Synthetic Photochemistry. XXVI. Synthesis and Characterization of 1,4-Dioxaspiro [4.6] undeca-6,9-diene-5,8-dione, A p-Tropoquinone Monoacetal

Mori, Akira
Department of Molecular Science and Technology, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

Takeshita Hitoshi
Department of Molecular Science and Technology, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

森, 章
九州大学大学院総合理工学研究科分子工学専攻

竹下, 齊
九州大学大学院総合理工学研究科分子工学専攻

https://doi.org/10.15017/17538
Synthetic Photochemistry. XXVI.¹) Synthesis and Characterization of 1,4-Dioxaspiro [4.6] undeca-6,9-diene-5,8-dione, A p-Tropoquinone Monoacetal

Akira MORI and Hitoshi TAKESHITA
(Received October 15, 1981)

A p-Tropoquinone acetal was prepared by the singlet oxygen-oxidation of an ethylene acetal of tropone, and was characterized as two endo-Diels-Alder adducts with cyclopentadiene, whose structures were deduced by physicochemical data. Photochemical rearrangement of the acetal yielded a ring-contraction product, 2-hydroxyethyl (2,5-dioxo-3-cyclopentenyl)acetate. The same reaction with p-tropoquinone in methanol yielded methyl (2,5-dioxo-3-cyclopentenyl)acetate, along with photoreduced 5-hydroxytropolone.

p-Tropoquinone (1)² is a unique compound having o- and p-quinone units within a molecule, and its synthetic studies seem to be started soon after the eventual synthesis of 5-aminohinokitio³ and 5-nitrosotropolone, a monooxime of 1. However, the synthesis of the parent compounds, 1 and o-tropoquinone (A), has been unsuccessful until 1970’s. In this paper, we wish to describe preparations of a monoacetal (2), an important member of functional derivative of 1, by two routes, together with its chemical characterization.

When an acetone solution of 1,4-dioxaspiro [4.6] undeca-6,8,10-triene (3), prepared from tropone and 1,2-ethanediol (4), and haematoporphyrin was irradiated by a tungsten lamp under the oxygen atmosphere, a (4+2) π endo-peroxide (5) was produced as a sole product. The structure of 5 was followed after the chemical derivation from the tropone endoperoxide (6) and 4 with p-toluenesulfonic acid (TsOH), together with the NMR spectrum [δ:¹¹ 4.0 (4H, m), 4.58 (Ha, dddd, J=7.5, 2.5, 1 Hz), 4.78 (Hb, tm, J=9 Hz), 5.54 (Hc, ddd, J=10.5, 7 Hz), 6.24 (Hd, dd, J=10.5, 7 Hz), 6.36 (He, ddd, J=9, 7.5, 1 Hz), and 6.90 (Hf, ddd, J=9, 7, 1 Hz)], revealing an arrangement of Ha-Hc-Hd-Hb-Hf-He for its six methine protons, of which the Ha and Hb are hydrogens on the sp²-carbons bearing the peroxy group. A mild treatment of 5 with triethylamine afforded a keto alcohol (7) in a 98% yield. In its NMR [δ: 4.0 (4H, m), 4.85 (Ha, t, J=2.5 Hz), 6.08 (Hb, dm, J=12.5 Hz), 6.40
(Hc, d, J=12.5 Hz), and 6.51 (Hd, dd, J=12.5, 2.5 Hz), an occurrence of two low-field signals due to hydrogens, Hc and Hd, at the β-position of α,β-unsaturated keto group was recognized, and from this, the position of the carbonyl group was deduced unambiguously. A prolonged treatment of 7 with amine caused further transformation to a diketo acetal (8) and 5-hydroxy-2-(2-hydroxyethoxy)trepone (9), pale yellow crystals. Low-field signals in the NMR [δ: 3.8-4.1 (4H, m), 6.72 (1H, dm, J=11 Hz), 7.15 (1H, d, J=11 Hz), and 7.27 (2H, br. s)] showed a regeneration of the seven-membered conjugated system in 9. Treatment of 5 with thiourea yielded a diol (10) in an 83% yield. The coupling parameters observed in its MNR [δ: 4.0 (4H, m), 4.45 (Ha, dt, J=4.5, 2 Hz), 4.95 (Hb, m), 5.39 (Hc, dd, J=12.5, 2.7 Hz), 5.56 (Hd, ddd, J=11, 4.5, 2.7 Hz), 5.78 (He, ddd, J=12.5, 2, 1.5 Hz), and 5.87 (Hf, dddd, J=11, 2.7, 2, 1.5 Hz) indicated partial arrangements, Ha-Hd-Hf and Hc-He, and furthermore, occurrences of the long-range couplings between Ha and He, and He and Hf, assured by double irradiation experiments, clarified the complete arrangement as Ha-Hd-Hf-Hc-He-X- (Ha), where X denotes a quaternary carbon. Therefore, the structure is deduced as shown.

