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Bench mark test of the code for nonlinear simulation of plasma turbulence is performed. A new code de-
scribing four fields (B) is compared to the existing code (A) w.hich treats three fields. Examining the re-

sults from two codes under the physically identical conditions, characteristics of the deviations are analyzed.

It is found that the infinitesimally small initial noise, due to the cancelling, grows in accordance with the

nonlinear development of turbulence mode. Interaction with an intrinsic nonlinearity of the system makes
the noise grow, whose contribution becomes similar magnitude to the fluctuation itself of the results. The

instantaneous deviation shows the chaotic characteristics. The spectrum analysis is made. These show
the intrinsic nonlinearity of the plasma turbulence.

1. Introduction

    Anomalous transport of high temperature plasma in toroidal devise is one of the key issues in

the physics of plasmas. It is much larger than that caused by the binary collision of particles

through Coulomb interactions and is considered to be caused from the fluctuationsi). Much
work 2-9) has been done both theoretically and numerically. Several theoretical models have been

proposed with respect to the driving rnechanisms as well as the damping mechanisms. Recently
new theoretical approach has been developed iO' , which has predicted the nonlinear self-sustained

turbulence in plasmas.• In this theory, the strong turbulence is sustained by the nonlinear driv-

ing source and nonlinear damping effect. At the same time, the direct numerical simulations

have been performed in order to reveal the quantitative feature of the plasma turbulence. Many

of them have disregarded the electron nonlinearity, hence either the nonlinear driving in neglected

ii-i`' or the self-sustained turbulence has not been fully investigated. The direct simulation of

Refs.'5) '6) , could reveal the nonlinearly driven self-sustained turbulence of current-diffusive

modes. Furthermore, the turbulence characteristic has been examined.i5)'6) To strengthen the

validity of the direct nonlinear simulation and to clarify the nature of current-diffusive mode, the

bench mark analysis of'the nonlinear simulation code is necessary.

    In this paper, we report the results of bench mark analysis of nonlinear simulation codes.

Two physically identical simulation codes are compared; one contains three field variables and the

other has four fields. Comparing the results from two independent codes, we test the bench
mark of four fields code. We find that the two physically identical codes give the same linear

growth rate, nonlinear destabilization and similar saturation level. However, they did not

show the identical temporal evolution under the physically identical situation. After some

period, from the start simulation, the difference between the output of two codes becomes
noticeable. It grows with the intrinsic nonlinear decorrelation time, which is predicted from
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the basic equations. In the nonlinear saturation phase, the simulation results in both codes

fluctuate in time around the mean values. Variances of the fluctuations become the order of the

mean values. The difference between the results of two codes is originated from the very small
but finite initial noises (< 10-8). The relative difference stays constant in the phase of linear

growth. The fluctuations in the simulation results show the typical chaotic nature in the non-

linear phase. This chaotic characteristics are originated from the nonlinearlity contained in the

basic equations. Therefore, the analysis of this chaos reveals the aspect of the considered

turbulence. In the following, we show the basic equations of nonlinear simulation codes and

the conditions of the bench mark test in Section 2. The results of bench mark tests are reported

and the analysis on the results are done in Section 3. The final section is devoted to the summary

and discussions.

               2. Basic Equations of Current-Diffusive Turbulence

    We first show the basic equations which are used for the bench mark test. The
current-diffusive interchange mode (CDIM) turbulence is considered. This turbulence is

driven by the pressure gradient and is further destabilized by the electron nonlinearity.

    We consider the cylindrical plasma immersed in a strong magnetic field in the z-direction,

Bo. The magnetic field has the shear in the radial direction as, Be=aBo/qR, where a and R

the minor and major radii of the torus, q is the safety factor. We consider that the mode is
locali2ed in the radial direction near the mode rational •surface and the variable x =r- ro is used,

where ro represents the location of the rational surface. The coordinates (x, y, z) are taken

such that x is in the direction of pressure gradients, z is that of magnetic field at x=O, and y is

that of perpendicular to and respectively. To describe CDIM, we employ the quasi-neutrality
condition, the electron parallel momentum equation (which corresponds to the Ohm's law) and the

pressure balance equations. One set of equations for three field analysis contains the total press-

ure balance equation and is given byi')

