SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

A Representation of Digital Pictorial Pattern

Endo, Tsutomu
Department of Information Science and Systems Engineering, Oita University

Kawaguchi, Eiji
Department of Information Systems Interdisciplinary Graduate School of Engineering Sciences,
Kyushu University

https://doi.org/10.15017/17511

ﬁ;ﬁ'rﬁiﬁ P UNKRERZIRBEET2HRE. 2 (2), pp.1-16, 1981-01-20. AMAZKRZRHEMEGETLAH
EAR N
N—=2 3

HEFIBAMR

KYUSHU UNIVERSITY




A Representation of Digital Pictorial Pattern — 1

COMPREHENSIVE ARTICLE

A Representation of Digital Pictorial Pattern

Tsutomu ENDO* and Eiji KAWAGUCHI**
(Received Oct. 24, 1980)

A new method of representing a binary-valued picture titled “DF-expression” or
“DF-coding” is developed, where the picture is decomposed into a set of square regions
of various sizes with uniform gray level (black or white). A simple context-free gram-
mar having three terminal symbols “0”, “1”, and “(” is introduced to specify the gray
levels and sizes of such regions. With such grammar, every picture is represented as
a terminal string of the grammar. The DF-expression of a picture is defined as the
reduced terminal string. It preserves every information for reproducing the original
picture in spite of high data compressionability. The coding algorithm of raw pictorial
data into DF-expression is very simple. Some type of picture processings, such as shift-
ing, expansions and reductions of original pictures, can be performable on DF-expres-
sion itself. Moreover, logical operations are available. After the experimental studies
on many test pictures, it was made clear that DF-expression is really useful not only

for storing or transmitting pictorial data but also for digital picture processing.

1. Introduction

In the study of pattern recognition,
scene analysis and image understanding,
we are often troubled with a large am-
ount of data. Even if we attempt to
treat only binary patterns with 1024 x 1024
pixels, a 1 Mbit memory is occupied by
a single picture. In order to reduce the
amount of storage, pictorial data need
to be represented by more compact form
using some coding scheme if any.

Today we have many coding schemes
for pictorial data compression. Most of
them are developed for facsimile data
transmission?. The major goal of the
coding is to reduce the number of bits
required to represent the picture, but it
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is much better if we can perform typi-
cal processings such as shiftings, rota-
tions, expansions and reductions of the
original picture, on the coded form itself.
An example of such coding scheme is
the chain code devised by H. Freeman?.
Another example is the method which
reduces original data into short compu-
ter commands for the storage of the
input picture®. However, they do not
preserve all information about the orig-
inal picture, still worse, they are only
applicable to line drawings. Recently,
we have another type of coding schemes
called pyramidal or quad tree represen-
tation?®®, Their point of concern
would be the picture processing algori-
thms on the coded form rather than
the data compression.

In this paper, we show a new repre-
sentation method called “DF-expression”
or “DF-coding”, in which, (1) every in-
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formation is preserved, (2) it is applica-
ble to any pictorial pattern, and (3) se-
veral types of picture processings can
be performed on the coded form. The
idea comes from considering the pyra-
midal type representation as the genera-
tion process of some context-free gram-
mar. But from the viewpoint of data
compression in facsimile, DF-expression
is the same as the generalized idea of
autoadaptive block coding”®. This me-
thod is originally developed for binary-
valued pictures, but it is easy to apply
it to multivalued picture.

2. Definition of DF-expression

Pictures we consider in this paper'are
all digitized binary (black and white)
square pictures, which consist of 22 x 28=
4% pixels. We associate 0 and 1 with
white and black data respectively.

2.1. Fundamental notions and defiuni-

tions ’

[Definition 1] Subframes denoted by
S, s are sequentially defined by the
iterative quartic partitions of the total
frame S°, where r(r=1, 2, --., R) and
a specify their orders and addresses
respectively as illustrated in Fig. 1. An
Sz is called a lower subframe of S7.,
if and only if S, contains S%, and
upper subframe vice versa.
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Fig. 1 Picture subframes

[Definition 2] A picture on S° is to
be denoted by I'. If a part of I' is

uniformly black or white over a subfra-
me 87, it is said that such SZ is an
r-th order monotonous subpicture, and
is denoted by e;. Consequently, any
pixel is an R-th order monotonous sub-
picture. We call the total of them, i.e.,
the set of 4% 0 or 1’s, the pictorial raw
data. A picture primitive (or primitive)
p, of I' is an e, which has no lower
monotonous subpicture. Every e and
p, takes the value 0 or 1, but we put
superscript and subscript on each 0 or
1 in the explicit representation of a gi-
ven monotonous subpicture, e. g., 04w,
1301, and so on.

[Definition 3] The primitive sequence
of I' is the concatenation of all primi-
tives of I' arranged in their address
order. We denote this sequence by P
(I'). For Fig. 2(a), it is,

P (r )=0§ooo 13001 Ogom gou 031 0%000 1?001 0?01000

0:101001 0?01010 15;01011 1%011 1:;10000 151’10001 0?10010

3 3 3 3 3 3 3
0110011 11101!.“!0 1110101 0110110 1110111 0111000 0111001

3 3 3 3 3 3
1111010 1111011 0111100 1111101 1111110 1111111 .

@™
[Definition 4] We define the comple-
xity of I as,
Cp(r )=
Total number of primitives of I”
4 @

Apparently, 0<C,<1. Such I' as C,=1
is called a most complicated picture.
We denote it by the expression I
Fig. 2(b) is an example of I'* for R=3.

