# ヘリコン波によるプラズマ生成

**宮本,健** 九州大学大学院総合理工学研究科高エネルギー物質科学専攻

河合, 淳

横河電機株式会社 | 九州大学大学院総合理工学研究科高エネルギー物質科学専攻

小森, 彰夫 九州大学大学院総合理工学研究科高エネルギー物質科学専攻

河合, 良信 九州大学大学院総合理工学研究科高エネルギー物質科学専攻

https://doi.org/10.15017/17709

出版情報:九州大学大学院総合理工学報告. 10(1), pp.31-36, 1988-06-30. 九州大学大学院総合理工学 研究科 バージョン:

権利関係:

## ヘリコン波によるプラズマ生成

宮本健\*・河合淳\*\*・小森彰夫\*\*\* 河合良信\*\*\*

(昭和63年2月29日 受理)

### **Plasma Production by Helicon Waves**

### Takeshi MIYAMOTO, Jun KAWAI, Akio KOMORI and Yoshinobu KAWAI

A high-density plasma of about  $10^{13}$  cm<sup>-3</sup> is realized by using radio-frequency (RF) waves. It is experimentally shown that efficient coupling of RF power to a plasma is possible with helicon waves because of the good match between parallel phase velocity and electron thermal speed.

#### 1. 緒 言

現在, プラズマ物理やプラズマ化学, 核融合などの 分野で, 高密度プラズマを生成する研究が進められて いる. 核融合研究においては, プラズマの閉じ込めを 研究する上で, 高密度・高ベータプラズマの振舞いを 解明することが不可欠である. また, プラズマエッチ ングやプラズマ CVD (Chemical Vapour Deposition) 等で代表されるプラズマの工学的応用分野においても, 高密度反応性プラズマを研究することが重要な課題と なっている.

最近,高密度プラズマの新しい生成法として, Boswell<sup>11, 2)</sup> や Chen<sup>3</sup> によって,ヘリコン波(ホイッ スラー波)を利用した方法が提唱された.ヘリコン波 によるプラズマ生成法の利点は,マイクロ波(数 GHz)を使用した ECR (Electron Cyclotron Resonance)による生成法に比べ,使用する周波数(数 MHz~数10MHz)が低いため安価な大出力高周波電源 を使用できること,しかも広い磁場領域でプラズマを 生成できることなどにある.従って,この方法で生成さ れたプラズマは,核融合の基礎研究やプラズマエッチ ングなどの工学的分野で利用できるものと考えられる. Boswell は,750Gaussの磁場中に置かれた,直径 10cm, 長さ 120cm の容器内に, 8.8MHz, 180W の高 周波によって, 密度が 10<sup>12</sup>cm<sup>-3</sup> 以上のほぼ完全電離 したアルゴンプラズマを生成できることを実験的に示 した<sup>11, 2)</sup>. また, Chen は, プラズマ中に励起された ヘリコン波のランダウ減衰により, 電子が波からエネ ルギーを得ることによって, プラズマが生成されるこ とを理論的に明らかにした<sup>3)</sup>. Boswell は, 励起され るヘリコン波の波長はアンテナの長さで決定されると しているが<sup>11, 2)</sup>, その場合ヘリコン波のランダウ減衰 は非常に小さくなるため Chen の理論ではプラズマの 生成機構を説明することができない.

本論文では、ヘリコン波を用いてプラズマ生成し、 プラズマの生成機構を解明する研究を行った。特に、 ヘリコン波の波長を実際にプラズマ中で測定し、励起 された波の分散や波の位相速度と電子の熱速度の関係 波長とプラズマ密度の関係等を求めることができたの で詳しく報告する.