Pyrolysis of 5 also yielded 7, 8, and a diepoxide (11), which was easily converted to 8 via an unstable dihydroxy acetal (12). An oxidation of 7 by manganese dioxide or chromium oxide-pyridine complex gave pale yellow crystals, mp 61-62°C. The 13C-NMR spectrum of this showed two carbonyl carbon signals at 189.6 and 191.9 ppm, together with four olefinic carbons, 133.3, 133.8, 137.5, and 139.1, and the acetal carbon, 106.5. Therefore, this is the desired acetal, 1,4-dioxaaspiro[4.6]undeca-6,9-diene-5,8-dione (2). The other spectral data were also in accord with the formulation.

The Diels-Alder reaction of 2 with cyclopentadiene gave two (4+2)π adducts, 13 (42%) and 14 (29%). In the IR spectra, 13 showed two carbonyl absorptions due to unsaturated ketone groups [ν: 1695, 1680 cm⁻¹], while 14 showed a saturated and an unsaturated ketone absorptions [ν: 1730, 1675 cm⁻¹]. The endo stereochemistry for both adducts was deduced from the magnitudes of the coupling constants, i.e., in the NMR of 13 [δ: 1.5 (2H, m), 2.92 (Ha, dd, J=10.5, 3 Hz), 3.16 (2H, br. s), 3.46 (Hb, dd, J=10.5, 3 Hz), 3.7-4.1 (4H, m), 5.96 (1H, dd, J=5.5, 3 Hz), 6.14 (1H, dd, J=5.5, 3 Hz), 6.30 (1H, d, J=13 Hz), and 6.54 (1H, d, J=13 Hz)] and 14 [δ: 1.5 (2H, m), 3.3 (2H, m), 3.51 (Ha, dd, J=10.5, 3.5 Hz), 3.72 (Hb, dd, J=10.5, 3 Hz), 3.8-4.2 (4H, m), 6.00 (1H, d, J=12 Hz), 6.18 (1H, d, J=12 Hz), and 6.0-6.3 (2H, m)], the methine protons (Ha and Hb) spin-coupled with the bridge-head protons with J=3 Hz. Furthermore, the chemical shifts for the protons in the endoene and its monoacetal chromophores were in somewhat high field, suggesting a strong anisotropic effect from the double bond in the opposite side of the molecules. It is known that 1 also yields an endo-(4+2)π adduct.8)

By means of a high-pressure mercury lamp, the UV-light irradiation of 2 in methanol or in methanol and benzene gave a colorless oil, 15. The 13C-NMR spectrum of 15 [δ(C): 29.5, 46.8, 60.7, 66.8, 149.1 (2C), 170.7, and 201.8 (2C)] suggested a symmetrical structure, and
the IR spectrum \([\nu_{\text{C=O}}: 1720 \text{ cm}^{-1}\)] deduced its skeleton to be the cyclopentenedione. Thus, 15 should be expressed as 2-hydroxyethyl \((2,5\text{-dioxo-3-cyclopentenyl})\) acetate. Obviously, a ketene acetal \(\text{B}\) should be a precursor of 15. The formation of 15-\(d\), the photoproduct in methanol-\(d\), \((\text{MeOD})\), suggested the hydrolysis of \(\text{B}\) during the irradiation.

According to Ito et al.,8) the photoreaction of 1 with styrene in methanol gives a 1,4-dioxene derivative, the \((4+2)\pi\) cycloadduct and the photoreduction product, 5-hydroxytropolone (16), but no other product. However, this easy photocleavage of 2 to 15 suggests that the hemiacetalized 1\(\text{v}\) must undergo a similar photocleavage in protic solvents. Indeed, an irradiation of 1 by means of a high-pressure mercury lamp in benzene produced no identifiable product, but in methanol it gave 16 and methyl \((2,5\text{-dioxo-3-cyclopentenyl})\) acetate (17). However, the photoreaction of 1 in 4 gave a complex results, and a product isolated from the mixture was not identical with 15,10).

\[
\text{[Scheme 2]}
\]

Frequently, the cyclopentenediones have been utilized as synthones in various natural products syntheses, and a facile formation of the functionalized cyclopentenediones from troponoids would provide a method in cyclopentanoid natural product syntheses.