[Definition 5] For such a I' that e
=epl=elil=el}! does not hold for some r
and «, a modification of I'" into I'’, for
which p3=0 or pZ=1 holds, is called a
single simplification of I'. A rpicture
which is obtained from I'* after n su-
ccessive simplifications is denoted by
I't. Fig. 2(a) is an illustration of I%.
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It is obvious that any non-most compli-
cated picture is obtained after successive
simplifications from a most complicated
one.

(a) (b)

Fig. 2 An example of binary picture (a),
and a most complicated picture (b)

2.2. Relation between binary pictures
and context-free grammar
Let us introduce a context-free gram-
mar (CFG). We focus our attention on
the analogy of generation process of a
terminal string of the grammar and
that of a binary picture on S°. Let G
be a CFG defined as follows:
G= {VN, Vr, P, U)
U=A: the start symbol
Vy={A}: the set of nonterminal

symbol
Vr={0,1, (}: the set of terminal
symbols

P: production rules
1) 4-0 (2) 4-1 (3) A—>(A4A4A4
This CFG is interpreted as a binary-
picture generative grammar in the fol-
lowing way:
Start symbol A—a total frame S°
Nonterminal symbol A—subframe S}
Terminal symbols:
0—white subpicture of some order
1—black subpicture of some order
(—order relation among subpictures
Production rules:
(1)—generation of a white subpic-
ture
(2)—generation of a black subpic-

ture
(3)—generation of higher order sub-
frame from Sj.
The left most, the next, the
third, and the last nonterminals
after “(” corresponds to Si&t, SZi,
o, and Sii' respectively. Also,
the effective interval of r-th
order “(” is its successive four
elements of order r+1.
A simple example of picture generation
by G is illustrated in Fig. 3. Fig. 3(a)
is the terminal string, (b) is the deriva-
tion tree, and (c) is the binary picture
generated. In our discussion, we write
derivation tree in quad form. That is,
1) we omit every “(” from the tree, and
2) for such production as 4—0 and 4—
1, we put 0 and 1 just on the 4 pbsi-
tion. We associate with each node a
nonnegative integr called node level
which show the order of each subframe.

((00{{111301 (1{000G1 ¢1100 ( (0001 (1010 (11000

A + level-0
A + level-l
A A A 0 «jevel-2

{111F {0000/ 1100 0001 1010 1100 <« level-3

{node level)

(c)

Fig. 3 An example of picture
generation by G
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If a terminal string generated by G
has such substrings as “(0000” and
“(1111”, we apply to them the reduction
rules shown in Fig. 4(a). The corres-
ponding reduction rules for derivation
trees are shown in Fig. 4(b). After
recursive applications of reduction rules
to a given string (or tree), we finally
obtain a unique string (or tree). In
case of Fig. 3, reduction rules are appli-
cable to two parts which are enclosed
by dotted lines.

1) (0000 — o 1)

A
A

— 0
0000

2) (1111 — 1 2) 1|\ —_— 1
AN
1111
(a) (b)

Fig. 4 Reduction rules

The most important property of G is
expressed in the next theorem.
[Theorem 1] Let m be the number
of “(™s in an arbitrary terminal string
of G. Then the total number of “0 or
17 ’s in that string equals to 3m+1.
Inversely, any such string w, that
consists of “(”’s, “0”’s, and “1”’s is
always generatable by that G if it satis-
fies the following:
1) w, has m “(”’s and 3m+1 “0 or
1”’s,

2) no proper substring w,’, which
begins from the top of w,, has
m’ “("’s and 3m’+1 “0 or 1”’s for
some m’'(<m).

Proof: It is proved by an induction on
m. We use traditional notations in the
derivation of terminal string.

1) For m=0, the statement is true.

2) Suppose that the statement is true

for m=m’-1.

3) For m=m’;

[the first half of the statement]
The derivation process of a terminal
string of G which contains m’ “(”’s is
as follows:
* *
A=>x Ay=>x(AAAAy=>x(aa:a;a,y
def
=W, 3
where x, y={0,1, (}* a,={0,1}. Then
a terminal string w,._,; defined by

* def
A= X Ay=>x0p =W _4 4

consists of m’-1 “(”’s and 3(m’~-1)+1
“0 or 1”’s.
Consequently, w,. contains m’ “(” ’s and
3m’+1 “0 or 1”’s;

[the last half of the statement]
Let w, be an arbitrary string consist-
ing of “(”’s, “0”’s, and “1”’s which sati-
sfies two conditions of the statement
for m=m’. It is easily seen that w,.
contains such a substring as “(a;2;a;a,”,
where @;=“0 or 17, That is,

wa-=x(a1a;,a:a,y. ®

If not, according to the second condi-
tion on w,., w, never contains m’
“(™’s and 3m’+1 “0 or 1”’s. Consequ-
ently, such w,. is actually generated
by G through a derivation process like
3. Q. E. D.

The above theorem suggests that any
string that consists of “(”’s, “0”’s and
“1™s is interpretable as a concatenation
of binary pictures if it is possible to
assume that R=oco. Each picture in the
concatenation corresponds to every first
substring consisting of m “(”’s and 3m
+1 “0 or 1”’s in the residual string.
And if the final residue does not con-
tain m’ “(”’s and 3m’+1 “0 or 1”’s, we
can conclude that some illegal data pro-
cessing or transmission occurred.

