpose of structural 
measures includes three aspects, (a) to prevent the start of landslide movement; (b) 
to prevent the landslide movement after its occurrence; (c) to control dissipation of 
landslide energy. 

1.1.4. LANDSLIDE HAZARD MAPPING 
Due to the serious consequences of landslides, numerous efforts have been 

done to mitigate the disasters. Of these efforts, the landslide hazard mapping is of 
the great significance(Lee et al. 2002; Lee et al. 2004; Yesilnacar and Topal 2005; 
Lee and Sambath 2006; Hong et al. 2007; Oh and Pradhan 2011; Bhandary et al. 
2013; Lee et al. 2013; Feizizadeh et al. 2014). Although the time and location of 
landslide occurrence is hard to be predicted in advance, evaluation of a certain 
region’s potential hazard to landslide is possible(Ayalew and Yamagishi 2005; Lee 
2007; Kawabata and Bandibas 2009; Pradhan et al. 2010; Sezer et al. 2011). 
Identifying a region’s susceptibility to landslides during an earthquake was an 
effective and most economical way to provide planners with foreknowledge of 
dangerous regions thereby helping with land management and infrastructure 
planning. For earthquake-induced landslide, landslide susceptibility assessment 
was to evaluate location of landslide susceptibility zones where landslides could be 
induced in future earthquake shaking (Zhou and Fang 2015). 
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1.2 PROBLEMS IN LANDSLIDE HAZARD MAPPING 
Landslide hazard mapping involves several steps, i.e. scope definition, 

landslide hazard identification and consequence estimation. Scope definition 
addresses several issues including delineating the study area and methodology 
selection. Landslide hazard identification addresses several issues on understanding 
physical characteristic of study area regarding to landslide processes such as 
understanding geology, geomorphology, hydrogeology and climate. It also includes 
collecting landslide data, such as landslide classification, area, volume, travel 
distance, date occurrence, and elements at risk. Hazard identification activities are 
mostly related to landslide inventory. 

Landslide inventory is very important in the landslide risk analysis because it 
gives information related to frequency of occurrences, landslide typology, landslide 
extents and damage of elements at risk. Estimation of spatial probability, temporal, 
probability and magnitude probability is not possible without landslide inventory 
containing sufficient data of past landslide events. Thus, producing landslide 
inventory maps for landslide hazard mapping are challenging task that this research 
focuses on. Given the variety of landslide hazard mapping methods, suitable 
selection of landslide hazard mapping methods is a central problem in the field of 
landslide hazard mapping. In addition, an ideal landslide hazard map should not 
only show the potential landslide prone slopes, but also show the affected area of 
landslides. 

1.3 SCOPE AND OBJECTIVES 
Thus, the main objective of this study is to develop a GIS-based integrated 

landslide hazard mapping system with three functional modules, in detail: 
(1) To propose a method for effectively landslide inventory mapping using 

online high-resolution images; 
(2) To compare the existing landslide hazard mapping methods using the 

landslide inventory and to propose a technique method to improve the 
accuracy of existing methods; 
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(3) To propose a physically-based landslide hazard mapping method, which 
can consider the ground motion parameters from a specified fault or the 
target fault. 

(4) To develop a run-out simulation technique so as to consider the landslide 
affected areas in landslide hazard mapping. 

(5) In addition, in order to verify the efficiency of the developed system, a case 
study of landslides triggered by the 2016 Kumamoto Earthquake was also 
carried out. 

1.4 FRAMEWORK OF THE THESIS 
The thesis comprises the following chapters: 
Chapter 1 introduces landslide disasters and mitigations, the problems in 

landslide hazard mapping, the scope and objectives of this study, and the 
organization of the thesis. 

Chapter 2 reviews the existing LHM methods and clarifies the unresolved 
issues. The terminologies used in landslide hazard mapping are also described in 
this chapter. 

Chapter 3 develops the functional module GeoLHM-S for effective landslide 
hazard mapping using statistical approach. At first, the issue of how to prepare the 
necessary landslide event data effectively is solved by proposing a method for 
landslide inventory mapping using online high-resolution images. The new method 
is incorporated into the functional module GeoLHM-Sb. And then, in order to solve 
the issue of how to improving the accuracy of landslide prone slope identification, 
(1) the four widely-used statistical methods: Information Value (IV), Weight of 
Evidence (WoE), Logistic Regression (LR), and Support Vector Machine (SVM), 
are incorporated into the functional module GeoLHM-S, which makes it possible 
to perform the LHM using different methods simultaneously, (2) a close comparison 
between the four methods, the merits, demerits and limitations of each method are 
clarifed, which is very helpful for choosing the most suitable method based on the 
data availability and the characteristic of the study area, (3) four new methods are 
proposed by combining one of IV and WoE methods with one of the LR and SVM 
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methods. Finally, the developed GeoLHM-S is used to make landslide hazard maps 
by using the four widely-used methods and the newly proposed combined method 
for the 2013 Lushan Earthquake event in China, and it has been shown that landslide 
hazard map by using the proposed technique is of the highest accuracy. 

Chapter 4 develops the second functional module GeoLHM-P for effective 
landslide hazard mapping using a physically-based approach. Slope stability 
analysis is an effective and well-used method to identify the landslide prone slopes, 
since earthquakes loading can be considered directly in the limit equilibrium. 
However, how to determine PGA is still a very difficult problem in LHM. In this 
chapter, at first, a method is proposed to estimate the PGA value for each cell in the 
LHM area from a specified fault or the target fault based on the Next Generation of 
Ground-Motion Attenuation Models for the western United States (NGA-West2). 
And then, the pseudo-static method based on an infinite slope stability model using 
PGA is incorporated into the functional module GeoLHM-P for calculating the 
factor of safety of each cell. Furthermore, the Monte Carlo simulation is applied for 
dealing with the uncertainties of geological parameters. Finally, the GeoLHM-P is 
used to make landslide hazard maps by considering expected earthquakes with 
different magnitudes from the Shuangshi-Dachuan fault in Lushan, China and its 
practicality has been verified. 

Chapter 5 develops the third functional module GeoLHM-R for landslide 
hazard mapping by considering the affected area of a landslide based on the run-out 
simulation. Up to now, most of LHM methods only focus on the landslide prone 
slopes, and the affected areas are not included. Some LHM include the affected 
areas but they are estimated empirically based on slope heights. For example, the 
affected area is generally estimated based on the way given by Sediment Disaster 
Countermeasures for Sediment Disaster Prone Areas Act in Japan. It is a big 
challenge to estimate the affected area based on kinematics in LHM. In this chapter, 
a run-out simulation technique is developed based on modified multiple flow 
algorithm and the law of conservation of energy. The elevation difference between 
cells is taken into account for determining the possible directions towards which 
the landslide can move with a certain probability. The law of conservation of energy 



 

 13

is used to determine the distance of sediment movement. When the mechanical 
energy from both the kinetic and potential energy becomes less than the friction-
induced energy loss, the movement of landslide will stop so that the maximum 
affected area can be estimated. The method is incorporated into the functional 
module GeoRALR. A practical example is made by using the module and its 
practicality has been verified. 

Chapter 6 presents a practical application of the GeoILHMS to analysis of the 
2016 Kumamoto Earthquake in Japan. Firstly, an inventory map of 665 landslides 
induced by the earthquake is produced. Then, landslide hazard maps are produced 
by using each of statistical methods available in the GeoLHM-S. Also, landslide 
hazard maps with expected earthquakes of different magnitudes occurring along the 
Futagawa fault and the Hinagu fault are produced by using the GeoLHM-P. Finally, 
the run-out analysis is carried out by using the GeoLHM-R and a landslide hazard 
map with the affected area is produced. The produced landslide hazard provides 
essential frameworks for the development planning and reconstruction of the study 
area as they present a spatial division of the study area of different levels of potential 
landslide threat, including the landslide prone areas and the potential affected areas. 

Chapter 7 summarizes and concludes the results and achievements of the 
study. Problems are also highlighted for future studies. 
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Figure 1-5 Framework of the thesis. 
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 CHAPTER  2 

2. REVIEW OF STUDIES ON LANDSLIDE HAZARD MAPPING 
2.1 INTRODUCTION 

Landslides, representing one of the most serious natural hazards around the 
world, having considerable and destructive effects on human life, properties, 
infrastructures, and, of course, on the environment. Landslide hazard mapping to 
identify the areas within the landscape with the characteristics that could make them 
susceptible to landslides. Generally, landslide hazard mapping makes attempts not 
only to identify landslide prone slopes but also the potential area affected by the 
potential landslides. 

Landslide hazard mapping is a common practice in many countries and regions 
around the world, principally used for aiding urban planning and as a first step to 
assessment of landslide hazards (Lee et al. 2002; Lee et al. 2004; Ayalew and 
Yamagishi 2005; Yesilnacar and Topal 2005; Bhandary et al. 2013; Lee et al. 2013; 
Feizizadeh et al. 2014). Therefore, many countries, particularly the developed ones, 
invest huge amount of money either in mitigation or in prevention of landslides. 
(Guzzetti et al. 2006; Lee and Sambath 2006; Hong et al. 2007; Lee 2007; Kawabata 
and Bandibas 2009; Pradhan et al. 2010; Oh and Pradhan 2011; Sezer et al. 2011). 
The most important step of landslide prevention efforts is to assess a certain 
region’s hazard to landslides by obtaining data related to landslides, i.e. preparation 
of landslide inventory and database. If taken into consideration, results of these 
assessments, i.e. landslide hazard maps, will provide useful information and 
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economic benefits for urban planning, development plans, engineering applications, 
land use potential planning, and so on. When international scientific literature 
related to landslide assessments is examined, there has been an increasing interest 
in landslide hazard mapping studies in the last decades. Particularly, in recent years, 
with the development of computation technology, GIS (Geographic Information 
System), and RS (Remote Sensing) techniques (Santacana et al. 2003; Lee et al. 
2004; Ayalew and Yamagishi 2005; Dahal et al. 2008; Bai et al. 2010; Mancini et 
al. 2010; Feizizadeh et al. 2014). This can be concluded as one of the most 
promising efforts with respect to combat with natural hazards since they opened 
wide range of opportunities for analyzing, evaluating, and assessing landslides. 
Thus, there are a multitude of studies carried out by different researchers in different 
parts of the world with the aid of these technological items. 

The landslide hazard mapping studies can be dated back to 1950’s, initiation 
of landslide hazard mapping was at the beginning of 1970’s. The beginning of 
1990’s, with the exception of a very few cases, witnessed the GIS applications for 
mapping in landslide regions. In some cases, the majority of the analyses and map 
modeling were fully achieved through a given GIS package, but in other cases, the 
use of GIS was only partial. Since the1990’s, with the rapid development and 
utilization of GIS technologies, which becomes a very important tool for mapping 
and evaluating landslides hazards, especially for studies at a regional scale. 

In this study, it was aimed at reviewing the existing landslide hazard mapping 
methods by means of a detailed literature survey. By doing so, firstly, the 
terminologies related to landslide hazard mapping are described. Then, a historical 
development of the approaches in landslide hazard assessments were evaluated. 
Finally, it will summarize the unsolved issues landslide hazard mapping. 

2.2 TERMINOLOGIES 
The term landslide is defined as the movement of a mass of rock, debris or 

earth down a slope. Varnes (1984) landslide classification system is the most widely 
used one to explain the mechanisms of landslides and to provide communication 
among the researchers throughout the world, based on the type of movement and 
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material (Keefer 1984; Fell 1994; Keefer 2002; Malamud et al. 2004; Sassa et al. 
2007; Alkhasawne et al. 2012; Feizizadeh et al. 2014). As for the terminology 
related to landslides and their mapping, there was a little bit conflict among the 
users for susceptibility, hazard, and risk. 

2.2.1 LANDSLIDE SUSCEPTIBILITY 
The susceptibility of landslide is a quantitative or qualitative assessment of the 

classification, volume (or area), and spatial distribution of landslides which exist or 
potentially may occur in an area (Cascini 2008; Fell et al. 2008a; Fell et al. 2008b). 
The landslide susceptibility may sometimes also contain a description of the 
velocity and intensity of the existing or potential landsliding. It is expected that 
landsliding will occur more frequently in the areas with the highest susceptibility, 
However, temporal frame is not taken into account in the susceptibility analysis. 
According to Fell et al. (2008a), the susceptibility of landslide includes landslides 
which have their source in the area, or may have their source outside the area but 
may travel onto or regress into the area. 

2.2.2 LANDSLIDE HAZARD 
The term of hazard can be defined as “a potential condition as an effect of an 

occurrence to have an undesirable consequences or damage” (Sassa 1997). 
According to Varnes (1984), the hazard of landslide hazard defined as the 
probability of occurrence within a specified period of time and within a given area 
of a potential landslide. The landslide hazard should not only include the spatial 
probability of landslide occurrence, but also the temporal probability of landslide 
events. It is characterized by statements of ‘what’, ‘where’, ‘when’, ‘how strong’ 
and ‘how often’, demanding knowledge of variation in both spatial conditions, 
temporal and magnitude behavior (Glade et al., 2005). The landslide hazard map is 
a tool used to portray the location of landslide, the predicted location of landslide, 
and can be used to divide the different level of risk areas (Van Westen et al. 1999; 
Guzzetti et al. 2000). Landslide hazard is expected to answer both spatial and 
temporal probability of landslide occurrence. The temporal probability is not taken 



 

 30

into account in landslide susceptibility mapping. Therefore, both the information 
about landslide susceptibility and landslide inventory containing the date of 
landslides events are needed in the landslide hazard analysis. Nevertheless, it is very 
difficult to include the detail information of the landslide events and area/volume 
in most of landslide hazard maps for the following reasons: first, the multi-temporal 
inventory of landslide is not always available; second it is difficult the get the detail 
information about the historical landslide information due to the heterogeneity of 
the subsurface conditions, and there is always some absences or insufficient length 
of historical records of landslide triggering events(Galli et al. 2008; Harp et al. 2011; 
Guzzetti et al. 2012). Thus, generating landslide inventory is a key issue remains to 
be solved in landslide hazard analysis. 

2.2.3 LANDSLIDE RISK 
Risk is a measure of the probability and severity of an adverse effect to health, 

property or the environment (Hong et al. 2007; Crozier and Glade 2012; Davies 
2014). Risk is often estimated by the product of probability of a phenomenon of a 
given magnitude times the consequences. In landslides studies, quantitative risk 
assessment has been applied and developed since long time ago by geotechnical 
engineer on a site investigation scale, such as pipeline, road, dam, oil platform, and 
housing. The analysis will be more focused on the hazard analysis of a specific 
slope. It uses deterministic (factor of safety, numerical analyses) and/or 
probabilistic methods. landslide risk also involves hazard. Therefore, landslide risk 
zoning assesses the loss of life or property or environmental features accounting for 
temporal probability, spatial probability, magnitude probability and vulnerability. 
In practice, it would not be simple to achieve and need detailed investigation on 
each risk element, i.e. hazard, vulnerability and element at risk (Guzzetti et al. 1999; 
Fell et al. 2008a; Huggel et al. 2010; Vranken et al. 2014). 

2.2.4 TERMINOLOGIES USED IN THIS STUDY 
As can be seen from the definitions above, there was a little bit conflict among 

the users for landslide susceptibility, landslide hazard, and landslide risk. In the past, 
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a lot of definitions have been made with respect to their meanings and there were 
no global guidelines about selection of these terminologies in the field of 
engineering slopes. For this reason, in this study, we define the landslide hazard as 
the probability of failure of a slope and do not consider the temporal probability of 
landslides. Additionally, mapping refers to the division of the land surface into areas 
and the ranking of these areas according to the degree of potential hazard from 
landslides. 

2.3 LANDSLIDE HAZARD MAPPING METHODS 
Identifying the region’s hazard to landslide is very important to avoid landslide 

damage or to reduce losses caused. It is difficult to accurately predict the time and 
location of landslides over a large region. However, it is possible to evaluate a 
certain region’s potential hazard for landslides through landslide hazard mapping 
(LHM). In the past two decades, LSM has become a very important and effective 
way to assess landslide disasters. The results of LSM can be used for land 
management and landslide hazards mitigation. 

Landslide Hazard Mapping methods
Statistical Approach Physically-based Approach

qBivariate Statistics(e.g. Weight of evidence,Frequency Ratio,Information Value)qMultivariate Statistics(e.g. Logistic Regression,Discriminant analysis)qSoft Computing(e.g. Artificial Neural Network, Support Vector Machine)

qStatic Model(e.g. Infinite slope based,         Slope unit based,         Profile based,)qDynamic Model(e.g. hydrology model)

GIS

 
Figure 2-1 Approaches for landslide hazard mapping 

During the past two decades, many studies on LHM were carried out on 
geographic information systems (GIS), which are efficient tools for integrating and 
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analyzing a large quantity of geographical data (Carrara et al. 2000; Wang et al. 
2005). Generally speaking, methods of landslide hazard mapping based on GIS can 
be grouped into statistical methods and physically-based methods. General reviews 
of these landslide hazard mapping methods can be found in (Guzzetti et al. 1999; 
Carrara et al. 2000; Wang et al. 2005). 

2.3.1 STATISTICAL APPROACH 
The statistical approach is to give some numerical expressions of the 

relationship between controlling factors and landslide occurrence using statistical 
model. The statistical approaches are built on the basic assumption that areas with 
critical factors contributing to the past landslides will also be favorable to future 
landslides. Some of the quantitative methods are bivariate and some of them are 
multivariate methods. 

2.3.1.1 Bi-variate statistical analysis 
For the bi-variate statistical approaches of landslide hazard mapping, it 

compares each landslide predictive factors to the existing landslide information 
(Yalcin 2008; Nandi and Shakoor 2010). Weights of each landslide predictive 
factors are calculated according to the landslide density (Nandi and Shakoor 2010). 
Typical bi-variate statistical LHM approaches are the information value method, 
weight of evidence method and weighted overlay model, etc. 

Information value method is based on the relationship between landslide 
occurrence and its predictive factors (Howard 1966). The information values for 
each subclass of landslide predictive factors are calculated according to the 
presence or absence of the landslide in a given mapping unit, such as a raster pixel 
or a slope unit (Howard 1966). In the past two decades, the information value 
method has been successfully used in several regions for landslide hazard mapping. 

Sarkar et al. (2013) carried out a landslide hazard mapping in parts of the 
Darjeeling Himalayas using the information value method. He found that this 
method showed a good performance with a validation result value of 89% in 
accuracy. Zêzere (2002) applied the information value method for landslide hazard 
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mapping in the North Lisbon, Portugal. In his models, he considered the landslide 
typology and found the most important factors to predict the landslide hazards are 
the roads and the fluvial channels. Also mentioned by Zêzere (2002), the landslides 
magnitude depends largely upon the typologies. Lee and Sambath (2006) applied 
and compared the results of landslide hazard maps produced from the logistic 
regression method and the information value method in the Damrei Romel area, 
Cambodia and found that both of the two methods had high and similar prediction 
accuracy. Sharma et al. (2009) performed a GIS based landslide hazard mapping 
for Sikkim Himalayas areas using IVM and found the accuracy assessment of 
landslide hazard map confirmed the model with highest degree of accuracy for high 
susceptibility class. Therefore, it may be concluded that information value method 
has proved a useful method in quantifying the effect of individual landslide 
predictive factors, which are responsible for landslide occurrence (Wang et al. 2005; 
Kanungo et al. 2009). 

The Weight of Evidence method is a log linear form of Bayesian probability 
model (Good 1985; Wing and Phelan 2005; Bacon and Aphramor (2011). This 
method uses landslide occurrence as training points to derive prediction outputs. By 
calculating both unconditional and conditional probability of landslide hazards. 
This method is based on calculation of positive and negative weights to quantify 
the spatial association degree between landslide occurrence and each classes within 
every landslide predictive factors (Guzzetti et al. 1999; Guzzetti et al. 2000). 

The weight of evidence method had been used in landslide mapping within the 
GIS environment since the 1990’s. Blahut et al. (2010) applied the weight of 
evidence method applied WoE model for accurate prediction of debris-flow source 
areas by analysis the inventory of landslides. To reduce the multitude of landslide-
related conditions to a pattern of a few discrete predictive variables. Regmi et al. 
(2010) applied the weight of evidence method to produce the landslide hazard maps 
in Paonia–McClure Pass area of Colorado, USA with six different combination of 
landslide predictive factors representing topography, hydrology, geology, land 
cover, and human influences. The best result of Regmi et al. (2010)’s study showed 
an prediction accuracy of 78%. Armaş (2012) applied the weight of evidence 
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method to assess the landslide susceptibility of a hilly area in the Subcarpathian 
sector of the Prahova Valley. As a useful spatial data prediction model, the weight 
of evidence method has been successfully used in many regions according to the 
published literatures (Lee et al. 2002a; Van Westen et al. 2003; Lee et al. 2004; Lee 
and Choi 2004; Barbieri and Cambuli 2009; Pradhan et al. 2010a; Pradhan and Lee 
2010; Pradhan et al. 2010b; Armaş 2012; Kayastha et al. 2012). 

Other typical bi-variate statistical methods, such as the Fuzzy Logic method 
and Weighted overlay method are also frequently used in landslide hazard in the 
past decades and had proved to be useful statistical models in prediction landslide 
occurrence (Lee and Talib 2005; Wang et al. 2005; Guzzetti et al. 2006; Yoshimatsu 
and Abe 2006; Corominas and Moya 2008; Fell et al. 2008a; Guzzetti et al. 2012; 
Van Den Eeckhaut et al. 2012). 

Generally, the Bi-variate statistical landslide hazard mapping methods is able 
to quantify the degree of effects of landslide predictive factors on landslide 
occurrence by comparing the factors with the landslide distribution. However, 
assigning weightage to the causative factors on the basis of this relationship may 
not always be appropriate since the interplays among the landslide predictive 
factors can’t be assessed in these methods. Moreover, landslide occurrence is the 
general consequence of several landslide predictive factors at a time. Therefore, the 
degree of effects among the landslide predictive factors should also be quantified 
and such quantification can be performed by the multivariate statistical methods 
(Guzzetti et al. 2006; Yoshimatsu and Abe 2006; Corominas and Moya 2008; Fell 
et al. 2008a). 

2.3.1.2 Multi-variate statistical analysis 
Multi-variate statistical analysis for landslide hazard mapping considers 

relative contribution of each landslide predictive factor to the landslide occurrence 
(Nandi and Shakoor 2010). The multivariate methods calculate percentage of 
landslide occurrence for each mapping unit and the probability of landslide 
occurrence is produced followed by the application of multivariate statistical 
method for reclassification of hazard for the given area. Logistic regression model, 
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and support vector machine methods are commonly used methods for LHZ 
mapping (Santacana et al. 2003; Süzen and Doyuran 2004; Nandi and Shakoor 
2010). 

The Logistic Regression regress a dichotomous variable on a set of 
independent variables (Gortmaker et al. 1994; Davis and Offord 1997). In the 
landslide hazard mapping, the dichotomous variable is the presence or absence of 
the landslide occurrence, which the independent variables refer to the landslide 
predictive factors. Generally speaking, The Logistic Regression method can be of 
two types one is the Binary Logistic (when dependent variable is dichotomous and 
independent variable is of any type) and Multinomial Logistic Regression 
(dependent variable with more than two classes) (Gortmaker et al. 1994). For the 
landslide hazard mapping using the logistic regression model, the binary logistic 
model is usually incorporated. In case of landslide hazard mapping, the LR model 
find the best fitting model to describe the relationship between presence and 
absence of landslides and the set of independent variables such as slope angle, slope 
aspect, lithology and land use (Corominas and Moya 2008; Fell et al. 2008a). It 
generates the model statistics and coefficient of formulae useful in defining the 
landslide hazard indexes. If coefficient is positive, the landslide event is likely to 
occur. Logistic regression method is a statistical model of slope instability built on 
the assumption that factor which caused slope failure in a region are the same as 
those which will generate landslides in future (Wang et al. 2005; Guzzetti et al. 
2006; Corominas and Moya 2008; Fell et al. 2008a). 

Support vector machine (SVM), as the representative’s kernel-based 
techniques, is a major development in machine learning algorithms. SVM is a group 
of supervised learning methods based on the statistical learning theory and the 
Vapnik-Chervonenkis (VC) dimension introduced by Vapnik (1995) and Vapnik 
(1999) that can be applied to pattern classification or non-linear regression. The 
SVM was originally developed by Vapnik (1995) as a new machine learning 
algorithm for pattern classification and non-linear regression. The main procedure 
involved in SVM modeling is a training phase with associated input and target 
output values. Recently, several authors have applied the SVM model successfully 
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on landslide susceptibility mapping. Wu and Chen (2009) and Intrieri et al. (2012) 
compared several classification approaches of SVM, Gaussian process, and LR 
modeling, with SVM having the best results. Xu et al. (2012) examined the use of 
SVM model for landslide susceptibility mapping in an earthquake zone with 
combination of 4 kernel functions and 3 different training sets and found that radial-
basis and polynomial kernel functions were suitable for modeling with any input 
training data. Xu et al. (2012) applied 6 different models in susceptibility mapping 
of landslides induced by the 2008 Wenchuan earthquake with SVM having a second 
best results outranked only by logistic regression. Kavzoglu et al. (2013) also made 
a comparison of susceptibility results from multi-criteria decision analysis, SVM, 
and logistic regression and showed that multi-criteria decision analysis and SVM 
methods were better than logistic regression in shallow landslides susceptibility 
mapping. These applications proved that when used properly, SVM model in 
landslide susceptibility mapping might produce a good result. Two outstanding 
advantages of the SVM are: (a) Based on the principle of minimization structural 
risk; (b) Guarantee its performance by solving constrained quadratic form. 
Theoretically, it can achieve the optimal prediction result by using the SVM model. 
Its detailed mathematical formulas are introduced in Vapnik (1995) and Vapnik 
(1999). 

