九州大学学術情報リポジトリ Kyushu University Institutional Repository

# 液体窒素低温熱交換器内における伝熱流動特性の理 論解析

近藤, 哲也 九州大学大学院総合理工学研究科エネルギー変換工学専攻

福田, 研二 九州大学大学院総合理工学研究科エネルギー変換工学専攻

長谷川,修 九州大学大学院総合理工学研究科エネルギー変換工学専攻

西, 義久 九州大学工学部応用原子核工学科

他

https://doi.org/10.15017/17699

出版情報:九州大学大学院総合理工学報告.9(2), pp.231-238, 1988-01-01.九州大学大学院総合理工 学研究科 バージョン:

権利関係:

# 液体窒素低温熱交換器内における 伝熱流動特性の理論解析

| 近 | 藤 | 哲 | 也*  | ・福  | 田    | 研    | *    | ・長谷川 | 修* |
|---|---|---|-----|-----|------|------|------|------|----|
| 西 |   | 義 | 久** | ・狩  | 野    |      | 透**  | *    |    |
|   |   |   |     | (昭利 | 162年 | 9月30 | 日受理) |      |    |

# Theoretical Analysis of Thermohydraulic Characteristics in a Liquid Nitrogen Heat Exchanger

Tetsuya KONDOH, Kenji FUKUDA, Shu HASEGAWA Yoshihisa NISHI and Tohru KARINO

Theoretical analysis of static, thermohydraulic characteristics in a liquid nitrogen heat exchanger has been made.

In case that the heat exchanger is vertically installed, condensation rate of a secondary fluid and a pressure drop between an inlet and an outlet header are obtained by this computer code. As the calculation results agree well with experimental results, validity of this theoretical analysis is confirmed.

#### 1. 緒 言

近年,液化天然ガス (LNG) プラント,超電導マグ ネット,ロケットエンジン等で代表される低温工学の 分野が急速に発展し,極低温流体の利用はますます増 大する傾向にある.特に超電導の分野では,液体窒素 温度以上で超電導現象を示す Y-Ba-Cu-O 系高温超電 導酸化物が登場し,一部では線材化も試みられてい る<sup>1)</sup>.

このような低温工学の分野の発展に伴い,極低温流 体の流動不安定現象が問題となってきている<sup>2)-4)</sup>.特 にLNG 冷熱利用発電システム<sup>5)</sup>では,LNG 蒸発器内 で流動不安定が生じると,天然ガス (NG) タービン の運転そのものに影響を与え好ましくない.また, LNG 蒸発器出口ではガス化している必要があり,蒸 発器内は気液二相流とそれに続く圧縮性ガスの領域が 存在し,特に二次側流体との温度差が大きいため,気 液二相流部では逆環状流 (Inverted Annular Flow,以 下 IAF と記す)となる.この IAF は原子炉の再冠水 過程においても生じるため,原子炉の安全性に関連して,最近特に注目されている流動様式である<sup>の</sup>が,研 究の数は多くない.

本研究では、このような IAF を含む気液二相流か ら圧縮性過熱ガスまで、状態が大きく変化する LNG 蒸発器内の静的な伝熱流動特性の理論解析を行なった ので報告する. なお LNG(主成分であるメタンは大 気圧下沸点 112K) は多成分系極低温流体であり、取 扱が繁雑であるので、液体窒素(大気圧下沸点 77K) を用いて計算を行ない、以前に行なった実験結果<sup>7</sup> と比較検討した.

#### 2. 理論解析

#### 2.1 熱交換器の構造と伝熱管内の流動様式

熱交換器の詳細については既に報告している<sup>70</sup>ので, ここでは解析に関係する部分についてのみ簡単に述べ る. Fig.1に示すように,本熱交換器は入口,出口ヘ ッダー間に特性の異なる二本の伝熱管があり,並列二 流路系を構成しており,二次側流体である水蒸気との 間で熱交換を行なう.主伝熱管は入口にタービン流量 計(入口絞りとなる)が取り付けられており,U及び 逆U字管を含めて全長 8.9m である.他方の管は長さ

<sup>\*</sup>エネルギー変換工学専攻

<sup>\*\*</sup>工学部応用原子核工学科修士課程

<sup>\*\*\*</sup>エネルギー変換工学専攻修士課程



Fig. 1 Experimental apparatus (Vertical attitude).

1 m で, その入口, 出口には絞りが取り付けられて いる (この管をバイパス管と称する).

極低温流体の管内二相流伝熱における流動様式は, 例えば文献8)に示されており,本研究のように過熱 度が大きい場合は, 膜沸騰により IAF が形成される 流動様式となる.また,一次側流体と二次側流体間の 熱交換による熱伝達現象を解析対象としているため, 使用する管内熱伝達係数  $\alpha_b$ の相関式により解析結果 が大きく左右されることが予想される.液体窒素の二 相流に関する研究の数が少ないため, $\alpha_b$ の相関式は 現時点では高沸点流体に対する式を準用せざるを得な い.