In the following discussion, G is sup-
posed to complete its generation process
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by R-th order node level. Under this
assumption any terminal string of G is
interpretable as a binary picture I'. We
denote this string by £2(I).

2.3. Picture expression

If a terminal string (") is given in
a nonreduced form, it is easy to trans-
form it into the reduced form through
recursive application of reduction rules.
It is also possible to expand it into more
redundant form, if necessary, by the
use of inversed reduction rules. So we
can express a I' in various forms.

[Definition 6] We define the reduced
form of £(I") the DF-picture expression
(depth first picture expression) of I', or
more simply, the DF-expression, and
denote it by £2*(I").

Every “0” and “l1” in a DF-expression
corresponds to a white and a black pri-
mitive in the picture, respectively. Any
primitive sequence P(I") is translatable
into DF-expression. For each p; in a
P, if 2m or 2m+1 consecutive bits
from LSB (or the right most bit) of «
are all 0’s, we insert m “(™’s just before
the value of pZ (i. e., 0 or 1) and de-
lete both superscript and subscript. The
inverse translation is also easy. For
the picture in Fig. 3, £*(I") and P{I")
are;

2% (I") = ((00101 (101 (1100( (0001 (1010
(11000 )
P(F) =0§000 03001 %010 3011 lilil 1%0(}0 0%001 1%010
1:{01100 1%01101 0?01110 0?01111 061’10000 0:{10001

3 3 3 3 3 3
0110010 1110011 1110100 0110101 1110110 0110111

3 3 3 3 2
1111000 1111001 011101!) 0111011 0111! (7)

[Definition 7] The length of a DF-
expression is defined as the total num-
ber of symbols in the £*(I") and is
expressed as L(I"). Evidently, L")
equals to the total number of nodes in
the reduced derivation tree.

[Definition 8] The complexity of a
DF-expression is defined as

_Lah _ Ldhy L)
CO =L ~Trirm P o1
3
®
Consequently, for any I, C, satisfies
0<C, <1, ©)

The relation between C, and C, is
stated in the next theorem.

[Theorem 2] All pictures with equal
complexity C, have equal complexity
of C,. And for a large 47,

Cp#Ce (10)

hold for every I'.

Proof: The total number of primitives
in T'? equals to the total number of “0
or 1”s in 2*(I'®?). Every single sim-
plification reduces one “(” and three “0
or 1”s. Then the complexity of I'? is

4% —3n

crp =222 an

The complexity of DF-expression £*(I'?)
is

R+1__
tan gogn L
Ce(rﬁ)= 4R 17 = I
4R ——
3 ‘ 4

12
Equation (11) means that all pictures
with equal complexity come from a I'®
through equal number of simplifications.
Equation (12) shows that the value of
C.(I'®y is also determied only by n.
So the first part of the theorem is evi-
dent. The latter part is also clear from

(11) and (12) for a large 4*.

. Q. E. D.
DF-expression uses three symbols “(”,
“0”, and “1”. So the data rate of a DF-
expression is log,3 bit/symb. Therefore,
the total data of a DF-expression 2%
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(I'®Hfis actual examples in Section 5.
H= (4“;— 1——4n) log, 3 3. Coding algorithm
4 1 In order to utilize DF-expression in
= (?'4R°Cﬁ_§) log, 3. €)) an actual system, an effective coding

As 4% is usually a large number, (13)
is approximated by

H#—g—log23-4’*-cp = 2.1+4%C, (bits).
a9

Let C, be a special value of C, for
which the right side of (13) equals to
4%, That is,

Cpo=%-%§(4klogz3+%~) . as)
For a large 4%, C,=0.47. Fig.5 shows
these relations.

These discussions lesd to the next
self-evident theorem.

[Theorem 3] Any picture I', for wh-
ich C,(I") < C,, holds, is representable
by the data less than 4% bits in terms
of £%(I').

According to this theorem, effective-
ness of DF-expression depends definite-
ly on the value of C,. We show some

2.1x4R

H Total data of a
(bits) DF-expression

f

EOriginal pictorial
H data

Fig. 5 Relation between C, and the
total data of the corresponding
DF expression

algorithm is needed. In this Section,
we show such an algorithm, named DF-
coding algorithm.

A standard I/O devices for pictorial
data processing have X and Y coordin-
ates, and the position of each pixel is
specified by two binary numbers such
as

X=@,85++Q,-a%

(a” = 0’ 1) 1
} 16

(6,=0,1).

So the pixel address a defined previous-
ly and (x,y) is simply related as

a—-—“blalbzaz"‘bkag. ) (17)

3.1. DF-encoder

In the DF-coding algorithm we need
a device titled DF-encoder which is
schematically shown in Fig. 6. This
encoder fetches pictorial data from the
memory device (ME) and sequentially
produces DF-expression from left to
right order. We assume that 4% data
are located from address 0 to (4%*-1) on
ME. In an actual system we realize
this encoder by software. But it is use-
ful to understand its essential operation
by an imaginary hardware device. The
DF-encoder consists of the following
five fundamental units.

1) Reader (RD): This is a data read-
ing unit consisting of address counter
(AC) and data reader (DR). DR reads
pictorial data from ME, and AC indica-
tes their addresses.

2) Symbol generator (SG): This gen-
erates “(”, “0”, and “1”.

