九州大学学術情報リポジトリ Kyushu University Institutional Repository

疑似衝撃波内部の流動機構について

生井,武文 _{東亜大学}

村上, 昭年 九州大学工学部応用理学教室

松尾, 一泰 九州大学大学院総合理工学研究科エネルギー変換工学専攻

望月,博昭 九州大学大学院総合理工学研究科エネルギー変換工学専攻

https://doi.org/10.15017/17584

出版情報:九州大学大学院総合理工学報告.5(2), pp.173-179, 1983-12-01.九州大学大学院総合理工 学研究科 バージョン: 権利関係:

·····

擬似衝撃波内部の流動機構について

生 井 武 文* •村 上 昭 年** 松 尾 一 泰***•望 月 博 昭*** (昭和58年9月30日 受理)

On the Flow Mechanism in Pseudo-Shock Region

Takefumi IKUI, Terutoshi MURAKAMI, Kazuyasu MATSUO and Hiroaki MOCHIZUKI

It is well known that when a shock-boundary layer interaction is comparatively strong, the shock in a duct extends over a great distance, which is called a pseudoshock wave. Many investigations have been reported so far on pseudo-shocks. In these studies, however, the flow in pseudo-shock region was considered as a black box and only the flow properties across the shock were discussed.

In the present paper, the flow mechanism in pseudo-shock region is experimentally investigated, especially for the flow field between the first- and the third-shocks composing a pseudo-shock. As the result, it is clarified that, in the flow region under the bifurcated foot of the first shock, which was considered to be a uniform flow region, the flow is decelerated along the streamwise direction. Taking into account the fact described above, the mechanism of generation of the second-shock is discussed in detail.

1. まえがき

管内の超音速流れが亜音速に減速される際に生じる 衝撃波は、管壁境界層と干渉し、管径の数倍から10数 倍の長さをもつ擬似衝撃波となる.擬似衝撃波は、先 頭衝撃波が流路中心部で流れに垂直な部分をもつ λ 形 擬似衝撃波と、垂直な部分をもたないX 形擬似衝撃波 に大別され、一般に前者は比較的低いマッハ数の場合 に現れ、後者は高いマッハ数の場合に現れる.

従来,擬似衝撃波について,多くの研究がなされて おり,その内部の流動機構については,衝撃波を伴わ ない中心部の高速流れと,壁近傍の低速流れとの混合 拡散現象として説明する流れモデル¹¹⁻³¹ と,衝撃波と の干渉により境界層の外縁から生じる斜め衝撃波が管 路中心線で反射すると考える流れモデル⁴¹⁵¹ が提案さ れている.後者の流れモデルは,第2衝撃波以降の各 衝撃波の形成機構を説明するモデルであるが,多くの 仮定を含み、後述のように、その仮定に検討すべき点 がある.このように、第2衝撃波が形成されるメカニ ズムを含め、擬似衝撃波内部の詳細な流動メカニズム については、まだ不明な点が多い.

本研究では,直管内に生じる↓形の擬似衝撃波につ いて,特に先頭衝撃波から第3衝撃波までの流れ場を 実験的に詳細に調べ,第2衝撃波が形成される流れの メカニズムについて考察した.

実験装置と方法

実験に使用した吹出式超音速風胴の概略を図1に示 す. 貯気槽に貯えられた高圧の乾燥空気は,集合胴で いったんよどみ点状態に回復した後,ノズルで超音速 に加速され,測定部,ディフューザ,消音器を経て大 気に放出される.

ノズルの設計マッハ数は1.8で、紙面に垂直方向の 幅は32mm,出口(すなわち測定部入口)断面は 32×32mm²の二次元軸対称ノズルである.また測定 部はノズル出口と同じ断面をもつ管路で、測定部の下 壁と側壁には流れ方向に沿って多数の静圧孔(直径

^{*} 東亜大学

^{**} 工学部応用理学教室

^{***} エネルギー変換工学専攻

Fig. 1. Schematic diagram of experimental apparatus.

1 mm) を設け,流れ方向の静圧分布を測定した.流 れ場の 全圧は,全圧プローブ(開口直径 0.75 mm) により測定した.

また先端が円錐(半頂角 5°)の探針を挿入し,そ の先端に生じる弱い斜め衝撃波をマッハ線とみなし, そのマッハ角から気流マッハ数を求めた.なおこれら の測定は,シュリーレン法による流れ場の光学観察 (視野の直径 300 mm)と同時に行った.