#### 2. 理論的検討

ヘリコン波は、その周波数がイオンのサイクロトロ ン周波数 $\omega_{ci}$ と電子のサイクロトロン周波数 $\omega_{ci}$ の中 間の領域に存在し、磁力線に沿って伝播する右回り円 偏波の電磁波である $^{(1,5),6)}$ . ヘリコン波の分散式は、 円筒モードの場合、

$$\left(\frac{\omega e n_0 \mu_0}{k B_0}\right)^2 = k^2 + \left(\frac{P'_{mn}}{a}\right)^2 \tag{1}$$

<sup>\*</sup>高エネルギー物質科学専攻修士課程

<sup>\*\*</sup>高エネルギー物質科学専攻修士課程(現在横河電機㈱)

<sup>\*\*\*</sup>高エネルギー物質科学専攻

となる<sup>31</sup>. ここで, k は磁場方向 (z 方向) のヘリコン 波の波長を,  $n_0$  はプラズマの密度を,  $B_0$  は磁場の値を, a はプラズマの半径をそれぞれ表わしている. また,  $P'_{nn}$  は第1種ベッセル関数  $J_m(x)$  の微分  $dJ_m(x)/dx$ が零となる第 n 番目の x の値を表わしている. 例え ば,  $P'_{11}$  は, 1.84,  $P'_{12}$  は5.36である. 比較的細い プラズマの場合  $P'_{nn}/a \ge k$  が成り立つため, (1) 式 は

$$n_0 = \frac{P'_{mn}}{a} \quad \frac{kB_0}{\omega \, e \, \mu_0} \tag{2}$$

となる.減衰率は,

$$\frac{Im(k)}{Re(k)} = 2\sqrt{\pi} \frac{c^2}{\omega_p^2} \left(\frac{P'_{mn}}{a}\right)^2 \zeta^3 \exp(-\zeta^2) \quad (3)$$

で与えられる. ここで, c は定数で

$$\zeta = \omega / k v_{th}$$
$$\omega_p^2 = 4 \pi n_0 e^2 / m_e$$

 $v_{th} = \sqrt{2KT_e/m_e}$ 

である. 但し, Re(k) を単に k と記述してある.

ヘリコン波は、 伝播方向に対して垂直な電界が右回 りに回転し、伝播方向の電流 Jz が螺線状に伝播して いく電磁波である.従って、磁場方向と方位角方向 (θ方向)の両方の成分を持つようなアンテナ,例え ばヘリカルアンテナに、周波数がω<sub>ci</sub>≪ω≪ω<sub>ce</sub>の領 域にある高周波を印加して、ヘリコン波をプラズマ中 に励起することができる. 方位角方向の波のモード数 *m* が1の波を励起する場合、2本の導線を螺線状にね じったアンテナが必要である.この場合、まずアンテ ナ中を流れる電流 J によってプラズマ中にこれと逆 方向の電流-J,が誘導され、この電流の電場 E, で磁 場方向に電子が加速される. 方位角方向に180 離れた 場所、あるいは、磁場に沿って半ピッチ離れた場所で は、加速される方向が逆になるため、加速された電子 が磁場に沿って移動することにより、プラズマ断面に は正負の電荷が現われる.従って半径方向(r方向) に電場 E, が形成される. また, アンテナが螺線状の 構造をしているため, θ 方向の成分が生じ, 電界は伝 播方向に向かって右回りに回転する.

プラズマは、中性気体中にわずかに存在する電子が ヘリコン波によって生じた c 方向の電界で加速され てエネルギーを増し、中性分子に衝突して電離を起こ すことによって生じるものと考えられる.

#### 3. 実験装置

実験装置の概略図を Fig. 1 に示す. 磁場は Fig. 1 (a) に示されている様な一様磁場配位となっており, r=z=0 cm における磁場の値は 0.25-3kG である. 真空容器はステンレス製で, 直径 45cm, 長さ 170cm の円筒形をしている. この容器の片側に, 内径 5 cm, 長さ 50cm のパイレックス製の放電管が接続されてお り, 放電管の外側にはアンテナが置かれている. 真空 容器は6インチ拡散ポンプによって2×10<sup>-7</sup> Torr 以下 に排気される. 実験に使用したガスはアルゴンで, (2-10)×10<sup>-4</sup> Torr の圧力で実験を行った.