赤川らのフロン R-113 を作動流体とする水平管内 の IAF の流動伝熱実験<sup>9</sup>によると、入口流速が 0.14m/s 以上では、入口付近に *a*b がほぼ一定な領域

(安定な IAF が形成される I 領域), 次に $\alpha_b$  が急激 に増加する領域 (IAF が不安定になり破壊される I 領域), さらに $\alpha_b$ の増加割合が減少する領域 (気相 中に比較的大きな液滴が同伴する III 領域) が観察され, I 領域の $\alpha_b$  は水平円柱の Bromley の式<sup>10</sup>, II, III 領 域の $\alpha_b$  は Dougall-Rohsenow の式<sup>11)</sup> でほぼ表わすこ とができる。垂直管の実験結果は, I, II及び III 領域 の低クオリティ域で,  $\alpha_b$ の値は水平管の $\alpha_b$ より大 きくなっており、Ⅲ領域の高クオリティ域(x>0.4) では水平管の α,と一致するようになる.

本研究では、上記の赤川らの実験結果<sup>9</sup>を参考にして、伝熱管入口より安定した IAF が形成される IAF 部、IAF が不安定となり破壊され気相中に比較的大 きな液滴が同伴する分散二相流(Dispersed Two-Phase Flow, 以下 DF と記す)部および気相のみとな る過熱気相流(Super-heated Gas Flow, 以下 SGF と 記す)部に分け、それぞれの領域に対応する $\alpha_b$ の相 関式を適用する.

#### 2.2 二相流部の基礎方程式

極低温流体の IAF の理論解析は厳密には気液の速 度差を考慮したモデル,例えばドリフトフラックスモ デルを適用することが考えられるが,本研究のように SGF 部を含む場合は,二相流部との遷移点で例えば ボイド率が不連続になることが指摘されており<sup>12)</sup>,不 都合である.よって,2.1節の *a*b のモデルとの間に 不整合が生じるが,本研究では物理量の連続性を考慮 して,二相流部では均質流モデルを用いる.

Fig.1 に示すように,流れの方向に z 軸の正方向 をとり,これと同じ方向に力の正方向をとると,一次 元,定常の均質流モデルによる質量,運動量及びエネ ルギーの各保存則は,各々次式で与えられる.

$$\frac{\mathrm{d}}{\mathrm{d}z}(\rho_{\mathrm{TP}}V) = 0 \quad \sharp \not z \, \iota \downarrow \quad \mathrm{M} = \rho_{\mathrm{TP}}V = \mathrm{const.} \quad (1)$$

$$\frac{\mathrm{d}}{\mathrm{d}z}(\rho_{\mathrm{TP}}\mathrm{V}^2) = -\frac{\mathrm{d}p}{\mathrm{d}z} - \frac{\xi_{\mathrm{h}}}{\mathrm{A}}\tau_{\mathrm{w}} - \rho_{\mathrm{TP}}g\sin\theta \qquad (2)$$

$$\frac{\mathrm{d}}{\mathrm{d}z}(\rho_{\mathrm{TP}} \mathrm{V} \, \mathrm{h}_{\mathrm{TP}}) = \frac{\xi_{\mathrm{h}}}{\mathrm{A}} \mathrm{q}^{\prime\prime}$$
(3)

ここに、各記号は A:流路の断面積、g:重力の加速 度、h:エンタルピ、p:圧力、q":熱流束、V:速度、  $\theta$ :水平方向から反時計回りに正方向をとった場合の 流れ方向の傾斜角、 $\xi_h$ :周長、 $\rho$ :密度、 $r_w$ :壁面 摩擦応力であり、サフィックス TP は二相流を表わす.  $h_{\text{TP}}, \rho_{\text{TP}}$ を

$$h_{\rm TP} = h_{\rm l} + x h_{\rm fg} \tag{4}$$

$$\frac{1}{\rho_{\rm TP}} = \frac{x}{\rho_{\rm g}} + \frac{1-x}{\rho_{\rm l}} \tag{5}$$

$$\frac{\mathrm{d}x}{\mathrm{d}z} = \frac{1}{\mathrm{Mh}_{\mathrm{fg}}} \left(\frac{\xi_{\mathrm{h}}}{\mathrm{A}}\right) \mathbf{q}^{\prime\prime} \tag{6}$$

となる. ここに、h<sub>fg</sub>:蒸発潜熱, x:クオリティであ

りサフィックスはg:気相,1:液相を表わす.