3. 実験結果と考察

3.1 境界層厚さ

擬似衝撃波の形状や空力的特性は主流のマッハ数及 び境界層の状態によって大きく影響を受ける. このた め,まず測定部全域を超音速とし,流路内の境界層の 発達の状態を光学観察により求めた. その結果を図2 に示す. 図の横軸はノズルスロートからの距離 x,縦 軸は境界層厚さδで,実験点は写真から判断した値で ある.実線と破線はそれぞれ境界層がノズルスロート から発達すると仮定して計算した乱流境界層と層流境 界層の場合の計算値である.

図より明らかなように、本実験点は乱流境界層の計 算値とほぼ一致し、測定部における境界層は乱流と考

Fig. 2. Boundary layer thickness along duct.

えられる.また本実験では、 λ 擬似衝撃波の先頭衝撃 波の中心部分がノズル出口より約 5 mm 下流 (x=127 mm) に位置するように集合胴のよどみ点圧力を 調整したが、図2から明らかなように、x=127mmに おける境界層厚さは約 2 mm、レイノズル数は 1.8× 10⁶ で、そこでの主流マッハ数は 1.7 である.

3.2 擬似衝撃波の巨視的性質

擬似衝撃波の先頭衝撃波中心部分がノズル出口より 約5mm 下流にある場合の,流れ方向の壁面静圧分 布を図3に示す. 図の横軸は測定部断面の等価直径 *D*,縦軸は集合胴におけるよどみ点圧力 *p*os で無次元 化してあり,左下からほぼ直線的にわずかに増加して いる線は流路全域を超音速とした場合の静圧分布であ る. 図より擬似衝撃波による全静圧上昇に対する第3 衝撃波までの圧力上昇は約85%である.本実験では, 以下に示すように,この区間内における圧力やマッハ 数の分布を詳しく測定した.また,図より本実験にお ける擬似衝撃波の長さ *L* は約6.7*D* であるが,この

Fig. 3. Wall static pressure distributions in pseudo-shock region in a constant-area straight duct.

Fig. 4. Length of pseudo-shocks in constant-area straight duct.

実験値を, 従来の 断面積一定の 管内における 実験値 ²¹⁵⁾⁻⁷¹ と比較した結果を図4に示す. 図の横軸は主流 マッハ数 *M*₁ である. 図より本実験値は, 従来の実験 値とほぼ一致し,実線で示す拡散モデル²⁾の計算値と も良く一致する.

図3と同じ実験条件の場合の擬似衝撃波のシュリー レン写真の一例を図5に示す.流れは左から右で、衝 撃波との干渉により境界層ははく離しており、先頭衝 撃波の形状は↓形である.先頭衝撃波の下流に膨張波 と圧縮波が見られ、さらに流路の中心付近が垂直で、 上流に凸状の第2衝撃波が観察される.この第2衝撃 波の形状は、文献(4)で述べてあるように、圧縮波が 集積して斜め衝撃波となり、それが流路中心線で反射 して形成されたと考えるには無理があるように思わ れ、形成機構については後に考察する.

First-shock Third-shock

Fig. 5. Schlieren photograph showing a λ -shaped pseudo-shock.

3.3 流れ場のマッハ数及び全圧分布

円錐探針を挿入して流れ場を調べる場合、もし探針

が大きければ,挿入することによって流れ場が乱され る.本実験では外径 1.5 mm の探針を用いたが,こ の探針の断面積は流路断面積の約0.2%で,探針挿入 時のシュリーレン写真観察による擬似衝撃波の形状や 壁面静圧分布について,探針を挿入しない場合と有意 の差がないことを確認した.従って円錐探針を流れ場 に挿入し光学的に観察したとき,その先端に斜め衝撃 波やマッハ波が観察される場合は超音速,観察されな い場合は亜音速と判断することができる.

上述の方法により,擬似衝撃波の先頭衝撃波から第 3衝撃波までの流れ場の状態を調べた結果を図6に示 す. 図の横軸はノズルスロートからの距離 x と流路高 さの半分 h の比,縦軸は下壁からの高さ y と h の比 である. 図より黒丸印で示す亜音速領域は,先頭衝撃 波の垂直部分のすぐ下流の領域と,壁面近傍のはく離 域,及び第2衝撃波の直後とその壁面近くの領域に見 られる.