Landslides are governed by several predictive and triggering factors which are 
complexly interrelated. The interrelationships between these factors and landslides 
are nonlinear in nature (Guzzetti et al. 1999; Guzzetti et al. 2006; Guzzetti et al. 
2012). Recently, several GIS based landslide susceptibility analyses using raster 
pixel as mapping unit have been proposed. Several studies have applied 
multivariate statistical models for landslide hazard mapping with comparatively 
high success (Good 1985; Fell 1994; Ibsen and Casagli 2004; Guzzetti et al. 2006; 
Fell et al. 2008a; Galli et al. 2008; Fell et al. 2008b; Kawabata and Bandibas 2009; 
Kayen et al. 2009; Kayastha et al. 2012; Feizizadeh et al. 2014; Hungr et al. 2014). 

2.3.2 PHYSICALLY-BASED APPROACH 
Another popular landslide hazard mapping methods is the deterministic 
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approaches or the physically-based approaches. Physically-based landslide hazard 
mapping approaches describes physical processes leading to the slope instabilities 
based on a mechanical analysis (Menon and Bawa 1997; Kuriakose et al. 2008; 
Kuriakose et al. 2009a; Kuriakose et al. 2009b; Vijith et al. 2013). One of the biggest 
advantages of these models is that they do not need historical landslide data and 
therefore can also be applicable to the areas with no or incomplete landslide 
inventories. Another advantage of the physically-based approach over the statistical 
approach is that the triggering force can be directly considered in the mechanical 
analysis, such as the seismic force or the rainfall infiltration (Kuriakose et al. 2008). 

The Transient Rainfall Infiltration and Grid based Slope Stability (TRIGRS) 
model (Baum et al. 2008) was applied in central Umbria region of central Italy by 
Salciarini et al. (2006) for modelling shallow landslides triggered by rainfall. In 
Salciarini et al. (2006)’s study, the known rainfall events and associated landslide 
records triggered by the rainfall were collected to calibrate the model and 
simulations were performed. Suggested by Salciarini et al. (2006) that to improve 
the accuracy of TRIGRS model, the digital elevation model (DEM) with high 
resolution is needed, also spatial distribution of geotechnical parameters of the 
surface should be considered in this model. 

The TRIGRS (Transient Rainfall Infiltration and Grid based Slope Stability) 
models had also been successfully used in the real time prediction of shallow 
landslides by Chien-Yuan et al. (2005), HONG and ADLER (2008), Montrasio et 
al. (2011) and Park et al. (2013) in different regions. Of these research, Montrasio 
et al. (2011) also compared SLIP (shallow Landslide Instability Prediction) and 
TRIGRS models in prediction of shallow landslide occurrence in GIS environment. 
The results of the study indicate that both the models have similar predictive 
capability. Taking Western Ghats of Kerala, India as the study area, a detailed 
comparative study was carried out by Kuriakose (2010) using four physically-based 
models: Shallow Landsliding Stability (SHALSTAB) (Dietrich et al. 2001), 
TRIGRIS model (Baum et al. 2008), Stability Index Mapping (SINMAP) (Pack 
2001), and Storage and Redistribution of Water on Agricultural and Revegetated 
Slope Probability of Stability (STARWAR+PROBSTAB) models (Dou et al. 2014). 
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According to Kuriakose (2010)’s study, STARWAR+PROBSTAB model is the 
most suitable model for assessment of spatial-temporal probabilities of shallow 
landslides. 

2.4  CURRENT UNSOLVED ISSUES IN LANDSLIDE HAZARD MAPPING 
In last few years the approach towards LHM has been proposed from statistical 

approach to physically-based approach to minimize subjectivity in weightage 
assignment procedure and produce more objective and reproducible results. Several 
issues in landslide hazard mapping include developing technique in inventory 
mapping, particularly in a data scarce environment, selecting methods for landslide 
hazard mapping, and improving the accuracy of current approaches for landslide 
hazard mapping. It varies depending on the availability of secondary data, 
geomorphological characteristic, and landslide typology. The availability of data 
input is very important prior to landslide risk analysis. It can affect the overall 
methodology or approaches applied in the landslide risk analysis. Despite the 
availability of landslide inventory, geomorphological characteristic of the study 
area should also be considered prior to selecting suitable landslide susceptibility 
and risk analysis. Some approaches in landslide hazard mapping was not sufficient 
in practical use. For example, in current landslide hazard mapping approaches, the 
area affected by the landslides was not considered. 

2.4.1 INSUFFICIENT LANDSLIDE INVENTORY FOR STATISTICAL LHM APPROACH 
Generating landslide analysis is difficult in some areas because the 

unavailability of the landslide inventory map. However, the recent technology 
developments such as the availability of the modern field instrument, high 
resolution DTMs, high resolution satellite imagery, recent development on GIS and 
remote sensing technology have made generating landslide map easier. But, the 
selection of this technique should be carefully reviewed based on the purpose, the 
extent of the study area, the scale of base maps and analysis, resolution and 
characteristics of the available imagery, and the skill and experience of the 
interpreter (Wang et al. 2005; Guzzetti et al. 2006; Guzzetti et al. 2006; Mancini et 
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al. 2010). Mapping landslide through field survey is the oldest technique for 
landslide inventory mapping and considered as the most accurate technique for 
mapping fresh landslide events. But it is difficult, by using field survey, to recognize 
old landslides in the field where the natural process (e.g. erosion, vegetation) and 
the anthropogenic activities (e.g. urbanization, road construction, ploughing) are 
exist. The use of aerial photograph interpretation is also difficult in Indonesia due 
to unavailability of multiple sets of aerial photograph in the same area and different 
time. In the other hand the use of recent technology such as very high resolution of 
DTMs and remote sensing imagery faces problems related to budget limitation and 
cloud problem in remote sensing images. Thus, combination techniques are needed 
to map landslide events either old or recent landslide events. 

2.4.2 IMPROVING THE ACCURACY OF LHM METHODS 
Generally, the Bi-variate statistical landslide hazard mapping methods is able 

to quantify the degree of effects of landslide predictive factors on landslide 
occurrence by comparing the factors with the landslide distribution. However, 
assigning weightage to the causative factors on the basis of this relationship may 
not always be appropriate since the interplays among the landslide predictive 
factors can’t be assessed in these methods. Moreover, landslide occurrence is the 
general consequence of several landslide predictive factors at a time. Therefore, the 
degree of effects among the landslide predictive factors should also be quantified 
and such quantification can be performed by the multivariate statistical methods 
(Guzzetti et al. 2006; Yoshimatsu and Abe 2006; Corominas and Moya 2008; Fell 
et al. 2008a). Multi-variate statistical analysis for landslide hazard mapping 
considers relative contribution of each landslide predictive factor to the landslide 
occurrence (Nandi and Shakoor 2010). The multivariate methods calculate 
percentage of landslide occurrence for each mapping unit and the probability of 
landslide occurrence is produced followed by the application of multivariate 
statistical method for reclassification of hazard for the given area. Logistic 
regression model and support vector machine methods are commonly used methods 
for LHZ mapping (Santacana et al. 2003; Süzen and Doyuran 2004; Nandi and 
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Shakoor 2010). The relative contribution of different factors is not assessed in 
bivariate statistics. One the other hand, the interactions between the landslide 
predictive factors are encountered in multivariate analysis. The weights of the 
factors indicate the relative contribution of each of these factors to the degree of 
landslide occurrence. Therefore, the question arose that is it possible to improve the 
landslide hazard mapping using the statistical approaches and how to improve it. 

2.4.3 CONSIDERING ASSUMED EARTHQUAKES IN LHM 
Earthquake-induced landslides are one of the most damaging hazards in 

mountainous regions and these triggered landslides will cause serious damages to 
both human life and properties. Therefore, securing the seismic slope stability for 
by analysing considering the seismic force is one of the most important parts in 
earthquake-prone regions. Slope stability analysis is an effective and well-used 
method to identify the landslide prone slopes, since earthquakes loading can be 
considered directly in the limit equilibrium. However, how to determine PGA of 
each mapping unit, such as raster cells, over a large region is still a difficult problem 
in landslide hazard mapping. To date, most of the physically-based approaches for 
landslide hazard mapping only consider the effects of the rainfall and few of these 
approaches consider the earthquake scenarios. 

2.4.4 CONSIDERING THE LANDSLIDES AFFECTED AREA IN LHM 
As previous stated, landslide hazard mapping should not only identify the 

landslide-prone slopes, but also assess the potential affected area of the landslides. 
Estimation of the landslide affected area is a delicate task to since it is very difficult 
to predict the exact affected area of landslides based on its run out over a large 
region. Although several numerical simulation techniques existed for accurate 
landslide runout prediction (Crosta et al. 2003; Peng et al. 2009; Cepeda et al. 2010; 
Dahl et al. 2013). They are hard to be used at a regional scale due to the uncertainties 
of the geotechnical parameters and the computation efficiency of these numerical 
methods. Predicting the landslide runout distance and propagation areas, i.e. the 
areas potentially under the threat of landslide, is still a challenge.  Another 
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possible way of prediction of landslide affected area is by the empirical or semi-
empirical approaches. An empirical method were first developed for very large 
landslides (Legros 2002; McDougall and Hungr 2004; Rickenmann 2005; 
McDougall and Hungr 2006) by using the reach angle, which is defined between 
the line connoting the top of the landslide source and the tip of the final deposition 
of landslides. This reach angle statistically defined as a power law of the landslide 
volume. Such a model can be quickly applied to large areas for large or very large 
landslides. However, such analysis has ignored the topography of the terrains and 
movement behaviour of the landslide sources. Therefore, a more accurate method 
that can be used over a large region to simulate the landslide runout is needed. 

2.5 CONCLUSIONS 
Landslide hazard assessment comprises several terminologies which are used 

interchangeably and often generates confusion. It includes susceptibility, hazard, 
and risk. Understanding terminologies in the landslide hazard analysis is important 
in which allows scientists and engineer quantify landslide hazard in an objective 
way, reproducible and the result can be compared from one region to another region. 
There were no general guidelines about the use of these terminologies. In this 
chapter, we define the landslide hazard as the probability of failure of a slope and 
its consequence. Also, in this study, landslide hazard mapping refers to the dividing 
of the terrains into areas and the ranking of these areas according to the degree of 
potential hazard from landslides. 

Landslide hazard mapping is a very important way for landslide hazard 
mitigation. Landslide is comprehension results of a variety of landslide predictive 
factors, including the controlling factors and triggering factors and these factors 
vary significantly from area to area. It is therefore difficult to determine weights for 
the landslide predictive factor. Determination weights of these factors based on 
relative importance of landslide causative factors is determined by several landslide 
hazard mapping methods differently. Statistical methods provide objective methods 
for determining weights for a given parameter based on their relationships with 
historical landslide occurrence. Physically-based models do not need long term 
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landslide data and therefore can also be applicable to the areas with incomplete 
landslide inventories. 

Prepare the necessary landslide event data effectively, improving the accuracy 
of landslide prone slope identification; determining peak ground acceleration (PGA) 
in considering earthquake loading and estimating the affected area of a landslide in 
landslide hazard mapping are among the current issues that remain to be solved, 
which are also the key issues this research aims to solve. 
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CHAPTER  3 

3 DEVELOPMENT OF GEOLHM-S FOR LANDSLIDE HAZARD 
MAPPING USING FOUR STATISTICAL METHODS AND FOUR 

COMBINED METHODS 
3.1 INTRODUCTION 

Landslides are considered to be the most widely geological disasters, causing 
deaths and damage to the properties. As previous stated in Chapter 2, during the last 
decades, the implementation of statistical methods in GIS has been widely applied 
in landslide hazard mapping. Although the statistical LHM methods have been 
widely used and successfully validated in many areas as mentioned in the published 
research literatures, there is no such a tool for effectively perform LHM using 
statistical approaches. Therefore, in this chapter, we aim to develop a functional 
module GeoLHM-S. At first, a method for landslide inventory mapping using 
online high-resolution images is proposed. The new method is incorporated into the 
functional module GeoLHM-S. And then, the four widely-used statistical methods: 
Information Value(IV), Weight of Evidence(WoE), Logistic Regression(LR), and 
Support Vector Machine(SVM), are incorporated into the functional module 
GeoLHM-S, which makes it possible to perform the LHM using different methods 
simultaneously. After that, four new methods are proposed by combining one of IV 
and WoE methods with one of the LR and SVM methods to increase the landslide 
hazard mapping performance. Finally, the developed GeoLHM-S is used to make 
landslide hazard maps by using the four widely-used methods and the newly 
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proposed combined method for the 2013 Lushan Earthquake event in China. 

3.2 STUDY AREA 
On April 20, 2013, a series of powerful earthquakes hit the central part of 

Sichuan province, China, especially Lushan County, about 116 km from Chengdu 
along the Longmenshan fault in the same province heavily impacted by the 2008 
Sichuan earthquake. The main shock of this earthquake was Ms=7.0 according to 
China Earthquake Data Center (CEDC) or Mw=6.6 as measured by the United 
States Geological Survey (USGS). The epicenter of the main shock was monitored 
at 30.3°N, 103.0°E near Lushan County at a depth of 13 km along the south segment 
of Longmenshan thrust belt. Many aftershocks including some Ms=6.0 class event 
included. This earthquake was another destructive earthquake in Sichuan Province 
5 years after the 2008 Wenchuan earthquake (Figure 3-1). 
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Figure 3-1 Hillshade image showing the location of the study area in red 
polygons. (Zhou and Fang, 2015) 

The study area is celebrated for its active tectonization with many folds and 
active faults. Main faults affected by the earthquake in the area, as shown in Figure 
3-2, are thrust faults, such as Shuangshi–Dachuan fault (SDF), Dayi fault (DF), and 
Western Shangli fault (WSF) (Xu et al. 2013b). Despite the shallow activity of the 
present earthquake, no obvious surface rupture had been recognized in the 
aftershock area (Chen et al.2013a). With the understanding of the aftershocks 
distribution, focal mechanism solution, and surface structural geology, Xu et al. 
(2013b) pointed that the Lushan earthquake is a typical blind reverse fault event. 

 
Figure 3-2 Geological map of the study area (Zhou and Fang, 2015) 

The exposure of the strata unit in the area ranged from the pre-Paleozoic to 
Quaternary periods and was dominated by Cretaceous and Triassic (Figure 3-2). 
Sandstone, mudstone, and shale were main rock types in the study area. As a result 
of the abundant supply of rainfall and the local rich groundwater, almost all 
bedrocks found in the study area had undergone a certain degree of weathering and 
deforming. In many slopes, weathering has penetrated deep into rock masses 
through joints and bedding planes. Topographically, as located in the north-eastern 
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boundary of the Tibet plateau, the study area ranged from plain in the east to hilly 
and mountainous with steep and rugged slopes in the west. Land use types include 
mainly cropland distributed on the ridges and slope wasteland on side slopes and 
gullies and town in flat river valleys. Most of the study area has gradients between 
10 and 30°, with an average gradient of 5°in the eastern part of the study area and 
valleys and a much higher average gradient of more than 30° in the west. The study 
area had suffered serious shallow landslides during this earthquake, since the steep 
slopes and jagged ridges are susceptible to landslide while suffering heavy ground 
shaking. 

Table 3-1 Geology unit and main rock types in the study area (Zhou and Fang, 2015) 
Age Lithology 

Quaternary Alluvium, clay, loose deposit 
Tertiary Marl, sometimes intercalated with mudstone 
Cretaceous Marl, siltstone, conglomerate, sandstone  
Jurassic Sandy slate, mudstone, sandy stone intercalated with mudstone 
Triassic Sandy stone, limestone, slate 
Devonian mudstone, sandstone, carbonatite 
Silurian Sandstone, phyllite intercalated with limestone 
Ordovician Limestone, marble and phyllite  
Sinian Metamorphic sandstone, dolomite 
Archean Granite, diorite, gabbro 

3.3 LANDSLIDE INVENTORY MAPPING 
A landslide inventory map usually portrays the location and the date of 

occurrence and the type of landslides, as well as the surface geometry of landslides. 
Landslide inventory maps can be produced using different techniques with a 
dependence of the aims, the extent of the study area, the availability, resolution, and 
characteristics of imagery (e.g., satellite image, aerial photograph). A landslide 
event inventory map may show all the slope failures as the result of a single trigger, 
such as an earthquake, a rainstorm, or a rapid snowmelt (inventories), or they can 
show the cumulative effects of many landslide events over a long period (historical 
inventories). 

Compiling of a detail and comprehensive landslide inventory is the 
prerequisite for subsequent studies, such as distribution analysis, hazard assessment, 
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and regional topographic evolution research. Landslide inventory maps can be 
produced using different techniques such as field investigation, digitalization of 
historic landslide inventory, visual interpretation of aerial photos, computer-aided 
supervised or unsupervised interpretation of remote sensing images. Although field 
investigation provides more detailed and intuitive information of landslides, the 
significant shortcoming of this method is that landslides occurred in the inaccessible 
areas will be missed, especially in some mountainous areas. In contrast, the photo 
interpretation method greatly enhanced the efficiency of landslide inventory 
preparation and had become popular since the 1970s. In the last two decades, with 
the increasing availability of high and very-high resolution sensors, development 
of computer hardware and remote sensing (RS) technologies, use of satellite images 
and RS technologies for landslide investigations had increased significantly. Many 
detailed and comprehensive inventories of earthquake-induced landslides have 
been reported, which had provided a good basis for landslide hazard evaluation and 
mitigation. Currently, studies on automatic extraction of landslides through remote-
sensing images became important topics in engineering, geology and other related 
fields. This method depended heavily on image resolution and models and was very 
suitable for large-scale landslides mapping. However, it might cause errors when 
applied for small landslides. Hence, visual-interpretation by well-trained personnel 
is still believed to be more accurate and reliable than computers, although it is more 
time-consuming. Results’ quality of such visual interpretation method largely 
depended upon the experience of the interpreters. A better way to minimize the 
subjectivity of visual interpretation is to carry out some field investigations for 
validation. 

3.3.1 DATA SOURCE 
Colour airborne images with a high resolution of 0.16 m and pre-earthquake 

SPOT-4 satellite images with a median resolution of 12.5 m covering the study area 
were proposed by the National Administration of Surveying, Mapping and Geo-
information of China. Locations of landslides triggered by the devastating 
earthquake were manually interpreted by Sichuan Geomantic Center, and an 
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inventory map of landslides was proposed on Geo-Information Platform of Lushan 
Earthquake (http://www.scgis.net/LSXEarthquake/) based on Tianditu, a WebGIS 
service (Chen et al. 2013b). Due to a critical use for rescue after the earthquake, 
only location data of suspected landslides were available, and some of landslides 
that did not cause damage to humans, constructions, or transportations were missed 
on the platform. This given landslide inventory map only pointed out the location 
of landslide without any other information, which is essential for our research, and 
it was impossible to carry out detailed field investigations on every landslide. 

3.3.2 PROPOSED METHODS FOR LANDSLIDE INVENTORY MAPPING 
In this paper, we proposed a detailed landslide inventory map, which shows 

the geometry of landslides, with the help of ArcGIS servers. Since ArcGIS 10.0 is 
capable of using any ArcGIS server cached map service as a base map, we firstly 
specified the high-resolution image as our base map using ArcGIS server with the 
endpoint URL (http://www.scgis.net.cn/imap/iMapServer/defaultRest/services/ )  
provided by Tianditu as the address for invoking image service. Then, an empty 
vector layer named ‘Landslide’ with the same coordinate system as the base map 
was created as a mask to store the landslide information, and imaginary layers of 
Tianditu Polymerized DOM Tile Map service were selected and added below the 
landslide layer. After that, high-resolution pre-earthquake satellite images of SPOT-
4 and Radarsat-2 of the study area were added in to ArcGIS and geometrically 
rectified and matched as a contrast. Finally, experts on earthquakes and geo-hazards 
were called upon to visually interpret the base map and delineated the landslide 
scars on aerial photograph according to vegetation variations between pre- and post-
earthquake, experts’ knowledge and experience (Zhou and Fang, 2015). 

3.3.3 CRITERIA USED IN LANDSLIDE VISUAL INTERPRETATION 
In this study, we followed several principles for the landslide visual 

interpretation: (i) all landslides that can be recognized in the images should be 
mapped; (ii) Both landslide boundaries and the positions of landslide source area 
should be mapped; (iii) Landslide complexes should be divided into individual ones; 
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and (iv) Landslides happened before the earthquake should be excluded. Based on 
principles above, following criteria were used during the landslide visual 
interpretation processes:(i) If a landslide did not exist on the pre-earthquake image 
but exists on post-earthquake images, it is considered as a co-seismic landslide; (ii) 
If a landslide exists on both pre- and post-earthquake images and shows the same 
morphology and texture, it is considered a pre-earthquake landslide not triggered 
by the earthquake. 

 
Figure 3-3 Distribution of interpreted landslides in the study area. a 

Landslides were indicated using red polygons on shaded relief map. Sample area 
of b pre-earthquake SPOT-4 image and c post-earthquake aerial photographs were 

indicated in black rectangle in a . (Zhou and Fang, 2015) 
3.3.4 RESULTS AND DISCUSSIONS 

By using the proposed method, an inventory of 1289 landslides triggered by 
the 2013 Lushan earthquake were visually mapped. This landslide inventory is 
intended to provide users with a first-hand information regarding earthquake-
induced landslides within the study area and can be used to a series of studies, such 
as evaluation of landslide disasters and regional hazard mitigations in this area. 

The proposed landslide inventory is not regulatory, and revisions can happen 
when new information regarding landslides is found or future (new) landslides 
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occur. Therefore, it is possible that landslides within the mapping area were not 
identified or occurred after the map was produced. Therefore, a continuous update 
of the landslide inventory is suggested with the increasing availability of data 
sources both in area and time scale. 

Another limitation of the proposed method is that few information about the 
landslide type is included in the proposed landslide inventory. Landslide is a general 
term used to describe the downslope movement of soil, rock under the effects of 
gravity and can be classified according to types of movement (fall, topple, slide 
spread or flow) and materials involved (soil, rock or both). Landslide may also form 
a complex failure encompassing more than one type of movement. On the basis of 
type of material involved, type of movement, degree of internal disruption of the 
landslide mass, and geologic environment, Keefer (1984) classified earthquake-
induced landslides into three categories and described them as: (I) Disrupted slides 
and falls: rock falls, rock slides, rock avalanches, soil falls, disrupted soil slides, 
and soil avalanches; (II) coherent slides: rock slumps, rock block slides, soil slumps, 
soil block slides, and slow earth flows; and (III) lateral spreads and flows: soil 
lateral spreads, rapid soil flows, and subaqueous landslides. Following previous 
classification criterion and in combination of our analysis results and field 
investigations, landslides triggered by the Ludian earthquake can be categorized as: 
(I) rock and soil falls; (II) rock avalanches and (III) shallow landslides. For 
simplicity's sake, we use landslide as a general term for all types of material 
downslope movement. It is difficult to distinguish the landslide types accurately on 
the images, since it only shows the 2D information of the landslide information. In 
recent years, with the increasing availability of images of more accuracy, such as 
the Lidar and SAR images, a more detailed landslide inventory mapping can be 
obtained 
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Figure 3-4 Screenshot show the ArcGIS plugin tool for landslide inventory 

mapping using online high-resolution image (landslides are shown in red polygons) 
The interpretation procedures including the following 5 steps: (I) Acquisition 

and pre-process of images of the study area, including system calibration, ortho-
rectification, geometric correction, and image fusion; (II) The geometrically 
corrected fusion images were then imported into ArcGIS 9.3 software and were 
specified as the based map; (III) An empty vector layer with the same coordinate 
system as the base map was created for the storage of landslides; (IV) High-
resolution pre-event satellite images of the study area were geometrically rectified 
and matched as a contrast showing the pre-earthquake conditions; (V) Experts in 
earthquakes and geo-hazards were called upon to visually interpret the base map 
according to their experiences and knowledge. Because it was right time for 
vegetation, earthquake-induced landslides could be easily recognized according to 
landslide scars and vegetation change; (VI) The boundaries of landslides were 
interpreted on the base map and transformed into vector format. 
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1. Determine Extent of the Study area
2.Divide the study area into grids
3.Creating an empty GIS shapefile layer
4.Load the high-resolution images
5.Delineate the extent of the landslides  

Figure 3-5 Flowchart of the proposed landslide inventory mapping methods 
Due to long-term human activity, many parts of the natural vegetation have 

been replaced by farming. Because it is right time for plantation, earthquake-
induced landslides are easy to be recognized according to landslide scars on aerial 
photos (Figure 3-3 b and c). 