3) Q-Register (QR): This is a tempo-
ral memory which keeps a queue (or a

y=bybyer-byee-bE
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string) of “(™s, “0”s, and “1”s. We
symbolize this queue by Q. Output from
QR becomes a prat of DF-expression.

4) Input Controller (IC): According
to information from AC and DR, IC con-
trols input symbols into QR.

5 Q-Controller (QC): QC shifts out
Q from QR if one of the following con-
ditions is satisfied.

Condition 1: Q contains several “("’s,
and the last (or the right most) “(” is
followed by the sequence including both
“0” and “1”.

Condition 2: Q contains no “(”’s.

In another circumstance where Q con-
tains “(0000” or “(1111”, QC reduces Q
by two reduction rules, i. e.,

1)  (0000—0eses, 2) (1111-—>1sess

where » means a space.

Q-controller

Output <€) Q-register(QR)
(011101 =0 )

| Symbol
generator (SG)

S ll(n,llo‘u,llln

Input
controller

Data reader
(DR)

B0 A S eS |[Al| — © — e s s}——Pictorial data
ordod oo -o
M . 18823.,.3|1eis228 . Address of
s |SS8S T S[EIS S8 T (" picture clements
(ME S350 oglollcocoo pictur n
=
Address counter \Reader
(AC) (RD)

Fig. 6 DF-encoder

3.2. DF-coding algorithm

In this algorithm we use such a con-
vention that the notation [X] means
the content of X.

1) Clear QR.

2) Clear AC. That is, set [AC]=000
+++0, where 000--+0 is a 2R bit binary
number of value 0.

3) Add m “(™s to Q under the con-
trol of IC if and only if consecutive 2m
or 2m+1 bits from the LSB (or the right

most bit) to upper (or left) bits in AC
are all 0’s.
4) Repeat next a) and b) four times.
a) Add “0” or “1” to Q. If RD
reads 0, then “0”, and if 1, then
“1” must be added.
b) [AC]=[AC]+1 (binary addition).

5) Apply two reduction rules to Q
repeatedly.

6) If Q satisfies condition 1 or condi-
tion 2, shift left Q out of QR.

7) If [AC]=1000+++0 (the value is4%),
shift out all Q from QR and halt. If
not, go to 3).

We give supplementary explanations
about step 3) and 6) in the next.

Step 3): Let a and B be such that

a: a 2 R-2m bits binary number, whose
last two bits are not 11,

B: a binary number of 2m 1's.

Step 3) occurs immediately after DR has
read the e% which is the last datum in
SE-m» At this stage the effective in-
terval of the preceding “(® correspond-
ing to that S®-" is over. Therefore,
another “(” must be inserted. It corre-
sponds to the next subframe.

Step 6) : Reduction rules in step 5) are
applicable only to the last part of Q. So,
if Q satisfies condition 1, there is no
possibility that this Q will be reduced
in the future. The situation of condi-
tion 2 occurs only when Q is reduced
into a single “0” or “1”. But this sym-
bol is in fact in the effective interval
of the preceding “(* which have been
already shifted out from QR. There-
fore, this symbol will never be reduced
again in the later cycles.

Now, let us consider the maximum
length of Q in our algorithm. Q beco-
mes the longest at the final stage of

step 4) in a certain cycle of DF-algori-
thm. But it never exceeds 4R +1¥. This
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means that we do not need a large
temporal memory in DF-encoder. For
instance, in case of wholly black pic-
ture,

Q=(111(111(111--+(111(1111

4R+1

is the longest, which appears just after
RD have read the last datum (. e.,
1%,..) on ME.

The algorithm of recovering the orig-
inal pictorial data from DF-expression,
that is, DF-decoding algorithm, is also
described with similar imaginary hard-
ware device titled DF-encoder'”.

4. . Picture processings on DF-expression

In this Section, we describe the se-
veral kinds of basic picture processings,
or operations, where some are carried
out at the level of primitive sequence,
and others are on the DF-expression
itself,

4.1. Centroid of black pixels

Any “1” in £*(I") corresponds to a
certain r-th order black primitive which
consists of 477 black pixels. Accord-
ingly, the coordinates (X, Y,) of the
picture centroid in binary numbers are
calculated as follows:

Let
P(I") - PP Pyt Pyt 18)

be the primitive sequence of I'. From
such «, (that is, a;=bya,b,a, -
where b’s and a’s are 0 or 1's), we
can extract two binary numbers; X,=
a,a,---a,, and Y,=b\b,---b,,. Then it is

briarlr

easily seen that

i=1 2 1
Xg: I3 ]
4R Tepl

i=1

19

n R-7y__
§{<2R—r“ Y,—I—Z 2‘ 1)4R—r¢.p&;}
Y,= _ .
2 AR Thepit

i=1

20)

In equation (19) and (20), 277X, and
2F-71a Y, are X and Y coordinates of the
left most bottom pixel of pi,and(2?~"t—1)
shows the width of the square. As
we see later, the number of primitives
is much fewer than the number of total
pixels. Therefore, a great deal of co-
mputing time will be saved in this me-
thod.

4.2. Circular shifting

We shall define circular shifting. The
r-th order right circular shifting (r-th
right shifting. for short) is the right
circular shifting operation of the origin-
al picture by the distance of 2%-" pixels.
We symbolize this operation by X7(I")
(cf. Fig. 7(a)). Then k right shifting
is recursively defined as;

Xt (e XR(XR(T)) ),
where k=2F"# 4 2R-k2 ... OR-Fn
and 0<ley<lby< ook, <<R.

