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         A Latent Scale Linear Model for Ordiered
                     Categorical Responses

              Hiroyuki UESAKA and Chooichiro ASANO
                           (September 29, 1984)

   The present paper is related to a contingency table with an ordered categorical res-
ponse. The ordered categories are assumed to be manifestations of an unobservable qua-
ntitative response or trait, and the linear models for location parameters of the underly-
ing distributions are considered. This model is referred to as the latent scale linear mo-
del. It is stressed that latent scales and families of distributions are substantial to the
models and their properties are discussed. Several models proposed earlier are reconsi-
dered in the framework of the latent scale linear model. The model is illustrated
through two examples.

  1. Introduction

 The analysis of a contingency table
with an ordered categorical response is
of great interest in various fields, and
recently several models based on trans-
formations of probabilities have been
proposed, e.g. McCullagh (17), Goodman
(12). On the other hand, models based
on a latent continuous response have
been considered in analysis of stimulus-
response relationship, e.g. Ashford (4),

Gurland, Lee and Dahm (13), Farewell
(10). Similar models have been consi-
dered for data obtained by successive ca-
tegories or rating scale methods in psy-
chome.tric contexts, e.g. Saffir (19), Ed-

wards and Thurstone (9), Bock (5), An-
drich (2).
  In this paper, the drdered categories

are assumed to be manifestations of an
unobservable quantitative response or
trait, and linear models are considered
for location pa.rameters of the underly-
ing distributions. This model will be re-
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ferred to as latent sca!e linear mode!. In
section 2, a latent scale linear model is

defined and some considerations are gi-
ven on situations to which such a model
applies. In section 3, the families of la-

tent distributions and their properties
are discussed. Estimation and testing
statistical hypotheses are briefly sum-
marized in section 4. In section 5, two
data sets are analysed and implication
of the model is discussed. Additional
commepts are given in the final sec-
tion.

  2. The latent scale linear model

  2.1 Examples of ordered categorical
responses
  Let us illustrate three typical situa-
tions where the ordered categories are
thought as manifestations of latent va-
riables.

  (i) Biological stimulus-responseana-
lysis. A subject, exposed to a stimulus
intensity x, has a latent continuous re-
sponse z(x) and is manifestly observed as
one of the ordered categories, say the j-th

category, in case of Td-i :{gz(x)<T,,J'=1,

•t• , J, where Ti,•••, TJ-i are unknown thre-
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shold values and To=-oo and TJ=oo•
Generally, the latent response for the
stimulus intensity x varies depending
upon uncontrollable internal and exter-
nal variations and is assumed to have a
distribution F.(z)=F(z-pt(x)) on a sui-
tably chosen latent scale, where pt(x) is

a function of x. Such a model has been
considered by Ashford (4) and Gurland,
Lee and Dahm (13) on the basis of nor-
mal or logistic distribution, and can be
extended to situations with multiple sti-

muli using multivariable function pt(x).

  (ii) Psychometric analysis on scal-
ing. In psychometric experiments,mea-
sures on an ordered categorical scale
such as preferences, attitudes or opini-
ons of subjects are thought to be mani-
festations of latent continuous varibles.

It is further assumed that when the la-
tent variable of a subject falls in an in-

terval kj-i, Tj), the subject manifestly

responds to the ith category. The suc-
cessive intervals [Ti-i,Ti), j=1,•••,J are

constant over the subjects and the dis-
tribution of the latent variable under a
condition x is F(z-pt(x)). Though it is
assumed (e.g. Saflir (19), Edwards and
Thurstone (9)) that the latent variable
is normally distributed, this assumption
should be critically checked and if this
is not the case, other distribution should
be tried.

  (va) Sensory analysis on rating ex-
periments. Whenasubject is rated on
an ordinal scale with J categories, the
subject is located at a point on a latent
continuum and classified into one of the
         '
successive categories.

 2. 2 The general latent scale linear model

  Suppose an IxJ contingency tab!e
{niD is defined by I samples of the res-
pective sizes ni, •••, ni and jointly J order-

ed response categories. Let {pij} be the
expected proportions, and denote cumula-
tive probabilities by

  qii=Pii+••• +p,j, j=1, ••• , J, i--- 1,•••, I.(1)

  Now let us define the latent scale li-

near model. Suppose that the observed
categories (zi*.} are manifestations of
latent continuous variables {zi.}. Let F(z)

be a continuous distribution function
whose support is the whole real axis
and let Ti,•••,"-i be unknown constants,
satisfying a constraint

  -OO=To<Z'i<•••<TJ-i<TJ==+co. (2)

Then assuming that zi.,a==1,••.,ni are
independently and identically distributed
in F(i-pti),l=1,•••,I, we have