3.4 COMPARISON STUDY OF FOUR STATISTICAL METHODS 
3.4.1 INFORMATION VALUE METHOD (IV) 

The Information value (IV) method is based on the assumptions that landslide 
occurrences are determined by causal factors and that future landslides will occur 
under the same condition as those contributing to past landslides. The IV model 
requires the selection of landslide predictive factors and the categorization of these 
factors. The information value of area where landslides occurred in the total study 
area, and also is the probability of a landslide occurrence to a non-occurrence for a 
given attribute. Based on that, the landslide inventory is overlaid with each 
predictive factor map, and frequency ratio values of each class get calculated. In 
this study, the frequency ratio is calculated in the following three steps: Firstly, the 
information value for each class of factor was calculated using Eq.(3-1). Then 
information values were summed to calculate the landslide hazard index. The 
weight value for each class of factor can be defined as the information values and 
then they were summed to produce the landslide hazard index (LHI) map Eq.(3-2). 
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The calculated values of LHI for each pixel in the LHI indicate the relative 
susceptibility to landslide occurrence. 

 w௜௝ = ݈݊ ௣ܰ௜௫(ݏ௜)/ ௣ܰ௜௫( ௜ܰ)
∑ ௣ܰ௜௫(ݏ௜) / ∑ ௣ܰ௜௫( ௜ܰ) (3-1) 

(௫,௬)ܫܪܮ  = ෍ w௜(௫,௬)௝௡
௝ୀଵ  (3-2) 

Where ௣ܰ௜௫( ௜ܵ) is the number of pixels containing landslide in class j of factor i; 
௣ܰ௜௫( ௜ܰ) is the total number of pixels of class j in factor i. x and y indicates the 

spatial location of the cells. 
The results obtained by the IV are easy to understand. A positive value of w௜௝ 

indicates a favourable effects of the subclasses with a certain factor, and a negative 
value indicates an unfavourable effect. The higher the final LHI is, the higher the 
possibility of the landslide occurrence is. 

3.4.2 WEIGHT OF EVIDENCE METHOD (WOE) 
Weights of Evidence (WoE) is based on the log-linear from of Bayesian 

probabilities modeling to calculate the strength of the spatial association between a 
training set (e.g., known landslides) and predictor maps (e.g., predictive factors) 
and to assign predictive factors weights. This method was originally introduced for 
mineral potential mapping(Bonham-Carter et al., 1989;Agterberg et al., 1993), and 
many approaches have been proposed on landslide susceptibility mapping (Xu et 
al., 2012b;Rezaei Moghaddam et al., 2007;Pradhan et al., 2010;Dahal et al., 2008). 
A detailed description of the mathematical formulation of this modeling is available 
in (Van Westen et al., 2003) and more recently in (Dahal et al., 2008). 

In WoE modelling, weight is calculated for each class of landslide predictive 
factors (ܤ௝௜ ) based on the presence or absence of landslides (L ) within the area, 
assuming that future landslides will happen under the same conditions as those 
contributing to the past landslides. As indicated in (Bonham-Carter et al., 1989): 
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 ൝ ௝௜ାݓ = ln (ܲ൛ܤ௝௜หܮൟ/ܲ൛ܤ௝௜หܮൟ)
௝௜ିݓ = ln (ܲ ቄܤ௝௜ቚܮቅ /ܲ ቄܤ௝௜ቚܮቅ) (3-3) 

Where P  is the probability, ܤ௝௜  is the presence of class i  of landslide causal 
factor j, while ܤ௝௜is the absence of class i of landslide causal factor i. Similarly, 
L and L represent the presence and absence of landslides respectively. ݓ௝௜ାand 
 ௝௜ିare the weight of evidence when the class i of predictive factor j is present andݓ
absent respectively. A positive weight ݓ௝௜ାindicates the presence of positive spatial 
association between ܤ௝௜  and L while the magnitude of this weight indicates the 
positive correlation between the presence of the predictive factor and the landslides. 
A negative weight ݓ௝௜ି  indicates an absence of the spatial association between 
 .௝௜  and L, and the magnitude shows the level of negative correlationܤ

The contrast between the two weights is defined, as the final weights of factor 
 :௝௜ can be expressed as followsܤ

௝௜ݓ  = ௝௜ାݓ −  ௝௜ି (3-4)ݓ
Where a positive ݆݅ݓ indicates the predictive class is favourable for the landslides, 
and a negative ݆݅ݓ  means the class is unfavourable for the landslides. The 
magnitude of the contrast indicates an overall of spatial association between the 
causative factor and landslides; whereas ݆݅ݓ is equal to zero when a class has no 
spatial relationship with landslides occurrence.  

The total value of cell at spatial location of x and y in weight of evidence map 
is determined by the total of weight contrast of landslide predictive factor j in class 
i as follows: 

 ௧ܲ௢௧௔௟(௫,௬) = ෍ ௝௜ݓ
௡

௝ୀଵ
,ݔ)  (5-3) (ݕ

Where n is the total number of landslide predictive factors. 



 

 65

For weight of evidence modeling, landslide training data layers were compared 
with every thematic layer respectively for the calculation of positive weights and 
negative weights. For this purpose, Eq. 3 was rewritten according to the number of 
cells Dahal et al. (2008) (see Eq.5) and the final results were given in Table3. 

 
ەۖ
۔
௝௜ାݓۓۖ = ݈݊ ௝ܰ௜ଵ/( ௝ܰ௜ଵ + ௝ܰ௜ଶ)

௝ܰ௜ଷ/( ௝ܰ௜ଷ + ௝ܰ௜ସ)
௝௜ିݓ = ݈݊ ௝ܰ௜ଶ/( ௝ܰ௜ଵ + ௝ܰ௜ଶ)

௝ܰ௜ସ/( ௝ܰ௜ଷ + ௝ܰ௜ସ)
 (3-6) 

Where ௝ܰ௜ଵ is the number of pixels representing the presence of both class i of 
predictive factor j and landslides; ௝ܰ௜ଶ is the number of pixels representing the 
presence of landslides and absence of class i of predictive factor j; ௝ܰ௜ଷ is the 
number of pixels representing the presence of class i of predictive factor j and 
absence of landslides; ௝ܰ௜ସis the number of pixels representing the absence of both 
class i and landslides. 

3.4.3 LOGISTIC REGRESSION METHOD (LR) 
Logistic regression (LR) model regresses a dichotomous variable on a set of 

independent, continuous or categorical variables. The association between the 
dependent variables (e.g., causal factors) and the independent variable (e.g., 
presence/ absence of landslides) was tested by using the maximum likelihood model. 
The LR model has no requirement for the distribution pattern of the independent 
variables and most of landslide causal factors don’t follow normal distribution. The 
output values of LR model ranging from 0 to 1 can be defined as landslide 
susceptibility index, with 0 indicating a 0% possibility of landslide occurrence and 
1 indicating a 100% possibility of landslide. Therefore, a logistic regression model 
is applied to create landslide hazard map. The main formula in the logistic 
regression can be expressed as follows: 

 z = ܾ଴ + ܾଵݔଵ + ܾଶݔଶ + ⋯ + ܾ௡ݔ௡ (3-7) 
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 ܲ = ݁௭/(1 + ݁௭) (3-8) 
Where P is the probability of landslide occurrence, z is the linear logistic model, ܾ଴ 
is the intercept of the model, n is the number of landslide predictive factors, b is 
the weight of each factor, ݔଵ, ,ଶݔ … ,  .௡ represent the landslide predictive factorsݔ

3.4.4 SUPPORT VECTOR MACHINE METHOD (SVM) 
Support vector machine (SVM), as the representative's kernel-based 

techniques, is a major development in machine learning algorithms. SVM is a group 
of supervised learning methods based on the statistical learning theory and the 
Vapnik-Chervonenkis (VC) dimension introduced by V Vapnik and Cortes, (1995) 
and Chervonenkis, (2013) that can be applied to pattern classification or non-linear 
regression. For the linear separable condition, consider a set of training vectors with 
two classes as follows: 

ܦ  = ,ଵݔ)} ,(ଵݕ ,ଶݔ) ,(ଶݕ … , ,௡ݔ)  ௡)} (3-9)ݕ
Where ݔ௜ ∈ ܺ ⊂ ܴ௠ , ௜ݕ ∈ {1, −1}, ݅ = 1,2, … , ݊  that can be separated the two 
classes [1, -1] by a hyper-plane: 

ݓ)  ∙ (ݔ + ܾ = 0, ݓ ∈ ܴே, ܾ ∈ ܴ (3-10) 
Where w is the normal of the hyper-plane, b is a scalar base, and (∙) denotes the 
scalar product operation. 

After normalization, the geometrical margin between the two groups can be 
expressed as ଶ

||௪||, The operation of the SVM algorithm is to find the hyper-plane 
that gives the largest geometrical margin to the training examples. The maximum 

ଶ
||௪|| can be expressed as: 

1 ݁ݖ݅݉݅݊݅ܯ 
2  ଶ (3-11)||ݓ||

Subjecting to constrains: 
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௜ݕ  = ௜ݔ்ݓ) + ܾ) ≥ 1，݅ = 1,2, … , ݊ (3-12) 
Introducing the Lagrangian multiplier, the cost function can be defined as: 

,ݓ)߶  ܾ, (ߙ = 1
2 ଶ||ݓ|| − ෍ ݓ]௜ݕ)௜ߙ ∙ ௜ݔ + ܾ] − 1)

௡

௜ୀଵ
 (3-13) 

Where α = ,ଵߙ) ,ଶߙ … , ்(௡ߙ ∈ ܴ௡ is the Lagrangian multiplier, and the problem 
can be solved by dual minimization of Eq.(3-13), with respect to w   and b  
through standard procedures (Eq.(3-14)).  More detail of SVM was discussed in[V 
N Vapnik, 1995]. 

 
Figure 3-6 Illustration of the support vector machine 

 ൜׏௕߶(ݓ, ܾ; (ߙ = 0
,ݓ)߶௪׏ ܾ; (ߙ = 0 (3-14) 

Mostly, however, the training vectors are non-separable,[V N Vapnik, 1995] 
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introduced an slack variables ζ௜ modified the constraints as follows: 

௜ݕ  = ൫(w ∙ x) + b൯ ≥ 1 − ζ௜, ݅ = 1,2, … , ݊, ζ௜ ≥ 0 (3-15) 
To avoid a high value of ζ௜, some kind of penalty term C was introduced into 

the original optimization Equation 3.16, which can be modified as: 

1 ݁ݖ݅݉݅݊݅ܯ 
2 ଶ||ݓ|| + ܥ ෍ ζ௜

௡

௜ୀଵ
 (3-16) 

Where C > 0 is the penalty factor to control the trade-off between the maximum 
margin and the minimum error. Additionally, a kernel function k(ݔ௜,  ௝)  isݔ
introduced by V N Vapnik (1995) to transform the originally non-linear data pattern 
to a linear one in higher dimensional feature space. 

In reality, the unstable slope cases (with landslides) are recognized as positive 
pattern, while stable slope cases (without landslides) are recognized as negative 
pattern. Note that we often commonly have only a one-class dataset without 
negative data. One-class SVM models also have been developed, but their theories 
are not reach perfection and they produce poor prediction efficiency than two-class 
SVM (Guo et al., 2005; Yao et al., 2008). Hence, a two-class SVM modelling is 
utilized in this study. 

To carry out the two-class SVM modelling, we established a spatial database 
containing all the landslides triggered by the earthquake and their controlling 
parameters. Then all the data layers were classified and rasterized in Arcgis. The 
landslides as well as the same amount of selected stable slopes were randomly 
divided into two groups for training and validation purpose, respectively. We use 
the training dataset as input to train the SVM model, then the testing dataset were 
used to examine the model. Finally, all the cells in the study area were input into 
the established model for possibility prediction of landslide occurrence. 

3.5 INCREASING LANDSLIDE HAZARD MAPPING PERFORMANCE BY 
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PROPOSING FOUR COMBINED METHODS 
3.5.1 DATA PREPARATION OF LANDSLIDE PREDICTIVE FACTORS 
3.5.1.1 Landslide Predictive factors 

The occurrence of landslides is considered to be related to a series of 
geological, hydrological, topographic factors, which reflects natural settings in the 
study area. All the factors mentioned above is so called the landslide predictive 
factors in this study. Collecting and preparation of the landslide predictive factors 
at a suitable scale is an intriguing task, requires a comprehensive understanding of 
the importance of each predictive factor. Generally speaking, there is no general 
rules for selecting the landslide predictive factors, and the factors used in landslide 
hazard mapping is generally determined by the data availability and the knowledge 
of the person who perform the landslide hazard mapping. In this study, a 
topographic-related dataset, a hydrology-related dataset, a geology dataset, a land 
use dataset and a triggering factor dataset were constructed for landslide hazard 
mapping (Table 3-2). Based on these datasets, 11 landslide predictive factors were 
used in this study. Each controlling factor of landslide was mapped and converted 
to raster map with 30- meter cell size.  

Table 3-2 Sources and significance of the landslide controlling factors 
Data Type Factors Source Significance Type 

Topographic 1. Elevation Topographic 
Map 

Climate, potential 
energy 

Scale 

2. Slope Topographic 
Map 

Gravity, flow velocity Scale 

3. Aspect Topographic 
Map  

Solar insolation, 
evapotranspiration 

Categorical 

4. Curvature Topographic 
Map  

Converging, diverging 
flow 

Scale 

Hydrology 5. SPI (Stream 
Power Index) 

Topographic 
Map 

Potential erosive 
power 

Scale 
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6. TWI 
(Topographic 
Wetness Index) 

Topographic 
Map  

Soil water content Scale 

7. Distance to river Topographic 
Map  

River undercutting Scale 

Landuse 8. Landuse Topographic 
Map 

Landslide triggering by 
slope cutting, trees 
effect on landslide 

Categorical 

Geology 9. Geology Unit Geology Map Rock strength Categorical 

10.Distance to fault Geology Map Ground deformation Scale 

Trigger 11. PGA Seismic 
Hazard Map 

External triggering 
force 

Scale 
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Figure 3-7 List of all the predictive factors: (a) Slope gradient, (b) PGA, (c) 

Elevation, (d) Distance to fault, (e) Distance to river, (f) SPI, (g) TWI, (h) 
Curvature, (i) Geology unit, (j) Aspect and (k) Land cover. 

Topography makes great contributions in landslide occurrence through 
controlling surface flowing, sedimentation source and soil moisture concentration 
et al. Digital Elevation Model (DEM) used in this study in GeoTIFF format with 
geographic coordinates and 1 arc-second (30 m resolution) grid of elevation 
postings comes from NASA’s Land Processes Distributed Active Archive Centre 
(LP-DAAC) (https://wist.echo.nasa.gov/~wist/api/imswelcome/). The DEM model 
is used to generate the various topographic parameters such as elevation, slope, 
aspect, curvature, stream power index (SPI), topographic wetness index (TWI). 

The occurrence of the landslide was related to the elevation very much. For 
instance, during an earthquake, ground shaking was amplified as elevation 
increased (Sepúlveda et al., 2005;Shafique et al., 2009). Therefore, elevation was 
chosen as a predictive factor in earthquake-triggered landslides and the elevation of 
the study area was classified into 10 classes using 200m intervals as shown in Figure 
3-7. Usually, topography was associated with landslides as a result of other 
topographic factors such as slope, aspect and curvature. The possibility of slope 
instability was expected to increase as the rise of slope gradients. The slope gradient 
of the study area varied from 0° to 81° and a total of 10 classes were used to make 
the slope layers (see Figure 3-7). Aspect, defined as the maximum slope of the 
terrain surface, played a fundamental role in slope stability due to variance in 
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temperature, vegetation and directional PGA. For example, in the northern 
hemisphere, slopes facing south were more open to sunshine and warm wind than 
those facing north. Aspect was classified into 9 classes as flat (-1); north (0°-22.5° 
and 337.5°-360°); northeast (22.5°-67.5°); east (67.5°-112.5°); southeast (112.5°-
157.5°); south (157.5°-202.5°); southwest (202.5°-247.5°); west (247.5°-292.5°) 
and northwest (292.5°-337.5°) (see Figure 3-7). The flat covered less than 0.5% of 
the study area, so it was merged into the north class (see Figure 3-7). The factor of 
curvature represented the morphology of the topography, and a positive curvature 
indicated that a surface was upwardly convex in that grid, while a negative one 
meant an upwardly concave surface. A zero value represented a flat surface (see 
Figure 3-7). Other DEM-derived factors such as the topographic wetness index 
(TWI) and the stream power index (SPI) were derived based on specific catchment 
areas (As) and slope maps. The topographic wetness index (TWI) has been 
extensively used to describe the effect of topography on the location and size of 
saturated source areas of runoff generation. Moore et al. (1991) proposed Eq.(3-17) 
for the calculation of TWI under the assumption of steady state conditions and 
uniform soil properties (i.e., transitivity is constant throughout the catchments and 
equal to unity). The stream power index (SPI) is a measure of the erosive power of 
water flow based on the assumption that discharge (q) is proportional to a specific 
area of a catchment (As)(see Eq.(3-18)) 

ܫܹܶ  = ln(ܣௌ/ߚ݊ܽݐ) (3-17) 
ܫܲܵ  = ௌܣ ×  (3-18) ߚ݊ܽݐ

where Aୗ is the catchment area and β is the slope gradient. 
Land cover was one of the main factors for slope stability analysis. Land cover 

performed as a shelter and reduced the susceptibility of soil erosion. The variation 
in the surface vegetation cover in an area was a dominant factor that seriously 
affected the slope failure. Vegetation benefitted the increase of soil strength by root 
reinforcement and ground surface with less vegetation cover was more susceptible 
to landslide(Shahabi et al., 2012). In this study, the land cover dataset was extracted 
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from International Geosphere-Biosphere Program Data and Information System 
(IGBP Land cover) (Friedl et al., 2010). Six categories of land cover were 
determined and compared to landslides (i.e., artificial areas, croplands, deciduous 
forest, evergreen forest, and grassland/shrub land). 

Peak ground acceleration (PGA) was considered as the leading indicator of an 
earthquake, as well as a major measurement of triggering force for earthquake-
induced landslide mapping. PGA map of the study area was extracted from the 
U.S.G.S. ShakeMap (http://comcat.cr.usgs.gov/). To verify and compare the 
landslide occurrence with PGA, the ShakeMap was categorized into 10 classes. 

Geology condition also played a decisive role regarding the landslide 
manifestation. Faults formed a highly fractured line or zones of unstable slopes and 
the degree of fracturing and shearing played an important role in determining slope 
stability(Chau and Chan, 2005;Chen et al., 2014). As mentioned before by Xu et al. 
(2013), there was no obvious surface rupture produced by this earthquake, so the 
main active faults (e.g., Shuangshi-Dachuan fault) was chosen near the epicenter as 
the predictive factors in this study. The distance from the fault was calculated at 2 
kilometres via using the buffer functions and 10 classes were generated. Strata unit 
was an indispensable factor in landslide occurrence for its lithology formation, and 
its varied structures could lead to a variation in rock strength and soil texture. The 
strata unit of this study area is very complex. They are classified into 10 classes 
according to geological age. 
3.5.1.2 Generation of training and validation dataset 

There is no universal rule for the selection of training and testing data. In this 
study, 1289 landslides (with 4754 grid cells) are randomly divided into two subsets: 
A training dataset, which contains 900 (70%) landslides (3297 grid cells), is used 
for building the prediction models; and a testing dataset containing the rest 30% of 
landslides (1457 grid cells) is used for testing the model efficiencies (Figure 3-8 a). 
In the FR and the WoE model, only the landsliding dataset (positive sample) is 
enough. But it is necessary to obtain satisfactory sample data representing the 
absence of landslide occurrences (negative sample) to match the LR and SVM 
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requirements. Since 4754 grid cells are used to represent the presence of landslide 
occurrence, similarly 4754 grid cells are randomly selected from the stable region 
in the studied area. In order to make the selection of negative sample more 
reasonable, the pixels within a distance of 60 meters (2 pixels) are excluded (Figure 
3-8 b and c), because the pixel approximates to the landslides display similar 
conditions as the landslide pixel and it might cause problems in building the 
prediction model. Therefore, the training dataset for WoE model contains 3297 grid 
cells with landslide occurrence, and in five other models, the training dataset 
contains 6594 grid cells, half of which represents landslide occurrence and the other 
half are considered to be stable). 1457 grid cells of the landslides source area and 
1457 randomly selected stable cells are used for the testing dataset. 

 
Figure 3-8 (a) Result of random separation of landslides for training and 

testing; (b) and (c) Diagram showing the method of generating stable points 
3.5.1.3 Conditional independence of the factors 

Tests for conditional independence, i.e. Cramer's V and Multicollinearity 
diagnostic statistics were also carried out. Cramer's V coefficient (Kendall and 
Stuart, 1979) ranged between 0 and 1 was used to test the spatial association 
between parameters. It was derived from a chi-square (χ2) test using contingency 
tables in order to identify any interrelationships within the landslide controlling 
factors that may effect on statistical analysis as follows Eq.(3-19): 
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 ܸ = ට ఞమ
ே ୫୧୬ (ோିଵ,஼ିଵ) (3-19) 

where N is the sample size, R is the number of rows in the contingency table, and 
C is the number of the columns. Cramer's V coefficient is undertaken just on areas 
with landslides (Bonham-Carter, 1994). 

The result of the chi-squares tests in terms of the calculated Cramer's V value 
for each variable is presented in Table 3-3. The value ranges from 0 to 1 indicating 
that higher values reflect a stronger association. Cramer's V value >0.5 indicates a 
high association, 0.3 to 0.5 indicates a moderate association, 0.1 and 0.3 indicates 
a low association and 0 to 0.1 indicates little if any association. Table 3-3 shows 
that the association of all the factors can be categorized as low to little association. 

Table 3-3 Cramer’s V Values for Comparison of Multi-class Chi-square 
Contingency Tables 

 Elev Slo Asp Cur SPI TWI DtR LU GU DtF PGA 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

(1)            
(2) 0.19           
(3) 0.13 0.20          
(4) 0.09 0.25 0.17         
(5) 0.27 0.13 0.08 0.05        
(6) 0.18 0.17 0.23 0.08 0.27       
(7) 0.09 0.10 0.14 0.21 0.06 0.19      
(8) 0.13 0.08 0.06 0.14 0.08 0.17 0.20     
(9) 0.24 0.19 0.18 0.16 0.15 0.23 0.10 0.13    
(10) 0.26 0.11 0.20 0.15 0.12 0.21 0.08 0.21 0.07   
(11) 0.24 0.15 0.19 0.07 0.19 0.25 0.17 0.14 0.18 0.28  

Elev: Elevation; Slo: Slope; Asp: Aspect; Cur: Curvature; DtR: Distance to river; 
LU: Landuse; GU: Geology Unit; DtoF: Distance to fault; 
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3.5.2 COMBINATION OF IV AND LR 
The classified conditioning factors are illustrated in Table 3-2 and Figure 3-7. 

The information value method and the Weight of evidence method was produced 
using the weights for each class of each conditioning factor. Through analysing the 
relationship between 11 conditioning factors and landslide occurrence, the 
information value was calculated (Table 3-4).  

Table 3-4 represents the relationship between landslide event and the classes 
of each conditioning factor. Results of the information value method showed that 
in the case of the relationship between landslide occurrence and elevation, landslide 
mostly occurred in the elevation range of 1200–1400 m. It showed that the 
probability of landslide occurrence is very low in low elevation areas. It also can be 
seen that, the higher the slope gradient is, the more favourable the slope is to 
landslide occurrence. In the case of the aspect, the ratio was high for the class of 
south and southwest facing slopes, having ratios of 0.194 and 0.148, respectively. 
For the curvature, higher curvature values were more favourable in predicting 
landslides. For SPI, the information value was highest (1.502) for the class of <-
30.17, and it was lowest (-0.375) for the class of -1.92—1.27. The highest value for 
PGA classes as main contributors of landslide belonged to the category of 0.48-0.52 
g with a value of 0.445. As for the factor of distance to stream and fault, it shows 
that, the further the distance is, the low effects of the stream and fault on landslide 
occurrence is. Also, as the terrain become rougher, it becomes more favourable to 
landslide occurrence. 