次に,運動量保存則(2)式の右辺の第2項の摩擦 圧力損失項は,Lockhart-Martinelli相関<sup>13)</sup>を用いる と

$$\frac{\xi_{\rm h}}{A} \tau_{\rm w} = \phi_{\rm g}^2 \left(\frac{\rm dp}{\rm dz}\right)_{\rm g} \tag{7}$$

で表わされる.ここで、 Øgは二相流摩擦損失勾配比, (dp/dz)gは気相成分だけが単相流として流れた場合の摩擦圧力損失であり、

$$\left(\frac{\mathrm{d}p}{\mathrm{d}z}\right)_{g} = \frac{\xi_{h}}{A} f_{g} \frac{\rho_{g} i_{g}^{2}}{2}$$
(8)

で与えられる.ここに,f:摩擦係数,j:みかけの流 速である.さらに均質流モデルを仮定しているので, (7)式は次のように変形できる.

$$\frac{\xi_{\rm h}}{A} \tau_{\rm w} = \phi_{\rm g}^2 \frac{\xi_{\rm h}}{A} f_{\rm g} \frac{\rho_{\rm g}}{2} \left[ \frac{x \rho_{\rm l} V}{(1-x) \rho_{\rm g} + x \rho_{\rm l}} \right]^2 \quad (9)$$

(2) 式の左辺と右辺第3項も(5) 式を用いて変形すると、次式を得る.

$$-\left(\frac{\mathrm{d}p}{\mathrm{d}z}\right) = \mathrm{M}^{2} \frac{\rho_{1} - \rho_{g}}{\rho_{g} \rho_{1}} \frac{\mathrm{d}x}{\mathrm{d}z} + \phi_{g}^{2} \frac{\xi_{h}}{g} f_{g} \frac{\rho_{g}}{2} \left[\frac{x \rho_{1} \mathrm{V}}{(1-x) \rho_{g} + x \rho_{1}}\right]^{2} + \frac{\rho_{g} \rho_{1} g \sin \theta}{(1-x) \rho_{g} + x \rho_{1}}$$
(10)

#### 2.3 過熱気相部の基礎方程式

一次元,定常の単相流に対する質量,運動量及びエ ネルギーの各保存則は、 $\rho_{TP} \rightarrow \rho_g$ , $h_{TP} \rightarrow h_g$ , $\tau_w \rightarrow \tau_{wg}$ なる置換を行なうことにより、二相流部の基礎方程式 と形式的に同じ形で表わされる.エンタルピと温度の 間に  $dh_g = C_{pg} dT_n$  なる関係が成立するとすれば、エ ネルギー保存則(3) 式は

$$\frac{\mathrm{d}T_{\mathrm{n}}}{\mathrm{d}z} = \frac{1}{\mathrm{M}C_{\mathrm{pg}}} \left(\frac{\xi_{\mathrm{h}}}{\mathrm{A}}\right) q^{\prime\prime} \tag{11}$$

と変形できる. ここに, C<sub>p</sub>:定圧比熱, T:温度であ り, サフィックス n は一次側流体を表わす.

摩擦圧力損失項は

$$\tau_{wg} = f_g \frac{\rho_g V^2}{2} = f_g \frac{M^2}{2\rho_g}$$
(12)

と表わされるので,運動量保存則(2)式は次式となる.

$$-\left(\frac{\mathrm{d}p}{\mathrm{d}z}\right) = \mathrm{M}^{2} \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{1}{\rho_{g}}\right) + \frac{\xi_{h}}{\mathrm{A}} f_{g} \frac{\mathrm{M}^{2}}{2\rho_{g}} + \rho_{g}g \sin\theta$$
(13)

#### 2.4 伝熱管のエネルギー保存則

伝熱管の肉厚が十分に薄く、半径方向の温度分布は 無視でき、伝熱管の温度はその平均値 T<sub>t</sub> に等しいと する集中定数系で、伝熱管の熱容量効果を表わし、か つ管軸方向の熱伝導を無視すると、伝熱管のエネル ギー保存則は次式で表わされる.

$$\frac{A_t \rho_t C_t}{\xi_h} \frac{dT_t}{dt} = \alpha_c (T_{ws} - T_t) - \alpha_b (T_t - T_n) \quad (14)$$

ここに、 $\xi_h = (\xi_{h,o} + \xi_{h,i})/2$  である. 各記号は、 $C_t$ : 伝熱管の比熱、t:時間、 $\alpha_b$ :管内(一次側)熱伝達 係数、 $\alpha_c$ :凝縮(二次側)熱伝達係数であり、サフ ィックスは i:伝熱管内面、o:伝熱管外面、t:伝熱 管、ws:二次側流体を表わす. 今、定常状態を考え ると、(14) 式より

$$T_{t} = \frac{T_{ws} + (\alpha_{b}/\alpha_{c}) T_{n}}{1 + (\alpha_{b}/\alpha_{c})}$$
(15)