  Pr. (zi". f{Il j) =qtj=F(Tj-,eLi),

        J'-- 1, ••• , J- 1, i-- 1, ••• ', I, (3)

where pti,••., th are unknown location
parameters. Consider a linear model

   ,et,-oo,iSl, i---1, •••,I, (4)

where P is a p-dimensional unknown
parameter vector of Bi,•••,Bp and X---
(sci'•••,ooD' is an Ixp known matrix. For

the uniquness of parameters, we assume
that

   Xa\Ii, for any aijO, (5)
where li is the p-dimensional vector of
1's. Thus the transformation of cumula-
tive probability Fm'(q,i) is represented
as an additive model of row parameter
pti and column parameter Tj.

  3. The latent distributions

  The above model implies that if the
scale of the latent variable is suitably
chosen, the differences in distributions
of the given I populations are ascriba-
ble to those of location parameters.
But since the latent scale is unknown,
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Table 1. Typical distributions of latent variables.

Name Definition

Normal

Logistic

Double exponential of
Double exponential of

Generalized logistic

Reversed generalized

Log gamma

Reversed log gamma

the first kind

the second kind

logistic

         z-ptF(z-- pt) = I i/ li.7 exp (-x2/2) dx

         -ee
              1F(Z-pt) = ffiig exp{--(z-pt)}

F(z---pa) = exp[-exp{-(z-pt)}]

F(i-pt) = 1-exp [-exp{(z-pt)}]

F(z-- pt ; y) == ( 1+exp [! (z- pt)] )"

F(z-pt;v) = 1- ( 1+e.pl(z-pt) ]"

          z-ll
F(z--pt;v)== J r(i,) exp{vx-exp(x)}dx

          -oo
          z--pF(z- pt;v) == J T(i,) exp(- vx- exp(- x)}dx

          -co

it is to be estimated. This also means
that the distributional form is to be es-

timated. It is true that the normal or
logistic distribution is common in such
situations, but these two distributions
sometimes fail to fit to data and skewed

distributions have come into use. In
this section, we will discuss properties
of latent scales and distributions. Thou-
gh there are a lot of families of distri-

butions and any distribution whose sup-
port is the whole real axis may be used,
several useful distributions are known.
These are given in Table 1.
  First let us consider the effect of tra-

nsformation of the latent scale.
  (a) Suppose forIdistributions G(y,Pi),
i----=1, •••, I, there exists a monotonic trans-

formation z==z(y), which is independent
of P,'s, and that G(y,Pi)-F(z-pti),i-1,

••• ,I holds, then we can treat F(z-pti)'s
instead of G(y,Pi)'s. Thus typical po-
sitive distributions such as the expo-
nential, Weibull, (generalized) gamma
and second extreme value distributions

are transformed to log-gamma distri-
bution, F;,Pareto are transformed to the
generalized logistic distribution by loga-

rithmic transformations.
  The next proposition is a direct con-
sequence of the property (a).
  (b) When the latent distributions Gi
(y, P), i-1,•••, I are expressed by the Cox's

proportional hazard model (Cox (8)), the
latent scale linear model is given on the
basis of the double exponential distribu-
tion of the second kind. In fact if

  1 -- Gi (y ;P) =- exp{- exp (`viP) A, (y) } ,

                        i--- 1, - ,I,

then the transformed variable z=log
[Ao(y)] has a double exponential distri-
bution of the second kind.
  (c) The categories on a bipolar scale,
which often appears in attitude mea-
surements, can be ordered in two direc-
tions. The family ofasymmetricdistri-
bution is invariant under reverse of ca-
tegory order, but those of asymmetric
distributions change from F(z-pt) to
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1-F(-(z-pt)). The reversed family
will be called by heading "reverse" to
the name of the original family.

  Extension and generalization of a fa-
mily: Any location family of distribu-
tions F(z-pt),-oo<pt<+oo is extended
by {F(z-pt)}" or 1-{1-F(z-pt))Y, where
v is any positive value. These distribu-
tions are the extended families of maxima

and minima of random samples from
F(z-pt). This extension can be applied
to any distribution but for the double
exponential distributions of the first and

second kind. Let us give some consider-
ations on latent distributions.

  (d) The generalized logistic distribu-
tion is the generalized distribution of
maxima of logistic samples. This distri-
bution is obtained by compounding double
exponential distribution of the first kind

and log-gamma distribution, and is asy-
mptotically equivalent to the double ex-
ponential distribution of the first kind
as y tends to infinity. Also this is a
special case of the generalized F defined

by Prentice (18). The reversed gene-
ralized logistic distribution is the gene-

ralized distribution of minima of,logi-
stic samples. This distribution is ob-
tained by compounding double exponen-
tia! distribution of the second kind and
log-gamma distribution. FareweH (10)
has obtained this distribution in a diffe-

rent form. This is asymptotically equi-
valent to the double exponential distri-
bution of the second kind as y tends to
infinity•

  (e) The (reversed) log-gamma distri-
bution is an extended family of the dou-
ble exponential distribution of the se-
cond (first) kind.