Table 3-4 Information values of landslide predictive factors 
Classes of Factor Class Pixels Landslides 

Pixels %Factor %Landslide IV 
Slope aspect 
Flat and N 72827 300 9.718987838 9.099181074 -0.066  
NE 63749 257 8.507500731 7.79496512 -0.087  
E 93653 432 12.49828179 13.10282075 0.047  
SE 136942 504 18.2753324 15.2866242 -0.179  
S 96575 516 12.88823171 15.65059145 0.194  
SW 75693 386 10.10146438 11.70761298 0.148  
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W 97583 482 13.02275242 14.61935093 0.116  
NW 112305 420 14.98744874 12.7388535 -0.163  
Slope gradient (degree) 
0-5 50879 30 6.789959524 0.909918107 -2.010  
5-10 73742 119 9.841097411 3.609341826 -1.003  
10-15 95101 195 12.69152186 5.914467698 -0.764  
15-20 114723 444 15.3101383 13.46678799 -0.128  
20-25 114454 499 15.27423942 15.13497119 -0.009  
25-30 100290 451 13.38400992 13.67910221 0.022  
30-35 79310 453 10.58416419 13.73976342 0.261  
35-40 55042 355 7.345524718 10.76736427 0.382  
40-45 33308 256 4.445055363 7.764634516 0.558  
45-81 32478 495 4.334289302 15.01364877 1.242  
Elevation (m) 
596-800 92155 65 12.29836907 1.971489233 -1.831  
800-1000 115695 480 15.4398547 14.55868972 -0.059  
1000-1200 138950 662 18.54330619 20.07885957 0.080  
1200-1400 174886 1208 23.33907626 36.63936912 0.451  
1400-1600 124420 763 16.60423286 23.14225053 0.332  
1600-1800 50598 114 6.752459207 3.457688808 -0.669  
1800-2000 22509 4 3.003895496 0.121322414 -3.209  
2000-2200 14378 1 1.91878846 0.030330604 -4.147  
2200-2400 8376 0 1.117803042 0 0.000  
2400-2872 7360 0 0.982214707 0 0.000  
Distance to river (m) 
<100 15265 127 2.037161346 3.851986655 0.637  
100-200 15278 118 2.038896236 3.579011222 0.563  
200-300 15257 124 2.036093721 3.760994844 0.614  
300-400 15247 134 2.034759191 4.06430088 0.692  
400-500 15167 50 2.024082944 1.516530179 -0.289  
500-1000 71629 261 9.559111042 7.916287534 -0.189  
1000-2000 132130 256 17.63315615 7.764634516 -0.820  
2000-3000 118652 341 15.83447547 10.34273582 -0.426  
3000-4000 104937 314 14.00416641 9.523809524 -0.386  
4000-5000 71288 183 9.51360354 5.550500455 -0.539  
>5000 174548 1389 23.29396912 42.12920837 0.593  
Distance to fault (m) 
<500 129448 668 17.27523498 20.26084319 0.159  
500-1000 103165 448 13.76768754 13.5881104 -0.013  
1000-1500 90048 344 12.01718342 10.43372763 -0.141  
1500-2000 80100 591 10.68959213 17.92538672 0.517  
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2000-2500 51237 378 6.837735728 11.46496815 0.517  
2500-3000 24409 160 3.257456358 4.852896573 0.399  
3000-3500 19249 164 2.568838438 4.974218987 0.661  
3500-4000 17218 180 2.297795222 5.459508644 0.865  
4000-4500 16076 60 2.145391798 1.819836215 -0.165  
4500-5000 15777 87 2.105489326 2.638762511 0.226  
5000-10000 152859 127 20.39950516 3.851986655 -1.667  
10000-15000 49806 90 6.646764363 2.729754322 -0.890  
Land cover 
Artificial areas 5757 0 0.768289412 0 0.000  
Croplands 81530 119 10.88043004 3.609341826 -1.103  
Deciduous Forest 167509 545 22.35459285 16.53017895 -0.302  
Evergreen Forest 470372 2558 62.77259461 77.58568396 0.212  
Grassland/Shrub 
land 24226 75 3.233034443 2.274795268 -0.352  
Geology unit 
S 7780 46 1.038265003 1.395207765 0.295  
J 27526 46 3.673429624 1.395207765 -0.968  
K 217638 1084 29.04446256 32.87837428 0.124  
D 79888 589 10.66130007 17.86472551 0.516  
Pt 87020 416 11.61308748 12.61753109 0.083  
T 169483 860 22.61802924 26.08431908 0.143  
Z 29151 120 3.890290888 3.639672429 -0.067  
E 66550 72 8.881302822 2.183803458 -1.403  
Q 54419 30 7.262383445 0.909918107 -2.077  
O 9907 34 1.322119715 1.031240522 -0.248  
TWI 
<-3.46 100037 498 13.35024629 15.10464058 0.123  
-3.46--3.44 36702 76 4.897995134 2.305125872 -0.754  
-3.44-1.73 60 0 0.008007185 0 0.000  
1.73-5.17 2 0 0.000266906 0 0.000  
5.18-8.63 188236 1159 25.12067495 35.15316955 0.336  
8.64-12.08 348221 1409 46.47116679 42.73582044 -0.084  
12.09-15.53 61992 120 8.27302366 3.639672429 -0.821  
15.54-18.99 11622 32 1.550991757 0.970579315 -0.469  
19.00-22.44 2348 3 0.313347844 0.090991811 -1.237  
22.45-25.89 107 0 0.01427948 0 0.000  
SPI 
<-30.17 1519 30 0.202715236 0.909918107 1.502  
30.17- -3.52 11087 92 1.479594356 2.790415529 0.634  
-3.52--2.27 37490 195 5.003156165 5.914467698 0.167  
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-2.27--1.92 62903 213 8.394599421 6.460418562 -0.262  
-1.92--1.27 249614 755 33.31175842 22.8996057 -0.375  
0.44-1.39 274573 1242 36.64261397 37.67060965 0.028  
1.40-2.68 91107 550 12.15851024 16.68183197 0.316  
2.69-4.92 18168 157 2.424575653 4.761904762 0.675  
4.93-11.34 2684 57 0.358188081 1.728844404 1.574  
11.35-43.12 182 6 0.024288462 0.181983621 2.014  
Curvature 
Concave 320099 1503 42.71819913 45.58689718 0.065  
Flat 120711 353 16.10925537 10.70670306 -0.409  
Convex 308517 1441 41.1725455 43.70639976 0.060  
PGA (g) 
<0.24 133 0 0.01774926 0 0.000  
0.24-0.28 21648 0 2.888992389 0 0.000  
0.24-0.32 49698 234 6.63235143 7.097361237 0.068  
0.32-0.36 84456 277 11.27091377 8.401577191 -0.294  
0.36-0.4 86065 86 11.48563978 2.608431908 -1.482  
0.4-0.44 95368 232 12.72715383 7.03670003 -0.593  
0.44-0.48 95248 350 12.71113946 10.61571125 -0.180  
0.48-0.52 308381 2118 41.15439588 64.24021838 0.445  
0.52-0.56 7738 0 1.032659974 0 0.000  
0.56-0.58 659 0 0.087945583 0 0.000  

After analysis of effects of each subclasses within each factor, the next step to 
perform the landslide hazard mapping using the proposed combined methods is the 
perform the multivariate analysis using the logistic regression and support vector 
machine method. As stated in chapter 3, in the combined method, the value of the 
independent landslide predictive factors was replaced by the obtained weights 
(information values) according to the classes it belongs to (Figure 3-9). 
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Figure 3-9 Flow chart of the proposed combined methods 

The LR coefficients for the three methods are listed in Table 3-5. One is for 
the LR single method, in which the categorical factors of aspect, land cover and 
geology unit were excluded. For the combined method of LR-IV. The calculated 
information value or the weight were used to replace the factor values. As can be 
seen in Table 3-5, slope gradient and curvature showed the high and positive 
correlation with landslide occurrence as it could acquire the highest LR coefficient 
of 0.28 and 0.27. Similarly, SPI and PGA are the other effective conditioning factors, 
by the LR coefficient of 0.215 and 0.167 respectively. 

Table 3-5 LR Coefficients for the LR method and LR-IV method 
No. Factor LR Coefficient 
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LR LR-IV 
1 Elevation -0.556 -0.122 
2 Slope 0.28 0.241 
3 Aspect -- 0.062 
4 Curvature 0.27 0.248 
5 SPI (Stream Power Index) 0.215 0.198 
6 TWI (Topographic Wetness Index) -0.352 -0.315 
7 Distance to river -0.034 -0.218 
8 Landuse -- 0.126 
9 Geology Unit -- 0.088 
10 Distance to fault -0.020 -0.013 
11 PGA 0.167 0.182 
12 Constant -1.31 -4.67 

As for the combined method of LR-IV, curvature and slope gradient also 
showed the high and positive correlation with landslide occurrence as it could 
acquire the highest LR coefficient of 0.248 and 0.241. And the factors of SPI, PGA 
and Landuse are the other effective conditioning factors, by the LR coefficient of 
0.198, 0.182 and 0.126 respectively.  

3.5.3 COMBINATION OF IV AND SVM 
Similarities, by combining the methods of IV with the SVM method, we can 

also obtain the probability maps of landslide occurrence. As stated previous in 
chapter3, the SVM gives the implicit expressions of the correlations between 
landslide occurrence and its predictive factors, it is impossible to tell which 
predictive factor is more important in landslide occurrence. By exchanging the 
value of the independent variables from X1 to Xn representing the value of cells of 
class layer with the Weights obtained from the IV (Figure 3-9).  

3.5.4 COMBINATION OF WOE AND LR 
As for the weight of evidence method (WoE), generally, it showed the same 

trends with the information value method. The highest value of weights occurred in 
the class of 1400-1600 meters in elevation, greater than 50°and east facing slopes. 
The lithology map is one of the predictive factors that have direct impacts on 
landslide occurrence. For the slope aspect, the highest weights of 0.227 was 
obtained in the class of south. In terms of the triggering factors, the class of 0.48-
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0.52g gave the highest weights of 0.948. The result showed that for a terrain with 
higher slope gradient, it is more susceptible to landslides. For the stream power 
index and terrain wetness index, the high weights occurred in the area with higher 
values, both in negative and positive. The results also indicated that areas where it 
is concave or convex were more susceptible to landslides. For the factors produced 
from buffering of distance to the fault, it also a decreasing tendency of possibilities 
of landslide occurring with the increase of the distances.  

Table 3-6 Results of weight of evidence for classes of each predictive factor 
Classes of Factor Class Pixels Landslides 

Pixels W+ W- WFinal 
Slope aspect 
Flat and N 72827 300 -0.06618 0.00687 -0.07305 
NE 63749 257 -0.08784 0.00779 -0.09563 
E 93653 432 0.04745 -0.00696 0.05441 
SE 136942 504 -0.17930 0.03608 -0.21538 
S 96575 516 0.19514 -0.03236 0.22751 
SW 75693 386 0.14826 -0.01811 0.16637 
W 97583 482 0.11619 -0.01861 0.13480 
NW 112305 420 -0.16322 0.02622 -0.18944 
Slope gradient (degree) 
0-5 50879 30 -2.01367 0.06145 -2.07512 
5-10 73742 119 -1.00584 0.06714 -1.07298 
10-15 95101 195 -0.76589 0.07510 -0.84099 
15-20 114723 444 -0.12882 0.02163 -0.15045 
20-25 114454 499 -0.00920 0.00165 -0.01085 
25-30 100290 451 0.02191 -0.00343 0.02533 
30-35 79310 453 0.26225 -0.03609 0.29834 
35-40 55042 355 0.38449 -0.03779 0.42228 
40-45 33308 256 0.56109 -0.03551 0.59660 
45-81 32478 495 1.25335 -0.11886 1.37221 
Elevation (m) 
596-800 92155 65 -1.83438 0.11184 -1.94622 
800-1000 115695 480 -0.05902 0.01041 -0.06943 
1000-1200 138950 662 0.07992 -0.01911 0.09904 
1200-1400 174886 1208 0.45352 -0.19132 0.64483 
1400-1600 124420 763 0.33374 -0.08199 0.41573 
1600-1800 50598 114 -0.67146 0.03488 -0.70634 
1800-2000 22509 4 -3.21345 0.02942 -3.24286 
2000-2200 14378 1 -4.15163 0.01916 -4.17079 
2200-2400 8376 0 0 0.01129 0 
2400-2872 7360 0 0 0.00991 0 
Distance to river (m) 
<100 15265 127 0.64107 -0.01878 0.65985 
100-200 15278 118 0.56612 -0.01592 0.58204 
200-300 15257 124 0.61750 -0.01784 0.63534 
300-400 15247 134 0.69638 -0.02103 0.71741 
400-500 15167 50 -0.28970 0.00519 -0.29489 
500-1000 71629 261 -0.18924 0.01807 -0.20731 
1000-2000 132130 256 -0.82258 0.11367 -0.93625 
2000-3000 118652 341 -0.42734 0.06348 -0.49082 
3000-4000 104937 314 -0.38688 0.05100 -0.43788 
4000-5000 71288 183 -0.54058 0.04305 -0.58363 
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>5000 174548 1389 0.59622 -0.28288 0.87910 
Distance to fault (m) 
<500 129448 668 0.16027 -0.03694 0.19720 
500-1000 103165 448 -0.01310 0.00208 -0.01518 
1000-1500 90048 344 -0.14179 0.01790 -0.15969 
1500-2000 80100 591 0.52003 -0.08486 0.60489 
2000-2500 51237 378 0.51992 -0.05117 0.57109 
2500-3000 24409 160 0.40088 -0.01670 0.41759 
3000-3500 19249 164 0.66505 -0.02511 0.69016 
3500-4000 17218 180 0.87160 -0.03304 0.90464 
4000-4500 16076 60 -0.16516 0.00333 -0.16849 
4500-5000 15777 87 0.22697 -0.00549 0.23246 
5000-10000 152859 127 -1.67041 0.18977 -1.86018 
10000-15000 49806 90 -0.89243 0.04128 -0.93371 
Land cover 
Artificial areas 5757 0 0 0.00775 0 
Croplands 81530 119 -1.10630 0.07878 -1.18508 
Deciduous Forest 167509 545 -0.30291 0.07264 -0.37554 
Evergreen Forest 470372 2558 0.21300 -0.50925 -0.72225 
Grassland/Shrub 
land 

24226 75 -0.35275 0.00989 0.36264 
Geology unit 
S 7780 46 0.29706 -0.00363 0.30069 
J 27526 46 -0.97077 0.02348 -0.99425 
K 217638 1084 0.12462 -0.05581 0.18042 
D 79888 589 0.51925 -0.08443 0.60367 
Pt 87020 416 0.08338 -0.01149 0.09487 
T 169483 860 0.14331 -0.04604 0.18935 
Z 29151 120 -0.06683 0.00261 -0.06944 
E 66550 72 -1.40616 0.07125 -1.47741 
Q 54419 30 -2.08092 0.06655 -2.14747 
O 9907 34 -0.24940 0.00296 -0.25235 
TWI 
-8.64--5.18 100037 498 0.12405 -0.02054 0.14459 
-5.17--1.73 36702 76 -0.75603 0.02702 -0.78305 
-1.72-1.72 60 0 0 0.00008 0 
1.73-5.17 2 0 0 0.00000 0 
5.18-8.63 188236 1159 0.33779 -0.14444 0.48223 
8.64-12.08 348221 1409 -0.08415 0.06776 -0.15191 
12.09-15.53 61992 120 -0.82358 0.04950 -0.87308 
15.54-18.99 11622 32 -0.47041 0.00590 -0.47631 
19.00-22.44 2348 3 -1.23968 0.00224 -1.24191 
22.45-25.89 107 0 0 0.00014 0 
SPI 
-38.73--8.56 1519 30 1.51709 -0.00714 1.52423 
-8.55--5.03 11087 92 0.63835 -0.01345 0.65180 
-5.05--2.78 37490 195 0.16814 -0.00968 0.17782 
-2.77--0.85 62903 213 -0.26291 0.02099 -0.28390 
-0.84-0.43 249614 755 -0.37617 0.14577 -0.52194 
0.44-1.39 274573 1242 0.02779 -0.01643 0.04422 
1.40-2.68 91107 550 0.31794 -0.05309 0.37103 
2.69-4.92 18168 157 0.67926 -0.02435 0.70361 
4.93-11.34 2684 57 1.59121 -0.01391 1.60512 
11.35-43.12 182 6 2.04303 -0.00159 2.04461 
Curvature 
Concave 320099 1503 0.06529 -0.05160 0.11689 
Flat 120711 353 -0.41001 0.06270 -0.47270 
Convex 308517 1441 0.05999 -0.04422 0.10421 
PGA (g) 
<0.24 133 0 0 0.00018 0 
0.24-0.28 21648 0 0 0.02945 0 
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0.24-0.32 49698 234 0.06807 -0.00501 0.07309 
0.32-0.36 84456 277 -0.29493 0.03197 -0.32690 
0.36-0.4 86065 86 -1.48576 0.09602 -1.58178 
0.4-0.44 95368 232 -0.59457 0.06345 -0.65803 
0.44-0.48 95248 350 -0.18087 0.02383 -0.20470 
0.48-0.52 308381 2118 0.44778 -0.49983 0.94761 
0.52-0.56 7738 0 0 0.01043 0 
0.56-0.58 659 0 0 0.00088 0 

 
As for the method of LR-WoE, the factor of aspect and slope gradient showed 

that highest positive correlation with landslide occurrence with the coefficient of 
1.157 and 0.828, other factors with positive correlation of landslide are curvature, 
distance to river, and elevation. Finally, the landslide probability map can be 
calculated using Eq. (3-6) and Eq. (3-7). 

Table 3-7 Results of weight of evidence for classes of each predictive factor 
No. Factor LR Coefficient 

LR LR-WoE 
1 Elevation -0.556 0.554 
2 Slope 0.28 0.828 
3 Aspect -- 1.157 
4 Curvature 0.27 0.748 
5 SPI (Stream Power Index) 0.215 0.157 
6 TWI (Topographic Wetness 

Index) -0.352 0.183 
7 Distance to river -0.034 0.820 
8 Landuse -- -0.054 
9 Geology Unit -- -0.156 
10 Distance to fault -0.020 0.501 
11 PGA 0.167 0.225 
12 Constant -1.31 -0.186 

 

3.5.5 COMBINATION OF WOE AND SVM 
Similarities, by combining the methods of IV with the SVM method, we can 

also obtain the probability maps of landslide occurrence. As stated previous in 
chapter3, the SVM gives the implicit expressions of the correlations between 
landslide occurrence and its predictive factors, it is impossible to tell which 
predictive factor is more important in landslide occurrence. By exchanging the 
value of the independent variables from X1 to Xn representing the value of cells of 
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class layer with the Weights obtained from the WoE (Figure 3-9). 

3.6 RESULTS  
The results of statistical LHM methods were calculated probabilities which 

can be represented as a landslide hazard map. It is common that landslide hazard 
maps show the degree of hazard by qualitative way by dividing calculated 
probabilities in some classes. In this research, the calculated probabilities were split 
as very low, low, moderate, high and very high. Low and very low indicate that this 
classified area is a stable zone. Whereas, vary high and high indicates the unstable 
zone. Medium classification might be classified as grey zone where stable or 
unstable cannot be clearly defined. 

There is no strict rule to classify calculated probability into some classes and 
usually determined based on expert opinion. Several trials based on associated 
histogram using automated classification methods available were applied to find 
the classification that suits the scale of the calculated probability. A few 
classification methods, such as natural breaks, equal intervals and defined interval, 
were used to distinguish the hazard classes for trial. Equal intervals classification 
was found not to be useful for its emphasis on the amount of one class value relative 
to other classes. Natural breaks are identified that best group similar values and that 
maximize the differences between classes and not useful for comparing multiple 
maps built from different underlying information. A series of specified interval sizes 
can be used to define the classes with different ranges in defined interval methods 
based on a comprehensive consideration of the data distribution. 
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Figure 3-10 Landslide hazard map generated using: (a) Information value; (b) 
Logistic regression; (c) Weight of evidence; (d) Support vector machine (with 

linear kernel function) 
The calculate weight of the information value method ranges from -3.19 to 

6.93. Using natural breaks, the very low, low, medium, high and very high hazard 
zone has a value ranging from -3.19 to 1.10, -1.10 to 1.93, 1.93 to 2.73, 2.73 to 3.68 
and 3.68 to 6.93 respectively (Figure 3-10a). 

Table 3-8 Validation Matrix of IV based on the Number of Pixels 
 Predicted (model) 

Unstable Stable 
Landslide Landslide (1) 2638(73%) 976 (27%) 
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Inventory No landslide (0) 1359(37%) 2324(63%) 
Table 3-8 shows that 63% stable and 73% unstable cells are correctly classified. 

Whereas, 27% stable and 37% unstable cells of the randomly sampled cells are 
incorrectly classified. IV has better capability to classify stable zone (80%) than 
unstable zone (65%). 

The weight of WoE method has a value ranging from -13.81 to 7.26. Using 
natural breaks, the very low, low, medium, high and very high hazard zone has a 
value ranging from -13.81 to -3.00, -4.00 to 0.00, 0.00 to 1.00, 1.00 to 4.00 and 4.00 
to 7.26 respectively (Figure 3-10b). On the susceptibility map, 29.01%, 30.49%, 
18.46%, 11.62% and 10.43% area are shown as very low, low, medium, high and 
very high susceptibility respectively. 

Table 3-9  Validation Matrix of WoE based on the Number of Pixels 
 Predicted (model) 

Unstable Stable 
Landslide 
Inventory 

Landslide (1) 2464(71%) 1006(29%) 
No landslide (0) 1327(35%) 2490(65%) 

Table 3-9 shows that 65% stable and 71% unstable cells in the sample are 
correctly classified. Whereas, 35% stable and 29% unstable cells of the randomly 
sampled cells are incorrectly classified. 

The calculated probabilities of logistic regression method, ranging from0.03 
to 0.99, were splitted by a geometrical interval because the data value indicated 
negative skewness. It was classified into 0.03-0.53, 0.53-0.64, 0.64-0.75, 0.75-0.92, 
and 0.92-0.99 for the very low, low, medium and high susceptibility zone 
respectively (Figure 3-10c). The very low, low, medium and high susceptibility 
zone covers 13.18%, 21.84%, 21.96%, 20.96% and 22.05% area respectively. 

Table 3-10 Validation Matrix of LR based on the Number of cells 
 Predicted (model) 
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Unstable Stable 
Landslide 
Inventory 

Landslide (1) 2362(62%) 1061(38%) 
No landslide (0) 1448(43%) 1910(57%) 

Table 3-10 shows that 57% stable and 62% unstable cells are correctly 
classified. Whereas, 43% stable and 38% unstable cells of the randomly sampled 
cells are incorrectly classified. 

The calculated probabilities of SVM method ranging from 0.021 to 0.986, 
were split by natural breaks. The very low, low, moderate, high and very high hazard 
zone has a value ranging from 0.021 to 0.310, 0.310 to 0.462, 0.462 to 0.580, 0.580 
to 0.730 and 0.732 to 0.986 respectively (Figure 3-10d). On the susceptibility map, 
8.29%, 19.21%, 14.93%, 24.89% and 32.68% area are shown as very low, low, 
medium and high susceptibility respectively. 

Table 3-11 Validation Matrix of SVM based on the Number of Pixels 
 Predicted (model) 

Unstable Stable 
Landslide 
Inventory 

Landslide (1) 2511(74%) 928(26%) 
No landslide (0) 882(25%) 2640(75%) 

Table 3-11 shows that 75% stable and 74% unstable cells are correctly 
classified. Whereas, 25% stable and 26% unstable cells of the randomly sampled 
cells are incorrectly classified. 

 

3.7 VALIDATION AND COMPARISONS 
The validation can be carried by comparing the all the datasets including the 

landslide and non-occurrence with the calculated indexes. We can obtain a 
contingency table according to the results.  
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Figure 3-11 Contigency Table used to validate the result of the classification 

According to the contingency table, we employ the three indexes to validate 
the efficiency of the models, (1) success rate (SR)= (A+D)/(A+B+C+D); (2) miss-
alarm rate(MAR) =B/(A+B) and (3) false-alarm rate(FAR)= C/(A+C). 

Table 3-12 Comparison of performance of landslide hazard maps 
Methods Success Rate False-Alarm Rate Miss-Alarm Rate 

1 IV 68% 34% 27% 
2 WoE 66% 35% 29% 
3 LR 63% 38% 31% 
4 SVM 74% 26% 27% 
5 LR-IV 83% 9% 8% 
6 LR-WoE 76% 11% 13% 
7 SVM-IV 78% 8% 14% 
8 SVM-WoE 81% 9% 10% 

Success rate is to express the percentage of the cells in the total datasets that 
are correctly classified, including the cells with landslide ouccurrence and the cells 
without landslide occurrences. Although the success rate shows an overall 
performance of a classification model, it is not widely used in landslide hazard maps, 
because sometimes cells with landslide occurrence only covers a very little 
percentage of the total study area. From the success rate it is hard to tell the actual 
percentage of the landslides that are correctly classified. 

Miss-alarm rate shows the percentage of the cells that was with landslide 
occurrence but it was predicted as stable, this rate was very important, a higher 
miss-alarm rate indicates more landslides were not classified by the classifier, 
which may cause serious consequence due to miss classification. On the other hand, 
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the false-alarm rate shows the percentage of cells that was incorrectly classified as 
landslides in the total unstable cells. A higher false-alarm rate will provide the false 
information in landslide hazard prevention. Among the three indexes, both success 
rate and false-alarm rate largely depended on the sample size. A great sample size 
will give a higher success rate as well as the false-alarm rate. Therefore, in this 
study we choose the miss-alarm rate to compare the performance of the landslide 
hazard maps. 