In the same way, the r-th left, up, and
down shiftings are denoted by X~ (1),
Y"(I"), and Y-"(I") respectively.

Now we define the r-th (order) sub-
sequence expression of a picture. The
7~th sub-sequence expression of a I,
denoted by £7(I"), is the sequence of
symbols that is obtained from &£*(I")
after applications of inverse reduction
rules. It includes all DF-expressions of
r-th order subpictures in I'. That is,
let @, @hm, @k, -+ be DF-expressions
of r-th order subpictures, then £27(I")
is of the form;

2 (F )= (( ‘. (0’3100 D01 Olyro W11 (CDZzoo O
W10 O+ ((02,00 @01 Df;10 D1+
((02,”00 CD;,,,Ol CU:’;,,,m O » (21)

where m=4""!, and «, is the binary
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number with 2(r-1) digits. For example,
the 2nd sub-sequence expression of I’
in Fig. 2(a) is:

- 2 2 2 2 P
£2° (]—1 )= ((@hoo0 @oos @fro DFor (@00 Whigy @Fir0
2 2 2 2 2 2 2
Of (@ Olon @lso @y (@hoo @hin
2 2
@110 P11 » (22)

where k=0 @fga=1 @ =0 ;=1
@F0=0 @hu=0 @} =0 §uy=0
=0 ohg=1 @lye= (0001
ohu=1 whe= (1100 why= (1101
@%o= (0011 %= (0111.

Naturally, we have 2°(I")=*(I") for

any I'. Suppose

27 (I7) = (- (0 0, 0% 0y (- @3

and
Q7 (X7 (IM) = ((-+(wh, 0, 05 @5 (- (24

are r-th sub-sequence expression of the
original, and the shifted pictures respe-
ctively. Since r-th shifting causes no
effect to the DF-expression of any sub-
picture of order greater than or equal
to r, £(X’(I)) is just the sequence
that is obtained after rearranging oZ's
in £°(I'). That means, every o} in
L27(X7(I"))is just the same as some
in 7(I"), and vice versa. So the #th
right shifting operation is a rearranging
process of each o in £{). In
other words, £7(X7(I")) is to be obtained
by sequential concatenation of all wZ’s
in their new address (in terms of B)
order, with suitable number of “(™s.
Therefore, we only need to know which
a corresponds to that 8. The following
is the summary of the algorithm of find-
ing unique o from a given B.

Let B=pBiBsBi B
where B,(=1,2,:--,r)=00, 01, 10, or 11.
Then the corresponding a=a,a,-a;--a,
is decided by the following steps.

1) Set i=r.

2) If B,=01 then «,=00, else if 3,=00

then a;=01, else if 8;,=11then a;=
10, else if 8;,=10 then «a;=11.

3) If ;=01 or 11 then go to 4), else

. a;=8,(j=i—1,i—2,---2,1) and halt.

4) i=i—1, and go to 2).

After rearranging £7(I") into £27(X”
(I')) we must apply reduction rules
to 7(X*(I')), then we get the DF-
expression of »~th right shifted picture,
i. e., 2xXx"(IN)).

For example, 2nd right shifted form
of 2*(I") for such I in Fig. 2(a) is
as follows:

L:(X2(T)) = (@101 @Fooo Dy PFono (@01 Do

O Dhyyo (W0, @hooy @311y Whro
(@0 @0 D1 @Fiso

= ((0000(1010((11010(0111

(0001 (11001 (0011, (25)
Q*(X*(I'")) = (0(1010((11010(0111 (0001
(1(11001 (0011. (26)

This is illustrated in Fig. 7(b).

Other shifting operations such as X~
I, Y I and Y"(I") are also carried
out through similar rearranging proce-
sses.

o W W W

rd
-~

P

]

Ls
=

J P
r s

'f

L d

(a) (b)
Fig. 7 Circular shifting of picture

4.3. Rotation by multiples of 90° and
mirror operation

The picture which is obtained by rot-

ating an original I' with respect to the

center of S° by the degree of 90, 180

and 270 counterclockwise, are denoted
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by K¥(I"), K*(I") and K3(I") respectively.
Also we give the notation M{") to
the picture transformed through the
mirror operation about Y axis. As pri-
mitives are subpictures in square frame,
so the shape of primitives after the ro-
tation or mirror operation remains un-
changed. These operations are another
types of rearranging process. For ex-
ample, K'(I") is obtained as follows.

1) We transform the address expres-
sion a of p; in P(I") to the address
expression 8 of pj in P(K'(I")). Let
a=o0; - a; o, and B=p.P; - B, B,
where «a,;, £8;=00, 01, 10, or 11. The
relationship between «; and B3, is shown
im Table 1.

2) We rearrange every p; obtained
in step 1), in order of address 3. The
result is P(K'(I)).

3) We translate P(K'(I") to 2% (K*(I")).

K*(IM), K¥3(I') and M(I') are accom-
plished in the same manner. The ad-
dress relations are also listed in Table
1.

Table 1 Address transformation for
rotation and mirror operation

K K3 M)

4.4. Expansion and reduction

The expansion by the order r is the
expanding operation of original picture
by the scale factor 27 with central point
of I' being fixed. We represent this
operation by Z7(I'), where r=1,23.-.
In the meantime, the reduction of order
r is the inverse operation of I' by the
factor 1/27, and is denoted by Z-(I').