が得られる. 伝熱面より一次側流体に伝達される熱流 束は,(15) 式を用いて次式で与えられる.

$$q'' = \alpha_{b} (T_{t} - T_{n}) = \frac{\alpha_{b} (T_{ws} - T_{n})}{1 + (\alpha_{b} / \alpha_{c})}$$
(16)

一般に, α。はα。に比較して十分大きいので,α。/α。 ≒0 とおくと, (15), (16) 式は次式となる.

$$T_t = T_{ws} \tag{17}$$

$$q'' = \alpha_b (T_{ws} - T_n) \tag{18}$$

# 2.5 U字管及び逆U字管部の基礎式

Fig.1に示すように、7本の伝熱管を連結している 各々3本のU及び逆U字管は、それぞれの形状及び長 さが異なっており、さらに置かれている熱的条件も異 なっている.これらの形状、寸法及び熱的条件を正確 に評価することは困難であるので、次の仮定をする.

それぞれのU及び逆U字管を平均半径 R<sub>um</sub> なる円形状パイプの半周で代表させる.ここに,

 $6\pi R_{um} = \sum_{i=1}^{6} l_{ui}$  であり、 $l_{ui}$  はU及び逆U字管の実測長 さである.

(2) U及び逆U字管は断熱されている.

(3) 圧力損失は単相流のベンドに対する式を用いると、二相流部及び SGF 部に対して次式となる.

$$-\Delta p_{u,TP} = \zeta_{u,TP} - \frac{\rho_{TP} V^2}{2}$$
$$= \zeta_{u,TP} \frac{M^2}{2} \frac{(1-x) \rho_g + x \rho_1}{\rho_g \rho_1}$$
(19)

$$-\Delta \mathbf{p}_{u,g} = \boldsymbol{\zeta}_{u,g} \frac{\boldsymbol{\rho}_g \mathbf{V}^2}{2} = \boldsymbol{\zeta}_{u,g} \frac{\mathbf{M}^2}{2\boldsymbol{\rho}_g}$$
(20)

ここに, Δp:圧力損失, ζ:圧力損失係数でありサ フィックス u は U及び逆U字管を表わす.

# 2.6 伝達熱量に対する基礎式

伝熱管の微小区間 dz で伝達される熱量を dQ とすると、次式が成り立つ.

$$\frac{\mathrm{dQ}}{\mathrm{dz}} = \boldsymbol{\xi}_{\mathrm{h}} \mathbf{q}^{\prime\prime} = \boldsymbol{\xi}_{\mathrm{h}} \,\boldsymbol{\alpha}_{\mathrm{b}} \,\left( \mathbf{T}_{\mathrm{ws}} - \mathbf{T}_{\mathrm{n}} \right) \tag{21}$$

#### 2.7 流体粒子の通過時間

流体粒子が微小区間 dz を流速 V で通過するに要 する時間 dτは次式で与えられる.

$$\frac{\mathrm{d}\,\tau}{\mathrm{d}z} = \frac{1}{\mathrm{V}} = \frac{\rho_{\mathrm{k}}}{\mathrm{M}} \tag{22}$$

よって、二相流部及び SGF 部に対して次式となる.

$$\frac{\mathrm{d}\,\tau_{\mathrm{TP}}}{\mathrm{d}z} = \frac{\rho_{\mathrm{g}}\rho_{\mathrm{l}}}{\mathrm{M}\,\left\{(1-x)\,\rho_{\mathrm{g}} + x\,\rho_{\mathrm{l}}\right\}} \tag{23}$$

$$\frac{\mathrm{d}\,\tau_{g}}{\mathrm{d}z} = \frac{\rho_{g}}{\mathrm{M}} \tag{24}$$

また,U及び逆U字管部では,この部分の流速を Vu とすると,仮定より Vu=一定であるので,次式とな る.

$$\tau_{u} = \frac{\kappa_{um}}{V_{u}} \tag{25}$$

#### 2.8 構成方程式

# 2.8.1 管内熱伝達係数 ( a<sub>b</sub>)

2.1 節の三つの領域に対する *α*<sub>b</sub> の相関式は,赤川 らの研究<sup>9)</sup> を参考にしてそれぞれ次式を用いる.水 平な逆環状流 (IAF) に対しては,水平円柱の Bromley の式<sup>10)</sup> を用いる.また,垂直な IAF に対しては,



Fig. 2 Primary heat transfer coefficients.