Indicated by Table 3-12, we can see, all of the four single methods gives the 
acceptable results. Based on the validation results using the randomly sampled 
datasets, the SVM and IV methods give the minimum miss-alarm rate (27%), 
followed by the WoE method (29%) and the LR method shows the highest miss-
alarm rate (31%). By comparing with the combined methods, the SVM-IV methods 
gives the lowest false-alarm rate of 8%, followed by the methods of LR-IV and 
SVM-WoE. On the other hand, according to the miss-alarm rate, the method of LR-
IV gives the lowest miss-alarm-rate of 8%, while the SVM-IV method gives the 
highest value of 14%. Therefore, all the combined methods have improved the 
performance of landslide hazard maps. Of all the 8 methods used in this study, the 
SVM-IV gives the best performance according to the false-alarm rate, while the 
LR-IV and the SVM-WoE methods show the best performance according to the 
Miss-alarm rate. 

 
(a)                                             (b) 
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(c)                                                  (d) 

Figure 3-12 Landslide hazard maps from combine methods (a) LR-IV;(b) 
SVM-IV; (c)LR-WoE; (d)SVM-WoE 

Based on the results, there are pros-and-cons of each method in predicting 
landslide susceptibility zones. The IV and WoE method has advantages as 
follows:1) they can indicate identify influence of each class within a factor on 
landslides; 2) they can indicate the linear relationship between landslides and its 
controlling factor individually; 3) sampling is not necessary; 4) Both scale and 
categorical factors can be used. The disadvantages are 1) weight value may 
underestimates or overestimates if landslides are very small and not evenly 
distributed; 2) the weight cannot be compared for different area. 

Some advantages of logistic regression are: 1) LR has ability to explicitly 
identify the relationship between landslides and its controlling factors 
simultaneously; 2) value represents meaningful probability and can be compared 
for different area; 3) LR also provides a technique to detect a linear relationship of 
landslide controlling factors. Whereas, the disadvantages are 1) LR requires formal 
statistical training; 2) undersampled may significantly impact the result; 3. the final 
susceptibility map may be over or underestimated. 

SVM has advantages as follows: 1) It requires less formal statistical training; 
2) SVM can implicitly identify the complex nonlinear relationship between 
landslides and its controlling factors. However, the disadvantages are 1) SVM has 
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limited ability to explicitly identify possible causal relationship; 2) SVM requires 
greater computational resources; 3) SVM is prone to overfitting. 

3.8 DISCUSSIONS 
Since the past landslide inventory plays a very important role in landslide 

hazard mapping using the statistical approaches, thus, the preparation of the 
landslide inventory is very important issue in landslide hazard mapping. In practical 
of generation the landslide inventory, how to determine whether a cell is a landslide 
cell or not in a cell-by-cell analysis will affect the samples used in following 
statistical analysis. In the past studies, there was no general rules about how to 
determine whether a cell should be regarded as a landslide. Therefore, to test the 
effects of the landslide cells on the landslide hazard maps, it is necessary to test the 
sensibility of the landslide. 

 
Figure 3-13 (a) Rasterize of landslide inventory polygon;(b) sample cell with 

less landslide coverage (18%); (c) sample cell with landslide 46% of landslide 
coverage; (d) sample cell with landslide 82% of landslide coverage 

To determine the threshold percentage of coverage over which the cell should 
be regarded as landslide. We choose two methods of the four methods used as a 
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test, one is the information value method, which is bivariate, another is the logistic 
regression method, which is multivariate. We set different threshold values of 
landslide coverage in our analysis as 10%, 20%, 30%, 40% and 50%. (Figure 
3-13) 

Table 3-13 No. of landslide cells from the landslide inventory from different 
thresholds 

Threshold Coverage 10% 20% 30% 40% 50% 
No. of landslide cells 4754 4421 4153 3826 3755 

Percentage 100% 93% 87.4% 80.1% 78.9% 
Indicate by Table 3-13, as the threshold coverage increases, the total landslide 

pixels decreased from 4754 to 3755, with a total of 21.1% reduction. 
Using the different landslide inventory rasters, we repeated the data 

preparation process described in the section 3.5.1 and landslide hazard mapping 
process described in the section 3.5 to produce the landslide hazard maps. Finally, 
the validation results were given in Table 3-14 and Figure 3-14. 

Table 3-14 Validation result of landslide hazard maps using different 
landslide datasets 

 Information Value Logistic Regression 
Index SR FAR MAR SR FAR MAR 
10% 68% 34% 27% 63% 38% 31% 
20% 66% 35% 26% 62% 39% 32% 
30% 65% 35% 28% 64% 41% 31% 
40% 66% 32% 31% 63% 40% 30% 
50% 67% 36% 30% 61% 42% 31% 
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(a)                          (d) 

  
(b)                               (e) 

 
(c)                              (f) 

Figure 3-14 Validation result of landslide hazard maps using different 
landslide datasets (a-c) for IV method and (d-f) for LR method 

Indicated by the results, generally, with the increase of threshold of landslide 
coverage, the landslide count will decrease, Using the different landslide datasets, 
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no obvious effects were observed on success rate of the models. However, as the 
threshold landslide coverage increase, the false alarm rate slightly increases using 
the logistic regression methods, while the miss-alarm rate slight decreases. As for 
the information value method, there was no obvious effects on the false-alarm rate, 
while the miss-alarm rate increases as the threshold landslide coverage become 
large. Therefore, based on a general consideration, a threshold of 10% of the 
landslide coverage threshold used in this study is appropriate. If a higher value was 
set to identify the landslide cells, some necessary information will be lost in the 
pseudo-unstable cells, which is very close to the landslide cells. 

3.9 CONCLUSIONS 
There are different approaches and techniques for evaluating landslide 

susceptibility and no agreement has been reached both in the procedure and the use 
of specific controlling factors employed in the landslide hazard mapping. Each 
approach has its own assumption and the result may differ from place to place. The 
different result may also be affected by different landslides controlling factors and 
the completeness of landslide inventory. Landslide susceptibility approaches need 
to be compared in order to identify the most realistic landslide susceptibility 
approach applied typically in the Lushan County by using complete landslide 
inventory. The conclusions can be drawn as follows: 

(1)  A method for effectively mapping of landslide inventory is proposed by 
using on-line high-resolution online images. In the proposed method, some 
Criteria should be pre-defined before visual interpretation of landslides; 

(2)  Four widely-used statistical landslide hazard mapping methods 
Information Value (IV), Weight of Evidence (WoE), Logistic Regression 
(LR), and Support Vector Machine (SVM) are used to produce the 
landslide hazard maps, the merits, demerits and limitations of each method 
are clarifed based on a close comparison between the four methods. 
Generally, all of the four methods shows an acceptable accuracy according 
to the test results on the landslides triggered by the 2013 Lushan 
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earthquake in China. 
(3) Although several validation methods exist, in this chapter, a validation 

method based on the cross-table of the landslide inventory and its predicted 
status was employed, since it can give a clear engineering sense. To 
compare different landslide hazard maps, the miss-alarm rate and false-
alarm rate are suggested as the main index to evaluate the performance or 
he landslide hazard maps. 

(4) Accurate determination of the landslide cells in statistical LHM is very 
important, a sensitive analysis was carried out to test the effects of 
threshold landslide coverage on the landslide hazard maps. The result 
shows that, as the threshold values increase, no obvious effect found on the 
success rate, however both the miss-alarm rate and miss-alarm rate will 
increase. Generally, a 10% of the threshold percentage is recommended in 
this study. 

(5) The advantages and disadvantages of the models have been used to 
evaluate the models and to propose a technique to improve the accuracy of 
the model. four new methods are proposed by combining one of IV and 
WoE methods with one of the LR and SVM methods. The validation results 
show that the combined method could improve the accuracy of the landside 
hazard maps. 
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CHAPTER  4 

4 DEVELOPMENT OF GEOLHM-P FOR LANDSLIDE HAZARD 
MAPPING USING A PHYSICALLY-BASED APPROACH 

4.1 INTRODUCTION 
Landslide is one of the most severe natural hazards usually associated with an 

intense rainfall, an earthquake and other triggers. Damages from triggered 
landslides had sometimes exceeded damage directly related to earthquake itself in 
mountainous regions (Jibson et al. 2000). For example, about 200,000 landslides 
triggered by the 2008 Wenchuan earthquake distributed within an area of 44,000 
km2 had directly caused about 20,000 deaths (Xu et al. 2015, Yin et al. 2009). It is, 
therefore, necessary to assess and manage earthquake-prone areas’ susceptibility to 
landslides in advance. Estimation of where and in what conditions landslides are 
likely to be triggered by earthquakes is a vital element of regional seismic hazard 
assessment and the most economical way to reduce the damage of earthquake-
induced landslides. 

The stability of slope subject to seismic shaking at a specific site is a very 
complex process. In the past three decades, modelling of earthquake-induced 
landslide susceptibility can be accomplished using a variety of methodologies 
ranging from bivariate, multivariate or neural-network based statistical analysis, 
geotechnical analysis to deterministic or semi-deterministic physically-based 
approaches (Berti et al. 2012, Pourghasemi et al. 2012, Wang et al. 2012, Kayastha 
et al. 2013, Rajabi et al. 2013, Tien Bui et al. 2013, Chen et al. 2014, Zhou & Fang 
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2015). Statistical methods are successfully and most frequently used in combination 
with geographic information system (GIS) at the regional scale. These approaches 
are built on a basic assumption that landslide will occur in the future because of the 
same conditions that produced them in the past (Guzzetti et al. 1999; Crozier & 
Glade 2012). In these statistical approaches, mostly used earthquake-related 
parameters are the distance to the seismic source (epicenter or seismogenic fault), 
the recorded ground motions and the seismic intensities. However,  

On the other hand, deterministic or semi-deterministic physically-based 
methods are often employed at basin scales (Westen et al. 2006) due to the 
complexities. The seismic stability of a slope is often assessed using the limit 
equilibrium method based on the assumptions that slope consists of rigid materials 
and that the failure mass slides along a single failure surface, on which the shear 
stress acting exceeds the resistance force. The most popular ways to assess seismic 
force are: pseudo-static method (PSM) and Newmark’s Sliding Block method 
(NSBM). The PSM consider the earthquake force as an inertial force, expressed a 
product of a so-called seismic coefficient and the weight of the sliding mass (Baker 
et al. 2006, Choudhury & Savoikar 2011, Yang et al. 2014). While the NSBM 
estimates the expected co-seismic displacement of a sliding block for a given 
recorded acceleration time-history (Rajabi et al. 2013; Chousianitis et al. 2014; 
Chen et al. 2014). A major drawback of these applications is the important 
probabilistic features of earthquakes such as potential source, magnitude and 
ground motion variabilities were ignored. 

The ground-motion parameters, such as peak ground acceleration (PGA) are 
prerequisites in deterministic landslide susceptibility assessment. Generally 
speaking, approaches for ground motion prediction can be classified as: empirical 
seismological and stochastic. Empirical approaches usually use a few empirical 
equations, derived from regression analyses of past recorded ground-motion data, 
to predict ground motion parameters (Scherbaum 2006, Akkar & Bommer 2007, 
Bindi et al. 2007, Boore & Atkinson 2008, Bommer et al. 2009, Atkinson 2010). 
The general forms of these empirical ground motion prediction equations (GMPEs) 
are usually specified so that the various terms of the equations have some physical 
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significance, such as source, path and site terms. However, the quality and 
confidence of these GMPEs largely dependent upon the quality of the dataset used 
for the regression. As a comparison, seismological approaches, such as the use of 
empirical Green’s functions (EGFs)(Hutchings & Wu 1990, Yao et al. 2009, 
Mendoza & Hartzell 2009, Kurahashi & Irikura 2010, Yue & Lay 2013) and hybrid 
Green’s functions (Pitarka et al. 2000, Mena et al. 2010, Campbell 2003) and the 
stochastic method (Atkinson & Boore 1997, Atkinson & Silva 2000, Boore 2003, 
Boore 2009,Atkinson & Boore 2006) require the complex specification of many 
parameters associated with source, path and site effects on the ground motion being 
modelled. Hence, the seismological approaches are generally used to study 
earthquake processes following the occurrence of an earthquake. The major 
advantage of the empirical approaches over the seismological approaches and 
stochastic is due to its simplicity in engineering practice use. The GMPEs are the 
overwhelming favorited and been successfully used in fields of seismic design, 
hazard mitigation. Therefore, there is a need to develop a methodology that is able 
with yet maintains the simplicity of the index approach. 

Therefore, in this chapter, we describe the development and application of a 
functional module, called GeoLHM-P (Landslide hazard mapping using physically-
based approach), to facilitate the landslide hazard mapping at a regional scale. The 
developed module of GeoLHM-P is embedded in the GeoILHMS system. 

4.2 METHODOLOGY 
4.2.1 INFINITE SLOPE MODEL 

The stability of slopes is often assessed using the limit equilibrium method 
based on the assumptions that slope consists of rigid materials and that the failure 
mass slides along a single failure surface, on which the shear stress acting exceeds 
the resistance force. The fraction of the contrasting force acting on the failure 
surface is expressed as the factor of safety (FS). In this study, the stability analysis 
of slope was built on the infinite slope model, which assumes that landslides are 
infinitely long but have small depth compared to its length and width. The failure 
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surface was assumed to be the soil-bedrock interface parallel to the lope pf the 
ground. The infinite slope model is the most appropriate method for the analysis of 
shallow landslide with planar surface. Since shallow slope failures always take a 
large account of earthquake-induced landslides, the infinite slope model has been 
used in many physically-based landslide hazard mapping tools. The easy adoption 
of GIS enables the use of this simple physical model for analysis and modeling of 
slope conditions over broad areas. 

An infinite slope model is shown in Figure 4-1. For this model, the weight of 
the sliding mass (for a unit dimension into the page) under static loading condition 
is: 

 G = γHL (4-1) 
Where G is the weight of the sliding mass, γ is the unit weight of sliding mass, 
H is the slope normal thickness of the failure surface, L is the length of the sliding 
mass. As indicated by Figure 4-1b, the total normal force ܶ݊ and the shear force 
 :acting on the sliding mass are related to the weight of soil mass using ݏܶ

 ௡ܶ = ܩ × ߙ݊݅ݏ = γHL(4-2) ߙ݊݅ݏ 
 ௦ܶ = ܩ × ߙݏ݋ܿ = γHLܿ(4-3) ߙݏ݋ 

Where α is the slope gradient. 
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Figure 4-1 (a) Limit equilibrium analysis for infinite slope considering 
seismic forces; (b) Force analysis of unit soil slice (dash rectangle in a). 
For a unit dimension into the page, the effective normal stress and the shear 

stress are defined as: 

ᇱߪ  = ௡ܶ
ܮ − ߙݏ݋ܿܪ௪݊ߛ = (γ −  ௪)Hcosα (4-4)ߛ݊

 τ = ௦ܶ
ܮ =  (4-5) ߙ݊݅ݏܪߛ

Where ݓߛ the unit weight of water, ݊ is the percentage of saturated failure thickness. 
Thus, the static factor of safety can be expressed as: 

௦ܨ  = ܿᇱ + ᇱ߶݊ܽݐᇱߪ
߬ = ܿᇱ + [(γ − ᇱ߶݊ܽݐ[௪)Hcosαߛ݊

ߙ݊݅ݏܪߛ  (4-6) 

4.2.2 PSEUDOSTATIC STABILITY ANALYSIS 
Generally, there are three kinds of approaches are proposed to evaluate the 

seismic stability of natural slopes with soil dominant: (1) the pseudo-static method; 
(2) the sliding block method (Newmark,1965) and the Ishihara’s method 
(Ishihara,1985). Based on the three methods, various modifications have been made 
to assess the seismic stability of natural slope. The pseudostatic method for seismic 
slope stability analysis is based on assumptions of the limit equilibrium and is still 
the most popular method among practicing engineers. The sliding block method 
(Newmark, 1965) has been universally applied in dam engineering. 

In the pseudostatic method, a seismic force is added to the sliding force except 
the weight of sliding mass, which can be expressed as a product of a so-called 
seismic coefficient k and mass weight. In order to use the infinite slope model, a 
few additional assumptions need to be introduced as follow: 

(1) The sliding surface is a straight plane parallel to the surface; 
(2) Inter-slide force on each side of every vertical cross section are equal and 

parallel to the ground surface; 
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(3) The seepage force is considered to be steady and the direction of the 
seepage force is parallel to the ground surface 

(4) The magnitude of the seismic force is constant in the soil mass above the 
sliding surface; 

(5) There is no pore pressure increase in the sliding mass during seismic 
loading. 

Supposing the angle between the incident direction of the pseudostatic force 
and the ground surface is β , and the pseudostatic force can be divided into the 
normal-slope ܵܰ and the parallel-slope force ܵܲ as: 

 ܵே = ݇௦
݃  (4-7) ߚ݊݅ݏܪߛ

 ܵ௉ = ݇௦
݃  (4-8) ߚݏ݋ܿܪߛ

Where ݇௦ is the seismic coefficient, ݃ is the acceleration of gravity. 
By substituting the (4-7) and (4-8) in to (4-6), we get the seismic slope stability 

as: 

 
௦ܨ = ܿᇱ + ᇱ߶݊ܽݐᇱߪ

߬
= ܿᇱ + [(γ − ௪)Hcosαߛ݊ − ݇௦݃ ᇱ߶݊ܽݐ[ߚ݊݅ݏܪߛ

ߙ݊݅ݏܪߛ + ݇௦݃ ߚݏ݋ܿܪߛ  
(4-9) 

For a pseudostatic slope stability analysis, a static force representing the effects 
of earthquake shaking is applied to the limit equilibrium analysis. This pseudostatic 
force is then taken as the product of the seismic coefficient (݇௦) and the total weight 
of the sliding mass. The pseudostatic FS includes the destabilizing effects of this 
force. The biggest challenges for the pseudostatic procedure are the selection of a 
proper seismic coefficient and the value of an acceptable factor of safety. A 
summary of the horizontal seismic coefficients and acceptable factor of safety 
values in Table 4-1. The horizontal seismic coefficients range from 0.1 to 0.15 and 
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minimum factor of safety range from 1.0 to 1.5. In the America, the seismic 
coefficients have ranged from 0.05 to 0.15, whereas in Japan the coefficients have 
been less than about 0.2 (Seed 1979). 

The Corps of Engineers Manual (EM-1110-2-1902), published in 1982, 
suggested a seismic coefficient value of 0.1 or 0.15 for where earthquake threat is 
major and great, respectively, and a minimum factor of safety of 1.0 for all 
magnitude earthquakes. At issue with all of these values of seismic coefficient is 
that they were arbitrarily selected and do not rigorously account for the level of 
expected shaking. 

Marcuson and Franklin (1983) and Hynes-Griffin and Franklin (1984) related 
the seismic coefficient value for a dam to the expected peak ground acceleration 
(PGA) at a site. Marcuson and Franklin (1983) recommended a seismic coefficient 
of 1/3 or 1/2 at the crest of dam, whereas Hynes-Griffin and Franklin (1984) 
recommend a seismic coefficient of 1/2 of the PGA of bedrock with a minimum 
factor of safety of1.0 and a 20% reduction in shear strength. Bray et al. (1998) also 
suggested the seismic coefficient as 75% of the PGA of bedrock. This value is 
appropriate for seismic stability evaluations of solid-waste landfills, where the 
allowable levels of deformation are relatively small. Stewart et al (2013) use the 
data of Bray and Rathje (1998) to develop an expression for the seismic coefficient 
in terms of ground motion (PGA, duration) and earthquake (magnitude) parameters. 
Theses seismic coefficients values generally range from 25% to 75% of the PGA of 
bedrocks. 

Table 4-1 Pseudostatic coefficients used in landslide stability analysis from 
various analysis 

Investigator Seismic coefficient Threshold factor of 
safety (Fs) 

Terzhagi (1950) 
0.1 (R-F = IX) 
0.2 (R-F = X) 
0.5 (R-F > X) 

> 1.0 

Seed (1979) 0.10 (M = 6.50) 
0.15 (M = 8.25) >1.15 

Marcuson (1981) 0.33-0.50 × PGA/g > 1.0 
Hynes-Griffin and Franklin (1984) 0.50 × PGA/g > 1.0 
California Division of Mines and 0.15 >1.1 
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Geology (1997) 
 

4.2.3 GROUND MOTION PREDICTION EQUATIONS (GMPE) 
The ground-motion parameters, such as peak ground acceleration (PGA) are 

prerequisites in deterministic landslide hazard assessment. Generally speaking, 
approaches for ground motion prediction can be classified as: empirical 
seismological and stochastic. Empirical approaches usually use a few empirical 
equations, derived from regression analyses of past recorded ground-motion data, 
to predict ground motion parameters (Scherbaum 2006, Akkar & Bommer 2007, 
Bindi et al. 2007, Boore & Atkinson 2008, Bommer et al. 2009, Atkinson 2010). 
The general forms of these empirical ground motion prediction equations (GMPEs) 
are usually specified so that the various terms of the equations have some physical 
significance, such as source, path and site terms. However, the quality and 
confidence of these GMPEs largely dependent upon the quality of the dataset used 
for the regression. As a comparison, seismological approaches, such as the use of 
empirical Green’s functions (EGFs) (Hutchings & Wu 1990, Yao et al. 2009, 
Mendoza & Hartzell 2009, Kurahashi & Irikura 2010, Yue & Lay 2013) and hybrid 
Green’s functions (Pitarka et al. 2000, Mena et al. 2010, Campbell 2003) and the 
stochastic method (Atkinson & Boore 1997, Atkinson & Silva 2000, Boore 2003, 
Boore 2009,Atkinson & Boore 2006) require the complex specification of many 
parameters associated with source, path and site effects on the ground motion being 
modelled. Hence, the seismological approaches are generally used to study 
earthquake processes following the occurrence of an earthquake. The major 
advantage of the empirical approaches over the seismological approaches and 
stochastic is due to its simplicity in engineering practice use. The GMPEs are the 
overwhelming favourite and been successfully used in fields of seismic design, 
hazard mitigation. Therefore, in the GeoLHM-P, we choose to employ GMPEs to 
assess the regional ground motion parameter prediction under specified seismic 
scenarios, such as an assumed earthquake from a specified active fault with an 
assumed magnitude or assumed earthquake mechanism, such as strike-slip or 
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reverse fault et al.  
In the developed GeoLHM-P, the Next Generation Attenuation Relationships 

for Western US (NGA-West2) (Boore et al. ,2014) proposed by the Pacific 
Earthquake Engineering Research Centre (PEER) was adopted. These equations 
were derived from a global database from 1989-2013 for a moment magnitude 
range of 3.0-7.9. In the NGA-West2 ground motion prediction equations, the 
ground motions are taken as the average horizontal component and the intensity 
measures (IMs) consist of peak ground acceleration and velocity (PGA, PGV) as 
well as 5% damped pseudo-spectral acceleration (PSA) for periods ranging from 
0.01s to 10s. The ability of NGA-West2 GMPEs to successfully characterize the 
ground motion has been thoroughly demonstrated in Figure 4-2 a and b. 

 
Figure 4-2 Schematic illustration of seismic wave propagation 

The general forms of the NGA-West2 GMPEs constitutes of three parts as 
(Boore et al. ,2014): 

 lnY = ,ܯ)ாܨ ݉݁ܿℎ) + ௣൫ܨ ௃ܴ஻, ,ܯ ൯݊݋݅݃݁ݎ + ௦൫ܨ ௦ܸଷ଴, ௃ܴ஻, ,ܯ ,݊݋݅݃݁ݎ ଵ൯ݖ
+ ,ܯ)ߪ௡ߝ ௦ܸଷ଴, ௃ܴ஻) (4-10)

where lnY represents the natural logarithm of the ground motion parameters (PGA, 
PGV and PSA); ܨா represent the source effects, ܨ௣ shows the effects of the path 
of seismic waves and ܨ௦  describes the effects of the ground sites where the 
parameters is to be predicted. ߝ௡ is the fractional number of standard devastations 
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of single predicted value of lnY away from the mean and σ is the total standard 
deviation of the model; M is the moment magnitude of the earthquake; M is the 
moment magnitude of the earthquake; ௃ܴ஻is the distance in kilometres of the site 
location to the seismic fault plane; ௦ܸଷ଴ is a soil property, which is defined as the 
average speed of seismic wave in the 30m depth from the ground surface; Parameter 
݉݁ܿℎ = 0, 1, 2 and 3  is to describe the earthquake mechanism of unspecified, 
strike-slip, normal and reverse faulting, respectively. The output of PGA and PSA 
are ݃ , while the output PGV are in cm/s . Parameters ݊݋݅݃݁ݎ = 0  means no 
regional correction, 1 for California, New Zealand and Taiwan, 2 for China and 
Turkey and 3 for Italy and Japan. 
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Figure 4-3 Flow Chart of the GeoLHM-P 

4.2.4 ASSESSMENT OF UNCERTAINTIES USING MONTE CARLO SIMULATIONS 
Uncertainties and variabilities were involved in the analysis of landslide 
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hazard over large areas using a deterministic model because of the complex 
geological conditions, the intrinsic variability of slope mass, and the limited number 
of data. Thus, applying a deterministic model to an extensive study area can be 
particularly difficult. However, uncertainties and variabilities mentioned can be 
quantitatively assessed the application of probabilistic analysis. 