次に先頭衝撃波から第3衝撃波までの気流マッハ数 の分布を前述の円錐探針法により求めた結果を図7に 示す. 図の横軸は図6と同じで,縦軸は局所マッハ数 Mである. 図の実験点は y/h=1.05, 0.46 及び 0.28 の場所を流れ方向に調べた結果で,実験点のない部分 の線は光学観察結果などのデータから推定した値であ る. なお,本実験では分枝した先頭衝撃波の三重点の 高さ H_t は,図5の写真からもわかるように,流路高 さの半分hの0.7倍,すなわち $H_t = 0.7h$ であり, 図には参考のため y/H_t の値も記入してある.

さて点線は y/h=1.05 における流れ方向のマッハ 数の分布であるから,図6のほぼ中心線上の分布と考 えてよい. x/y=7.57の位置に先頭衝撃波の流れに

Fig. 6. Supersonic and subsonic regions between first and third shocks.

Fig. 7. Mach number distributions between first and third shocks.

垂直な部分があり、その直前で M=1.68 で、この垂 直衝撃波によりマッハ数は階段状に減少し, M=0.65 の亜音速流れとなる.しかし図6に示したように、三 重点からのすべり面が中心線に近づくように向いてい るため、流路面積は流れ方向に減少し、この流路面積 の縮少効果により、マッハ数は増加する.更に下流で は後枝衝撃波と境界層端との交点から発生する膨張波 によって加速され超音速となるが、8.7>x/y>9.0 ではマッハ数は減少している. これは, 上述の膨張波 のすぐ下流で,流れが再び中心線に近づく方向に曲げ られるため、境界層端から主流に向って発生する圧縮 波によって減速されるためと思われる. 第2衝撃波は x/h=9.04 に位置し、その直前で M=1.41 である. 第2衝撃波によって流れは再び亜音速となり,第2衝 撃波と第3衝撃波の間でも上述と同様に、膨張波と圧 縮波による加速と減速が行われるが、その程度は小さ 61.

y/h=0.28の実線における x/h=7.26 でのマッハ 数の急激な減少と、y/h=0.46の一点鎖線における x/h=7.39 でのマッハ数の急激な減少は、いずれも前 枝衝撃波によるものである.また実線における x/h=7.83 と、一点鎖線における x/h=7.70 での不連続的 なマッハ数の減少は、いずれも後枝衝撃波によるもの である.図よりマッハ数は前枝衝撃波から後枝衝撃波 までの領域で単調に減少している.これはこの部分に 圧縮波が存在していることを示す.なお後枝衝撃波よ り下流のマッハ数分布は、y/h=1.05の場合の破線と ほぼ同じ傾向を示す.

従来,分枝した衝撃波の前枝衝撃波と後枝衝撃波に 囲まれた領域は,一様流れの領域と考えられていた. しかるに上述のように、この領域は、圧縮波が存在す る減速領域であることが明らかになった.このことを 確認するため次のような計算を行った.

×形擬似衝撃波の先頭衝撃波の 部分の模式図を図8 に示す. 図には中心線の下半分のみが示してある. 先 頭衝撃波の上流をマッハ数 M_1 の一様領域①とする. 先頭衝撃波による静圧上昇のため,境界層のはく離が 起こり,前枝衝撃波 AB が発生し,これが中心線でマ ッハ反射して,後枝衝撃波 BD が生じる. 簡単のため 衝撃波 AB と BD は直線とし,衝撃波ABと BD が 上流の領域①における流れの方向となす角をそれぞれ β_1, β_2 衝撃波 AB と BD による流れの偏角を θ_1, θ_2 とする. また境界層端 AD は直線で,三角形 ABD で囲まれる領域②のマッハ数 M_2 を一定と考え,衝撃 波 BD の下流の領域③のマッハ数を M_3 とすれば

Boundary layer Separated region Fig. 8. Sketch of bifurcated shock region.