Experimental

Preparation of 3, the Ethylene Acetal of Tropone. A CH\(_2\)Cl\(_2\) solution (5 cm\(^3\)) of tropone (1.33g) and FS\(_2\)Me (1.46g) was allowed to stand at room temperature for 20 h, and then evaporated the solvent to leave brownish residue which was then dissolved in 4 (9 cm\(^3\)) and kept at room temperature for several d under the N\(_2\)-atmosphere with magnetic stirring. The mixture was then poured into a mixture of aqueous Na\(_2\)CO\(_3\) and hexane, and fractionated by hexane and water. The organic layer was dried on MgSO\(_4\). The residue obtained by removal of the solvent gave a pale yellow oil, 0.84g (44 \%), which was identical with the authentic sample.6) The aqueous layer yielded the recovered tropone, 670 mg (50 \%) by repeated extractions with CHCl\(_3\).

Sensitized-photooxidation of 3, Formation of 5. An acetone solution (11 cm\(^3\)) of 3 (445mg) and haematoporphyrin (13mg) was irradiated by means of a 500-W tungsten lamp for few d under the O\(_2\)-atmosphere. After evaporation of the solvent, the residue was chromatographed on a silica-gel column with hexane-ethyl acetate (9 : 1) to give 5, colorless crystals, mp 150–152\(^\circ\)C (dec) (from benzene), 467mg (87 \%) [Found: C, 59.61; H, 5.54 \%. Calcd for C\(_9\)H\(_{10}\)O\(_4\): C, 59.33; H, 5.53 \%. \(\delta(C)\): 64.5, 65.8, 73.8, 79.9, 107.2, 125.2, 130.8, 132.1, and 137.3. \(\nu\): 1395, 1180, 1110, 995, 950, 760 cm\(^{-1}\). \(\lambda_{\text{max}}^\text{MeOH}\): 207 nm (\(e=1700\)).]

Reductive Cleavage of 5 with Thiourea. A tetrahydrofuran solution of 5 (373mg)
was treated with thiourea (156 mg) at room temperature for 24 h. Silica-gel column chromatography of the mixture afforded colorless crystals (10), mp 152-154°C (from MeOH), 315 mg (83%) [Found: C, 58.63; H, 6.56%. Calcd for C₉H₁₆O₇: C, 58.69; H, 6.57%. δ(C): 66.8, 67.3, 68.7, 73.3, 106.5, 128.9, 130.6, 137.8, and 138.1. ν: 3440, 1620, 1030, 810 cm⁻¹].

Base-induced Isomerization of 5. Formation of 7. A mixture of benzene (2 cm³), 5 (14.3 mg) and anhydrous Et₃N (30 mg) was refluxed for 1 h. The mixture was chromatographed on a silica-gel column to give 7, a colorless oil, 14.3 mg (98%) [Found: m/e, 182.0589 (M⁺). Calcd for C₉H₁₆O₇: C, 58.0, 66.3, 72.7, 106.7, 128.9, 132.2, 141.8, 144.1, and 190.4. ν: 3450, 1665, 1605 cm⁻¹. λmax: 226 nm (ε = 8700)].

Prolonged Base Treatment of 5. a) A benzene solution (2 cm³) of 5 (46.7 mg) was heated to reflux with Et₃N (60 mg) for prolonged period. After 3.5 h, the product mixture, fractionated through a silica-gel column, was consisted of 7 (11.8 mg, 25%) and 8 (a colorless oil, 24.5 mg, 53%) [Found: m/e, 182.0580 (M⁺). δ: 2.76 (2 H, m), 3.08 (2 H, m), 4.0 (4H, m), 6.18 (1H, d, J=12 Hz), and 6.52 (1H, d, J=12 Hz). δ(C): 32.5, 36.2, 65.8 (2C), 105.6, 134.3, 140.5, 199.2, and 200.3].

b) Similarly, a benzene solution (50 cm³) of 5 (396 mg) was treated with Et₃N (50 mg); after 24 h, the mixture showed a presence of a single compound, 9, pale yellow crystals, mp 198-200°C, 362.3 mg (92%) [Found C, 59.10; H, 5.58%. Calcd for C₉H₁₆O₇: C, 59.33; H, 5.33%. δ(C): 61.4, 72.2, 116.9, 120.9, 134.4, 138.6, 160.6, 163.0, and 178.6. ν: 3420, 1590, 1530, 1470 cm⁻¹. λmax: 251 nm (ε = 14200), 310 (10500), 380 (13000)]. Methyl ether of 9 was prepared by diazomethane in acetone, a colorless crystals, mp 110.5-112.5°C (from benzene) [Found: m/e, 196.0751 (M⁺). Calcd for C₁₀H₁₈O₇: C, 58.69; H, 6.57%. δ: 3.78 (3H, s), 3.9-4.2 (4H, m), 6.36 (1H, d, J=11 Hz), 6.90 (1H, d, J=11 Hz), 7.08 (1H, d, J=12.5 Hz), and 7.24 (1H, d, J=12.5 Hz). δ(C): 55.7, 60.6, 71.6, 108.1, 117.4, 133.3, 137.5, 159.2, 160.2, and 179.8].