In probabilistic analysis, with a physically based slope model, string 
parameters should be considered as random variables to account for the 
uncertainties involved in their determination. To evaluate the slope stability and to 
calculate the probability of slope instability from theses random parameters, the 
random properties (such as distribution patterns and its related parameters) are 
determined from the available data and are then used in the analysis. Probabilistic 
analysis methods include the point estimate method (PEM), the first order second 
moment method (FOSM), and the Monte Carlo simulations. PEM and FOSM offer 
the advantage of allowing estimation of the probability of failure using probabilistic 
distribution patterns even without additional information. However, the calculation 
become impossible when the performance functions are complex. Moreover, 
because the PEM and FOSM can only be used to obtain approximate values for the 
probability of failure. 

Monte Carlo simulations (METROPOLIS and ULAM 1949; Swendsen and 
Wang 1986; Caflisch 1998), on the other hand, are one of the most widely used 
methods of probabilistic analysis, which can be applied to all models where 
deterministic analysis is possible. Monte Carlo simulations are considered to be the 
most complete probabilistic analysis method because all random parameters and 
the probability of failure that results from the reliability analysis are represented by 
their probability density functions through repeated calculations. Another 
outstanding advantage of the Monte Carlo simulations is that this method is 
relatively easy to be implemented in a computer program can accommodate a wide 
range of functions, including those that cannot be expresses conveniently in an 
explicit form (Sobol 2001; Kwak and Ingall 2007; Raychaudhuri 2008). Therefore, 
the Monte Carlo simulation is utilized in the GeoLHM-P to obtain the probability 
of failure by considering a series of parameters related to the slope stability as 
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random parameters (such as the cohesion, friction angle of slope mass, ground 
water level, soil thickness et al.) (Manousiouthakis and Deem 1999; Sobol 2001; 
Kwak and Ingall 2007; Raychaudhuri 2008; Harrison 2010; Wang 2011). 

4.3 CASE STUDY  
4.3.1 GENERAL SETTINGS OF THE STUDY AREA 

 
Figure 4-4 Geologic settings of the study area (Zhou and Fang, 2015) 

We take the April20 ,2013 Lushan earthquake as an example to verify the 
GeoLHM-P module. This area is very tectonic-active with many folds and active 
faults trending NW–SE (Figure 4-4). Mesozoic volcanic rocks and Mesozoic group 
dominate the bedrock exposure in the area. The volcanic rocks comprise tuffs and 
lavas with intercalated sedimentary rocks. Intrusive rocks mainly consist of granites, 
sandstone and dykes of various compositions. As a result of the abundant supply of 
rainfall and the local rich groundwater, almost all rocks in the study area have 
undergone a certain degree of weathering(Xu et al., 2013; Zhou, et al, 2015). In 
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many slopes, weathering has penetrated deep into rock masses through joints and 
bedding planes (Zhou, et al, 2015). 

Table 4-2 Description of the lithology in the study area (Zhou and Fang, 2015) 

 
4.3.2 PGA VALUES ESTIMATED FROM DIFFERENT EARTHQUAKES FROM AT THE 
SHUANGSHI-DACHUAN FAULT 

Table 4-3 Parameters used in the GeoLHM-P to predict the PGA values 
Input Parameter Value or code 
Region China 
Magnitude Mw5.0, Mw6.0 and Mw6.6 (Real Case) 
Mechanism Reverse-Fault 
Miu-Vs30  California 
Vs30 data Estimated according to the rocks 
Fault Plane Shuangshi-Dachuan Fault 

 
There was no obvious surfaces rupture found during the earthquake according 

to after-event field investigations and many studies of focal mechanism inversions 
had suggested that the 2013 Lushan earthquake was caused by a reverse fault 
striking in NE direction. However, the NE-trending Shuangshi-Dachuan fault 
(SDF) also have induced movements based on some field phenomena found along 
this fault(Xu et al., 2013; Zhou, et al, 2015). In this chapter, we take the NE-trending 
Shuangshi-Dachuan fault and assumed the different earthquakes on these two fault 
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to estimate the PGA values (Table 4-3). for the Vs30 data, it was downloaded from 
the Japan seismic hazard information station(JSHIS) (http://www.j-
shis.bosai.go.jp/). The result of the PGA estimation is illustrated in Figure 4-5, 
Figure 4-6 and Figure 4-7 for the assumed earthquakes happened on the Shuangshi-
Dachuan fault with the moment magnitude of Mw5.0, Mw6.0 and Mw6.6, 
respectively.  

Table 4-4 Site asses in NEHRP Provisions (Martin 1994) 
NEHRP 
Category 

Description Mean Shear Wave 
Velocity to 30m 

Characteristics 

A Hard rock >1500 m/s  
B Firm to hard rock 760-1500m/s 760, 1070m/s 
C Dense soil, soft rock 360-760m/s 620, 520m/s 
D Stiff soil 180-360m/s 310, 255m/s 
E Soft clays <180 m/s  
F Special study soils, e.g. liquefiable 

soils, sensitive clays, organic soils, 
soft clays >36m thick 

  

NEHRP: National Earthquake Hazard Reduction Program 
One of the biggest challenges in using the NGA-West2 GMPEs at a regional 

scale is to determine the Vs30 (average speed of seismic wave in the 30m depth 
from the ground surface). For some developed countries such as Japan, there is an 
online source available, which can be downloaded directly. However, for China, 
there is no such source available, so this Vs30 parameters used in this study was 
estimated from U. S. National Earthquake Hazard Reduction Program (NEHRP: 
www.nehrp.gov/). According to the NEHRP, the Vs30 of the site can be estimated 
from the general rock compositions as indicated in Table 4-4.  
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Figure 4-5 PGA map (Mw5.0) estimated from the Shuangshi-Dachuan fault  

 
Figure 4-6 PGA map (Mw6.0) estimated from the Shuangshi-Dachuan 
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Figure 4-7 PGA map (Mw6.6) estimated from the Shuangshi-Dachuan 

4.3.3 LANDSLIDE HAZARD MAPS CONSIDERING ASSUMED EARTHQUAKES 
Geotechnical parameters, such as the strength parameters (friction angle and 

cohesion) typically has large spatial variabilities over the study area even within the 
same geologic units. To model such variability, Monte Carlo simulations are 
computationally simple way of probabilistically assessing such uncertainties. For 
the already mentioned geotechnical problems, homogeneous lithological units were 
considered, of which, shear strength parameters were given probability distribution 
functions. However, in practical engineering, the distribution of these geotechnical 
parameters around the expected mean value was not always symmetrical. The 
distribution of soil cohesion was in a clear lower bound such as zero, and generally, 
a few extreme large values also existed. This distribution seems to be better 
approximated by the asymmetrical function; however, it was accepted that many 
soil properties were reasonably well modelled by the lognormal distribution 
(Fenton and Griffiths 2004). In this study, while cohesion parameters were assumed 
to be β general distributions skewed to the right and friction angles to be log-
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normally distributed. Due to sampling insufficiency, distribution functions of 
geotechnical parameters could not be realistically explored, and these uncertainties 
will thus lead to misclassifications of areas prone to landsliding after the shaking 
occurred. Meanwhile, as similarly discussed in Chigira and Yagi (2006), apparently 
mobile landslides and new landslides triggered by the Chuetsu event had rather 
larger apparent friction angles than previous seismic landslides in Japan due to the 
difference in the materials and the extent to saturation. As one of disadvantages for 
Monte Carlo simulations, the distribution obtained for the performance function is 
only accurate to the extent; hence, uncertainties from the above assumptions 
influenced the reliability of assessing seismic landslide hazards. In the method 
proposed, random numbers were generated to obtain the variables, mainly being 
geotechnical parameters; these variables were entered in the calculation of 
displacement.  

 
Figure 4-8 Landslide hazard maps by considering the PGA (Mw5.0) 
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Figure 4-9 Landslide hazard maps by considering the PGA (Mw6.0) 

 

 
Figure 4-10 Landslide hazard maps by considering the PGA (Mw6.6) 

In this study, the seismic force is set to the 25% of the PGA values, and the 
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factor of safety is set as 1.0. The Monte Carlo simulations ran 2,000 times and 
calculated 2,000 Fs values for each grid cell. The percentage of Fs, which is greater 
than 1.2, is calculated. The percentage were then shown as a map of seismic 
landslide hazard. In the study area, many shallow landslides occurred on steep 
slopes in the Lushan event. The final landslide hazard maps of this study area was 
classified into five categories: very low (<10%), low (10%-30%), moderate (30%– 
50%), high (50%-70%) and very high (>70%). 

For the landslide hazard maps produced from the earthquake with the Mw6.6, 
which is real case. It can be seen that 41% of the total area was classified as having 
very low susceptibility, and the low-susceptibility zones were predicted to include 
17.1% of the area. In the resulting map, it was also shown that about 38% of areas 
with landslide occurrence were classified as medium-high levels of landslide 
hazards. Compared with the actual landslides, moreover, it was demonstrated that 
several locations were misclassified to be areas not prone to landsliding after the 
earthquake occurrence. Using the same dataset in the Chapter 3, the validation result 
was shown in Table 4-5. 

Table 4-5 Validation and comparison of the physically-based approach 
No. Method Success rate False-alarm rate Miss-alarm rate 
1 IV 68% 34% 27% 
2 WoE 66% 35% 29% 
3 LR 63% 38% 31% 
4 SVM 74% 26% 27% 
5 IV+LR 83% 9% 8% 
6 WoE + LR 76% 11% 13% 
7 IV+SVM 78% 8% 14% 
8 WoE + SVM 81% 9% 10% 
9 Physically 71% 42% 28% 

 
From the comparison result, we can see the physically-based method can 

provide an acceptable result. It gives an overall success rate of 71%, However, 
comparing with the statistical methods mentioned before, the physically-based 
methods lower accuracy than some of statistical methods since it gives the highest 
false-alarm rate of 42% and a third highest miss-alarm rate of 28%. The biggest 
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advantages of the physically-based approaches over the statistical method is that it 
doesn’t dependent on the historical landslide data and can consider the specified 
triggering event. As for the landslide hazard maps produced from the assumed 
earthquake scenarios (Figure 4-8 and Figure 4-9), it is hard to validate the results. 
However, these landslide hazard maps can serve as a reference for earthquake 
resistance design and urban planning in this regions. 

4.4 CONCLUSIONS 
In this chapter, functional module GeoLHM-P for effective landslide hazard 

mapping using a physically-based approach was developed and tested in the area 
affected by 2013 Lushan earthquake in China. In this chapter, the following 
conclusions can be drawn: 

(1) A method was presented to evaluate the probability of slope failures on a 
pixel-by-pixel basis. A pseudo-static model, was adopted to calculate the 
slope stability in case of earthquake shaking. 

(2) Under consideration of the variability of geotechnical parameters, the 
Monte Carlo simulations were used to evaluate probabilities of slope 
failures given a threshold of factor of safety. After deriving the factor of 
safety values from related inputs, the simulations ran 2000 times and 
yielded 2000 factor of safety values for each grid cell. Finally, the 
probabilities of values exceeding minimum factor of safety were shown as 
a map of seismic landslide hazards.  

(3) Uncertainties arose from the variability of parameters used and the model 
itself; in other words, the impact of this sensitivity should be clarified in 
further research. Despite these limitations, it was found that GIS, as a 
powerful tool of spatial analyses, can facilitate the integration of pseudo-
static modelling and Monte Carlo simulations over a regional seismic 
landslide hazard assessment. 

(4) To consider the assumed earthquake from a specified fault or the target 
fault, the Next Generation of Ground-Motion Attenuation Models for the 
western United States (NGA-West2) was used to predict the PGA values 
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of each cell in the study area from different assumed earthquakes from the 
Shuangshi-Dachuan fault. 

(5) Landslide hazard maps considering different PGA values from assumed 
earthquakes was produced. These landslide hazard maps can be used for 
future landslide mitigation, urban planning in this area. 

(6) Comparing with the statistical methods mentioned before, the physically-
based methods lower accuracy than some of statistical methods since it 
gives the highest false-alarm rate of 42% and a third highest miss-alarm 
rate of 28%. The biggest advantages of the physically-based approaches 
over the statistical method is that it doesn’t dependent on the historical 
landslide data and can consider the specified triggering event. 
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CHAPTER  5 

5 DEVELOPMENT OF GEOLHM-R FOR LANDSLIDE HAZARD 
MAPPING CONSIDERING THE LANDSLIDE AFFECTED AREA 

5.1 INTRODUCTION 
According to the United States Geology Survey (U.S.G.S.), an ideal landslide 

hazard map shows not only the chances that a landslide may form at a particular 
place, but also the chance that it may travel downslope a given distance. To assess 
whether an area is potentially hit by a landslide is thus one of the most essential part 
of landslide hazard assessment. Up to now, most of LHM methods only focus on 
the landslide prone slopes, and the affected areas are not included. Some LHM 
include the affected areas but they are estimated empirically based on slope heights. 
For example, the affected area is generally estimated based on the way given by 
Sediment Disaster Countermeasures for Sediment Disaster Prone Areas Act in 
Japan. It is a big challenge to estimate the affected area based on kinematics in LHM. 
In this chapter, a run-out simulation technique is developed based on modified 
multiple flow algorithm and the law of conservation of energy. The elevation 
difference between cells is taken into account for determining the possible 
directions towards which the landslide can move with a certain probability. The law 
of conservation of energy is used to determine the distance of sediment movement. 
When the mechanical energy from both the kinetic and potential energy becomes 
less than the friction-induced energy loss, the movement of landslide will stop so 
that the maximum affected area can be estimated. The method is incorporated into 
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the functional module GeoLHM-R. A practical example of the Aso Ohashi Bridge 
landslide triggered during the 2016 Kumamoto earthquake is made by using the 
module and its practicality has been verified. 

5.2 METHODOLOGY 
To simulate the runout of the landslide source, a run-out simulation technique 

is developed based on modified multiple flow algorithm and the law of conservation 
of energy. Generally, the proposed method contains two parts: Firstly, the multiple 
flow direction algorithm in the GIS is used to determine the possible path of the 
landslide sources; and to determine the runout extent of the landslide source, the 
energy conservation law is incorporated. The movement directions is controlled by 
flow direction and persistence functions. 

5.2.1 FLOW DIRECTION 
Terrain surfaces are usually modelled with raster datasets. A raster is a matrix 

of cells organized in rows and columns. Each cell in the matrix represents a square 
unit of area and contains a numeric value that is a measurement or estimate of 
elevation for that location. 

 
Figure 5-1 A terrain surface 

For each cell ℎ௜,௝,we can obtain 3 × 3table, with ℎ௜,௝ cantered. 
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Figure 5-2 Cell coding in calculation of the flow direction 

Flow Direction Algorithms in Geographic information system is one of the 
useful methods to simulate downslope movement of masses on the terrain surface. 
Although the flow direction algorithm is often used to model hydrology and the 
physical movement of water on a terrain surface, some applications of the flow 
direction algorithm were also found as a means of searching paths with least costs. 
A common approach to describing these downslope movements is to assume that 
materials moving downslope exclusively follow the path of steepest descent. 

 
Figure 5-3 Single flow direction in GIS 

In the GIS environment, single flow direction of each source cell is derived 
from central cell to its steepest downslope neighbours and can be used to describe 
the mass movement path with maximum likelihood as indicated in Figure 5-3. As 
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an improvement, the Multi-Flow Direction algorithms is similar to that of the single 
direction algorithm above in that direction of flow is a function of steepness 
between the source cell and its neighbours, the difference being that Multi-Flow 
Direction algorithm calculates the flow to multiple downslope cells in proportion 
to the steepness between them as indicated in Figure 5-4. The likelihoods of all 
possible paths is in proportion to the steepness between the centrals and the 
neighbours. 

 
Figure 5-4Multiple flow direction in GIS 

To optimize this algorithm, Freeman (1991) gave the slopes power weights, 
and tested the performance of a number of values to control the divergence of the 
multiple flow algorithm. This model is given formally given by: 

                       (5.1) 

where i, j are the spatial location of the source cell, ௜ܲ,௝௡  the likelihood that the 
source cell will go to the neighbour cell in direction n, ߚ݊ܽݐ௜,௝௡  is a tangent of the 
slope gradient to describe the steepness between the source cell and the neighbour 
cell in direction n, and ߙ the divergence exponent. For 1 = ߙ the algorithm 
becomes the original MFD. When ߙ increases to the infinite, the algorithm turns 
to be the single flow direction. This divergence exponent is used to control the 
movement spreading and to reproduce a wide range of other flow accumulations. 
Based on the field, laboratory measurements and back analysis of real cases, 
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Horton et al. (2011) and Horton et al. (2013) suggested the exponent value of 4 
for debris flows and shallow landslides. 

5.2.2 INERTIAL FORCE 
During the movement of the landslide source, the inertial force should also be 

considered. The Inertial force function (Eq. 2) is used to describe the behaviour of 
inertia force inherited from the original movement of landslide sources, and it is 
calculated based on the change between the original direction and the new direction 
(see Fig. 5.4). 

ܴ௜,௝௡ =  ఈ(௜)                              (5.2)ݓ
where ܴ௜,௝௡ is the likelihood of the movement from the source cell to the direction i 
according to the inertial resistance, and ߙ(݅)  is the difference of the directions 
between the original direction and the new direction from the source. Three 
implementations of the persistence were chosen (Table 5.1). In every Inertial force 
function, the neighbour cell opposed to the original direction is set to null to avoid 
backward movement of the landslide source. 

Table 5-1 Persistence function in the assessment of the spreading (Horton et al. 2013) 
ઢ180 135 90 45 0 ࢻ 

Proportion 1 0.8 0.4 0 0 
Cosines 1 0.707 0 0 0 
Gamma (2000) 1.5 1 1 1 0 

5.2.3 OVERALL LIKELIHOOD OF MOVEMENT 
Finally, the overall likelihood of mass movement from the source cell to it 8 

neighbour cells can be calculated by a weighted combination of the likelihood from 
the flow movement and the inertial resistance and can be shown in Eq. (5.3) 

௜,௝௡ܮ = ೃ೔,ೕ೙ ×ು೔,ೕ೙
∑ ೃ೔,ೕ೙ ×ು೔,ೕ೙೙సఴ೙సభ ௜,௝ܮ                           (5.3) 
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where i, j are the location of the central cells, ܮ௜,௝௡  is final calculated likelihood of source 
movement from the central cell to its neighbour cell in direction n, and ܮ௜,௝ the previously 
inherited possibility of the landslide occurrence in the central cell. 

The result of Eq. (5.3) is a 3×3 matrix with assigned likelihood of mass movement 
from the central cell to its neighbours. After obtaining of such an matrix, the additional step 
is to check whether the mass can move from the central cell to its neighbours according to 
energy conservation. 

 
Figure 5-5 Energy conservation (Loye et al. 2008a and Loye et al. 2008b) 

5.2.4 ENERGY CONSERVATION 
In order to check the energy conservation during the mass movement from the central 

cell to its neighbours, the simple friction laws is used to calculated the energy loss during 
the mass movement; During the mass movement from the central cell to any neighbour cell, 
the energy conservation can be expressed as the follows: 

 
௜,௝௡ܧ = ௗ௛௡ܧ+௜,௝ܧ  ௙௡                           (5.4)ܧ-

Where E୧,୨:kinetic energy at the central cell , Edh
n  :increase in potential energy due to 

elevation difference from the central cell to the n direction neighbor cell (Equation 
5.5). ݂ܧ

݊:energy lost due to friction, during the path from the central cell to the n 
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direction neighbour cell (Equation 5.6). ߤ : friction coefficient ݃ : gravitational 
acceleration; d: distance between central cell and neighbor cell. 

ௗ௛௡ܧ =g*(ℎ௜,௝ − ℎ௜,௝௡ ), ݊߳{1,2,3, … . ,8}                (5.5) 
௙௡ܧ = ߤ ∗ ݃ ∗ ݀ , ݊߳{1,2,3, … . ,8}                   (5.6) 

During the process of mass movement:  
ቊ ௜,௝௡ܧ ≥ 0, ݈ܾ݁݅ݏݏ݋݌ ݏ݅ ݊݋݅ݐܿ݁ݎ݅݀ ݊ ℎ݁ݐ ݋ݐ ݊݋݅ݐܽ݃ܽ݌݋݌

௜,௝௡ܧ < 0,  (5.7)       ݈ܾ݁݅ݏݏ݋݌݉݅ ݏ݅ ݊݋݅ݐܿ݁ݎ݅݀ ݊ ℎ݁ݐ ݋ݐ݊݋݅ݐܽ݃ܽ݌݋݌
Judged by the energy conservation, When the mechanical energy from both the kinetic 

and potential energy becomes less than the friction-induced energy loss, the movement of 
landslide will stop so that the maximum affected area can be estimated. 

5.2.5 FLOWCHART OF GEOLHM-R 
The process of the computation involved in the GeoLHM-R for estimation of 

landslide affected area is illustrated in Fig.5 7. The runout simulation considers the 
whole landslide source cells in the study area at the same time, which is usually a 
binary raster in the GIS with landslide cell indicated as “1” and non-landslide cells 
indicated as “0”.  

Then each landslide cell in landslide rasters is transferred into the current 
active cells list (see Fig. 6). From active cells list, each landslide cell is calculated 
one by one according to the multiple flow direction algorithm. During each step of 
each landslide cell simulation, a likelihood of movement is calculated using the 
proposed method. At the end of each simulation step, the neighbour cells with a 
positive likelihood of will be added to the end of the active cell list as a new active 
cell. The process is repeated until the current active cell list is empty. For each cell 
in the landslide rasters, just repeat the calculation one by one. The output of the 
simulation is a raster, in which all the cells with positive value represent the 
potential area that can potentially be reached by landslides. 
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Figure 5-6 Flow Chart of the main process within GeoLHM-R 

5.3 CASE STUDY 
5.3.1 ASO OHASHI LANDSLIDE 

On May 4,2016, an site investigation found that cracks had also formed on the upper 
part of the slope, posing a continuing danger of another major slide. The JR Hohi Line and 
National Route 57 run by the bottom of the slope, and private houses are scattered about 
nearby. Officials say, however, that none of the residents are at home as an evacuation order 
is already in effect. According to the regional development bureau, there was about 500,000 
cubic meters of earth and other materials in the some 700-metre-long, 200-meter-wide 
landslide that wiped away the Aso Ohashi bridge. 
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Figure 5-7Interpretation of the Aso Ohashi Bridge landslide 

 

  
Figure 5-8 Image showing the Aso Ohashi Bridge landslide 

5.3.2 BACK ANALYSIS OF THE FRICTION COEFFICIENT 
In the proposed method, maximum runout distance and extent of the landslide 

movement is determined by the frictional coefficient, a field survey is sometimes 
difficult to be conducted because the unavailability of track to reach the landslide 
sources. Also, it is not realistic to identify the frictional coefficient for every 
landslide, since the original purpose of this approach is to facilitate a regional scale 
analysis of a large number of landslides. Thus, the frictional coefficient can be 
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identified by reduction of lithology strength. 
In practical, firstly, lithological composition of potential landslide sources was 

identified from the lithological maps, then the friction coefficient μ  can be 
approximately estimated at μ = tanϕ, where ϕ is the inner friction angle of the 
landslide masses. 

For the study case, the main composition of the landslides was deposits and 
volcanic ashes and weathered volcanic rocks. The friction angle of the lithology is 
estimated from a collection of previous literatures of landslides with similar 
composition (Inoue et al. 1970; Miyagi 2004; Mikami and Sawada 2005; Sassa et 
al. 2005). Generally, the inner friction angle of the masses ranges from 14°-20°, 
thus ,an estimated frictional coefficient ranging from 0.25-0.36. 

Further, we carried out a back analysis of the coefficient with input value of 
0.25, 0.30, 035. (Figure5.9) 

 

(a) μ = 0.25 
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(b) μ = 0.30 
 

(c) μ = 0.35 
Figure 5-9 Runout simulation results of the landslide μ = 0.30 

As indicated by the back analysis result ,the frictional coefficient showed the 
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best fitting result to describe the estimated affected area of a landslide. 

5.4 CONCLUSION 
Estimation of landslide affected area plays an important role in landslide 

hazard mapping. Up to now, most of LHM methods only focus on the landslide 
prone slopes, and the affected areas are not included. Some LHM include the 
affected areas but they are estimated empirically based on slope heights. A 
functional module of GeoLHM-R for landslide hazard mapping considering the 
affected area of a landslide based on the runout simulation is proposed and tested 
in this chapter. The following conclusions can be drawn: 

(1) A run-out simulation technique is developed based on modified multiple 
flow algorithm and the law of conservation of energy. In the proposed 
technique, the elevation difference between cells is taken into account for 
determining the possible directions towards which the landslide can move 
with a certain probability. The law of conservation of energy is used to 
determine the distance of sediment movement. 

(2) A practical examples of the Aso Ohashi Bridge landslides triggered during 
the 2016 Kumamoto earthquake was carried out and test the efficiency of 
the module. 

(3) One of its main advantages of the proposed module lies in its low data 
requirement, only the DEM data and potential landslide source are needed 
for runout prediction. This makes is possible to be applied to predict the 
landslide affected area at the regional scale. The proposed technique and 
the developed module had provided a solution to fill the gap exists in 
landslide prone slope identification and affected area estimation. 

