九州大学学術情報リポジトリ Kyushu University Institutional Repository

ふく射輸送における二流束モデルの反転問題への適 用: 固体微粒子群の吸収係数、後方散乱係数の決定 に関連して

上宇都, 幸一

九州大学大学院総合理工学研究科エネルギー変換工学専攻

木下,泉 九州大学大学院総合理工学研究科エネルギー変換工学専攻

長谷川,修 九州大学大学院総合理工学研究科エネルギー変換工学専攻

https://doi.org/10.15017/17490

出版情報:九州大学大学院総合理工学報告.1(1), pp.57-65, 1979-10-09.九州大学大学院総合理工学 研究科 バージョン:

権利関係:

ふく射輸送における二流束モデルの反転問題への適用

一一固体微粒子群の吸収係数,後方散乱係数の決定に関連して——

上宇都幸一*•木下 泉**•長谷川 修* 昭和54年7月21日 受理

Application of Two-Flux Model to the Determination of Absorption and Backscattering Coefficients of Turbid Media for Thermal Radiation

Koichi KAMIUTO, Izumi KINOSHITA and Shu HASEGAWA

In this study two-flux model for radiative transfer is examined in some details, especially, concerned with the determination of absorption and backscattering coefficients of turbid media. A ratio of the first moment of radiative intensity to the zeroth one appeared in the two-flux model is determined through analytical considerations for two limiting cases, i.e., $\omega=0$ and $\omega=1$ and is fixed for 1.0 to low albedos ($\omega \leq 0.7$) and 2/3 to high albedos ($\omega > 0.7$). Some directional transmittances are compared with the hemispherical one (T_F) and it is found that $I(\tau_0, 40)/I_0$ is the best approximation to T_F . Furthermore inversions for the exact transmittance data are done and it is shown that in case of $I(\tau_0, 40)/I_0$ absorption and backscattering coefficients can be determined within a factor of 0.5 to 2 and one of 1 to 150, respectively.

1. 緒 言

熱ふく射を吸収、射出、散乱可能な固体微粒子群 (球状、円筒状)が均一に分散した媒体中でのふく射 輸送の問題は、固気混相流動伝熱、火炎、充てん層、 断熱層、固体ロケットの exhaust plume 中な どで のふく射の 寄与を評価する上で重要であり、最近20 年間に研究上の著しい進展がみられた.しかしその大 部分は、ふく射物性値を既知として、ふく射強度、入 射ふく射束、ふく射熱流束等の輸送量を求める問題に 集中しており、ふく射場の情報から固体微粒子群のふ く射物性値を求めた研究(反転問題)は少なく、わず かに2、3を数えるのみである.たとえば、Larkin-Churchill¹は、二流束モデルに基づいて glass fibre, foam glass, styrofoam の透過率データを解析し、 その吸収,後方散乱係数を決定している. また Chen-Churchill²) は,同様な手法で,boro-silicate glass, alumina oxide, carbon steel, silicon carbide のふく射物性値を求めている。また Sanders-Lenoir ³⁾ は, graphite, alumina oxide のふく射物性値を Churchill 等と同様な手法で求めている.

しかし、これらの研究者が透過率データの解析に際 して、使用している二流束モデルはこれまで反転問題 と関連して検討されておらず、従って Churchill, Lenoir 等が得ている吸収、後方散乱係数が厳密な電 磁光学的理論⁰⁵⁾により導かれる真の吸収、後方散乱 係数と比較可能なものとなっているか明らかでない.

以上のことから、本研究では二流束モデルを反転問 題と関連して検討することを目的としている.二流束 モデルには、基本的な未定パラメータとしてふく射強 度の0次と1次モーメントの比(α)が含まれている が、本研究では、まず $\omega=0$ と $\omega=1$ の2つの極限

^{*} エネルギー変換工学専攻

^{**} エネルギー変換工学専攻修士課程

的なケースについて、反転問題との関連において α を限定し、その α が半球ふく射透過率 (T_F) に及ぼ す影響を調べている. 続いて指向ふく射透過率 (T_D) を半球ふく射透過率と比較し、前者を以って後者に代 用できるための条件 (方位角)を T_F と対照して決定 している. 最後に輸送方程式を、数値的に解いて求め た半球ふく射透過率や指向ふく射透過率に、二流束モ デルを適合させ、それに含まれる吸収、後方散乱係数 を漸近展開法で決定した場合の精度を検討した。

2. 輸送方程式とその数値解法

Fig. 1 に本研究で対象とする体系を示している. 条件としては次のようなものを考える. 1)散乱体は 半無限平板状領域に均一に分布している. 2)散乱体 の自己射出は無視する(ただし、吸収は考慮する). 3) $\tau=0$ で左半面より拡散入射光が入射する. 4) $\tau=\tau_0$ で右半面より入射するふく射はない. 以上の 阪定を考慮するとふく射場は二次元的になり、ふく射 場を支配する輸送方程式は次のようになる.