 Relationship to the other proposed
model :

  (f) The proportional odds model of
McCullagh (17) is given on the basis of
the logistic distribution.

  (g) Theasymmetricpowertransforma-
tion of probabilities proposed by Aranda-

Ordaz (3) is equivalent to the generaliz-
ed (reversed) logistic model. In fact, the

model

  log{(1-q,j)"'i'-1)=Tj-ooiiSl, y>O,

                               (6)

is equivalent to that based on the re-
versed generalized logistic distribution.

Similarly the model

  log{(q,,)-i'"-1}==-("-A`7iiS?), v>O

                               (7)

is equivalent to that defined by the ge-
'neralized logistic distribution. When y
tends to infinity (6) and (7) approach to

the double exponential distribution of
the first and second kind, respectively.

  4. Parameter,estimation and testing
    statistical hypotheses

  The parameters may be estimated by
several methods, e.g. the method of ma-
ximum likelihood. Testing statistical
hypotheses will be consequently perfor-
med on the basis of likelihood ratio and

Wald criterion. These are well known
and omitted in the present paper.

  5. Illustrative examples

  We will give two illustrative exampl-
es, the data h'ave been analysed by sev-
eral authors. The present analysis will
give deeper insight into the data.
  5. 1 Mental health study

  A6x4 table on mental health status
(four response categories) by socioeco-
nomic status (six categories) was analy-
sed by Haberman (14) using decomposi-
tion of interaction terms of a log-linear

N
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model. The data is given in table 5 of
Haberman (14). Let

Xa)=
-5 5 -5
-3 -1 7
-1 -4 4
 1 -4 -4
 3 --1 --7

 555

 1 -1
-3 5
 2 -10
 2 10
-3 -5
 11

.

The model defined by X=X(i) was fit-
ted to every family in Table 1. For as-
sessing goodness of fit of the model,
the likelihood ratio chi-square statistic

     G=2 Z nid log (nij/ni Pid)

was computed for each family, where
{Pii} are maximum likelihood (ML) esti-
mates of {piD. The goodness of fit stati-

stics, with 10 degrees of freedom, are
given below.

tfor the model of order up to 1 and2
were G ==8. 717 and G=6. 219, respective-

ly. The difference•is 2.498, which is
chi-squared statistic with one degree of
freedom for testing H2. Thus the model
of order 1was accepted. The estimated
parameters and their variance-covari-
ance matrix are given below.

Para- Esti-
meter mate

Variance-covariance
         (X104)

matrlx

T, -O.910
T, O. 119
T, O. 732
R O. 051

12. 962
 4. 741
 3. 116
-O. 192

 4. 741
 9. 594
 6. 360
-O. O08

3. 116
6. 360

11.622
O. 092

-O. 192
-O. O08
 O. 092
 O. 674

Goodness of fit of the four parametric
families in Table 1.

Distribu•-
 tion

G with
 10 df

Normal Logistic

5. 591 7. 827

   Double
 exponential
First Second

10. 396 8. 159

The extended families showed little im-
provement in fitness, so omitted from
the table. Thus the normal distribu-
tion was adopted. The estimated Bd's,
their estimated standard deviations and
Wald stastitic for testing Hd: Bj=O are
given in Table 2. We can conclude that
the terms of order over 2 are unneces-
sary. The goodness of fit statistics G

 We can conclude that the scale values
of the six socioeconomic groups are
equally spaced in order of socioecono-
mic status, and the mental health sta-
tus gets better according to the socio-
economlc status.
 Haberman (14) has adopted the mo-
del having linear by linear interaction
effect. The resultant G was 9.73 with
14 degrees of freedom. Our model defi-
ned by the linear trend for the main
effects of socioeconomic status gave
smaller G value than that of Haberman.
Further our model may be interpreted
more easily than that of Haberman.
 5.2 Study on severity of cancer
  Table 3 gives the frequency distribu-
tions of severity of cancer, Hirotsu (15,

16). Hirotsu (16) analysed the data by
cumulative chi-square method, and found
that ten occ' upations consisted of two
homogenous groups. The differences

Table 2. Estimates of parameters and their estimated
Wald statistics for testing hypotheses on the

standard deviations
parameter values.

and

Structure parameter
A
Pi

A
P2

A
fl3

A
P4

A
fl5

Estimate
 SD
 X$

O. 0523
O. O083

39. 705

O. Olll
O. O072
2. 376

-O. OO13
 O. O050
 O. 068

O. O038
O. O123
O. 095

-O. O028
 O. O038
 O. 366
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Table 3. Frequency table of severity of
        cancer and the estimated loca-
        tion parameters and their SD's
        obtained in the reversed gene-
        ralized logistic model and Xa).

