Base-Promoted Rearrangement of Methyl (2-Troponyloxy)acetate and 4-(2-Troponyloxy)-2-butenoate to Methyl 2-Hydroxy-2-(2-troponyl)-acetate and 4-Hydroxy-4-(2-troponyl)-2-butenoate

Takeshita, Hitoshi
Department of Molecular Science and Technology, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

Mori, Akira
Department of Molecular Science and Technology, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

Suizu, Hiroshi
Department of Molecular Science and Technology, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

竹下，齊
九州大学大学院総合理工学研究科分子工学専攻

他

https://doi.org/10.15017/17707
Base-Promoted Rearrangement of Methyl (2-Troponyloxy)acetate and 4-(2-Troponyloxy)-2-butenoate to Methyl 2-Hydroxy-2-(2-troponyl)-acetate and 4-Hydroxy-4-(2-troponyl)-2-butenoate

Hitoshi TAKESHITA*, Akira MORI and Hiroshi SUIZUt
(Received February 22, 1988)

Abstract. A base-catalyzed rearrangement of methyl 2-(2-troponyloxy)acetate and methyl 4-(2-troponyloxy)-2-butenoate gave methyl 2-hydroxy-2-(2-troponyl)acetate and methyl 4-hydroxy-4-(2-troponyl)-2-butenoate. From the latter, a formation of tropylidene derivatives via tautomerism was observed.

Introduction

Among the chemical properties of troponoids, base-promoted ring-contraction to benzenoid derivatives from various functionalized tropone derivatives has been one of the most outstanding feature. However, in a synthetic viewpoint, this instability of tropones towards alkaline has been a problem. During our synthetic study on the troponoid ethers, we have found a novel base-catalyzed rearrangement of 2-(nitrobenzyloxy)tropone to 2-[nitrophenyl(hydroxy)methyl] tropone. And the reaction could be extended to other electron-withdrawing benzyloxy derivatives, as well as 2-(phenacyl)tropone. We will herein describe further extension of this novel base-catalyzed reaction to 2-troponyl aliphatic ethers having an electron-withdrawing substituent on their α-position, such as 2-(methoxycarbonylmethoxy)tropone and 2-(4-methoxycarbonyl-2-propenyl)troprope.

Results and Discussion

When a hexamethylphosphoric triamide (HMPA) solution of potassium tropolonate (1) and methyl bromoacetate (2a) was stirred at 60 °C for 15 min, a product (3a) was isolated by silica-gel column chromatography in 81% yield. The structure of 3a was identified to be desired methyl (2-troponyloxy)acetate. While 3a was treated with the base under similar conditions as in the condensation, two products (4a and 5a) were obtained. The former 4a was the rearranged methyl [hydroxy(2-troponyl)]acetate. The latter 5a was highly polar and was difficult to liberate from a silica-gel column. Therefore, the mixture containing 5a was treated with diazomethane prior to the chromatographic fractionations; a methyl ether (6), thus obtained, showed in its 1H NMR spectrum a singlet methyl at 4.04 together with five consecutive protons in the aromatic region and was deduced to be 3-methoxycyclohepta[5]furan-2-one. The UV spectrum of 6, showing two strong λmax at 255 and 379...
nm, further confirmed its structure. The pyridinium dichromate oxidation of 4a gave an unstable methyl (2-troponyl)glyoxalate (7).