Fig. 1. Physical model and coordinate system

$$\mu \frac{dI(\tau, \mu)}{d\tau} + I(\tau, \mu) = \frac{\omega}{2} \int_{-1}^{1} P(\mu, \mu') I(\tau, \mu') d\mu'$$
(1)

また境界条件は次のようになる.

$$\tau = 0; I(0, \mu) = I_0(\mu > 0),$$

$$\tau = \tau_0; I(\tau_0, -\mu) = 0 \quad (\mu > 0)$$
(2)

次に入射ふく射束 $G(\tau)$, ふく射熱流束 $q(\tau)$, 前方 ふく射熱流束 $q^+(\tau)$ は以下のように定義される.

$$G(\tau) = 2\pi \int_{-1}^{1} I(\tau, \mu) d\mu,$$

$$q(\tau) = 2\pi \int_{-1}^{1} I(\tau, \mu) \mu d\mu,$$

$$q^{+}(\tau) = 2\pi \int_{-1}^{1} I(\tau, \mu) \mu d\mu$$
(3)

さらに、半球ふく射透過率 T_F ,指向ふく射透過率 T_D は次のように定義される.

$$T_F = q^+(\tau_0)/q^+(0) = q^+(\tau_0)/\pi I_0,$$

$$T_D = I(\tau_0, \mu)/I_0$$
(4)

式(1)よりふく射場が決定されると式(3)のふく 射量,式(4)のふく射透過率は容易に計算すること ができる.

輸送方程式 (1) を解く 手法 としては、discrete ordinate 法⁶, Pn 法⁷⁾ など多数の手法があるが、こ こでは Feutrier⁸⁾, Barkstrom⁹⁾ により提案された 差分法に従って数値的に解くことにする、今、次のよ うな J, H という2つの量を導入する.

$$J(\tau, \mu) = \frac{1}{2} \{ I(\tau, \mu) + I(\tau, -\mu) \},$$

$$H(\tau, \mu) = \frac{1}{2} \{ I(\tau, \mu) - I(\tau, -\mu) \}$$
(5)

この *J*, *H* を用いると輸送方程式は次のように書きな おすことができる.

$$u \frac{dH(\tau, \mu)}{d\tau} + J(\tau, \mu)$$

$$= \frac{\omega}{2} \int_{0}^{1} (P(\mu, \mu') + P(\mu, -\mu')) J(\tau, \mu') d\mu'$$
(6)

$$\mu \frac{dJ(\tau, \mu)}{d\tau} + H(\tau, \mu)$$

$$= \frac{\omega}{2} \int_{0}^{1} (P(\mu, \mu') - P(\mu, -\mu')) H(\tau, \mu') d\mu'$$
(7)

J, H の導入に対応して境界条件も次のように書き直 される.

$$\tau = 0; J(0, \mu) + H(0, \mu) = I_0,$$

$$\tau = \tau_0; J(\tau_0, -\mu) - H(\tau_0, -\mu) = 0$$
(8)

境界条件(8)のもとに、式(6)、(9)の連立微分方 程式を解けば、ふく射場は、 $I(\tau, \mu) = J(\tau, \mu) + H$ $(\tau, \mu), I(\tau, -\mu) = J(\tau, \mu) - H(\tau, \mu)$ として復元さ れる. 式 (6), (7) を Feutrier-Barkstrom に従っ て、τ 方向に差分し、右辺の μ に関する積分を Gauss の求積公式により和に変え,離散的な µ に対し て解を求める.(τ方向の差分間隔としては Δτ=0.01, μ方向のガウス積分の次数としては、基本的には10 次のものを使用し、一部、計算の精度チェックのため に20次のものを用いた.また等方散乱の場合には、 積分方程式法にもとづく解析とも比較し、

精度の確認 を行っている). 以上のような 操作を行うと最終的に は, H と J に関する連立一次方程式を得る. (具体 的には 4~=0.01, N=10 で、 ~=10 の場合、 最大 10060 元の連立方程式となっている). ここでは、こ れをバンドマトリックス法10) で解いた. また式(6). (7) に表われる位相関数 $P(\mu, \mu')$ には, Henyey-Greenstein¹¹⁾のものを用いた.