OC,CigP.a- Miid M,O.2,e- sever AAP, SD (P,)

A
B
c
D
E
F
G
H
I

J

148
111
645
165
383
96
98

199
59

262

444
352

1911
771

1829
290
330
870
199

1320

86
 49
328
119
311
 47
58

155
30

236

   oo-O. O19 O. 337
-O. 105 O. 246
 O. 835 O. 274
 O. 909 O. 247
-O. 062 O. 355
 O. 200 O. 337
 O. 763 O. 257
 O. 147 O. 399
 L 027 O. 252

between groups are due to difference
in the proportions of the first category.

Yanagimoto and Shimizu (20) analysed
the same data using the discrete pro-
portional hazard model of.Cox (8) and
found the model defined below fitted well

(G=:8.90 and 17 degrees of freedom).

   (ai, •••, aio)' =Til-X{2) B,
                                (8)   (bi, "', bio)'=T21

 where
   ai--log1{liiq,,, bi=log1IZ'2q,,,i=1,•••,10,

and X(,) == (1, 1, 1, O, O, 1, 1, O, 1, o)t.

 On the other hand, we analyse the
same data by latent scale linear model.
First the model defined by X(i> =[Og,Ig]'
was fitted. The goodness of fit for se-
veral distributions is summarized as fol-

lows:

Goodness Degrees Shape
 stOaftifisttic frOefe. ga,rta,-,

          dom

The results indicate that the latent di-
stributions are highly positively skewed
and proportional hazard model is unsa-
tisfied. The reversed generalized logi-
stic distribution gave the smallest G
value of 5.248 with 8 degrees of fre-
edom. The double exponential distri-
bution of the first kind fitted fairly well

to the data but there is appreciable dif-

ference in the likelihoods between the
two distributions. Thus the reversed
generalized logistic distribution is adop-

ted. The estimated parametervaluesof
Bi's and their estimated SD's based on
the reversed generalized logistic distri-

bution are given in the last two colu-
mns of Table 3. The Bi is the diffe-

rence in location parameter between
the firpt and the (i+1)-th occupations,
i=1,•••,9. These values suggest that
the occupations consist of two homoge-
neous groups (A, B, C, F, G, I) and (D,
E, H, J), which is the same as obtained
by Hirotsu (15, 16) and Yanagimoto and
Shimizu (20). Following this grouping,
we fitted the model X(2,. The goodness
of fit statistic was G =8. 867 with 16 deg-

rees of freedom. The maximum value
of sample-wise components of G was
1.75, thus the model fits well to every
occupation. The estimated parameters
and their estimated variance-covariance
matrix are as follows:

Distribution

Normal
Logistic
Double exponential
           (first)
Double exponential
         (second)
Reversed generalized
 logistic
Reversed log-gamma*

33. 065
29. 819

 9. 616

66. 621

 5. 248

 6. 568

9
9

9

9

8

8

O. 10

O. 50

*Not searched enough

Para-       Estimate meter
Variance-covariance
   matrix (Å~104)

Tl
T2
p

2. 680
24. 213
 1. 017

74. 788 72. 767 74. 776
72.767 81.450 77.130
74. 776 77. 130 122. 146

 6. Further discussions

 The present paper discussed a latent
scale linear model for a contigency ta-
ble defined by factor variables and an
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ordered categorical response. The mo-
del was' originally proposed on the basis
of normal assumption of the latent dis-
tributions as a natural extension of pro-

bit model for quantal responses, Ashford

(4). In fact when the number of cate-
gories is two, our model based on nor-
mal or logistic distribution reduces to
the linear model for probit, Finney
(11), or linear logistic model, Cox (7).

The generalized logistic model reduces
to that of Prentice (18).

  Three generalizations of latent scale
linear model may be considered. The
first is transformation of quantitative
regressor variable instead of higher or-
der polynomials as is discussed by Box
and Tidwell (6) in normal regression
problem. The second is nonlinear mo-
del which includes sca!e parameters, Mc
Cullagh (17). The third is ordinal re-
gression situation with ordered categori-

cal response, Anderson and Philips
(1).

  Our model is also applicable to scaling
problem in the method of successive in-
tervals by assuming the homogeneity of
scale parameters and deleting normal
assumption on the latent distributions.
The internal consistency check is given
by assessing goodness of fit of the
model.
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