On the other hand, the condensate (3b) from 1 and 2b afforded the expected rearrangement product (4b) and two other products (8 and 9). The major product, 4b, was the expected methyl 4-hydroxy-4-(2-troponyl)-2-butoenoate on the basis of the NMR spectral analysis. Two other compounds, 8 and 9, were secondary products derived from 4b. The IR spectrum of 8 exhibited a strong absorption peak at 1740 cm⁻¹, indicating a presence of an isolated ester group, and the ¹H NMR spectrum showed four olefinic proton signals whose chemical shifts are considerably high-field shifted, δ = 5.40 (1H, dd, J = 9.5, 6 Hz) and 6.0–6.5 (3H, m), and methylene signal, 3.15 (2H, d, J = 6 Hz), indicating a presence of a tropyl group. From these findings, together with the λ_max, 284 nm, 8 no longer possesses the fully conjugated troponoid system, and two alternative structures, 8 and 8a, seem to be feasible. The dihydrocycloheptapyranone structure, 8a, is, however, eliminated on the basis of the coupling parameters in the ¹H NMR; the splitting patterns of ABX-system for the protons on the sp³-carbons, J_AX = 9.5 Hz and J_BX = 3.5 Hz, were different to those of 4-oxo-2-phenylchromanes whose coupling patterns were J_AX = 13.5 Hz and J_BX = 3.2 Hz. In addition, the absence of ν_C=O ca. 1630 cm⁻¹ was also incompatible to the pyranone formula. Hence, 8 is methyl (2,8(2H)-3-oxocyclohepta[5]furan-2-yl)acetate. Remaining product, 9, was an enolized β-diketone derivative; its NMR exhibited the chelated proton signal at 15.9, as a broad peak. Other NMR features of 9 were an appearance of six vinylic protons; four of them are on the tropylidene ring, and two consisting systems are a part of the α, β-unsaturated ester function. Consequently, 9 is deduced to be methyl 4-oxo-4-(2-hydroxycyclohepta-1,3,5-trienyl)-2-butoenoate.
Now, it is interesting to note that 8 and 9 no longer have the tropone ring system. Such an easy deconjugation of the pseudo-aromatic system indicated that the aromaticity of tropones may be overestimated. For these days, reevaluation of the aromatic character of troponoid systems suggested that, contrary to general view of earlier studies, the tropones are essentially unsaturated ketones. The present finding, an easy deconjugation of the tropone system to olefinic compounds, should constitute an experimental evidence for limited aromatic character of tropones.

Finally, we make a point that benzenoid analogs, salicylaldehyde or other phenolic compounds carrying electron-attractive substituents, gave no such rearrangement products. To date every attempt was unsuccessful.

Experimental

Condensation of 1 with 2a. Formation of 3a. a) An anhydrous HMPA solution (5 cm³) of 1 (393 mg) and 2a (460 mg) was stirred at 60 °C for 15 min. The mixture was then acidified with dil HCl and extracted with CHCl₃. Silica-gel column chromatography of the extract gave 3a [an orange oil, 388.5 mg; 81%]. Found: M. W., 194.0582. Calcd for C₁₀H₁₆O₄: 194.0579. ¹H NMR δ (ppm) = 3.75 (3H, s), 4.80 (2H, s), 6.6–7.1 (3H, m), and 7.1–
Base-Induced Reaction of 2-Troponyl Aliphatic Ethers with an Electron-Attractive Group

7.3 (2H, m). 13C NMR $\delta = 52.4, 66.1, 117.2, 129.8, 132.5, 136.7, 138.5, 163.8, 168.7, and 180.8. IR ν: 2960, 1760, 1600, 1495, 1475, and 1440 cm$^{-1}$. UV λ_{max}: 236 nm ($\epsilon = 21600$), 320 (8000), 332 (7300), 343 (6200), and 359 (3600).