 $P(\cos\theta) = (1 - \tilde{g}^{2}) / (1 + \tilde{g}^{2} - 2\tilde{g}\cos\theta)^{3/2} \quad (9)$ $P(\mu, \mu') = \frac{1}{2\pi} \int_{0}^{2\pi} (1 - \tilde{g}^{2}) / \{1 + \tilde{g}^{2} - 2\tilde{g}(\mu\mu' + \sqrt{1 - \mu^{2}}\sqrt{1 - \mu'^{2}}\cos\phi)\}^{3/2} d\phi \quad (10)$

ここで、 \tilde{g} は位相関数の非対称性を表わすパラメータ で asymmetry factor¹² と呼ばれており、 $-1 \leq \tilde{g} \leq 1$ の範囲の値をとる. ($\tilde{g} \rightarrow 1$ の場合は、前方散乱の強 い場合、 $\tilde{g} \rightarrow -1$ の場合は後方散乱の強い場合を意味 する)

また式 (3) のふく射量は *J*,*H* を用いて次のよう に表わされる.

$$G(\tau) = 4\pi \sum_{j=1}^{N} W_{j} J_{j}, \quad q(\tau) = 4\pi \sum_{j=1}^{N} W_{j} \mu_{j} H_{j},$$
$$q^{+}(\tau) = 2\pi \sum_{j=1}^{N} W_{j} \mu_{j} (H_{j} + J_{j}) \qquad (11)$$

またふく射透過率は次のようになる.

$$T_{F} = 2\sum_{j=1}^{N} W_{j} \mu_{j} \mu_{j} (H_{j} + J_{j}) / I_{0}, \ T_{D} = (J_{j} + H_{j}) / I_{0}$$
(12)

3. 二流束モデルの導出

式(1)に \int_{0}^{1} () $d\mu$, \int_{-1}^{0} () $d\mu$ の積分操作を行うと次式を得る.

$$\frac{d}{d\tau} \int_{0}^{1} \mu I(\tau, \mu) d\mu + \int_{0}^{1} I(\tau, \mu) d\mu \\
= \frac{\omega}{2} \int_{-1}^{1} I(\tau, \mu') \int_{0}^{1} P(\mu, \mu') d\mu d\mu' \\
\frac{d}{d\tau} \int_{-1}^{0} \mu I(\tau, \mu) d\mu + \int_{-1}^{0} I(\tau, \mu) d\mu \\
= \frac{\omega}{2} \int_{-1}^{1} I(\tau, \mu') \int_{-1}^{0} (\mu, \mu') d\mu d\mu'$$
(13)

ここで,

$$j^{+} = \int_{0}^{1} I(\tau, \mu) d\mu, \ j^{-} = \int_{-1}^{0} I(\tau, \mu) d\mu$$

を導入し次の近似を行う.

$$\int_{0}^{1} \mu I(\tau,\mu) d\mu \approx \alpha \int_{0}^{1} I(\tau,\mu) d\mu,$$
$$\int_{-1}^{0} \mu I(\tau,\mu) d\mu \approx -\alpha \int_{-1}^{0} I(\tau,\mu) d\mu \qquad (14)$$

この近似は、Schuster¹³⁾、Schwarzchild¹⁴⁾ により 始められたもので、数学的には積分の第一平均値定理 に根拠をもつと考えられるが、彼等は $\alpha = 1/2$ として いる、しかし、この値は、 $I(\tau, \mu)$ が完全に μ に依存 しない場合にのみ正しく、普通の場合、 $0 \le \alpha \le 1$ の制 限がつくのみで理論的には決められず、半経験的に決 めなければならないパラメータであり、5節で検討す る.ここでさらに $f(\mu) = \int_{0}^{1} P(\mu, \mu') d\mu', b(\mu) = \int_{1}^{0} P(-\mu, \mu') d\mu'$ とすると式 (13) は次のようになる.

$$\alpha \frac{dj^{+}}{d\tau} + j^{+} = \frac{\omega}{2} \{ \int_{0}^{1} I(\tau, \mu') f(\mu') d\mu' + \int_{-1}^{0} I(\tau, \mu') b(\mu') d\mu' \} - \alpha \frac{dj^{-}}{d\tau} + j^{-} = \frac{\omega}{2} \{ \int_{0}^{1} I(\tau, \mu') b(\mu') d\mu' + \int_{-1}^{0} I(\tau, \mu') f(\mu') d\mu' \}$$
(15)

さらに式(14)の近似に対応して

$$\int_{0}^{1} I(\tau, \mu') f(\mu') d\mu' \approx f(\alpha) \int_{0}^{1} I(\tau, \mu') d\mu',$$
$$\int_{-1}^{0} I(\tau, \mu') f(\mu') d\mu' \approx b(\alpha) \int_{-1}^{0} I(\tau, \mu') d\mu'$$
などの近似を導入する. すると式 (15) は次のよう