Acid-catalyzed Acetalization of 6 with 4. A benzene solution (8 cm³) of 6 (102 mg), 4 (1.5 cm³), and TsOH (1.3 mg) was refluxed for 7 h with azeotropic removal of water. The mixture was then washed with aqueous NaCl, and water, and the aqueous layer was extracted with CHCl₃. Removal of the solvent gave colorless needles, mp 152-154°C, 96.8 mg (72%), which was identical with 5.[1]

Thermolysis of 5. A xylene solution (8 cm³) of 5 (310 mg) was refluxed for 18 h. Then, silica-gel chromatography of the mixture with hexane-ethyl acetate (9:1) yielded 7, 94.5 mg (35%), and a colorless oil, 11, 46.9 mg (15%) [Found: m/e, 182.0588 (M⁺). Calcd for C₉H₁₆O₇: 182.0 579. δ: 3.31 (1H, dd, J=4, 1.5 Hz), 3.4-3.6 (3H, m), 3.7-4.2 (4H, m), 5.63 (1H, dd, J=11.5, 1.5 Hz), and 6.00 (1H, ddd, J=11.5, 2, 1.5 Hz). δ(C): 48.8, 52.8, 53.8, 57.8, 64.8, 65.4, 107.0, 126.6, and 134.3], which was spontaneously hydrolyzed to colorless crystals, mp 100-103°C (from benzene), 12 [Found: C, 53.83; H, 6.05%. Calcd for C₉H₁₆O₇: C, 53.99; H, 6.04%. ν: 3450, 3400, 1240, 910, 835 cm⁻¹].

MnO₂-Oxidation of 7 to 2. A CHCl₃ solution (2 cm³) of 7 (115 mg) was stirred with MnO₂ for 30 min. The product was chromatographed on a silica-gel column
with hexane-ethyl acetate (9 : 1) to give 2, pale yellow needles, mp 61.5-62°C (from CCl₄), 78.2 mg (69 %) [Found: C, 59.66; H, 4.54 %. m/e, 180.0414 (M⁺). Calcd for C₇H₅O₂: C, 60.00; H, 4.48 %. m/e, 180.0420. δ: 3.9-4.2 (4 H, m), 6.26 (1H, dt, J=12, 0.8 Hz), 6.56 (2H, d, J=12 Hz), and 6.58 (1H, d, J=12 Hz). ν: 1703, 1660, 1630 cm⁻¹. δMeOH: 227.5 nm (ε=3800), 264 (4500), 330 (450)].

CrO₃-Oxidation of 7. A CH₂Cl₂ solution (5 cm³) of 7 (100 mg) was treated with CrO₃·2Py (1.67 g) to give 2, 47.2 mg (48 %).

MnO₂-Oxidation of 10 to 2. An acetone solution (2 cm³) of 10 (18.3 mg) was stirred at room temperature for 2 h with MnO₂ (140 mg). The mixture was washed and extracted with acetone to afford 2, 10.2 mg (57 %).

Diels-Alder Reaction of 2 with Cyclopentadiene. Neat mixture of 2 (78 mg) and freshly prepared cyclopentadiene (1 cm³) was kept in refrigerator for few d. Silica-gel chromatography of the mixture afforded colorless crystals, mp 111-112.5°C (from MeOH), 13, 45 mg (42 %) [Found: C, 68.17; H, 5.76 %. Calcd for C₁₄H₁₂O₅: C, 68.28; H, 5.73 %. δ(C): 45.0, 46.7, 47.8, 50.3, 56.3, 65.2, 65.5, 110.0, 134.2, 134.5, 136.3, 140.8, 195.5, and 200.7. δMeOH: 218 nm (ε=9900), 281 (490), 359 (230)], and colorless crystals, mp 117-118°C (from MeOH), 14, 31 mg (29 %) [Found: C, 68.02; H, 5.75 %. δ(C): 44.3, 47.1, 47.7, 52.0, 54.1, 65.4, 66.0, 106.4, 134.3, 136.0, 136.4, 136.7, 201.0, and 202.5. δMeOH: 210 nm (ε=5500, sh), 265 (960), 306 (240)].