B2%& ®2%5

These operations are performed by the
combination of circular shiftings and
simplifications. The procedure for Z7(I")
is as follows.

1) We repeat left-down shiftings of
I' until the original center of I' moves
to the central position of S&.,. Let I'’
be such shifted picture.

2) Then we regard S§. as the total
frame. Let 2 (I") = ((- (@ @l @l
®hne+be the »~th sub-sequence expres-
sion of I, The sub-sequence g in
27(I'"y is the DF-expression of Z7(I").

The procedure of obtaining Z-7(I") is
as follows.

1) Let £%-7(I') be the (R—r)-th sub-
sequence  expression of I'. We replace
every ogf; in £f7({") with 0 or 1.
This is a simplification of the original
picture. In this case, we should execute
such simplification in such a manner as
to preserve the shape of original picture
as much as possible. Also we apply
reduction rules to this expression. The
resultant is denoted by £*(I"’).

2) We add r “(”s to the left side of
2%(I'") and 3r “0”s to the right. The
picture corresponding to this DF-expres-
sion is denoted by I'”’. I'’’ is the redu-
ced picture by the factor 1/27, but its
location is still in S..q-

3) We repeat right-up shiftings of
I'’" until the center of the reduced pic-
ture moves to the center of §°. The
resultant picture is the Z=7(I").

4.5. Logical operations on DF-expres-

sion

We can produce new pictures by apply-
ing logical operations to each pixel value
of original pictures. The logical opera-
tions on DF-expession are defined as
follows:

(1) AND @2%(I"y) « 2¥(I'y))=82*(T"y + I'y),

(2) OR 2% (I"')+@*(I")=8*(T"1+T),
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(3 NOT @*(T)=9%(T).
These three operations are interpreted
as (1) intersection, (2) union, and (8)
complementation of pictures.

To execute logical operations on DF-

“On . “0”___“0»’ “1” . “0”=n0”’
“1”""“1”:“1”, “(” o ¥ (”=“ (”,
“(” . “1”=“(”

“1” . ul”____nl”’
“(”_’_“(7’:“(”’

[in this case, four “1”s must be inserted after “1”],

expression directly, we now define the
following operations on a symbol, or
pair of symbols in
Operations must be carried out from
leftto right order on the strings.

DF-expressions.

550’1_,_(‘0!’:“0”’ ;‘1”_'_“0»:“1”’

“(® “0”=“0”} [in this case, all symbols in the effective interval of “(” are

“(” + “1”= “1”
u(n L 40" =" (”
“(")n_: “1”

neglected],

L e, <P=C
The operations + and + are commuta-
tive. After these operations, we finally
apply the reduction rules to get the DF-
expression of the new picture.

The logical operation is very useful
when we apply DF-expression to picture
series or gray images. Outline of such
applications will be shown later.

5. Experimental studies

We have performed several kinds of
experiments to examine the effectiveness
of DF-expression in view of data com-

pression.

5.1. Experimental apparatus and test
pictures

The apparatus used in this experiment
is PDS (Photo Digitizing System)-200
pictorial data processing system controll-
ed by TOSBAC-40C mini-computer as in
Fig. 8. Test pictures are (a) weather
chart, (b) circuit diagram, (c) prints,
(d) crest patterns, (e) bold-faced char-
acters, and (f) English text as shown in
TFig. 9. These pictures were all 20cm
by 20cm size, and were placed in front
of PDS camera 85cm apart from its lens.
The illumination on the picture surface
was 3800 Ix and the diaphragm of the
camera was 5.6. Analog images were

[in this case, four “0™s must be inserted after “0”],

digitized into binary pictures with 1024
1024 pixels (that is, R=10) by threshold-
ing analog data from image dissector.
These values were determined in consi-
derations of each set of data being not
influenced by the image quality (e.g.,
each background of picture may not be
uniform, or the inking of the black
areas may not be uniform, etc.). In
this system every pixel is randomly acc-
essible.

DISPLAY

ECAN CONVERTER ]

(IMAGE

[ PDS CAMERA
DISSECTOR)

INTERFACE

I CONTROL UNIT J

INTERFACE
CPU

(TOSBAC—40C 32KB)

Fig. 8 Block diagram of the PDS

5.2. Picture complexity and spectrum
of primitives

The number of r-th primitives (for r=

3,4, -,10) and the picture complexity C,

for test pictures were calculated in order

to know the statistical properties of



— 12— REETLEHEMESE H28 ®H2S R Fn 56 £

emaining brire A~ 1hat 1r0m these honared desd we tave

‘p @
(a) (c)
- ) R E..ﬂ THE GETTYSBURG ADDRESS
TOCI=Ee) 5 e
Fourscore and seven years 400 our fathess braught forth upon
\Otii@| E_‘, .m O it CORINENL & new nation, concerved 1n Liberty, and dedicated
10 1he proposilion that all men are Crealed squal.
-E-E Tt 43 rather (or vi 10 be here dedicaled ta the greal task

1AC/OALAD GEYONION 10 IRAl COuA® for whucn they gave the last
full MAisure of derolion —1hat we here highly resaive that these
Gead Shall not Nave died in vain—Inat this nation, under God,
S Nave & new Birth of freedom—ang that, government of the
people, by (he Deople, for 1he people, snali not perish from
the eanin. :

‘@Q.EE
i ..