なる.

$$\alpha \frac{dj^{+}}{d\tau} + j^{+} = \frac{\omega}{2} (\bar{f} \cdot j^{+} + \bar{b} \cdot \bar{j}^{-}),$$
$$-\alpha \frac{dj^{-}}{d\tau} + j^{-} = \frac{\omega}{2} (\bar{b} \cdot j^{+} + \bar{f} \cdot \bar{j}^{-})$$
(16)

ただし, $ar{f}=f(lpha),\,ar{b}=b(lpha)$ としている. また式(16)に対する境界条件は次のようになる.

$$\tau = 0; \ j^{+} = I_{0}, \ \tau = \tau_{0}; \ j^{-} = 0$$
(17)

式(16)と式(17)が非等方散乱まで含めた二流束モ デルの基礎式であり、これは解析的に解くことができ る.結果は以下のようになる.

$$j^{+}(\tau) = c_{1} \exp\left(\frac{M'}{\alpha}\tau\right) + c_{2} \exp\left(-\frac{M'}{\alpha}\tau\right)$$

$$j^{-}(\tau) = \frac{2(M'+N')}{\omega\bar{b}}c_{1} \exp\left(\frac{M'}{\alpha}\tau\right)$$

$$+ \frac{2(-M'+N')}{\omega\bar{b}}c_{2} \exp\left(-\frac{M'}{\alpha}\tau\right)$$

$$c_{1} = -\frac{I_{0}}{2}(M'+N') \exp\left(-\frac{M'}{\alpha}\tau_{0}\right)/c_{0}$$

$$c_{2} = \frac{I_{0}}{2}(M'+N') \exp\left(\frac{M'}{\alpha}\tau_{0}\right)/c_{0}$$

$$c_{0} = M' \cosh\frac{M'}{\alpha}\tau_{0} + N' \sinh\frac{M'}{\alpha}\tau_{0}$$

$$M' = \sqrt{\left(1 - \frac{\omega\bar{f}}{2}\right)^{2} - \left(\frac{\omega\bar{b}}{2}\right)^{2}}, N' = 1 - \frac{\omega\bar{f}}{2}$$
(18)

一方,輸送量は次のようになる.

$$G(\tau) = 2\pi (j^{+} + j^{-}), \quad q(\tau) = 2\pi \alpha (j^{+} - j^{-}),$$
$$q^{+}(\tau) = 2\pi \alpha j^{+} \qquad (19)$$

またふく射透過率 T_F も同様に与えられ以下のようになる.

$$T_{F} = j^{+}(\tau_{0})/I_{0}$$

$$= M'/(M'\cosh\frac{M'}{\alpha}\tau_{0} + N'\sinh\frac{M'}{\alpha}\tau_{0})$$

$$= M/(M\cosh\frac{M}{\alpha}x_{0} + N\sinh\frac{M}{\alpha}x_{0}) \qquad (20)$$

$$M = \sqrt{\sigma_{a}^{2} + \sigma_{a}\sigma_{s}\overline{b}}, \quad N = \sigma_{a} + \frac{\sigma_{s}\overline{b}}{2}$$

4. ふく射透過率分布の反転法

式 (20) で右辺の α が予め与えられていると,式 (20) をふく射透過率分布の測定値に適合させること によって,それに含まれる $M, N(\rightarrow \sigma_a, \sigma_s \overline{b})$ を決定 することができる.本研究では $Mx_0 \gg 1$ なる領域で は,式 (20) が, $T_F = \{2M/(M+N)\}\exp(-Mx_0/\alpha)$ と近似できることを利用して, $\ln T_F - x_0$ plot の勾配 と切片から M, N を決定する漸近展開法を用いてい る. 令, T_b, T_b も, $x_0 \gg 1$ の領域で $\ln T = A - Bx_0$ と展開できるとすると, $\sigma_a, \sigma_s \overline{b}$ は,A, B を用いて次 のように書くことができる.すなわち, $M = \alpha B, N$ = $\alpha B(2\exp(-A) - 1)$ の関係があるので,

$$\sigma_{s}\bar{b} = 2\sqrt{N^{2} - M^{2}} = 2\alpha B\sqrt{(2\exp(-A) - 1)^{2} - 1}$$
(21)
$$\sigma_{a} = N - \sqrt{N^{2} - M^{2}} = \alpha B\{(2\exp(-A) - 1) - 2\sqrt{\exp(-A)(\exp(-A) - 1)}\}$$
(22)
$$\sigma_{a} + \sigma_{s}\bar{b} = N$$

の関係を得る、従って勾配 Bと切片 Aが求まると σ_a , $\sigma_s \bar{b}$ が定まる. ただし, $\sigma_a = 0$ すなわち M = 0 の ときには, この展開は使えないので,次節で述べる 1 $/T - x_0$ plot の勾配から $\sigma_s \bar{b}$ を決める手法を用いな ければならない.