Base-Catalyzed Rearrangement of 3a to 4a and 5a. Isolation of 5a as Methyl Ether (6). An anhydrous HMPA (1.6 cm3) of 3a (327 mg) and NaH (50%, 39.7 mg) was stirred at room temperature for 10 min. The mixture was then diluted with water, extracted with AcOEt, and dried on MgSO$_4$. To the organic solution, ethereal CH$_2$N$_2$ was added and kept in the refrigerator for 16 h. The mixture was then evaporated in vacuo and the residue was chromatographed on a silica-gel column to give 4a (an orange oil, 94.1 mg; 29%). Found: M. W., 194.0564. Calcd for C$_{10}$H$_{10}$O$_4$: 194.0572. 1H NMR δ: 3.72 (3H, s), 5.00 (IH, s), 6.9-7.2 (4H, m), and 7.42 (IH, dd, $\Delta = 6, 4$ Hz). 13C NMR δ: 52.9, 75.0, 134.2, 135.5, 137.0, 137.4, 142.1, 150.3, 172.8, and 187.0. IR ν: 3400, 2960, 1740, 1630, 1560, 1520, 1470, and 1435 cm$^{-1}$. UV λ_{max}: 231 nm ($\epsilon = 20500$), 306 (7000), and 313 (7000) and 6 [red needles, mp 61-62 $^\circ$C, 21.9 mg; 7%. Found: C, 68.25; H, 4.64%. Calcd for C$_{10}$H$_{8}$O$_3$: C, 68.18; H, 4.58%. 1H NMR δ: 3.91-4.0 (3H, s), 6.6-7.1 (IH, s) and 6.9-7.1 (IH, m). 13C NMR δ: 59.1, 112.2, 129.7, 130.8, 131.0, 132.5, 134.1, 154.1 (2C), and 163.2. IR ν: 2960, 1750, 1645, 1610, 1570, 1485, 1450, 1420, 1330, 1270, 1215, 1200, 1160, 940, 900, 885, 755, and 695 cm$^{-1}$. UV λ_{max}: 255 nm ($\epsilon = 17100$) and 379 (17000).

Oxidation of 4a to 7. To a CH$_2$Cl$_2$ solution (30 cm3) of 4a (91.2 mg) was added PDC (880 mg) at room temperature and the mixture was stirred for 2.5 d. The mixture was passed through Florisil column to give 7 [pale yellow crystals, 13.2 mg; 15%]. Found: m/z, 192. 1H NMR δ: 3.88 (3H, s), 7.1-7.3 (4H, m), and 7.7-7.9 (1H, m). 13C NMR δ: 53.0, 133.5, 136.8, 139.4 (2C), 144.4, 163.7, 186.4 (2C), and 188.0. IR ν: 1735, 1690, 1630, 1590, 1575, 1520, 1470, and 1135 cm$^{-1}$.

Condensation of 1 and 2b. An anhydrous HMPA solution (2 cm3) of 1 (100 mg) was treated with anhydrous HMPA solution (2 cm3) of 2b (90%, 124.3 mg) at 50 $^\circ$C for 3.5 h. The mixture was then diluted with water, acidified with dil HCI, extracted with AcOEt, and dried on MgSO$_4$. Organic fractions were chromatographed on a silica-gel column to give 3b [light brown crystals, mp 119-121 $^\circ$C, 96.2 mg; 70%. Found: C, 65.29; H, 5.57%. Found: C$_{12}$H$_{12}$O$_4$: C, 65.44; H, 5.49%. 1H NMR δ: 3.72 (3H, s), 4.84 (2H, dd, $\Delta = 4, 2$ Hz), 6.18 (1H, dt, $J = 16, 2$ Hz), and 6.6-7.3 (6H, m). 13C NMR δ: 51.8, 67.6, 115.0, 122.9, 129.0, 132.5, 136.7, 137.8, 141.0, 163.9, 166.3, and 180.6. IR ν: 3025, 1720, 1665, 1620, 1595, 1570, 1495, 1465, 1440, 1310, 1285, 1260, 1235, 1210, 1195, 1095, 1040, 1015, 960, 920, 870, 835, 770, 705, and 680 cm$^{-1}$. UV λ_{max}: 235 nm ($\epsilon = 24000$), 320 (8200), 346 (6500, sh), and 360 (4000, sh) together with the recovered tropolone [0.4 mg; 1%].