Fig. 1 (b) にプラズマ生成用アンテナの概略を示 す. アンテナは、パイレックスの放電管に幅 2.5cm の銅板を螺線状に半ターン巻いた構造をしている. こ のアンテナにより、m=1のヘリコン波を励起するこ とができる<sup>7)</sup>. アンテナの長さは、印加する高周波 (RF)を7MHzの正弦波として Boswell<sup>1)</sup>の実験か ら見積ったヘリコン波の半波長の長さ、即ち25cmと した. 7MHzの高周波は、小型の発振器に接続され た2台のプリアンプにより最大 30W まで増幅され、



ig. 1 (a) Schematic of experimental apparatus.
(b) The exciting antenna for azimuthal mode number m =1.

最終的には3kW まで増幅される. その後、増幅器と プラズマとのマッチングをとるために置かれた. 2000pF の真空バリコンとこれに接続されている 50Ω の同軸ケーブルを介して、アンテナから放射される. 高周波のパワーは、最終段のパワーアンプ部のパワー メータによって測定されるが、反射等による損失を考 えると、プラズマ生成に実際に使われるパワーは、パ ワーメータの表示よりも幾分少ないものと考えられる. 尚, 伝送系の過熱を防ぐために, 7MHz の高周波は, 84.5Hz で duty 5 の方形波パルスによって変調されて いる. 即ち2ms 発振し 10ms 休止するという発振形 態になっている.本研究では特に断らない限り、高周 波が発振し始めてから 1.5msec 後のプラズマパラ メータをボックスカー積分器を用いて測定した.

プラズマパラメータの測定は, 主に径方向および磁 場方向に可動なラングミュアプローブによって行い, プラズマ密度の測定には 35GHz マイクロ波干渉計も 使用した. また, ヘリコン波の波長は, 磁場方向に可 動な磁気プローブを用いて、干渉法により測定した. 一価と二価のアルゴンイオンから放出される光の強度 比は、一価のアルゴンイオンについては 347.67nm、ま た、二価のアルゴンイオンについては 334.47nm の波長 の光の強度を分光器を用いて測定することにより求めた.

#### 実験結果および考察 4.

Fig. 2 にプラズマの密度 n<sub>e</sub>と電子温度 T<sub>e</sub>の径方 向分布を示す. ここで, ガス圧 p は 8×10<sup>-4</sup> Torr,



Fig. 2 Radial profiles of plasma density  $n_e$  and electron temperature  $T_{e}$ 

RF のパワー  $P_{rf}$  は 0.7kW,  $B_0$  は 1.1kG である. r=0 cm は真空容器の中心を表しており、プラズマの中 心とほぼ一致している. この図から、電子温度は径方 向にほぼ一定で、電子密度もパイレックス放電管の壁 より内側の領域  $(|r| \leq 2.5 \text{ cm})$  では一様であること が分る. さらに, r=0 cm における電子温度の  $B_0$ , p, Prf 依存性を調べた結果,電子温度はこれらのパラ メータに依らず常に4-5eV であることが分った.

**Fig.3** は、 $p = 8 \times 10^{-4}$  Torr の時に得られた、r =0cm におけるプラズマ密度の磁場依存性を示してい る、この図から、プラズマの密度は、磁場が弱い領域 では磁場に比例して増加するが、磁場の値が~1.2kG を越えるとほぼ一定の値になってしまうことが分る.