5. 結果および検討

5-1. 半球ふく射透過率に及ぼす αの影響

既に3節でも述べたが、 α の値は、 $0 \le \alpha \le 1$ の任 意の値をとることが可能である. しかし, $\omega = 0$ と $\omega = 1$ の2つの極限的なケースについて、ある程度 αの値を限定しておくことは意味のあることである. 今、 $\omega = 0$ の場合、厳密な半球ふく射透過率 (T_{F})は、 \tilde{g} によらず, $T_F^e = 2E_3(\sigma_a x_0)$ で与えられる. 一方, 二流束モデルによる T_F は、 $T_F^t = \exp(-\sigma_a x_0/\alpha)$ となる、従って Ti が Ti を良好に近似するように αを決めればよい. αを決める方法には, いろいろ考 えられるが、ここでは2つの方法を用いることにす る. まず第1のものは, $\sigma_a x_0 \rightarrow \infty$ で T_F^{c} が T_F^{c} の良 い近似となるようにαを決定する方法であり、4節で 述べた反転手法との関連では最も妥当であると考えら れるものである. 今, $\sigma_a x_0 \rightarrow \infty$ では, $T_F^e \approx 2 \exp(\sigma_a x_0) / \sigma_a x_0$ となるが、この対数をとると、 $\ln T_F =$ $-\sigma_a x_0 + \ln(2/\sigma_a x_0)$ となる. (ここでは $\sigma_a x_0 \rightarrow \infty$ で

は、右辺第2項は無視できるとする). これに対して TF の方は、 $\ln T_F = -\sigma_a x_0/\alpha$ となるから、 $\ln T_F$ と 対比して $\alpha = 1$ を得る. 次に第2の方法は、とりあ えず $T_F = r \exp(-t/\alpha)$ とおいて、 $\int_{\alpha}^{\infty} T_F dt = \int_{\alpha}^{\infty} T_F$ $dt, \int_{a}^{\infty} T_{F}^{t} t dt = \int_{a}^{\infty} T_{F}^{t} t dt$ から決めるやり方である. これによると、 $\alpha = 3/4$ を得る. また特に r = 1の場 合, 第1の条件から α を決めると $\alpha = 2/3$ が得られ る. この第2の方法の場合は、反転問題との関連より も、むしろ直接問題との関連で良好な近似を与えるこ とが予想される. 一方, ω=1 の場合, 式 (20) は, $T_{k} = 1/(1+b\tau_{0}/2\alpha)$ と展開される. この場合, T_{k} は、解析的に表示することはできないが、数値計算結 果を $1/T_F^e - \tau_0$ plot すると、Fig. 2 のようになり、 $1/T_{F}^{e} = C\tau_{0} + E$ と近似され、これより $\bar{b}/2\alpha$ を決定 することができる. 等方散乱 ($\tilde{g}=0$) の場合, \bar{b} は α によらず1となるので、これを基準にすれば、 $\alpha =$ 0.6644 \approx 2/3 となる. 他の \tilde{g} の場合には, \bar{b} は α に 依存し、従ってそれに応じて T_{i}^{s} と一致する $\overline{b}/2\alpha$ (従って α) は変化するが、反転問題への適用を考え ると α は固定することが望ましい. Fig. 2 には α =2/3 としたときの結果を破線で示している. $\alpha=2/$ 3 は, \tilde{g} →1 としたとき, $b/2\alpha$ を過小評価する傾向に ある.以上のαが半球ふく射透過率に及ぼす影響は, Fig. 3~5 に示している. 高アルベド領域では予想通

Fig. 2. Relation between inverse hemispherical transmittance and optical thickness

り, $\alpha = 2/3$ が良い結果を与えている. しかし, 中間 の ω の領域では, $\alpha = 2/3$ は, (τ_0 によっても異なる が, $\tau_0 \ge 5$ では), $\omega \to 0$ に向かうにつれ, いったん T_F より過大な値を与えた後, 過小値をとる傾向にあ る. $-\overline{D}$, $\alpha = 1$ の場合, T_F との差異が著しく, -見, T_F に対する近似になっているとは信じがたい. しかし 5-3 節で詳細に述べるが, この α は, 低アルベ ド領域では反転に際し, 最も良い結果を与えている. その理由についてはそこで言及する. また $\alpha = 3/4$ の 場合, 低アルベド領域では T_F に対する良い近似とな っており, 直接問題には有効であると考えられる.