$$\tan \theta_1 = \frac{2 \cot \beta_1 (M_1^2 \sin^2 \beta_1 - 1)}{M_1^2 (\kappa + \cos 2 \beta_1) + 2}$$
(1)

$$M_{2}^{2}\sin^{2}(\beta_{1}-\theta_{1}) = \frac{(\kappa-1)M_{1}^{2}\sin^{2}\beta_{1}+2}{2\kappa M_{1}^{2}\beta_{1}-(\kappa-1)}$$
(2)

$$\tan \theta_2 = \frac{2 \cot(\beta_2 + \theta_1) \{ M_2^2 \sin^2(\beta_2 + \theta_1) - 1 \}}{M_2^2 \{ \kappa + \cos 2 (\beta_2 + \theta_1) \} + 2}$$

$$M_{3}^{2}\sin^{2}(\beta_{2}+\theta_{1}-\theta_{2}) = \frac{(\kappa-1)M_{2}^{2}\sin^{2}(\beta_{2}+\theta_{1})+2}{2\kappa M_{2}^{2}\sin^{2}(\beta_{2}+\theta_{1})-(\kappa-1)}$$
(4)

衝撃波 AB への流入マッハ数 M_1 と角 β_1 を与えれ ば,式(1)より θ_1 が求まり、これを式(2) に代入す れば M_2 が得られる. また角 β_2 を仮定し、 M_2 と β_2 を式(3) に代入すれば θ_2 が求まり、これを式(4) に代入すれば M_3 が得られる.

 $M_1=1.7$ として計算した $\beta_2 \ge M_3$ の関係を $\beta_1=$ =57° と 48°の場合について図9に示す.本実験の光 学観察により測定した先頭衝撃波の前枝衝撃波 AB と 後枝衝撃波 BD の角度 β_1, β_2 はそれぞれ 48°~57°, 57°~64° で、この範囲を図の斜線で示す. 図から明ら かなように、斜線で示す領域の M_3 は1より小さく、 このことは、図6に示した実験結果、すなわち衝撃波 BD のすぐ下流で流れは超音速であることと矛盾す る. これは、上述の計算において、図8の境界層端 AD を直線と仮定したことが主な理由と考えられる.

後枝衝撃波 BD の下流で流れが超音速となるため

の条件を明らかにするため、 $\beta_1=50^\circ$ 、 $\beta_2=60^\circ$ とし、 $M_1=1.6$ 及び 1.7 の場合について、 M_2 を変化させ て、 M_3 の値を求めた.その結果を図 10 に示す.二 つの曲線上の 白丸印における 横軸の M_2 の値は衝撃 波 AB のすぐ下流におけるマッハ数である.図より $M_1=1.7$ の場合には、後枝衝撃波直前のマッハ数が 1.11 のとき $M_3=1$ で、 $M_2>1$ となるためには、 後枝衝撃波直前のマッハ数は 1.11 以下でなければな らないことがわかる.同様に $M_1=1.6$ の場合には、 $M_3>1$ となるためには、後枝衝撃波直前のマッハ数 は 1.15 以下でなければならない.

上述の計算結果より,図8の衝撃波 AB と BD の 間の領域は一様流れの領域ではなく,マッハ数が流れ 方向に単調に減少する領域でなければならない. この 減少は,境界層端 AD が直線ではなく,凹面である ため,圧縮波が発生すると考えれば説明できる.

次に図7と同じ流れ場について、全圧プローブをト ラバースして測定した局所全圧 p_0 と集合胴のよどみ 点圧力 p_{0s} の比の分布を図11 に示す. y/h=1.05 の 破線は、流路のほぼ中心線上の全圧分布を示し、x/h=7.57 において、先頭衝撃波の流れに 垂直な 部分に より全圧は急激に減少するが、先頭衝撃波と第2衝撃 波の間ではほぼ一定に保たれ、x/h=9.04 における第 2 衝撃波によってわずかに不連続的な減少が起こる. y/h=0.46 における 全圧分布 (一点鎖線) は y/h=1.05 の破線の分布と似ており、前枝衝撃波の下流に おける全圧は、流れ方向に極めて徐々に減少する. y/h=0.28 では、壁面に近いため全圧の減少の程度は 大きく、x/h=8.1 において $p_0/p_{0s}=0.54$ の最小値ま で減少し、その後主流との混合により増加した後、ほ ぼ一定値となる.

Fig. 11. Stagnation pressure distributions between first and third shocks.

Fig. 12. Schematic sketch of flow between first and third shocks.