**Fig. 3** Dependence of  $n_e$  on magnetic field  $B_{0}$ .



**Fig. 4** Pressure dependence of  $n_e$ .

圧力が8.0×10<sup>-4</sup> Torr の時, 常温(300K)の中性粒 子の密度は2.1×10<sup>13</sup>cm<sup>-3</sup>で、磁場が~1.2kG より強 い領域のプラズマの密度とほぼ一致している.従って, この領域では中性粒子が完全に電離しているものと考 えられる. Fig. 4 は、ガス圧を変化させた時のプラズ マ密度を表している.ここで、 $B_0$ は1kG、 $P_{rf}$ は 1.5kW である. この図でプラズマの密度は1.0×10<sup>-4</sup> Torr 付近まで圧力に比例しており, 圧力の低い領域 では、中性粒子が完全に電離していることを示してい る. 圧力が~1.0×10<sup>-4</sup> Torr より高くなるとプラズ マの密度は飽和してしまうが、これは、増え続ける中 性粒子を全て電離させるほど RF のパワーが大きくな いためであると考えられる. Fig. 5 はプラズマ密度 の  $P_{rf}$ 依存性を示している. ここで、pは8×10<sup>-4</sup> Torr である. パワーが 0.4kW 未満では、 プラズマ と RF とのマッチングをとることが難しく, プラズマ を生成することができなかった、このことから、プラ ズマと RF とのマッチングにはパワーに関してあるし きい値があるものと考えられる.また.磁場の値にも 依存しているが、完全電離(n\_~2.5×10<sup>13</sup>cm<sup>-3</sup>)が起 こるためには、ある程度大きなパワーを必要としてい ることが分る.

**Fig. 6** は、イオン飽和電流の径方向分布の磁場依存性を示している.ここで、pは $7 \times 10^{-4}$  Torr、 $P_{rf}$ は 1.1kW である.これらの径方向分布は、電子温度が一定であることから、電子密度分布と考えることが



**Fig. 5** Variation of  $n_e$  with RF power  $P_{rf}$ .



**Fig. 6** Dependence of radial density profile on  $B_0$ .

できる.. 0.45kG の時,電子密度はプラズマの中心よ りまわりが高い Well 型で,磁場が高くなると Hill 型 になり,高磁場領域 ( $B_0 \ge 1 \text{ kG}$ ) ではプラズマの中 心だけ密度の高い尖塔形の分布になっている. この傾 向は電場の  $E_z \ge E_r$  とのかねあいで説明できる. プ ラズマを生成する  $E_z \ge J_z$  は放電管の管壁付近で, また,プラズマの閉じ込めに影響を与える径方向電界  $E_r$ は,中心軸上で最大となっている. 従って,磁場 が弱い場合,径方向の密度分布に対する影響は、 $E_r$ による閉じ込めの効果に比べて  $E_z \ge J_z$  による生成 の効果の方が大きく,プラズマの密度分布は Well 型 になると考えられる. 逆に,磁場が強い場合は、 $E_r$ の効果が大きくなってプラズマは中心付近に閉じ込めら れるようになり、Hill 型の分布になるものと思われる.

**Fig. 7** は、一価(Ar II)と二価(Ar III)のアルゴ ンイオンから放射された光の強度比である. ここで、 p は 8 × 10<sup>-4</sup> Torr,  $B_0$  は 0.8kG である. 測定した波 長の光は遷移確率が同じであることから、強度比がそ のまま密度比に対応している. 従って、**Fig. 7** は、 パワーが 1 kW をこえると、入力パワーの増加にとも ない、僅かではあるが Ar IIIの割合が増加しているこ とを示している.

Fig.8 に,干渉法により得られた伝播波形を示す. 種々の実験条件下で伝播波形を求めた結果,図に示さ れている様に密度が増加すると波長が短くなり,波長



Fig. 7 The ratio of Ar II (347.67nm) line intensity to Ar III (334.47nm) line intensity for various  $P_{rf}$ 



Fig. 8 Spatial wave patterns of helicon waves measured with an interferometer. The vertical scale is linear.



Fig. 9 Plasma density  $n_e$  as a function of wavenumber-magnetic field product  $kB_0$ .

が約 22cm 時にプラズマの密度が最も高くなることが 分った、従って、今までプラズマ中に励起されるヘリ コン波の波長は高周波を印加するアンテナの長さで決 定されると考えられてきたが、実際にはアンテナの長 さで波長が決定されていないことが明らかになった. Fig.9 は、プラズマの密度を $kB_0$ の関数としてプロ ットしたものである. プラズマの密度は kBo に比例 しており、分散式(2)に従っていることが分る. (3) 式を周波数7 MHz, 電子温度 4.5eV として計算 すると、最も $\zeta^3$ exp( $-\zeta^2$ )が大きくなる波長は約 22cm で, 波の位相速度が電子の熱速度(v,) に等し くなる波長となっている.この値は、最も高い密度の プラズマ中で実験的に得られた波の波長と等しく、ヘ リコン波のランダウ減衰に依ってプラズマが生成され ていることを示している. 電子温度はアルゴンガスの 電離電圧の約3分の1であるが、電子の速度分布を考 慮すると、アルゴンガスは速度の速いテール部の電子 によって電離するものと考えられる.