(4) The practical example shows that the maximum runout distance and extent 
were largely depended on the surface friction coefficient. It is suggested 
that frictional coefficient can be obtained either by inferred from the 
lithology map or by back-analysis of existing landslide cases. 

(5) Once the potential landslide source is identified and proper frictional 
coefficient values is determined, reliable landslide effected area can be 
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mapped. 
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CHAPTER  6 

6 A PRACTICAL APPLITION TO ANALYZING THE 2016 KUMAMOTO 
EARTHQUAKE-INDUCED LANDSLIDES IN JAPAN 

6.1 INTRODUCTION 
In previous chapters, we have developed an integrated GIS-based landslide 

hazard mapping system. In addition, a series of cases were carried out to test the 
efficiency of the three functional modules, separately. Although significant 
developments have been achieved, there are still some problems in practical 
engineering cases. Therefore, in this chapter, we aimed to apply the developed 
system to analysing the 2016 Kumamoto Earthquake-induced landslides in Japan 
as a full case study to verify the efficiency of the developed system. 

The 2016 Kumamoto earthquake consists of a series of powerful shocks, 
including a foreshock on April 14th, 2016, with a moment magnitude of Mw 6.2 (at 
local time 21:26) and a Mw 7.0 main shock on April 16th, 2016 (at local time 01:25).  
The epicenter of the foreshock (32.740°N,130.800°E) at a depth of 10 km and the 
epicenter of the main shock (32.800°N,130.800°E) at a depth of 11 km located 
beneath the Kumamoto City of the Kumamoto Prefecture in Japan.  An intense 
aftershock sequence followed the earthquake. On 9th October 2005, highest 
numbers of aftershocks (122) were recorded and as of April 20, 2016, a total of 
1,778 aftershocks were recorded. The Kumamoto earthquake represents the most 
catastrophic event in Japan since the 2011 Tohoku Earthquake and had caused a 
large number of landslides, which had caused serious damages. 
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Right after the Kumamoto earthquake, several institutions had provided 
unprecedented amount of data for studying the landslides triggered by the 
Kumamoto earthquake. Especially, the Geospatial Information Authority of Japan 
had published a large quantity of high-resolution images for post-earthquake rescue. 
These images had provided a value information for our study. 

In this chapter, we focus on the need for evaluating and assessing the landslides 
hazards triggered by the Kumamoto Earthquake. The structure of this chapter is 
organized as follows: We firstly mapped the location and extent of landslides 
associated with the earthquake using the high-resolution satellite images and aerial 
photography taken next days following the main shocks. Then, we produce a hazard 
map using the proposed two combined methods, one is the combined method of 
information value and the logistic regression and another is the combined method 
of information value and the support vector machine. After that, we performed the 
landslide hazard mapping using the GeoLHM-P module, one of the biggest 
difference of this method is that it can consider the future assumed earthquakes. 
Finally, the affected area of landslides triggered by during the Kumamoto 
Earthquake were simulated using the GeoLHM-R. All the landslide hazard maps 
produced in of this chapter were compare with the landslide hazard maps made 
using the traditional empirical method suggested by the Act on Sediment Disaster 
Countermeasures for Sediment Disaster Prone Areas of Japan. 

6.2 BACKGROUND OF 2016 KUMAMOTO EARTHQUAKE 
The 2016 Kumamoto earthquakes are a series of earthquakes, including a 

magnitude 7.0 main shock which struck at 01:25 JST on April 16, 2016 (16:25 UTC 
on April 15) beneath Kumamoto City of Kumamoto Prefecture in Kyushu 
Region,Japan, at a depth of about 10 kilometres and a foreshock earthquake with a 
magnitude 6.2 at 21:26 JST (12:26 UTC) on April 14, 2016, at a depth of about 11 
kilometres. The two earthquakes killed at least 29 people and injured about 3,000 
others in total. Severe damage occurred in Kumamoto and Oita Prefectures, with 
numerous structures collapsing and catching fire. More than 44,000 people have 
been evacuated from their homes due to the disaster. 
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Figure 6-1 Brief introduction of the 2016 Kumamoto earthquake 

6.3 STUDY AREA 
According to the right-after damage estimation report published by the 

National Research Institute for Earth Science and Disaster Resilience (NIED), the 
most severely damaged zones of the Kumamoto earthquake was the northeast part 
of Kumamoto Prefecture, and several high-resolution images were published 
covering this area. Therefore, the study area, shown by the red rectangle in Fig. 6.2, 
including: Aso-shi, Ozu-machi, Takamori-machi, Nishihara-mura, Minamiaso-
mura and Mashiki-machi. An enlarged view of the study area is also shown in Fig. 
6.1 with elevation data from the Ecoris Inc. (©1995-2016) with a cellsize of 10m. 
Total relief within the study area approximately ranges from 3 meters to 1591 
meters above the sea level. Geographically the study area is located between 
latitude 32°40′–33°10′ South and longitude 130° 45′–131°20′East, encompassing 
931 km2 (Fig. 1). In total, the land area is equivalent to 12.57% of the land area of 
the Kumamoto Prefecture. Mount Aso (1592 m), an extensive active volcano, 
located in the centre of the study area.  
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Figure 6-2 Overview of the study area showing the extent of the study area 

Geological formations in the study area generally can be grouped into the 
following categories: deposits and terrace; sedimentary; metamorphic; ultramafic; 
volcanic and plutonic. Since the Mountain Aso is an active volcanic, the volcanic 
rocks including the felsic, mafic and pyroclastic volcanic rocks takes a large 
percentage of the study area. The study area lies at the southern end of the Japan 
Median Tectonic Line, Japan's longest, where a system of active faults forks in two 
directions at the Beppu-Haneyama Fault Zone. Specifically, the series of quakes 
ruptured the 81-km-long Hinagu Fault and 64-km-long Futagawa Fault to its north, 
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as well as lesser but discernable interaction with the farther flung Beppu-Haneyama 
Fault Zone. A 27-km section of the Futagawa Fault Zone slid 3.5 meters. The 
earthquakes are occurring along the Beppu–Shimabara graben, with epicentres 
moving from west to east over time. 

 
Figure 6-3 Geology map of the study area 

6.4 LANDSLIDE INVENTORY MAPPING 
Interpretation of remote sensing photographs (including satellite image and 

aerial photos) has been considered to be the most efficient and realistic way for 
identifying landslide in wide area. Currently, studies on automatic extraction of 
landslides through remote sensing images become important topics in engineering, 
geology and other related fields. However, visual-interpretation by well-trained 
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personnel is still believed to be more accurate and reliable than computers. Visual 
interpretation needs high skills and the results largely depended on the experience 
of the interpreters. 

In this study, inventory of co-seismic landslides was produced through visual 
interpretation of online high-resolution images The interpretation procedures 
including the following 5 steps: (1) Define the extent of the study area;(2) Divide 
the study area in to several grids; (3) Create an empty GIS shapefile to store the 
landslide information; (4) Load the high-resolution images; (5) Visual interpretation 
of landslides. Experts in earthquakes and geo-hazards were called upon to visually 
interpret the base map according to their experiences and knowledge. Because it 
was right time for vegetation, earthquake-induced landslides could be easily 
recognized according to landslide scars. The boundaries of landslides were 
interpreted on the base map and transformed into vector format. The resultant 
landslide inventory was shown in Figure 6.5. 

 
(a) 
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(b) 

 
(c) 

Figure 6-4 Main steps for mapping of landslides triggered by the 2016 
Kumamoto Earthquake 
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Figure 6-5 Results of landslides based on high-resolution images published 

on Google Earth. (a) Overview of study area (pink lines) and landslides (yellow 
polygons) overlaid on the google earth. (b) Pre-earthquake (December 18, 2015) 

and Post-earthquake (April 16,2016) image of the sample area showing the 
location and extent of landslides triggered by the Kumamoto earthquake. The 

sample area extent was indicated in (a) as red polygon. 
6.5 LANDSLIDE HAZARD MAPPING USING GEOLHM-S 
6.5.1 LANDSLIDE PREDICTIVE FACTORS 

Generally speaking, the conditioning factors are responsible for the occurrence 
of landslide in specific region. These factors are needed to be used in landslide 
hazard mapping (Liu and De Smedt, 2005), which can be in nominal, ordinal, or 
scale format (Park et al., 2013). For current research the conditioning factors are: 
slope, aspect, elevation, distance to stream, topographic wetness index (TWI), 
drainage density, distance to fault, geology, landform, normalized difference 
vegetation index (NDVI), peak ground acceleration (PGA), terrain roughness, 
stream power index (SPI), plan curvature, profile curvature. The list of the 
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conditioning factors and their characteristics is shown in Table 6.1. Each factor was 
resized to 10 × 10 m grid and the grid of the study area was constructed by 2795 
columns and 2850 rows. For FR analysis, manual defined method was used to 
classify each conditioning factor and the list of all the data layers is illustrated in 
Fig. 6.6. 

Elevation is one of the topographic factors that directly affect slope instability 
(Wan et al., 2012). Other parameters such as precipitation and weathering variations 
are considered as indirect factors. In this study, the elevation map was obtained from 
the altitude which was generated using survey of Japan topographic map sheets of 
the Kumamoto area (1984, 1995 and 2011). The elevation of the study area ranges 
from 3m to 1591m. This factor of elevation was manually classified into 8 classes 
(<200m; 200-400m; 400-600m; 600-800m; 800-1000m; 1000-1200m; 1200-
1400m; >1400m). One of the most important conditioning factors in the slope 
stability analysis is the slope angle. For this reason, the slope map of the study area 
was prepared from the elevation map, and it was divided into 11 slope categories 
by an increment of 5° from 5-° 50°, less than 5° and greater than 50°. In 
landslide hazard mapping studies, slope aspect is also considered to be an important 
conditioning factor (Baeza and Corominas, 2001), since aspect-related parameters 
such as exposure to sunlight and drying winds, control the concentration of the soil 
moisture which is directly related to the landslide occurrence (Magliulo et al., 2008). 
In the case of the aspect map, ten classes have been made (flat, North, Northeast, 
East, Southeast, South, Southwest, West and Northwest). 

Generally, plan curvature is considered to be geometry of the earth surface, 
and it describes a slope changes in the inclination or aspect (Nefeslioglu et al. 2008). 
The convergence or divergence of water during downhill flow is affected by plan 
curvature (Yilmaz et al. 2012). In this study, the plan curvature was extracted from 
the DEM and classified into four classes: −3.17–0.40, −0.40–0.00, −0.00–0.43, 
and 0.43–3.22. Profile curvature is defined as the curvature in the vertical plane 
parallel to the slope direction (Yilmaz et al. 2012). It describes the rate of change 
of slope and can be used as an influencing factor for landslide in the study area. For 
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this reason, in the same way as for plan curvature was also derived from the DEM 
with the aid of ArcGIS 10.0 and classified into four classes: −3.79–0.48, −0.48–
0.02, −0.02–0.43, and 0.43–4.49, respectively. 

Several active geological faults exist in the study area, so we should take 
distance to faults into account for landslides susceptibility analysis. In general, 
geological faults are responsible for triggering a large number of landslides, because 
the tectonic breaks usually decrease the surrounding rock strength. In the study area, 
the faults buffer categories were defined as <1000, 1000–2000, 2000–3000, 3000–
4000, and >4000 m. In the study area, there are a widely distributed large number 
of small rivers and its branches. Water is considered to be the basic factor for 
triggering landslide mechanisms. In many areas all over the world, rivers play an 
important role in the occurrence of landslides (Park et al. 2013). In view of the 
current study, distance to rivers was considered. thirteen buffer classes (50 m, 100 
m, 150 m, 200 m, 250 m, 300 m, 350 m, 400 m, 450 m, 500 m, 1000m, 1500m and 
2000m) were made using the buffer tool. In the SPI (-36.0-29.6) and drainage 
density maps, ten categories were created for each of the analysis. The drainage 
density map was obtained by using the digitized drainage layer made by the Survey 
of Japan (1984, 1985 and 1996) and has been divided into six classes. In the TWI 
(1.84–33.02) map, ten categories were created. 

NDVI, namely the normalized difference vegetation index, is a measure of 
surface reflectance and gives a quantitative estimate of the vegetation growth and 
biomass (Yilmaz 2009; Pourghasemi et al. 2013b). In this study, the normalized 
difference vegetation index (NDVI) map was derived from the satellite images, and 
the NDVI was also considered in preparing landslide susceptibility maps. The 
NDVI value is calculated as follows: 

 NDVI = ܴܫ − ܴ
ܴܫ + ܴ (6-1) 

where IR is the infrared portion of the electromagnetic spectrum and R is the red 
portion of the electromagnetic spectrum. The NDVI values vary from −0.27 to 0.62, 
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and a map of NDVI was classified into five classes. 
Lithology is also frequently used in landslide stability studies and plays a very 

important role in landslide susceptibility analyses, because different lithological 
units have different susceptibility degrees (Dai et al. 2001; Yalcin et al. 2011). The 
lithology map of the study area was derived from geological maps and field surveys. 
Table 1 shows the description of geological units of the study area. The study area 
is covered by six lithological units such as deposits and terrace; sedimentary; 
metamorphic; ultramafic; volcanic and plutonic. 

The peak ground acceleration (PGA) map of Padang Pariaman District was 
derived from the measured ground motion maps published by the United States 
Geology Survey (USGS). It showed the PGA value of the main shock of the 
Kumamoto earthquake with a magnitude of Mw7.0 on April 16th, 2016. The PGA 
map was divided into the following five subclasses as: <=0.3g, 0.3-0.4g; 0.4-0.6g; 
0.6-0.8g; >0.8g, where g is the gradational acceleration. 
 

6.5.2 APPLICATION OF THE BIVARIATE METHODS (IV AND WOE) 
The information value method and the Weight of evidence method was 

produced using the weights for each class of each conditioning factor. Through 
analysing the relationship between 14 conditioning factors and landslide occurrence, 
the information value was calculated (Table 6.1). 

Table 6.1 represents the relationship between landslide event and the classes 
of each conditioning factor. Results of the information value method showed that 
in the case of the relationship between landslide occurrence and elevation, landslide 
mostly occurred in the elevation range of 200–400 m. It showed that the probability 
of landslide occurrence is very low in low elevation areas. It also can be seen that, 
the higher the slope gradient is, the more favourable the slope is to landslide 
occurrence. In the case of the aspect, the ratio was high for the class of south and 
southeast facing slopes, having ratios of 0.518 and 0.478 respectively. For the 
profile and plan curvature, higher curvature values were more favourable in 
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predicting landslides. The most effective class of lithology group was the volcanic 
rocks. For SPI, the information value was highest (1.54) for the class of 8.32–29.60, 
and it was lowest (-0.753) for the class of -0.97-0.56. The highest value for PGA 
classes as main contributors of landslide belonged to the category of 0.6-0.8 g with 
a value of 1.002. In the case of s normalized difference vegetation index, the highest 
IV value (68.03) was related to the low vegetation cover. As for the factor of 
distance to stream and fault, it shows that, the further the distance is, the low effects 
of the stream and fault on landslide occurrence is. Also, as the terrain become 
rougher, it becomes more favourable to landslide occurrence. 

Table 6-1 Landslide predictive factors used for statistical LHM 
Factor Class IV Wcontras

t 
Factor Class IV Wcontrast 

Elevation 
(m) 

<200 -1.507  -1.612  Stream 
power 
index (SPI) 

-36.0 - -5.1 1.520  1.571  
200-400 0.942  1.093  -5.1 - -2.77 0.480  0.514  
400-600 0.283  0.388  -2.77 - -0.97 -0.455  -0.504  
600-800 0.014  0.021  -0.97 - 0.56 -0.753  -1.035  
800-1000 -0.510  -0.615  0.56 - 1.34 -0.025  -0.040  
1000-
1200 

-0.693  -0.711  1.34 - 29.6 1.540  1.763  

1200-
1400 

-1.756  -1.766  Terrain 
wetness 
index 
(TWI) 

1.84-4.0 1.349  1.433  

>1400 0.000  0.000  4.0-6.0 0.221  0.419  
Slope 
gradient 
(°) 

<5 -2.408  -2.725  6.0-8.0 -0.367  -0.501  
5-10 -0.651  -0.750  8.0-10.0 -0.410  -0.464  
10-15 -0.276  -0.316  10.0-12.0 -0.214  -0.227  
15-20 -0.137  -0.154  >12.0 -0.709  -0.731  
20-25 0.108  0.120  Drainage 

density 
<4 -0.376  -0.434  

25-30 0.470  0.516  4-8 0.332  0.581  
30-35 0.806  0.875  8-12 -0.009  -0.014  
35-40 1.219  1.313  12-16 -1.154  -1.234  
40-45 1.555  1.646  16-20 -3.355  -3.373  
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45-50 1.951  2.032  20-24 0.000  0.000  
>50 2.301  2.389  Distance to 

fault (m) 
1000 0.721  0.807  

Aspect Flat 0.000  0.000  2000 1.370  1.562  
North -0.253  -0.290  3000 0.859  0.932  
NorthEast -0.278  -0.304  4000 0.667  0.705  
East 0.518  0.594  5000 0.122  0.127  
SouthEast 0.478  0.554  10000 0.304  0.393  
South -0.002  -0.002  15000 -0.408  -0.494  
SouthWes
t 

-0.069  -0.079  20000 -2.140  -2.341  

West -0.156  -0.181  25000 -4.604  -4.765  
NorthWes
t 

-0.297  -0.341  30000 0.000  0.000  

Profile 
Curvatur
e 

<-5 0.936  0.990  Lithology Deposits and 
terrace 

-1.517  -1.693  

-5 - -2 0.258  0.288  Sedimentary -0.601  -0.617  
-2 - 2 -0.335  -0.981  Metamorphic -2.353  -2.370  
2 - 5 0.556  0.632  Ultramafic 0.000  0.000  
>5 1.223  1.313  Volcanic 0.219  1.603  

Plan 
Curvatur
e 

<-5 1.230  1.287  Plutonic 0.000  0.000  
-5 - -2 0.643  0.721  Water 0.000  0.000  
-2 - 2 -0.236  -0.875  Normalize

d 
difference 
vegetation 
index 
(NDVI)  

<0.15 0.822  0.888  
2 - 5 0.314  0.347  0.15-0.30 -0.376  -0.475  
>5 0.864  0.894  0.30-0.45 0.196  0.268  

Distance 
to 
sream(m) 

50 0.218  0.254  0.46-0.60 -0.120  -0.152  
100 -0.195  -0.218  >0.60 -0.032  -0.042  
150 -0.525  -0.574  PGA (g) <=0.3 -3.378  -3.595  
200 -0.507  -0.550  0.3-0.4 -1.728  -2.012  
250 -0.280  -0.303  0.4-0.6 0.208  0.321  
300 -0.432  -0.461  0.6-0.8 1.002  1.592  
350 -0.240  -0.256  >0.8 0.000  0.000  
400 0.139  0.148  Terrain <4 -1.787  -2.175  
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450 0.232  0.246  roughness 4-8 -0.390  -0.509  
500 0.222  0.233  8-12 0.033  0.042  
1000 0.472  0.607  12-16 0.939  1.151  
1500 -0.287  -0.289  16-20 1.830  2.058  
2000 0.000  0.000  >20 2.262  2.315  

As for the weight of evidence method (WoE), generally, it showed the same 
trends with the information value method. The highest value of weights occurred in 
the class of 200-400 meters in elevation, greater than 50°and east facing slopes. 
The lithology map is one of the predictive factors that have direct impacts on 
landslide occurrence. For the lithology group, the highest weights of 1.603 was 
obtained in the class of volcanic rocks. In terms of the triggering factors, the class 
of 0.6-0.8g gave the highest weights of 1.592. The result showed that for a terrain 
with higher roughness, it is more susceptible to landslides. For the stream power 
index and terrain wetness index, the high weights occurred in the area with higher 
values, both in negative and positive. The results also indicated that areas where it 
is more curved both in profile and plan were more susceptible to landslides. For the 
factors produced from buffering of distance to the fault, it also a decreasing 
tendency of possibilities of landslide occurring with the increase of the distances. 
As a comparison, the highest weights was produced by the class of 500-1000m. 

6.5.3 APPLICATION OF THE MULTIVARIATE METHODS (LR AND SVM) 
After analysis of effects of each subclasses within each factor, the next step to 

perform the landslide hazard mapping using the proposed combined methods is the 
perform the multivariate analysis using the logistic regression and support vector 
machine method. As stated in chapter 3, in the combined method, the value of the 
independent landslide predictive factors was replaced by the obtained weights 
(information values) according to the classes it belongs to (Figure 6-6). 
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Figure 6-6 Flow chart of the proposed combined methods 

The LR coefficients for the three methods are listed in Table 6-2. One is for 
the LR single method, in which the categorical factors of aspect and lithology were 
excluded. For the combined method of LR-IV and LR-WoE. The calculated 
information value or the weight were used to replace the factor values. As can be 
seen in Table Table 6-2, PGA and slope gradient showed the high and positive 
correlation with landslide occurrence as it could acquire the highest LR coefficient 
of 0.122 and 0.022. Similarly, TWI, terrain roughness and drainage density are the 
other effective conditioning factors, by the LR coefficient of 0.018,0.016 and 0.013 
respectively.  

Table 6-2 LR Coefficients for different models 
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No. Factor LR Coefficient 
LR Single LR-IV LR-WoE 

1 Slope gradient 0.022 0.055 0.087 
2 Aspect -- -0.006 0.001 
3 Elevation 0.003 0.012 0.010 
4 Plan curvature -0.103 0.113 0.098 
5 Profile curvature -0.098 0.109 0.087 
6 Terrain roughness 0.016 0.009 0.110 
7 Lithology unit -- 0.014 0.016 
8 Distance to seismic fault -0.035 -0.021 -0.018 
9 SPI -0.05 0.010 0.009 
10 TWI 0.018 0.019 0.016 
11 Drainage density 0.013 0.008 0.013 
12 Distance to stream -0.011 -0.008 -0.010 
13 NDVI -0.014 -0.011 -0.015 
14 PGA 0.122 0.214 0.131 
15 Constant -19.742 -8.764 -6.954 

As for the combined method of LR-IV, PGA and plan curvature also showed 
the high and positive correlation with landslide occurrence as it could acquire the 
highest LR coefficient of 0.214 and 0.113. And the factor of profile curvature, 
elevation, terrain roughness and drainage density are the other effective 
conditioning factors, by the LR coefficient of 0.109, 0.012, 0.009 and 0.008 
respectively. As for the method of LR-WoE, the factor of PGA and terrain roughness 
showed that highest positive correlation with landslide occurrence with the 
coefficient of 0.131 and 0.110, other factors with positive correlation of landslide 
are slope gradient and plan curvature. Finally, the landslide probability map can be 
calculated using Eq. (3-6) and Eq. (3-7). Similarities, by combining the methods of 
IV and WoE with the SVM method, we can also obtain the probability maps of 
landslide occurrence. As stated previous in chapter3, the SVM gives the implicit 
expressions of the correlations between landslide occurrence and its predictive 
factors, it is impossible to tell which predictive factor is more important in landslide 
occurrence.  

6.5.4 RESULTS AND VALIDATION 
Finally, the probability indexes for the three methods were calculated which 

range from 0 to 0.971 for LR single method, 0.002 to 0.998 for LR-IV method and 
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0 to 0.99 for LR-WoE method. While the probability indexes’ range for the SVM 
single, SVM-IV and SVM-WoE were 0 to 0.993, 0 to 0.972 and 0-0.981, 
respectively. In order to perform LHM, the probability map should be divided into 
different categories. In the chapter, it is possible to see different types of 
classification schemes such as standard deviation, quantile, natural break and equal 
interval. In the current study, in order to compare the different maps with a same 
scale, the breaks were manually-divided into five classes of landslide hazard levels 
as: very low (0–0.10), low (0.10–0.30), medium (0.30–0.50), high (0.50–0.70) and 
very high (0.70–1). The validation has been done by comparing the landslide data 
with the produced landslide probability map and the validation results were given 
in Table 6-3. 

Table 6-3 Validation and comparison of the obtained landslide hazard maps. 
No. Method Success 

Rate 
False-Alarm Rate Miss- Alarm-Rate 

1 IV 65% 33% 30% 
2 WoE 69% 28% 24% 
3 LR 64% 42% 35% 
4 SVM 71% 29% 32% 
5 LR-IV 79% 23% 22% 
6 LR-WoE 74% 31% 19% 
7 SVM-IV 84% 26% 21% 
8 SVM- WoE 81% 28% 31% 
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Figure 6-7 LHM using the LR-IV method 

Based on the validation results, the combined method of LR-IV gives the 
lowest false-alarm rate of 23%, followed by the combined SVM-IV and WoE 
methods of 26%, and 28%, respectively. As for the Miss-alarm rate, lowest 19% of 
the landslides occurrences were not successfully predicted in the SVM-IV method, 
followed by the methods of LR-WoE and LR-IV of 21% and 22%, respectively. 
Therefore, based on a general consideration of the comparison results of false-alarm 
rate and miss-alarm rate. The combine methods of LR-IV and LR-WoE gives the 
best results, showing in Figure 6-7 and Figure 6-8. 
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Figure 6-8 LHM using the LR-WoE method 

Based on the landslide hazard maps, most parts of the study area are located 
in very low and low hazard zones. The high and very high landslide hazard areas 
acquired from the maps covered 6.4% in LR-IV method and 9.8% in LR- WoE of 
the area and mostly it is located in the central parts of the study area, especially 
around the Aso volcano. The area which contained volcanic ash, very high elevation 
and steep slopes was classified as the high and very high hazard zones. The acquired 
landslide probability map showed that the probability of landslide occurrence is 
large in high slope and high elevated areas.  