Helmholtz 不安定にもとづく臨界波長 $\lambda_c^{(5)}$ を代表長 さとする修正 Bromley の式<sup>14)</sup>を用いる. この式を用 いると, **Fig. 2** に示すように $\alpha_b$  の値は水平円柱の Bromley の式<sup>10)</sup>に対して約35%ほど大きくなり,赤川 らの実験結果<sup>9)</sup> と定性的に一致する結果を与える. 一方,分散二相流 (DF) に対しては,赤川らの実験<sup>9)</sup> では、 $\alpha_b$  の値は低クオリティ域で垂直の場合が水平 の場合より大きく、x>0.4で両者は一致するように なるが,本研究では簡単のため水平,垂直共に Dougall-Rohsenow の式<sup>11)</sup>を用いる. また, IAF から DF への遷移点は、 $\alpha_b$ が連続的に変化するように IAF の $\alpha_b \leq$  DF の $\alpha_b$  なる条件を満足する点とする. 過熱気相流 (SGF) の $\alpha_b$ は、水平,垂直共に Dittus-Boelter の式<sup>16)</sup>を用いる.

各領域におけるこれらの $\alpha_b$ を**Fig. 2**に示す. **Fig. 2**にはポストドライアウト域に対する Groeneveld の 式<sup>11)</sup> も示しているが, SGF 部との遷移点では Dittus-Boelter の式<sup>16)</sup>の約半分程度の値となり,  $\alpha_b$  は不連 続となることが分かる. また, **Fig. 2**には Ganic-Rohsenow の液体窒素を用いた実験結果<sup>17)</sup>より $\alpha_b$ を 計算してプロットしているが, ほぼ Dougall-Rohsenow の式<sup>11)</sup>と一致していることが分かる.

#### 2.8.2 二相流摩擦損失勾配比 ( ø )

Chisholm-Laird 相関<sup>18)</sup>を用いると、 🌶 g は次式で Martinelli パラメータXの関数として表わされる.

$$\phi_{g}^{2} = 1 + 21X + X^{2} \tag{26}$$

$$X = \sqrt{\left(\frac{dp}{dz}\right) \left/ \left(\frac{dp}{dz}\right)_{g}}$$
(27)

(dp/dz)<sub>k</sub>, (k=g, l) は, 例えば気相については (8) 式で表わされるので, (27) 式は

$$X = \sqrt{\left(\frac{f_1}{f_g}\right) \left(\frac{\rho_{1j_1}}{\rho_g j_g}\right)^2 \left(\frac{\rho_g}{\rho_1}\right)}$$
(28)

となる. 一般に, クオリティ x はみかけの流速 j<sub>k</sub> を 用いると

$$x = \frac{\rho_{gj_g}}{\rho_{gj_g} + \rho_{1j_1}} = \frac{1}{1 + (\rho_{1j_1}) / (\rho_{gj_g})}$$
(29)

で表わすことができるので、(28) 式は次式となる.

$$X = \left(\frac{f_{l}}{f_{g}}\right)^{\frac{1}{2}} \left(\frac{\rho_{g}}{\rho_{l}}\right)^{\frac{1}{2}} \left(\frac{1-x}{x}\right)$$
(30)

#### 2.8.3 単相流の摩擦損失係数 (f<sub>k</sub>)

管壁のあらさを考慮した乱流に対する Colebrook の 式<sup>19)</sup> を用いる. 各領域におけるレイノズル数は Re<sub>k</sub>=  $P_k j_k d_i / \mu_k (二相流部, k=g, l), Re_k = Md_i / \mu_k (SGF 部, k=g) であり, 管壁の粗度は <math>\epsilon / d_i = 0.002$ とした.

2.8.4 U字管,逆U字管部の圧力損失係数(ζ<sub>u,k</sub>) 円形断面の滑らかなベンドに対する伊藤の実験式<sup>20</sup> ζを用いる.二相流部でのレイノズル数は Re<sub>TP</sub> = Md<sub>i</sub>/μ<sub>TP</sub>,μ<sub>TP</sub>=xμ<sub>g</sub>+(1-x)μ<sub>1</sub>である.さらに管壁 のあらさを考慮するために,次の修正係数ζ<sub>cu</sub>を導入 する.

 $\zeta_{u,k} = \zeta_{cu} \cdot \zeta$ 

$$\zeta_{cu} = \frac{$$
直管に対する Colebrook の式による  $f_k$   
直管に対する Blasius の式による  $f_k$ 

2.9 入口側圧力損失

伝熱管入口より上流側の圧力損失をΔpin とすると,

$$\Delta \mathbf{p}_{in} = \sum_{i=1}^{v} \Delta \mathbf{p}_{i} + \rho_{1g} \sin \theta \cdot (\mathbf{l}_{ep} + \mathbf{l}_{th})$$
(31)

で与えられる.ここに、 $\Delta p_1$ :入口管の摩擦圧力損失,  $\Delta p_2$ :入口ヘッダーの拡大損失、 $\Delta p_3$ :千鳥状多孔板 の圧力損失<sup>21)</sup>、 $\Delta p_4$ :入口ヘッダーの摩擦圧力損失,  $\Delta p_5$ :整流格子の圧力損失、 $\Delta p_6$ :タービン流量計の 圧力損失である.なお、 $\Delta p_5$ は一辺が $h_{st}$ なる正六角 形のハニカム状の整流格子を水力直径が等しい円管の 集合体で置き換え、この円管内の摩擦圧力損失で代用 した.ここで、伝熱管入口より上流側ではバイバス管 に流れる流量分だけ流量が増加するが、これは無視す る.