Photoreaction of 2. a) A benzene solution (2 cm³) of 2 (85.3 mg) was externally irradiated by means of a 400-W high-pressure mercury lamp for 110 min.

Silica-gel column chromatography of the mixture yielded a colorless oil (15), 46.3 mg (59 %) [Found: m/e, 198.0543 (M⁺). Calcd for C₁₉H₁₂O₅: 198.0528. δ: 2.96 (3H, m), 3.7-3.8 (2H, m), 4.1-4.2 (2H, m), and 7.30 (2H, s). ν: 3460, 1080 cm⁻¹. δMeOH: 216 nm (ε=3800), 264 (4500), 330 (450)]. together with the recovered 2 (13.9 mg, 16 %).

b) A similar irradiation of 2 (25.6 mg) in MeOH (1.5 cm³) yielded 15, 11.3 mg (40 %).

Photoreaction of 2 with MeOD in Benzene. A benzene solution (3 cm³) containing MeOH (40 mg) and 2 (51 mg) was externally irradiated by a high-pressure mercury lamp for 100 min. The photoproduct, 15-d₆, isolated after silica-gel column chromatography was analyzed by the mass and NMR spectra [Found: m/e, 198: 199=1 : 1.2. δ: 2.96 (2.5 H, m), 3.7-3.8 (2 H, m), 4.1-4.2 (2 H, m), and 7.30 (2H, s)].

Photoreaction of 1 in MeOH. Formation of 16 and 17. A MeOH solution (3 cm³) containing 1 (74 mg) was irradiated by means of a high-pressure mercury lamp for 3.5 h. Silica-gel column chromatography of the mixture afforded a colorless oil, 17, 20.5 mg (22 %) [Found: m/e, 168.0423 (M⁺)]. Calcd for C₁₀H₉O₄: 168.0423. δ: 2.8-3.0 (3H, m), 3.60 (3H, s), and 7.30 (2H, s), and yellow crystals, mp 240°C (dec), 9.5 mg (12 %), which was identical with 16.

References

3) a) T. Nozoe, S. Ebine, S. Ito, and A. Konishi, Proc. Jpn. Acad., 27 10 (1951); b)

7) The NMR spectra were measured in CDCl₃ solutions, and the chemical shifts were expressed in δ scale from the internal standard, Me₄Si. In some cases, particular protons were designated as Ha, Hb, Hc, etc., in an order of the chemical shifts (from high field to low field), and they are mutually independent.

10) Photolysis of 1 (73 mg) in 4 (3 cm³) gave a colorless oil, ⅰ, 5.1 mg (5 %), but, its NMR [δ: 2.7 (2H, m), 2.9 (2H, m), 4.2-4.5 (4H, m), 6.00 (1H, d, J = 12 Hz), and 6.58 (1H, d, J = 12 Hz)]. δ(C): 29.3, 39.5, 60.5 (2C), 62.6, 124.2, 142.0, 172.0, and 201.5. m/e, 154.0647 probably (M-CO⁺). Calcd for C₇H₆O₃: 154.0631 was different from that of 15. Due to its difficulty in obtaining the quantity, no further investigation was attempted.

11) This reaction yielded two minor further reaction products with the glycol: ⅱ; mp 98.5-101°C, 5 mg (4 %) [Found: C, 58.25; H, 6.24 %. Calcd for C₁₁H₁₄O₄: C, 58.40; H, 6.11 %. δ: 1.84 (1H, dm, J = 15.5 Hz), 2.32 (1H, dd, J = 15.5, 6 Hz), 3.54 (1H, dm, J = 6 Hz), 3.6-4.5 (8H, m), 4.60 (1H, t, J = 2 Hz), 6.09 (1H, d, J = 6 Hz), and 6.42 (1H, dd, J = 6, 2.5 Hz)], and ⅲ; mp 111-112°C, 2.5 mg (2 %) [Found: C, 58.19; H, 6.22 %. δ: 1.79 (1H, dd, J = 13, 10.5 Hz), 2.03 (1H, dd, J = 13, 6.5, 1.5 Hz), 3.54 (1H, dd, J = 10.5, 6.5 Hz), 3.7-4.1 (8H, m), 4.40 (1H, br. s), and 6.55 (2H, s)]. The structures of ⅱ and ⅲ can be expressed as follows on the basis of spectral evidence and the mechanism of formation.

[Scheme 3]