6.6 LANDSLIDE HAZARD MAPPING USING GEOLHM-P 
6.6.1 PGA ESTIMATION OF THE STUDY AREA 

At 16:25 on April 15, 2016 (UCT), a large shallow crustal earthquake ( wM
7.1) occurred beneath Kumamoto city in the Kyushu region, Japan. A moderate 
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foreshock ( wM  6.1) at 21:26 on April 14, 2016 (UTC) stroke the same region. 
According to F-net moment sensor solution, the hypocenters of the mainshock and 
foreshock located at the Futagawa and Hinagu fault zones, two active right-lateral 
strike-slip faults in the Kyushu region, respectively. There are more than one 
thousand aftershocks with the intensity above one occurred at the Kumamoto 
prefecture and its vicinity. The aftershocks with the moment magnitude more than 
5.0 are shown in Figure 6-9. Peak ground acceleration (PGA) is recorded as much 
as 1362cm/s2 at station KMM16 with the epicenter distance of 2km. Strong ground 
motions of the 2016 Kumamoto earthquake sequence caused at least 49 fatalities 
and about 1700 injuries. Numerous structures were damaged seriously or even 
collapsed during the earthquake sequence. In particular, Kumamoto Castle, one of 
the most popular tourist destinations in Kumamoto prefecture, suffered destructive 
damage to roofs and stone walls. Besides, numerous landslides were induced 
around the mountain area in the Kyushu region. For example, the Great Aso Bridge 
in Minami Aso village were swept out by a landslide and collapsed into the river. 
Although two dense strong-motion seismograph network (K-NET and KiK-net) are 
installed and operated in Japan, there are no strong-motion instruments in some 
regions suffered heavy damage. Ground-motion simulations for the 2016 
Kumamoto earthquake have important implications, not only for seismic hazard 
assessment, such as the slope stability analysis and landslide run-out estimation, but 
for response spectrum analysis of structures in the damaged regions. 
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Figure 6-9 Seismicity in and around Kumamoto Prefecture, Kyushu during 26 

March to 25 April, 2016 located by the High-sensitivity seismic network (Hi-net) 
operated by the National Research Institute for Earth Science and Disaster 
Resilience, Japan (http://www.hinet.bosai.go.jp/). (Zhao, et al, 2016) 

 
Figure 6-10 Flowchart of PGA estimation 

Because of the Active subduction, seismic and volcanic activities are very  
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Table 6-4 Parameters used in the GeoLHM-P to predict the PGA values 
Input Parameter Value or code 
Region Italy and Japan 
Magnitude Mw5.0-Mw7.5 
Mechanism Strike-Slip 
Miu-Vs30  Japan 
Vs30 data From JSHIS 
Fault Plane Futagawa fault 

Hinagu fault 
In this chapter, we take the Futagawa and Hinagu fault as the active fault and 

assumed the different earthquakes on these two fault to estimate the PGA values 
(Table 6.2). for the Vs30 data, it was downloaded from the Japan seismic hazard 
information station(JSHIS) (http://www.j-shis.bosai.go.jp/). The general flowchart 
of the PGA estimation is illustrated in Fig.6.9. 

 
Figure 6-11 PGA values estimated from earthquakes happened on the 

Futagawa fault 
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Figure 6-12 PGA values estimated from earthquakes happened on the Hinagu 

fault 
6.6.2 DATA PROCESSING 

The biggest challenges for the pseudostatic procedure are the selections of 
appropriate seismic coefficient and acceptable factor of safety. According to the 
report published by the International Commission of Large Dams (ICOLD) the 
horizontal seismic coefficients range from 0.1 to 0.15 and the minimum factors of 
safety range from 1.0 to 1.5. The same report also shows that in the United States, 
seismic coefficients have ranged from 0.05 to 0.15, whereas in Japan the 
coefficients have been less than about 0.2 (Seed 1979). The Corps of Engineers 
Manual (EM-1110-2-1902) published in 1982 recommended a seismic coefficient 
value of 0.1 or 0.15 where earthquake threat is major and great, respectively, 
together with a minimum safety factor of 1.0 for all earthquakes. At issue with all 
of these values of seismic coefficient is that they were arbitrarily selected and do 
not rigorously account for the level of expected shaking. Marcuson and Franklin 
(1983) and Hynes-Griffin and Franklin (1984) related the seismic coefficient value 
for a dam to the expected peak ground acceleration (PGA) at a site. Marcuson and 
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Franklin (1983) recommended a seismic coefficient of 1/3 to 1/2 of the PGA at the 
crest of a dam, whereas Hynes-Griffin and Franklin (1984) recommended a seismic 
coefficient of 1/2 of the PGA of bedrock (PGArock) with a minimum FS of 1.0 and 
a 20% reduction in shear strength. Bray et al. (1998) also related the seismic 
coefficient to the PGA on the bedrock (0.75 ×  PGArock). This value is 
appropriate for seismic stability evaluations of solid-waste landfills, where the 
allowable levels of deformation are relatively small. Stewart et al. (2003) used the 
data of Bray and Rathje (1998) to develop an expression for the seismic coefficient 
in terms of ground motion parameters (PGA and duration) and earthquake 
magnitude (Mw). These seismic coefficient values generally range from 0.25 × 
PGArock to 0.75 × PGArock. In this study, we set the seismic coefficient as 0.50 
×  PGArock. In this chapter, 0.25 ×  PGArock was chosen as the seismic 
coefficient and factor of safety. 

Table 6-5 Distribution patterns of input parameters used in the probabilistic 
analysis 

Geology Unit C (kPa) Phi 
(°) 

Gamma 
（kN/m^3） 

Soil Thickness 
(m) 

Deposits and Terrace 0-5 8-15 15-18 10 
Sedimentary 5-15 15-25 18-20 10 
Volcanic 5-15 20-35 18-20 10 

A summary of the geotechnical parameters describing shear strength of the 
various soils found from in-situ analysis in the is given in Table 6.3 (Picarelli and 
Vinale 2007). The unit weight of the soil was selected as 18 kN/m3 and the fraction 
of slab thickness saturated was taken as 0.3. This parameter combination ensures 
that all statically stable slopes have yield acceleration values greater than zero. 

6.6.3 RESULTS AND VALIDATION 
In the GeoLHM-P modules, random numbers were generated to obtain the 

variables, mainly being geotechnical parameters; these variables were entered in 
the calculation of dynamic factor of safety (DFS). In the method proposed, random 
numbers were generated to obtain the variables, mainly being geotechnical 
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parameters; these variables were entered in the calculation of displacement. The 
simulations ran 2000 times and calculated 2000 DFS values for each grid cell. The 
DFS mean and standard deviation were calculated, and its probabilistic distribution 
can be obtained. Given a certain threshold value of DFS, estimated probabilities of 
DFS exceeding a threshold value were then shown as a map of seismic landslide 
hazard. 

For the threshold value of DFS, according to the report published by the 
International Commission of Large Dams (ICOLD), the minimum factors of safety 
range from 1.0 to 1.5. The Corps of Engineers Manual (EM-1110-2-1902) published 
in 1982 recommended a minimum safety factor of 1.0 for all earthquakes. Hence, 
as a DFS of 1.2, corresponding to a failed rate of 32.4%, was determined for the 
threshold value of DFS, and the probability of DFS less than 1.2 was then mapped 
in Fig. 6.9. This resulting seismic landslide hazard was classified into five 
categories: very low (0-0.10), low (0.10–0.30), moderate (0.30-0.50) high (0.50-
0.70) and very high (0.70-1.0). 

By inputting the measured PGA map, we can obtain the landslide hazard maps 
from the real earthquake scenario of the 2016 Kumamoto earthquake. Here, we 
assumed that all the landslides were triggered by the main shock of Mw7.0 and 
don’t consider the cumulative effects of the following aftershocks (Figure 6-12). 
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Figure 6-13 Landslide hazard maps by considering the real earthquake 

scenario of the main shock of the 2016 Kumamoto Earthquake (Mw7.0) 
Table 6-6 Validation result of landslide hazard map produced using 

GeoLHM-P with the real earthquake scenarios of the 2016 Kumamoto Event 
No. Method Success Rate False-Alarm Rate Miss- Alarm-Rate 
1 Physically-Based 68% 38% 22% 

It can be seen that 22 % of the total area was classified as having very high 
hazard, and the high-hazard zones were predicted to include 18% of the area. In the 
resulting map, it was also shown that about 38% of areas with landslide occurrence 
were classified as medium levels of landslide hazards.  

Comparing with the results obtained from the statistical methods, the 
physically-based methods doesn’t give a better result. Also the miss-alarm rate of 
this method is 22%, the false-alarm rate of 38% was higher than all the statistical 
methods. Compared with the actual landslides, moreover, it was demonstrated that 
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the result seems to be over conservative since several locations were mistakenly 
classified to be areas not prone to landsliding after the earthquake occurrence. 
Nevertheless, the biggest advantage of the physically-based methods over the 
statistical methods is that, no historical landslide information is needed and fewer 
data such as the predictive factors are used in this method. Also, by considering the 
triggering force of seismic directly, this method can be used to produce landslide 
hazard maps from future assumed earthquakes. By considering the different PGA 
maps estimated from different assumed earthquakes, a series of landslide hazard 
maps were produced as shown in Figure 6.14 and Figure 6.15. 

 
(a) Landslide hazard maps with PGA estimated from an earthquake from Mw5.0 on the 

Futagawa fault 
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(b) Landslide hazard maps with PGA estimated from an earthquake from Mw6.0 

on the Futagawa fault 
Figure 6-14 Landslide hazard maps with different PGA inputs estimated from the 
Futagawa fault 

 
(a) Landslide hazard maps with PGA estimated from an earthquake from Mw5.0 

on the Hinagu fault 
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(b) Landslide hazard maps with PGA estimated from an earthquake from 

Mw6.0 on the Hinagu fault 

 
(c) Landslide hazard maps with PGA estimated from an earthquake from Mw7.0 

on the Hinagu fault 
Figure 6-15 Landslide hazard maps with different PGA inputs estimated from the 

Hinagu fault 
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6.7 LANDSLIDE HAZARD MAPPING CONSIDERING THE AFFECTED AREA 
In the previous sections, although all the methods were capable to identify the 

landslide-prone slopes, the landslide affected area were not included. In this section, 
we use the GeoLHM-R to estimate the affected area of landslides. Generally, three 
data are required in the developed module. One is the landslide source area, the 
second is the frictional coefficient and the third is the terrain surface. In this section, 
the landslide source area was rasterized from the landslide polygons in the landslide 
inventory in GIS. For the post-earthquake terrain surface, it was derived from the 
Alos-2 InSAR satellite image provided by Li (2016), which covers the Minami Aso 
City of the study area. Therefore, we choose the Minami Aso City as the study area.  

 
Figure 6-16 General lithological maps of the Minami Aso Mura 

6.7.1 DETERMINATION OF THE FRICTIONAL COEFFICIENT 
As previously stated in section 5.3 and section 5.4, we estimate the surface 
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frictional coefficient from the frictional angle of the lithology. Since it is impossible 
to estimate the frictional coefficient of landslides one by one at a large region, one 
of the possible method is to estimate the friction coefficient according to the 
lithology of the landslide. In this study, the study area into three groups as: Deposits 
and Terrace, Sedimentary and volcanic rocks. And by detailed analysing of three 
landslide cases triggered during the Kumamoto earthquake, we first back analyzed 
the frictional coefficient, then by using the back analysis result, we performed the 
regional landslide hazard mapping by considering the affected area.  

Table 6-7  Three cases used for back analysis of the friction coefficient 
Case Location Lithology  Friction 

angle(°) 
Friction 
coefficient 

Reference 
A 32°52′40″

N  
130 ° 56 ′

38″E 

Weathered Marine 
and non-marine 
sediments and soils 

10-18 0.18-0.26 Wartman et 
al. (2013) 

B 32°51′15″
N  
131°1′8″
E 

Deposits and 
Terrace 

8-15 0.14-0.27 Hansen 
(1984) 

C# 32°53′8″
N  
130 ° 59 ′

10″E 

Volcanic ashes, 
weathered volcanic 
rocks and deposits 

14-20 0.25-0.36  Sassa et al. 
(2005) 

# For case C, please refer to chapter 5 

   
(a)                           (b) 

Figure 6-17 (a) Pre- and (b) Post-Earthquake image of the landslide case A. 
Red boundary shows the runout extent of the landslide. The blue line shows the 
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landslide prone areas according to the Act on Sediment Disaster Countermeasures 
for Sediment Disaster Prone Areas 

 
Figure 6-18 Landslide source area showing in red polygon 

 
(a)        μ = 0.20                      (b) μ = 0.22 
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(c)     μ = 0.24                        (d) μ = 0.26 

 
(e)  μ = 0.28                  (f) μ = 0.30 

Figure 6-19 Back analysis of the friction coefficient of landslide case A. Red 
boundary shows the runout extent of the landslide. The yellow region show the 

result of landslide affected area 
Based on the back analysis results indicated in Figure 6-19. A best fir friction 

coefficient of 0.22 was adopted for the Weathered Marine and non-marine sediments and 
soils. 
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Figure 6-20 (a) Pre- and (b) Post-Earthquake image of the landslide case B. 

Red boundary shows the runout extent of the landslide. The blue line shows the 
landslide prone areas according to the Act on Sediment Disaster Countermeasures 

for Sediment Disaster Prone Areas 

 
Figure 6-21 Landslide source area showing in red polygon 
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(a)    μ = 0.16                                      (b) μ = 0.18 

 
(c)μ = 0.20                          (d) μ = 0.22 

Figure 6-22 Back analysis of the friction coefficient of landslide case B. Red 
boundary shows the runout extent of the landslide. The yellow region show the 

result of landslide affected area 
Similarity, based on the back analysis results indicated in Figure 6-20. A best 

fir friction coefficient of 0.18 was adopted for deposits and terrace. 

6.7.2 REGIONAL LANDSLIDE AFFECTED AREA SIMULATION 
Theoretically, in the landslide runout simulation of the landslide affected area, 

it need to investigate the frictional coefficient case by case. However, for regional 
simulation, in which, a large number of cases should be simulated at the same time. 
It is impossible to carry out such detail in-site investigations. Therefore, for the 
regional simulation, one of the possible way to determine the friction coefficient is 
to estimate it according to its lithological compositions. One of the biggest 
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shortcoming of such estimation is the big uncertainties lie in the lithological 
compositions and the geological and hydrological conditions, such as the weather 
degree, the water content and so on. 

Table 6-8 Friction coefficients used in the simulation 
Geology Unit Frictional coefficient  

Deposits and Terrace 0.18 
Sedimentary 0.22 
Volcanic 0.30 

By back analysis of existing landslides to infer the frictional coefficient is one 
of the possible way suggested in the GeoLHM-R to estimate the frictional 
coefficient. In the practical case, the landslide source area was rasterized from the 
landslide polygons in the landslide inventory in GIS. For the post-earthquake terrain 
surface, it was derived from the Alos-2 InSAR satellite image provided by Li (2016), 
which covers the Minami Aso City of the study area. The frictional coefficient of 
the study area was adopted from the back analysis results in the last section (Table 
6-5). 

 
(a) Landslide sources 
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(b) Affected area  

Figure 6-23 Landslide hazard maps considering the landslide affected area at the 
Minani Aso City 

Firstly, the landslide source area was rasterized from the landslide polygons in 
the landslide inventory generated in the section 6.4. Then, a raster map of frictional 
coefficient was generated by rasterizing the geological map of the area, in which 
each cell had been assigned a frictional coefficient according to its lithological 
group. Finally, by loading the post-earthquake terrain raster, the potential landslide 
affected area was simulated in the GeoLHM-R module. 

6.7.3 RESULTS AND DISCUSSIONS 
The results of the landslide affected area simulated using the GeoLHM-R was 

shown in Figure 6-23b. The total plane area (defined as the projected area of the 
landslides on the horizontal surface) of the landslide source was 823,462 m2. But 
considering the landslide affected area, the total area of the landslide extent 
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increases up to 1,515,417 m2.  
Landslide hazard mapping considering both the landslide-prone slope 

identification and runout simulation have long been the key issues in Japan. In order 
to mitigate the landslide disaster, a low with the name of Act on Sediment Disaster 
Countermeasures for Sediment Disaster Prone Areas was enacted in Japan, 2001.  
In this law, the dangerous zone or particular dangerous zone are specified in order 
to take countermeasures for these zones. Here is the dangerous zone from the toe 
of the slope. It is identified as 2 times of the height of the potential landslide slope 
but less than 50 meters. 

 
Figure 6-24 Commonly used landslide hazard mapping methods in Japan 

The method suggested in this law was empirical and based on the previous 
statistical results of landslides happened in Japan. Obviously, this method has some 
limitations in practical use. As indicated in Figure 6-18 and Figure 6-20, the 
estimated runout zones according the suggested method in the law were obviously 
less than the real situations. Another limitation of this method in practical use of 
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large region is that it is impossible to identify a slope unit in GIS and the real terrain 
topography was ignored, which is very important in landslide affected area 
estimation. 

6.8 CONCLUSIONS` 
Earthquake is one of the main contributors in landslide occurrence which 

results in severe human casualties, property losses and environmental degradation. 
Earthquake induced landslides can cause extensive and significant damages to both 
lives and properties. The geographical condition of Kumamoto prefecture, Japan is 
formed by mountains that easily fall down especially after earthquake. A series of 
strong earthquakes with maximum magnitude of Mw 7.0 struck this region and its 
surrounding areas on April 14, 2016. Due to this earthquake a huge number of 
landslides happened in the Aso region of this area. Therefore, there is a great need 
for the local governments to investigate an appropriate and rapid solution to detect 
the landslide hazards in this region. We proposed a practical application of the 
developed system GeoILHMS to facilitate such a need. Some conclusions can be 
drawn as follows: 

(1) An inventory of 665 landslides triggered by the 2016 Kumamoto 
earthquake was visually mapped using the online high-resolution images 
and developed tools. 

(2) Landslide hazard maps are produced by using each of statistical methods 
available in the GeoLHM-S. Validation result of these methods show that 
the combined method of LR-WoE show the minimum miss-alarm rate of 
19%, but is also shows a false-alarm rate of 31%, followed by the 
combined method of IV-SVM with a miss-alarm rate and false-alarm rate 
of 21% and 26% respectively. 

(3) From the landslide hazard maps obtained using these statistical models, it 
can be seen that the region around the Aso volcano and its surroundings 
have several areas with high hazard ratings. This is likely due to the fact 
that these regions have abundant steep slopes, weathered volcanic rocks 



 

 190

and steep surface. 
(4) Landslide hazard map was also produced using the GeoLHM-P module 

with different PGA maps. Although the accuracy of this landslide hazard 
maps was less than the statistical methods with a miss-alarm rate of 22% 
and a false-alarm rate of 38%. The main advantage of this approach is it 
can be used for regions without historical landslide inventory. 

(5) Landslide hazard maps with expected earthquakes of different magnitudes 
of Mw 5.0, Mw6.0 and Mw7.0 occurring along the Futagawa fault and the 
Hinagu fault are produced by using the GeoLHM-P. These landslide hazard 
maps can be served as a reference for prevention of landslides triggered by 
assumed earthquakes that may happened in the future. 

(6) A landslide hazard map of the Minami Aso Mura showing the affected area 
of landslides was produced using the GeoLHM-R. Since it is hard to assign 
friction coefficients to each landslide individually, we grouped the study 
area into three regions based on the lithological maps. For each region, the 
friction coefficient was determined by a reduction of the friction angle of 
the rocks. 

(7) The produced landslide hazard provides essential frameworks for the 
development planning and reconstruction of the study area as they present 
a spatial division of the study area of different levels of potential landslide 
threat, including the landslide prone areas and the potential affected areas. 
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CHAPTER  7 

7 CONCLUSIONS AND FUTURE STUDIES 
7.1 CONCLUSIONS 

Landslide is one of the serous natural hazards around the world. As one of the 
most important and effective disaster prevention measures, landslide hazard maps 
plays an important role in regional landuse planning and  

The following major conclusions can be drawn: 
(1) A method for effectively mapping of landslide inventory is proposed by 

using on-line high-resolution online images. In the proposed method, some 
Criteria were also defined for visual interpretation of landslides; 

(2)  Four widely-used statistical landslide hazard mapping methods 
Information Value (IV), Weight of Evidence (WoE), Logistic Regression 
(LR), and Support Vector Machine (SVM) are used to produce the 
landslide hazard maps, the merits, demerits and limitations of each method 
are clarifed based on a close comparison between the four methods. 
Generally, all of the four methods shows an acceptable accuracy according 
to the test results on the landslides triggered by the 2013 Lushan 
earthquake in China. 

(3) Although several validation methods exist, in this chapter, a validation 
method based on the cross-table of the landslide inventory and its predicted 
status was employed, since it can give a clear engineering sense. To 
compare different landslide hazard maps, the miss-alarm rate and false-
alarm rate are suggested as the main index to evaluate the performance or 
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he landslide hazard maps. 
(4) Accurate determination of the landslide cells in statistical LHM is very 

important, a sensitive analysis was carried out to test the effects of 
threshold landslide coverage on the landslide hazard maps. The result 
shows that, as the threshold values increase, no obvious effect found on the 
success rate, however both the miss-alarm rate and miss-alarm rate will 
increase. Generally, a 10% of the threshold percentage is recommended in 
this study. 

(5) Four new methods are proposed by combining one of IV and WoE methods 
with one of the LR and SVM methods to improve the accuracy of the 
model. The validation results show that the combined method could 
improve the accuracy of the landside hazard maps. 

(6) A method for estimate PGA values of each cell a specified fault or the 
target fault at a region scale is propose based on the on the Next Generation 
of Ground-Motion Attenuation Models for the western United States 
(NGA-West2). 

(7) Landslide hazard maps considering different assumed earthquakes are 
produced by using the pseudo-static method based on an infinite slope 
stability model and the PGA values. 

(8) A run-out simulation technique is developed based on modified multiple 
flow algorithm and the law of conservation of energy. In the proposed 
technique, the elevation difference between cells is taken into account for 
determining the possible directions towards which the landslide can move 
with a certain probability. The law of conservation of energy is used to 
determine the distance of sediment movement.  

(9) One of its main advantages of the proposed module lies in its low data 
requirement, only the DEM data and potential source are needed for runout 
prediction. This makes is possible to be applied to predict the landslide 
affected area at the regional scale. The proposed technique and the 
developed module had provided a solution to fill the gap exists in landslide 
prone slope identification and affected area estimation. 
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(10) The practical example of the GeoLHM-R shows that the maximum 
runout distance and extent were largely depended on the surface friction 
coefficient. It is suggested that frictional coefficient can be obtained either 
by inferred from the lithology map or by back-analysis of existing 
landslide cases. However, once the potential landslide source is identified 
and proper frictional coefficient values is determined, reliable landslide 
effected area can be mapped. 

(11) A practical case of developed system was carried out to analysing 
landslide triggered by the 2016 Kumamoto earthquake. The produced 
landslide hazard provides essential frameworks for the development 
planning and reconstruction of the study area as they present a spatial 
division of the study area of different levels of potential landslide threat, 
including the landslide prone areas and the potential affected areas. 

7.2 FUTURE STUDIES 
(1) An effort of landslide inventory mapping should be encouraged in the future 

study both in the same place and different places. The fully documented 
landslide database will enable scientists to more accurately establish the 
relationship between landslides events and both its triggering factor and 
controlling factor which will be very useful to understand the physical behavior 
of landslides 

(2) Currently, most of the landslide hazard maps are relative static, Therefor, with 
the development of GIS technologies, the real time warning of landslide hazard 
through Web-GIS and mobile-GIS technologies should be greatly encouraged. 

(3) Future research should also place an emphasis on rock slope stability 
investigations. This would include geological and discontinuity mapping to 
provide the necessary input data for stability analyses. The collection of data 
would ideally involve rock mass characterization and the sampling of rock 
materials for laboratory analysis (i.e. Strength and constitutive behavior 
determination), field observations and in situ measurements. In situ monitoring 
of spatial and temporal variations in pore pressures, slope displacements, 
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stresses and subsurface rock mass deformations can also provide valuable data 
for constraining and validating the stability analyses undertaken. 

(4) Robust, less time consuming, less computational cost simulation technique 
which employ the shape of the landslide masses and contact between landslide 
masses and ground surface is encouraged in order to produce “more physically 
sound” landslide affected area prediction. 

(5) Further studies should also employ the high accuracy of DEM, i.e. LIDAR data 
to obtain better accuracy of simulation and zoning. 
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