2.10 出口側圧力損失

伝熱管出口より下流側の圧力損失をΔpex とすると,

$$\Delta p_{ex} = \sum_{i=7}^{11} \Delta p_i + \rho_{g} g \sin \theta \cdot (l_{uh} + l_{op})$$
(32)

で与えられる.ここに、 $\Delta p_7$ :主伝熱管出口の拡大損 失、 $\Delta p_8$ :出口ヘッダーの摩擦圧力損失、 $\Delta p_9$ :出口 ヘッダーの縮小損失、 $\Delta p_{10}$ :出口管の摩擦圧力損失、  $\Delta p_{11}$ :出口管の出口損失である.なお、 $\Delta p_7$ には出 ロヘッダー内にある逆U字管による圧力損失を考慮す るために修正係数  $C_u=2.0$ が乗じられている.ここ でも、バイパス管の流量は無視する.

### 数値計算の方法

二相流部では(6),(21),(23),過熱気相流
 (SGF)部では(11),(21),(24)の各式を連立させ,
 4次の Runge-Kutta 法で積分して x, T<sub>n</sub>,Q及びτを求める.

二相流部の圧力は(10)式を次式のように差分化して求める。

$$-\left(\frac{\mathbf{p}_{i+1}-\mathbf{p}_{i}}{\Delta z}\right) = \mathbf{M}^{2} \frac{\rho_{1}-\rho_{g}}{\rho_{g}\rho_{1}} \left(\frac{\mathbf{x}_{i+1}-\mathbf{x}_{i}}{\Delta z}\right)$$

$$+ \overline{\rho}_{g}^{2} \frac{\xi_{h}}{A} \overline{f}_{g} \frac{\rho_{g}}{2} \left[\frac{\overline{\mathbf{x}} \rho_{1} \overline{\mathbf{y}}}{(1-\overline{\mathbf{x}}) \rho_{g}+\overline{\mathbf{x}} \rho_{1}}\right]^{2}$$

$$+ \frac{\rho_{g} \rho_{1} g \sin \theta}{(1-\overline{\mathbf{x}}) \rho_{g}+\overline{\mathbf{x}} \rho_{1}}$$
(33)

ここに, 記号の上に付した<sup>-</sup>は i 番目と i+1 番目の 物理量の平均値を表わす.

SGF 部の圧力は(13)式を次式のように差分化し て求める.

$$-\left(\frac{\mathbf{p}_{i+1}-\mathbf{p}_{i}}{\Delta z}\right) = \frac{M^{2}}{\Delta z} \left(\frac{1}{\rho_{g,i+1}} - \frac{1}{\rho_{g,i}}\right)$$
$$+\frac{\xi_{h}}{A} \tilde{f}_{g} \frac{M^{2}}{2\bar{\rho}_{g}} + \bar{\rho}_{g}g \sin\theta \qquad (34)$$

ここで、物性値は  $\bar{T}_{g} = (T_{g,i}+T_{g,i+1})/2$ ,  $\bar{p} = (p_i+p_{i+1})/2$  なる、積分区間の平均値で評価されるが、 $p_{i+1}$  が 未知であるため適当な値を仮定し、収束計算を行なう 必要がある. なお、Runge-Kutta 法で積分する際は、 簡単のため既知である  $T_i$ ,  $p_i$  での物性値を用いた. 窒 素の物性値は九州大学大型計算機センターのプログラ ム・パッケージ PROPATH<sup>22</sup> により求めた. さらに、 実験と合わせるため、熱交換器の出口で圧力が大気圧 になるような入口圧力をトライアンドエラー方式で求 め、この入口圧力を用いて本計算を行なった.

# 凝縮熱抵抗及びバイパス管による 伝達熱量の補正

2章で導出された基礎式は,凝縮熱抵抗及びバイパ ス管の存在を無視している.ところで,凝縮熱抵抗を 無視すると伝達熱量を過大に,一方バイパス管の存在 を無視すると伝達熱量を過小に評価することになるた め,両者を考慮した場合にはどうなるかを検討してお く必要がある.