5-2. 指向ふく射透過率と半球ふく射透過率の比較

Fig. 6~8 に指向ふく射透過率の分布を半球ふく射 透過率の分布とともに示している. $\cos^{-1} \mu = 40^{\circ}$ での T_D は、ほぼ全ての \tilde{g}, ω に渡って、良好に T_F を近

Fig. 4. Effect of α on hemispherical transmittance $(\tilde{g}=0)$

似しており、従って半球ふく射透過率の代替として、 この角度でのふく射強度を測定すればよいことを示し ている.これは分光ふく射透過率の測定を行う場合、 非常に好都合な結果となっている.

5-3. ふく射透過率分布からの反転精度

二つのふく射透過率分布 T_{D} , T_{F} に対して4節で述 べた手法を適用し、 σ_{a} , σ_{s} \bar{b} を反転したときの結果を **Table 1~3** に示す. Table で, EXACT とは半球ふく 射透過率,指向ふく射透過率を厳密に算出するに際し て仮定した値を意味し, 反転の目標値を意味している. 一方, T_{F} , $T_{D}(40^{\circ})(=I(\tau_{0}, 40^{\circ})/I_{0})$, $T_{D}(45^{\circ})$ (= $I(\tau_{0}, 45^{\circ})/I_{0})$ の欄は,それぞれの厳密値に対して反 転した結果を示している.反転の結果は、ここで用い た α の如何を問わず高アルベド領域 (ω >0.7) では、 かなり精度のよい結果となっている. たとえば、 ω = 0.9 の場合は、 σ_{a} については、ほとんど厳密値と一

Fig. 5. Effect of α on hemispherical transmittance ($\tilde{g}=0.7$)

致する値が得られている. また $\sigma_s b$ についても精度 は劣るが同様な傾向にある. しかしアルベドが小さ い領域 ($\omega \leq 0.7$) では、 σ_a の反転値は、 過小評価さ れた値となっている. 一方, それに対する $\sigma_s \hat{b}$ は逆 に非常に過大評価された結果となっている. (このよ うに σ_a が大きくなると $\sigma_s \bar{b}$ が小さくなり、 $\sigma_s \bar{b}$ が 大きくなると σα が小さくなる現象は、これまでにも 報告されており、散乱体の数密度などと関連させて議 論されているが15)16), ここでの解析からも明らかなよ うに二流束モデルを用いた反転に固有のものである). 一方, 反転精度に及ぼす α の影響をみてみると, 低 アルベド領域では $\alpha=1$ が、また高アルベド領域で は、Table 4 の結果とも合わせて考えると、 $\alpha=2/3$ が良好な結果を与えている. 低アルベド領域で α=1 が良好な近似になっているのは, Fig. 3~5 を参照す ると、一見奇異にみえるが、これは $\omega \rightarrow 0$ での T_F^e と

Fig. 6. Comparison of directional transmittance with hemispherical one $(\vec{g}=-0.7)$

Tⁱ の函数形が異なる事と採用した 反転手法に深い関 係がある.式(21)をみると明らかであるが、 $\sigma_s \bar{b} \rightarrow 0$ の場合、 $\sigma_a = \alpha B$ となり、 σ_a は、**T**^s($x_0 \gg 1$)での 勾配(B)のみから決定されている.すなわ**5** $\omega = 0$ の場合、 $x_0 \gg 1$ での勾配が **T**^s と **T**ⁱ で等しければ よいのであって、**T**^s と **T**ⁱ は一致する必要はない. 従って、このため不可避的に **T**ⁱ と**T**^s となる.一方、 $\omega = 1$ の場合、幸にも、**T**^s と **T**ⁱ の函数形が一致し ているため、**T**^s を良好に近似する α は、そのまま反 転問題でも良好な結果を与えるようになっている.次 に $q^+(\tau_0)/q^+(0)$, $I(\tau_0, 40^\circ)/I_0$, $I(\tau_0, 45^\circ)/I_0$ の結果 を相互に比較してみると、40°方向のふく射強度デー タを反転したものが最も良い結果を与えており、むし ろ $q^+(\tau_0)/q^+(0)$ より良い結果となっている.