                                             '  -8>V2LÅë= ik,sxl' ""- icrk,p -- [Åë,V2i Åë] +ptt,v`Å} Åë, . (1)

                                     '  0  -sFf=ikusxÅë- [Åë, i'] +RÅ},V2Å}]', (2)
  '  8tp == ikuip-[Åë, p] +xi,v2Å}p,. (3)
where Åë is the electrostatic potential, 1' is the current and P is the total sum of electron pressure

Pe and ion pressure Pi (P=Pe+Pi) . Poisson's bracket, denoting the EÅ~B nonlinearity, is defined

as

  [Åë, A] !!!i (0Åë/0x) (OA/Oy) ' (0Åë/0y) (OA/0`c) .

The normalization is employed as t/TAe-t, r/6.r, cTAeÅë/Bo62'Åë, 4zrl'/cBe'7', LpPe/6Po'P,

TAe/t/nomi62'/t, TAeZ/62'Z, TAex/62'x; 6= c/cope, T2Ae=47znomir2/Be2 and Ls'=-dlnPo/dr.
The parameter s denotes the magnetic shear, s =r dlnq/ar, [L3i=s/(qR)] , ptÅ}c, RÅ}c, and xic

present the collisional viscosity, current diffusivity and thermal conductivity, respectively. In

this system of equations, the ballooning parameter with cr= -q2RB' with B=8zPo/Bo2, the com-

bination of the pressure gradient and the bad curvature, denotes the driving force. The Bous-

sinesq approximation is used to derive these equations. The field quantities (Åë, 1', P) are in-

variant in the z-direction.
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  The energy evolution of these equations is given as .

  ddEt' =(cr+1) <Åëx OoPy > -itt Å},< s7 i. Åël2> -"- iz Å}, <I vv'12> -xÅ}c <I VÅ}pl2> , . (4)

            '
where

  E.=M77.ip+Wj+M7pl, (5)
with W7Åë=S<l7Å}Åël2>, Wj=g<ll12>, vap=S<IPI2>. W, corresponds to the electric field energy

(and is almost equal to the kinetic energy of perpendicular ion motion), Wj to the kinetic energy

of the parallel electron motion, and MZp to the electron internal energy. ÅëX means the complex

conjugate of Åë. The bracket < > is defined as

                                                                         '                                                               '  <if>=L.i,L,f-`,`li,2, dirf,`Y dyf,L2aef (,v, y, z), (6)

where Lx, Ly and L2 are the system size of the simulation in the x, y and 2 directions,
respectively. The power spectrum of MZvÅë(ky, kz), Wj(ky, kz), MZp(ky, k2), are defined as

  '  WvÅë(ky, k2)=liJfoicdtc2!1VÅ}Åë(x, ku, k,)l2,

  Wd(ky, k2) =[illfoladtn2!11' (x• kg• kz)l2,

  VVp(ky, k.)=lilfo`Xda,2!lp(x, k,, k.)12, • (7)

and l7VT (ky , k2) = MZ7 ip (ku , kz) + MZj (k,, kz) + vap (ky , kz) .

    Another set of equations contains four field, in which the electron pressure and ion pressure
can change independently. The equation for the total pressure gradient (Eq. (3)) is replaced

by two independent pressure gradients of electron and ions, i.e.,

                                                          '  -ilV2i Åë= ikusx7'- ine kyPe- icrikyPi- [Åë,V2i Åë] +pt Å}c V`iÅë, (s)

  O  -sTg '-'- ikusjvg5 '-- [Åë, 7'] +Ri, S7 2Å}pi, - (g)
                                                                              '  8/pi= ik,Åë- [Åë, pi] +xi,v2Å}p,, (io)
  8tpe=ikuÅëd [ip• pe] +xicV2Å}pe• (ii)
                                                '
where eve,i=-q2RB'e,i. Other notions are the same as for the set of Eqs.(1)-(3). If we set

                  cr Pe =Pi =P, CVe=cri --""-- -2-, • (12)
                                   '
Eqs. (8)-(11) describes the physically identical case which is governed by Eqs.(1)-(3). Using

these two set of equation, we performed the bench mark analysis of the code for Eqs.(8)-(11).