PROVERB

). Where theit i3 8 witl thers
2. Rome was not built in & day.
4. Ask, 400§t all be given you
5. Easy 10 1y, nasd 10 do.
7 Evecy fisn that escaprs, appears greater than it i3,

B. neaven neips there who nelp themseives,

9.1 you wodd know the valon of money, try 1o borraw .
10.What the (0ol dors at tast, the wise man goes 41 first.

is e way.
3. %0 news good news.

Gouolnqn out of mind,

(d) (e) (£)
Fig. 9 Test pictures
Table 2 Complexity and number of primitivgs
r {a} (b) () (d) (e} {f)

r W B w B w B w B w B w B
3 0 0 15 0 9 0 0 0 17 0 2 0
4 20 0 57 0 48 1 15 0 22 0 31 0
5 228 0 229 0 144 17 91 2 104 ] 117 0
6 1004 1 497 1 554 184 107 316 497 288 | 1162 0
7 3037 23 | 1267 34| 1530 | 1030 | 1146 | 3252 | 1262 | 1447 | 2898 0
8 7252 875 | 3036 | 1120 { 3546 | 3520 | 5591 | 10058 | 3397 | 3413 | 7623 548
9 15966 | 14562 | 5604 | 5802 | 7230 { 7305 | 23109 | 26259 | 8633 | 8522 | 17600 | 14193
10 13960 | 13960 | 5988 | 5988 | 5794 | 5794 | 27144 | 27144 | 7690 | 7690 | 14086 | 14086
Total 41467 | 29421 | 16693 | 12945 | 18855 | 17851 | 57203 | 67031 | 21622 | 21366 | 43519 | 28827
Pixel 0.916 | 0.084 | 0.953 | 0.047 | 0.785 | 0.215 | 0.443 | 0.557 | 0.744 | 0.256 | 0.924 | 0.076

C, 0. 068 0. 028 0. 035 0.118 0. 041 0. 069

binary pictorial data. The results are
shown in Table 2. The white primitive
is predominant except only one case
(test picture (d)). Generally such pre-
dominance at primitive level is not so
remarkable as that of pixel level.

Complexities of all test pictures were
less than C,,(==0.47). So, we became
convinced that even an appparently
very complicated picture will still have
less complexity than C,. For example,
even a weather chart on a very noisy
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background and a pattern of char-acters
that was printed very closely by line-
printer, were found to be less complica
ted than C,,. With our preliminary
experimental studies, we have concluded
that DF-expression is a good method for
data compression.

Complexity of a picture gives us good
global information, but it does not tell
us anything about sizes of predominant
primitives. If a picture contains many
low order primitives, the picture will
consist of many areas. While, if not,
it will consist of many curves and po-
ints. Taking account of these features,
we introduced the notion of spectrum
Let m;, and mj; be the
number of r-th order white and black
primitives respectively.
of primitives is the set of such r-th
order components of primitives as fol-
lows:

QL =4"emj, Q}=47-m;, Q"=0;,+0j}.

of primitives.

The spectrum

r T
o.a-q“ 0.3t &
0.2 0.2
0.1 0.1
0 r 0 T
0.1 0.1

qF o3

° (a) b (®)

Qf Ql‘
0.3t ™ 0.3F ¥
0.2 0.2
0.1 0.1
0 r 0 r
0.1 0.1
. 0.2f
0-2f of 3

(c) (d)

3 3
0.3 0.3} ®
0.2 0.2
0.1 0.1
0 T 0 T
0.1} 0.1}

Q& %

(e) (£)

Fig. 10 Spectrum of primitives

The spectrums of test pictures are de-
monstrated in Fig. 10. It is clear
that spectrum patterns vary according
For example,
the significant differences are observed
between (a) and (f), but both comple-
xities nearly equal to each other. Also
we have made certain that various pic-
tures of a same class (e. g. weather
chart) have some similar spectrum pat-
terns. Therefore, the spectrum will
serve as the feature for picture classi-
fication and as the index for pictorial
database.

5.3. Coding method and compression

ratio

DF-expression uses three symbols “(”,
“0” and “1”. We must code them with
0 and 1. In our study, the following
three coding systems were tested.

@ “—-11, “0” — 00, “1” — 0Ol

@ “—-11, “0” —- 0, “1” — 10.

@3 “C—-=11, “0” -0,

1 @Gf “1” specifies the
10-th order primitive.)

10 (otherwise.)

to the class of pictures.

“1” s

(1) is the most simple and consntat
length but apparently redundant system.
(2) comes from the Theorem 1 and the
estimation that “0” is the most frequent
symbol in an ordinary DF-expression.
(3) is based upon the fact that only “0”
and “1” appear in the effective interval
of an R-th (in our case, R=10) order
“(r,

The program of DF-coding algorithm
was written in the assembly language
of TOSBAC-40C. The compression ratio
is defined by

Total number of'
pixels (1024 x1024)

Number of code bits

@n

The compression ratios of test pictures
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are listed in Table 3. These results are
very satisfactory. Especially, for (b)
and (c), markedly high ratios were ob-
tained because of the predominancy of
lower order primitives.

In order to compare the efficiency of
DF-expression with typical facsimile
bandwidth compression methods, we also
performed three facsimile simulations
using the same data as our DF-coding
methods. The results are all listed in
Table 3, where A, B, and C are the
followings.

(A) Block coding'’.

(B) Two-dimensional prediction!®.