磁場が非常に弱い領域 ( $B_0 \leq 50$  Gauss) でプラズマ を生成すると、プラズマの密度が 5×10<sup>10</sup> cm<sup>-3</sup> で電子 温度が 10eV 程度のプラズマが生成される. このプラ ズマのパラメータを (3) 式に代入して計算すると Im(k) が非常に小さいことから、このプラズマはラ ンダウ減衰によって生成されるのではなく、無共鳴の RF 放電で生成されるものと考えられる. ランダウ減 衰によってプラズマが生成される場合でも、RF が印 加された直後にはこのような低密度のプラズマが生成 されるものと思われる.従って,高密度プラズマが生成 される過程を詳細に議論することは難しいが,次の ような過程が考えられる.まず,最初に電子温度が 10eV程度で密度の低いプラズマがランダウ減衰に依 らない無共鳴 RF 放電で生成され,このプラズマ中に ヘリコン波が励起される.ヘリコン波は,プラズマを 生成しながら分散式を満たすようにその波長を変え, それと同時にプラズマの電子温度も変化する.最後に プラズマとヘリコン波は,最もプラズマの生成効率の 良い $\omega/k - v_{th}$ の関係を満たす状態,または,これに 近い状態となると考えられる.

最後に、大まかに生成効率を見積ってみる. 電子密度を2.1×10<sup>13</sup> cm<sup>-3</sup>、電子温度を4.5eV、閉じ込め時間を250 $\mu$ sec、プラズマの体積を4×10<sup>3</sup> cm<sup>-3</sup>とすると、プラズマの持つパワーPは、P=250Wとなる. 一方、高周波のパワーを1kWとすると、生成効率は、25%程度になる.

5. 結 論

ヘリカルアンテナに 7 MHz の高周波を印加し, ヘ リコン波によるプラズマ生成を行い, 生成されたプラ ズマの特性とプラズマの生成機構を明らかにした. 結 果をまとめると以下のようになる.

- (1) 完全電離したプラズマ(~10<sup>13</sup>cm<sup>-3</sup>)が生成 された.
- (2) 電子温度は、パワー、磁場、压力に依らず、

ほぼ一定 (~4.5eV) であった.

- (3) プラズマの密度の径方向分布は磁場の増加に 従って, Well 型から Hill 型へと変化する.
- (4) プラズマ中には二価のアルゴンイオンが、2 -4%程度存在する.
- (5) 励起された波はヘリコン波の分散関係を満た す.
- (6) ヘリコン波の波長はアンテナの長さでは決定 されない.
- (7)実験で得られた最も高いプラズマ密度でのヘ リコン波の波長は約 22cm で、これは波の位 相速度が電子の熱速度とほぼ等しくなる波長 であった。

以上のことから、プラズマはヘリコン波のランダウ 減衰によって生成されると結論できる.

- 参考文献
- 1) R. W. Boswell, Phys. Lett. 91A, 163 (1982).
- R. W. Boswell, Plasma Phys. and Contr. Fusion 26, 1147 (1984).
- 3) F. F. Chen, (submitted).
- 4) J. P. Klozenberg, B. McNamara and P. C. Thonemann, J. Fluid Mech. **21**, 545 (1965).
- 5) G. N. Harding and P. C. Thonemann, Proc. Phys. Soc. 85, 317 (1965).
- 6) J. A. Lenane and P. C. Thonemann, Proc. Phys. Soc. 85, 301 (1965).
- 7) 庄司多津男,日本物理学会秋の分科会講演予稿集4,289 (1986).