Base-Catalyzed Rearrangement of 3b. An anhydrous HMPA solution (5 cm3) of 3b (530 mg) and NaH (50%, 86.8 mg) was stirred at room temperature for 3 min. The mixture was then diluted with dil HCI, extracted with AcOEt, and dried on MgSO$_4$. The organic layer was chromatographed on a silica-gel column to give 4b [a dark orange oil, 74.4 mg; 14%. Found: M. W., 220.0738. Calcd for C$_{12}$H$_{12}$O$_4$: 220.0735. 1H NMR δ: 3.69 (3H, s), 4.2-4.5 (1H, br s), 5.42 (1H, dd, $J = 4, 2$ Hz), 6.18 (1H, dd, $J = 16, 2$ Hz), 6.9-7.2 (5H, m), and 7.3-7.5 (1H, m). 13C NMR δ: 51.7, 71.9, 120.8, 134.7, 135.1, 135.4, 136.8, 141.9,
147.9, 152.4, 167.2, and 187.0. \(\text{IR } \nu: 3400, 2960, 1720, 1660, 1630, 1550, 1520, 1470, 1440, 1270, 1130, 1030, 985, \) and \(790 \text{ cm}^{-1} \). \(\text{UV } \lambda_{\text{max}}^{\text{MeOH}}: 210 \text{ nm (} \epsilon = 19500) \), 230 (21600), and 314 (6900) \]. 8 [an orange oil, 41.4 mg; 8\%]. Found: M. W., 220.0735. Calcd for \(\text{C}_{12}\text{H}_{12}\text{O}_{4} \): 220.0735. \(\text{H NMR} \delta = 2.63 \) (1H, dd, \(J = 17, 9 \text{ Hz} \)), 3.03 (1H, dd, \(J = 17, 3.5 \text{ Hz} \)), 3.15 (2H, d, \(J = 6 \text{ Hz} \)), 3.72 (3H, s), 4.91 (1H, dd, \(J = 9.5, 3.5 \text{ Hz} \)), 5.40 (1H, dd, \(J = 9.5, 6 \text{ Hz} \)), and 6.0 – 6.5 (3H, m). \(\text{C NMR} \delta = 30.1, 35.7, 52.3, 82.8, 114.6, 118.6, 119.0, 126.7, 130.1, 170.1, 180.5, \) and 198.7. \(\text{IR } \nu: 3025, 2950, 1740, 1605, 1445, 1405, 1365, 1260, 1070, 995, \) and 665 cm\(^{-1} \). \(\text{UV } \lambda_{\text{max}}^{\text{MeOH}}: 240 \text{ nm (} \epsilon = 10100 \) and 284 (6700)]. \] and 9 [orange needles, mp 79 – 82 °C, 12.2 mg; 2\%]. Found: M. W., 220.0734. Calcd for \(\text{C}_{12}\text{H}_{12}\text{O}_{4} \): 220.0735. \(\text{H NMR} \delta = 3.08 \) (2H, d, \(J = 6.5 \text{ Hz} \)), 3.80 (3H, s), 5.5 – 5.8 (1H, m), 6.1 – 6.3 (1H, m), 6.23 (1H, d, \(J = 11 \text{ Hz} \)), 6.70 (1H, d, \(J = 11 \text{ Hz} \)), 6.83 (1H, d, \(J = 15 \text{ Hz} \)), 7.55 (1H, d, \(J = 15 \text{ Hz} \)), and 15.9 (1H, br s). \(\text{C NMR} \delta = 41.9, 52.1, 113.8, 118.4, 121.1, 124.0, 126.8, 128.9 \) (2C), 135.0, 170.9, and 197.1. \(\text{IR } \nu: 3450, 1720, 1640, 1630, 1580, 1535, 1430, 1390, 1315, 1260, 1220, 1180, 1020, 975, 910, 740, \) and 685 cm\(^{-1} \). \(\text{UV } \lambda_{\text{max}}^{\text{MeOH}}: 240 \text{ nm (} \epsilon = 10400 \), 284 (7300), and 416 (400)].

References

9) The NMR spectra were measured in CDCl₃ with FX 100 and GSX 270H Spectrometers.
10) The compound was extremely unstable; even at room temperature, the crystals turned black upon exposure to air. As a result, measurements of mp and elemental analysis were unsuccessful.