以上の結果を総合してみると最も結果のよい $I(\tau_0, 40^\circ)/I_0$ を反転した場合でも(高アルベド領域で $\alpha =$

Fig. 7. Comparison of directional transmittance with hemispherical one $(\tilde{g}=0)$

2/3, 低アルベド領域で $\alpha = 1$ を用いて), σ_0 に関し ては, factor 0.5~2, $\sigma_s b$ に関しては factor 1~150 の差異が生じていることには留意すべきである. 従っ て $\alpha = 1$ で $q^+(\tau_0)/q^+(0)$ を反転している Churchill 等¹⁾²⁾の結果は, かなりの誤差を含むものと考えられ る.

6. 結 論

固体微粒子群を含む分散媒体のふく射透過率データ に、二流束モデルを適用し、漸近展開法によって、吸 収係数,後方散乱係数を反転した場合の精度について 検討した.得られた結果は以下のように要約される.

1) 二流束モデルでは、ふく射強度の 0次と 1次モ ーメントの比(α) が重要であるが、 このモデルを反 転問題に適用する場合、高アルベド領域(ω >0.7)で は、 α =2/3 が、また低アルベド領域(ω ≤0.7)では、 α =1 が妥当である.

Fig. 8. Comparison of directional transmittance with hemispherical one (g = 0.7)

2) 40° 方向での指向ふく射透過率 $T_D(40°)$ は、半 球ふく射透過率として代用することが できる.また

 $T_D(40^\circ)$ の方が、反転した場合、 T_F よりも好結果を 期待できる.

3) ふく射透過率データ (たとえば ($T_D(40^\circ)$) に, 二流束モデルを 適用し, ふく射物性値を 決定する 場 合, σ_a に関しては factor 0.5~2 程度で決定できる が,誤差は低アルベド程大きい. 一方, $\sigma_s \bar{b}$ について は factor 1~150 程度で, 精度は σ_a の場合より概 して悪く,また低アルベド程,低下する.

(謝辞)

本研究は,文部省科学研究費一般研究B(課題番号 246167)の一部として行われたものであることを記し て関係者に感謝の意を表す.

参考文献

- B. K. Larkin and S. W. Churchill, A. I. Ch. E. Journal, 5-4 (1959) 467.
- 2) J. C. Chen and S. W. Churchill, ibid., 9--7 (1963) 35.
- C. F. Sanders and J. M. Lenoir, ibid., 18 -1 (1972) 155.
- 4) G. Mie, Ann. Physik, 25 (1908) 377.
- 5) J. R. Wait, Can. J. Phys., 33 (1955) 189.
- 6) S. Chandrasekhar, Radiative Transfer, Dover, New York (1960).
- J. H. Jeans, Monthly Notices Roy. Astron. Soc., 78 (1917) 28.
- P. Feutrier, Compt. Rend., 257 (1964) 3189.
- 9) B. R. Barkstrom, J. Quant. Spectro. & Rad. Transf., 16 (1976) 725.
- 10) 信原・他2名, コンピュータによる構造工学講

					σa		σ₅Ъ			
α	b	ω	EXACT	Υ _F	т _р (40)	T _D (45)	EXACT	T _F	T _D (40)	T _D (45)
2/3	1.7359	0.1	0.9	0.1210	0.4134	-	0.1735	4.4484	1.3106	-
		0.5	0.5	0.1444	0,2910	0.2182	0.8679	3.2092	1.6287	2.5308 -
		0.7	0.3	0.1571	0.2416	0.1753	1.2151	2.3248	1.4920	2.2787
		0.9	0.1	0.1036	0.1273	0.1066	1.5623	1.6956	1.3577	1.6753
	1.7669	0.1	0.9	0.1361	0.4650		0.1766	5.0045	1.4745	-
3/4		0.5	0.5	0.1625	0.3274	0.2455	0.8834	3,6103	1.8323	2.8471
		0.7	0.3	0.1768	0.2718	0,1973	1.2368	2.6153	1.6786	2.5635
		0.9	0.1	0.1165	0.1433	0.1200	1.5902	1.9076	1.5274	1.8847
	1.8298	0.1	0.9	0.1815	0.6201	·	0,1829	6,6727	1.9660	· · ·
1.0		0.5	0.5	0,2167	0.4365	0.3273	0.9149	4,8137	2.4430	3.7962
		0.7	0.3	0,2357	0,3624	0.2630	1.2809	3.4871	2.2381	3.4180
		0.9	0.1	0,1554	0,1910	0,1600	1.6468	2,5435	2,0366	2,5130

Table 1. Results of inversion for hemispherical and directional transmittances $(\bar{g} = -0.7, \sigma_a + \sigma_s = 1.0)$