3.4 内部構造のフローパタン

以上の結果より,先頭衝撃波から第3衝撃波までの 流れの加速と減速の機構を考察すると,この領域にお ける圧縮波と膨張波の分布状態は図12のように推定 される.先頭衝撃波が分枝した結果生じた前枝衝撃波 直前のマッハ数は,その上流の境界層端より発生する 圧縮波のため,中心部付近のマッル数1.7より小さ く,厳密には境界層端から分枝の三重点の方向に向っ て連続的に変化していると考えられるが,前述の円錐 探針法で求めた結果によると,下壁より管路高さの4 分の1程度まで圧縮波の影響が及んでおり,その平均 値は約1.6である.

前枝衝撃波と後枝衝撃波の間では、衝撃波との干渉 により厚くなった境界層端より圧縮波が発生し、この ためこの領域のマッハ数は一定ではなく、前枝衝撃波 の直後で約1.25であるが、後枝衝撃波の直前では約 1.1 に減少する. この圧縮波は後枝衝撃波を 通過後, 三重点より出るすべり線で反射し、膨張波になる. ま た流れに垂直な衝撃波の部分の下流の亜音速域は、前 述のように流れ方向に流路面積が減少し、しかも高亜 音速のため図に示すようなわずかな距離で容易に音速 に達する.また前枝衝撃波とそれに続く圧縮波によっ て管中心軸方向に曲げられた流れは、その下流で境界 層端より発生する膨張波によって管中心軸から離れる 方向に曲げられると同時に加速される. さらにその下 流では、圧縮波によって再び管中心軸方向に曲げられ る. この圧縮波の一部は流路中心線で反射される. 中 心線上の流れは平行流れであるから第2 衝撃波の中心 部分は流路中心にほぼ垂直で、壁に近づくにつれて下

流方向に傾いた形状になる. このように第2衝撃波の 形状は上流に凸で,先頭衝撃波下流の超音速流れが亜 音速になるために生じたものと考えられる.

4. 結 論

↓ 形擬似衝撃波内部の 先頭衝撃波から第3衝撃波までの流動機構を実験的に詳細に検討した.得られた結果を要約すると次の通りである.

(1) 本研究の ↓ 形擬似衝撃波の直前の気流マッハ 数は1.7,境界層厚さに基づくレイノズル数は1.8× 10⁶ で境界層は厚さ2mmの乱流境界層である.このときの擬似衝撃波の長さは、管の等価直径の約6.7 倍で、先頭衝撃波から第3衝撃波までの区間で、全静 圧上昇の約85%の静圧上昇が起こる.

(2) 先頭衝撃波から第3衝撃波までの区間における亜音速域は、先頭衝撃波の垂直部分のすぐ下流の領域、第2衝撃波の直後とその壁面近傍、及び境界層のはく離域に限られ、後枝衝撃波の直後は超音速流れである。

(3) 分枝した先頭衝撃波の前枝衝撃波と後枝衝撃 波に囲まれた領域では、マッハ数は流線に沿って単調 に減少する. この減少はこの領域の境界層端が直線で はなく、凹面となっているため、境界層端から圧縮波 が発生するためと考えれば説明できる. この減少によ って、後枝衝撃波直前のマッハ数は1.1程度になり、 後枝衝撃波直後の流れは超音速となる.

(4) 擬似衝撃波内部の全圧分布を測定し,壁面近 傍では全圧損失がかなり大きいことを明らかにした.

(5) 擬似衝撃波の先頭衝撃波から第3衝撃波まで

の領域における境界層端から発生する圧縮波と膨張 波,及びそれらの干渉を考慮に入れて、この領域にお ける流れの加速と減速のメカニズム及び第2衝撃波の 発生原因を明らかにした.

本研究は文部省科学研究費補助金,一般研究(B)の補助を受けたものであることを記し感謝する.

参考文献

1) Crocco, L., One-Dimensional Treatment of Steady Gas Dynamics, Highspeed Aero-

......

dynamics and Jet Propulsion, III-B, (1958), 110, Princeton.

- 2) 生井ほか2名, 機論, 39-326 (昭48-10), 3054.
- 3) 生井ほか2名, 機論, 47-415 (昭56-3), 423.
- 4) 玉木ほか2名,機論, 35-273 (昭44-5), 1028.
- 5) 玉木ほか2名, 機論, 36-292 (昭45-12), 2056.
- Neumann, E. P. and Lustwerk, F., Supersonic Diffusers for Wind Tunnels, J. Appl. Mech., 16-2 (1949), 195.
- NAVWEPS Pep. 1488, Handbook of Supersonic Aerodynamics, 6-17 (1964), 271.