4.1 凝縮熱抵抗による伝達熱量の補正

(15) 式を積分区間の平均値を用いて表わすと,

$$\bar{\mathrm{T}}_{\mathrm{t}} = \frac{\mathrm{T}_{\mathrm{ws}} + \left(\bar{\alpha}_{\mathrm{b}}/\bar{\alpha}_{\mathrm{c}}\right) \mathrm{T}_{\mathrm{n}}}{1 + \left(\bar{\alpha}_{\mathrm{b}}/\bar{\alpha}_{\mathrm{c}}\right)} \tag{35}$$

となる. (35) 式より  $\hat{T}_t$  を求めるには、 $\bar{\alpha}_c$  を与える 必要がある.水平な場合の $\alpha_c$ の相関式としては、水 平円管外表面上の体積力対流凝縮に対する Nusselt の 式<sup>23)</sup> を用いる.垂直な場合は、乱流液膜に対する体 積力対流凝縮の局所熱伝達係数 (*a<sub>c</sub>*)<sub>2</sub> の実験整理式<sup>24)</sup>を用いる.これらの*a<sub>c</sub>*に対する相関式を変形する と

となる. ここに,  $\bar{z}$  は各伝熱管の上端から下向きに とった積分区間の中央座標である. (36) 式を (35) 式に代入すると,  $\bar{T}_t$ に対する超越方程式が得られる ので, これを数値的に解くことにより  $\bar{T}_t$ が求まる.  $\bar{\alpha}_b$  及び  $\bar{T}_n$  は 2 章で計算されている値を用いると

$$\bar{\mathbf{q}}_{\mathbf{M}}^{\mathbf{M}} = \bar{\boldsymbol{\alpha}}_{\mathbf{b}} \ (\bar{\mathbf{T}}_{\mathbf{t}} - \bar{\mathbf{T}}_{\mathbf{n}}) \tag{37}$$

より、 $\bar{\alpha}_{c}$ を考慮した場合の熱流束 $\bar{q}''_{M}$ が求まる.

#### 4.2 バイパス管による伝達熱量の補正

バイパス管による伝達熱量を求めるには、バイパス 管に流れる流量  $W_B$ を知る必要がある.そのために は、主伝熱管の計算より求められる入口〜出口ヘッ ダー間の圧力差と同じ圧力差を与えるバイパス流量  $W_B$ を求めれば良い.バイパス管を経由した場合の出 ロヘッダー内圧力  $p_{uh,B}$  は次式で与えられる.

$$\mathbf{p}_{uh,B} = \mathbf{p}_{lh} - \Delta \mathbf{p}_{in,B} - \Delta \mathbf{p}_{t,B} - \Delta \mathbf{p}_{ex,B} \tag{38}$$

ここで、 $\Delta p_{t,B}$  はバイパス管の圧力損失であり、主伝 熱管と同じ計算方法で求める.また、 $p_{lh}$  は入口ヘッ ダー内圧力、 $\Delta p_{in,B}$ ,  $\Delta p_{ex,B}$  はそれぞれバイパス管の 入口、出口損失である.

本研究では、三つの  $W_B$  を仮定して  $p_{uh,B}$  を (38) 式より求め、これより  $p_{uh,B}$  を  $W_B$  の二次方程式で近 似し、この二次方程式に主伝熱管の計算結果から得ら れる  $p_{uh}$  を代入し、これを  $W_B$  について解いてバイ パス流量を求め、再度この  $W_B$  を用いて伝熱計算を 行ない、バイパス管での伝達熱量を求めた. なお、  $p_{uh}$  と  $p_{uh,B}$  の誤差は最大1.1%であった.

# 5. 結果及び考察

**Fig. 3** に熱交換器を垂直に配置した場合の, 主伝熱 管の流量 W に対応するバイパス管の流量  $W_B$  及び全 流量  $W_T$  ( $W_T = W + W_B$ )の計算結果を示している. 図中の破線は  $W_B = 0$ , すなわち全流量が主伝熱管を 流れる場合 ( $W_T = W$ ) である. 全流量範囲でバイパ ス管には主伝熱管の流量の約3.2%が流れる計算結果 となった.



Fig. 3 Calculation results of flow rate.



Fig. 4 Calculation results of condensation rate.

**Fig. 4**には、主伝熱管の流量Wに対する二次側水蒸 気の凝縮量の計算結果を示している.図中、G は $\alpha_c$ を考慮した場合の主伝熱管による凝縮量、G' は二次 側水蒸気の凝縮熱抵抗を無視した場合 ( $\alpha_c = \infty$ )の 主伝熱管による凝縮量、G<sub>B</sub> は $\alpha_c$  を考慮した場合の



W (m<sup>3</sup>/s)
 Fig. 6 Comparison of analytically obtained condensation rate with experiment.