			σ _a				σ _s b			
α	b	ω	EXACT	Τ _F	T _D (40)	T _D (45)	EXACT	Τ _F	T _D (40°)	T _D (45)
2/3	1.0	0.1	0.9	0.1303	0.5070	0.3487	0.1	4.0282	0.8696	1.8632
		0.5	0.5	0.1968	0.3479	0.2214	0.5	1.9737	0.9859	1.9014
		0.7	0.3	0.2112	0.3086	0.2168	0.7	1.2495	0.7230	1.2566
		0.9	0.1	0.1143	0.1390	0.1195	0.9	0.9615	0.7512	0.9159
3/4	1.0	0.1	0.9	0.1465	0.5703	0.3923	0.1	4.5317	0.9783	2.0960
		0.5	0.5	0.2214	0.3914	0.2491	0.5	2.2204	1.1092	2.1390
		0.7	0.3	0.2376	0.3472	0.2439	0.7	1.4056	0.8133	1.4137
		0.9	0.1	0.1286	0.1564	0.1345	0.9	1.0817	0.8451	1.0304
1.0	1.0	0.1	0.9	0.1954	0.7605	0.5230	0.1	6.0423	1.3044	2.7947
		0.5	0.5	0.2952	0.5218	0.3321	0.5	2.9605	1.4789	2.8521
		0.7	0.3	0.3168	0.4630	0.3252	0.7	1.8742	1.0845	1.8850
		0.9	0.1	0.1715	0.2085	0.1793	0.9	1.4422	1.1269	1.3739

Table 2. Results of inversion for hemispherical and directional transmittances $(\tilde{g} = 0, \sigma_a + \sigma_s = 1, 0)$

Table 3. Results of inversion for hemispherical and directional transmittances $(\tilde{g} = 0.7, \sigma_a + \sigma_s = 1.0)$

_					σ _a		σsb			
α	b	ω	EXACT	T _F	T _D (40)	т _р (45)	EXACT	T _F	т _D (40°)	T _D (45)
2/3	0.2638	0.1	0.9	0.1275	0.3092	0.2698	0.0263	3.7546	1.6311	2.2442
		0.5	0.5	0.1573	0.2503	0.1736	0.1319	1.4617	0.8261	1.4195
		0.7	0:3	0.1542	0.1854	0.1277	0.1847	0.7709	0.5666	0.9542
		0.9	0.1	0.0979	0.1467	0.1105	0.2374	0.3436	0.1512	0.2882
	0.2329	0.1	0.9	0.1435	0.3479	0.3036	0.0232	4.2239	1.8350	2.5247
3/4		0.5	0.5	0.1769	0.2816	0.1953	0.1164	1.6444	0.9294	1.5970
5/4		0.7	0.3	0.1735	0.2086	0.1437	0.1630	0.8673	0.6375	1.0735
		0.9	0.1	0.1101	0.1650	0.1243	0.2096	0.3865	0.1701	0.3242
	0.1682	0.1	0.9	0.1913	0.4639	0.4048	0.01683	5.6319	2.4467	3.3663
1.0		0.5	0.5	0.2359	0.3755	0.2604	0.08414	2.1926	1.2394	2.1293
		0.7	0.3	0.2313	0.2782	0.1916	0,1178	1.1564	0.8500	1.4313
		0.9	0.1	.0.1468	0.2201	0.1657	0.1514	0.5154	0.2269	0.4323

Table 4. Values of $\sigma_s \bar{b}$ obtained by inversion for hemispherical transmittance at $\omega = 1.0$ $(\sigma_s = 1.0)$

ğ	α=1,	//3	α=2	/3	α=1.0		
	EXACT	RECOVERED	EXACT	RECOVERED	EXACT	RECOVERED	
-0.7	1.6956	1.4803	1.7359	1.7094	1.8298	2.5641	
0	1.0	0.8689	1.0	1.0033	1.0	1.5050	
0.7	0.3049	0.2647	0.2638	0.3057	0.1682	0.4585	

座, Ⅱ-2 (昭47), 培風館.

- 11) L. C. Henyey and J. L. Greenstein, Astrophys. J., 93 (1941) 70.
- W. M. Irvine, J. Opt. Soc. Amer., 55-1 (1965) 16.
- 13) A. Schuster, Astrophys. J., 21-1 (1905) 1.
- K. Schwarzchild, Nachr. d. Akad. d. Wiss. in Göttingen, Math, -Phys. Kl., 195

(1906) 41.

- J. A. Van den Akker, in Modern Aspects of Reflectance Spectroscopy, ed. by W. W. Wendlandt, Plenum Press (1968) p. 27.
- 16) C. K. Chan and C. L. Tien, J. Heat Transfer, 96 (1974) 52