(C) Mode run-length coding'®.

We summarize these experiments as in
the following statements.

(1) The compression ratio depends
on the statistical properties of pictorial
data. For example, since facsimile me-
thod (A) is based on the estimation
that the white pixel is predominant in
the picture, so its ratio becomes worse
when a picture contains many black
pixels. In case of (C), the ratios for
such pictures as (a) and (f) are rather
worse because the mode transitions are
very frequent. While, DF-expression
(1) is not influenced by which (black or
white) pixel is predominant in the pic-
ture.

(2) The compression ratio, both in
facsimile methods and obviously in our
method, tends to decrease with increas-
ing picture complexity in our sense. It
will be concluded that the complexity in
our sense is a good measure of the
complicatedness of pictures from the
standpoint of data compression.

(3) The ratio of (B) is highest in
facsimile methods because the strong
two-dimensional correlations are obser-
ved among pixels. Incidentally, DF-ex-

pression is a generalized two-dimensional
run-length coding, and its ratio (3) is
about 60 % better than (B) on the ave-
rage.

Table 3 Compression ratio

DF-expression |Facsimile method

Wl e e

(a) 5.55 7.11] 7.85/3.51 | 4.86] 2.87
(b) | 13.27] 16.82} 18.61| 5. 46 | 11.93| 6. 69
{c) 110.71] 13.27| 14.32 2.61 | 8.44| 4.87

AIB[C

(d) 3.17) 8.83| 4.25[ 1.11 | 2.59| 1.44
(e) 9.15| 11.27| 12.29] 2.26 | 7.38| 3.96
(£) 5.44\ 7.02| 7.75/ 3.38 | 4.97 2.94

5.4. Application to picture series

A set of pictures, or a picture series,
is coded into a set of respective DF-ex-
pressions in the usual manner., Further-
more, we may be able to get more com-
pact form according to the next opera-
tion.

Let I';=I'®I'; be the picture that is
produced by EOR (exclusive OR) opera-
tion of I'y and I',, Then I'y=I,®I;
and I',=I'\®I'; holds. EOR operation
on DF-expression is defined as;

LX) @2HI ) =2%(I'y) %)
FR*(1) ¥ () =2% (TP

Then we also have 2%(I") =8*(I",)P(L2*
I')DL*(I)) and 2*(Iy) =L2*T)D(L*
)®L*(I'y)). This can be said as
follows. When we store the data of a
picture series {I';, I';} in some database,
we are allowed to store {(£*(I"), 2*(I"y)
@2*¥(,)) or {L*(Iy), L¥THDL*¥UT))
instead of (2%, £2*{,)}. Especi-
ally, if I’y and I', are similar to
each other, £2*(I",)®L*(I";) will be more
compact than £*({",) or £¢{";). We
illustrate a simple example of picture
series in Fig. 11. The effect of EOR
operation in this case proved to reduce
50 % data of the ordinary coded DF-ex-
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e TS o
' r2 'y I's
g
' & I'2 ' & I's s & I'y 'y & T's

Fig. 11 An example of EOR operation on a picture series

pression.

5.5. Application to multi-valued pic-

ture

So far, we have restricted our discus-
sion to binary-valued pictures. But we
can easily remove such restriction. The
outline of the coding method of multi-
valued pictures by DF-expression is as
follows. Let there be 2* bits possible
values in each pixel. Then we are to
have k bit-sliced binary patterns. By
applying DF-coding method to such k&
binary patterns, we can represent every
multi-valued picture as a set of & DF-
expressions. Still more, EOR operation
may be worth trying.

This method was tested for 4 and 8
gray level pictures with 256 by 256 pi-
xels. Table 4 shows the resulted com-
pression ratio by three coding systems.
We decoded these expressions into orig-
inal pictures, and displayed them on a

Table 4 Compression ratio of multi-
valued picture

Lovel w | @ 3)
2 3.79 | 452 5.39
4 .59 | 1.90 2.30
8 1.03 } 1.25 1,56

(a) 4 level

(b) 8 level
Fig. 12 Decoded multi-valued pictures

storage type graphic display terminal,
where the cell size (the number of dots
per pixel) was 4 by 4. They are shown
in Fig. 12.
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6. Conclusions

The authors have presented DF-ex-
pression and demonstrated its effecti-
veness in data compression. This me-
thod has the following desirable advan-
tages:

(1) It is applicable to multi-valued
pictures as well as binary-valued pic-
tures.

(2) It preserves every information
for the reconstruction of the original
picture.

(3) It yields much higher compression
than traditional methods which are often
found in facsimile transmission.

(4) The coding algorithm of raw data
into DF-expression is very symple, and
it is executed recursively by an ordinary
processor if the pictorial data are rand-
omly accessible.

(5) Some typical picture processings,
such as circular shiftings, rotations by
multiples of 90°, expansions and reduc-
tions of a original picture, can be per-
formed on DF-expression itself. This
is useful for further picture processings
and flexible display of pictures.

(6) The logical operations of original
pictures can be performed on it. This
is applicable to the representation of a
picture series.

(7) Such concepts as a picture com-
plexity and a spectrum of primitives,
are defined based on DF-expression.
They will serve as the features for pic-
ture processing and the indexes for pic-
torial information retrieval system!?.

We are convinced that DF-expression
is effective and efficient representation
of pictorial data not only for the cons-
truction of a pictorial database but also
for several types of picture processings.
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