バイパス管による凝縮量,  $G_T \operatorname{tr} \alpha_c を考慮した場合$ の全凝縮量 ( $G_T = G + G_B$ )を示している. G に対し て $\alpha_c を考慮しないと, 0.9\%$  ( $W = 25 \times 10^{-6} \text{ m}^3/\text{s}$ )~ 4.6% ( $W = 140 \times 10^{-6} \text{ m}^3/\text{s}$ )程度凝縮量を大きく見積 ることになる反面, G に対してバイパス管による凝 縮量  $G_B$ を無視すると, 2.4% ( $W = 25 \times 10^{-6} \text{ m}^3/\text{s}$ )~ 2.7% ( $W = 140 \times 10^{-6} \text{ m}^3/\text{s}$ )程度凝縮量を小さく見積 る計算結果となった.  $\alpha_c$ とバイパス管を考慮した場 合の全凝縮量  $G_T$  は, G' に対して+1.6% ( $W = 25 \times 10^{-6} \text{ m}^3/\text{s}$ ) 程度の凝 縮量を与え,結果的には G'とほぼ同じ値となること が分かる.

Fig. 5, 6 には, Fig. 1 に示す熱交換器を垂直に配置した場合の圧力損失 $\Delta p$  及び二次側水蒸気の全凝縮量 $G_{T}$ の実験結果<sup>n</sup>と本計算コードによる計算結果を比較して示している. なお, Fig. 6 には参考のため,凝縮量(質量)に水蒸気の潜熱を乗じて求めた伝達熱量に相当する目盛も合わせて示している. 図中, 〇は流れが安定な場合の実験値(静特性), ●は流動不安定が生じている場合の実験値である. これらの図より,本計算コードは垂直に配置された液体窒素低温熱交換器の静特性を比較的良くシミュレートしていることが分かる.

なお, **Fig. 5, 6** に示すように, 流動不安定が生じ ている場合の $\Delta p$ , G<sub>T</sub> はともに安定な場合を延長した 線より低下しており, 伝熱性能の劣化現象が生じてい る<sup>25)</sup>.

#### 6. 結 言

液体窒素低温熱交換器内の静的な伝熱流動特性をシ ミュレートする計算コードを開発した.熱交換器が垂 直に配置された場合の計算結果は,流動不安定が生じ ていない静的な実験結果とよく一致し,本計算コード の信頼性が確認された.

なお、本研究は文部省科学研究費補助金、エネル ギー特別研究(1), No. 61040047の補助を受けて行な われたものである.

# 参考文献

 新超電導体―開発の現状とその応用-(日経マグロウヒ ル社, 1987), p.20.

- 2) 佐藤, 日本機械学会誌, 85-759 (昭57), p. 165.
- 3) Jones, M. C. and Peterson, R. G., Trans. ASME, J. Heat Transf., 97-4 (1975), p. 521.
- 4)赤川ほか5名,第23回日本伝熱シンポジュウム講演論文集(1986-5), p. 304.
- 5) 堀内·田島, 日本機械学会誌, 86-776 (昭58), p. 735.
- 6) Ishii, M. and De Jarlais, G., Nuclear Engineering and Design, 99 (1987), p. 187.
- 7)近藤ほか4名,第23回日本伝熱シンポジュウム講演論文 集(1986-5), p. 298.
- 8) 低温工学ハンドブック (内田老鶴圃新社,昭57), p. 224.
- 9) 赤川ほか5名,日本機械学会講演論文集 No. 864-2 (1986-11), p. 69.
- 10) 西川·藤田, 伝熱学 (理工学社, 1983), p. 236.

- 11) Delhaye, J. M. ほか2名, Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering, (McGraw-Hill, 1981), p. 270.
- 12) 小沢, 大阪大学学位論文(昭51), p. 57.
- 13) 植田, 気液二相流 (養賢堂, 昭56), p. 39.
- 14) 文献11) の p. 273.
- 15) 文献11) の p. 275.
- 16) 文献11) の p. 260.
- 17) Ganic, E. N. and Rohsenow, W. M., Int. J. Heat Mass Transf., Vol. 20 (1977), p. 855.
- 18) 文献13) の p. 41.

- 19) 文献11) の p. 215.
- 20) 伊藤, 日本機械学会誌, 62-490 (昭34), p. 46.
- 21) 管路・ダクトの流体抵抗, 日本機械学会, p. 110.
- 22) PROPATH 熱物性値プログラム・パッケージ(第3.1版) 九州大学大型計算機センターマニュアル(昭61).
- 23) 藤井・上原, 伝熱学の進展1 (膜状凝縮熱伝達), (養賢 堂, 昭50), p. 59.
- 24) 文献23) の p. 54.
- 25) K. Fukuda et al., ASME-JSME Thermal Engineering Joint Conference, 5 (1987), p. 157.