   Before showing the simulation results, let us briefly discuss the characteristics of this

system. These sets of equations contain the linear instability. For the parameters s=a==
O.5, RÅ}c= O.Ol and ptic =2ic =O.2, which are used in the simulation, we observe that the linear

instability appears in the range of O.2<ky<O.9 and the maximum linear growth rate is given as
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Fig. 1 Temporal evolutions of vavip are drawn for the case
     of three field (code A) by the dashed line and for
     four field (code B) by the solid line (a). Physi-
     cally identical two codes show the considerable de-
     viation in the solutions after the nonlinear growth of
     the mode (for t> 120) . The expanded view is
     shown in, (b).

study is also performed by changing the mode numbers
    Figure 1 (a) compares the time traces of MZ7Åë of code

line). We observe that 1) for the period tSIOO the

well, however, 2) the difference becomes noticeable

appreciable for tlllllO. The derivations from the temporal

tic at around tN 200, even though the averaged values of cases

expanded view of Fig. 1 (a) is shown in Fig. 1 (b)

and the variances becomes appreciable with respect
havior is also observed in rvp(t) and Wj(t).

    In order to analyze these derivations, Fig. 2 shows th

  6MZ= MZvip (code A) - J7VvÅë (code B).

In the initial phase, O<t<40, the exponential growth

6M7 is seen. Then the growth of SJ7V is associated

Finally, the absolute value of deviation 6M7 saturates

negative value of 6MZ is not shown in the graph,

graph, we see that the difference between the results of the two codes

beginning of the simulation, although it becomes noticeable

rL -v O.17 for ky "v O.5. In addition to the

linear instability, this system is known to

have the nonlinear instability. The non-
linear•growth appears for the fluctuation level

MZvÅë>10-3 for these parameters. And the
nonlinear thermal diffusivity, xNN3 at the
saturated stage has been obtainedi5)'i6) .

3. Nonlinear Simulation and the
          Bench Mark Results

    Nonlinear simulations are performed by
directly solving Eqs. (1)-(3) and Eqs. (8)'(11)

and the results are compared. The para-
meters s=:cr=O.5, Zic=O.Ol and ptic :Zic=
O.2 are employed, and Eq. (12) is used for the

four field model. The slab geometry of the
system size of Lx=80 in the x-direction and

Ly =6.4Å~2n in the y-direction is employed.

The periodic condition is taken in the
y-direction and M= 64 modes are taken in ky
space (ku,min=:10/64 and ky,max=10) . Let
us call thie code (A) for the case of solving

Eqs. (1)-(3) and the code (B) for solving
Eqs. (8)-(11). Code (A) has three field for

which the numerical resolution and accuracy

have already been checked. For numerical
resolution we carefully checked the depend-

ence on the system size and confirmed the
numerical accuracyi6). The convergence

   , M17) .

       (A) (dashed line) and code (B) (solid

   results from code (A) and code (B) agree

    when t;}l 100 and the deviation becomes

         averaged values are seen to be chao-
           (A) and (B) are common. The
. The deviations are seen more prominently

  to the averaged values. The similar be-

      eir difference, that is,

                                    (13)

   (with linear growth rate) of the derivation

  with the change of sign (for 50 <t<llO).
   with its sign change (for 120<t). (The
because the plot is logarithmic.) From this

                 continues to grow from the
        at t) 100. In order to understand
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the causes

derivation

value of

   mlW7ip

of the growth of 6W, the relative

is shown in Fig. 3 by plotting the

  E-lMZ7Åë (code B)+ J7v7Åë (code A)1' (i4

The relative derivation E does not change dur-

ing the period of O<t<40. The relative
difference starts to change its characteristics

around t=45, and grows in the time period of

50<t<110. The saturation at around 120
<tare observed. Comparing the results of
Fig. 2 and Fig. 3, we see that the initial
noise is the origin of these deviations. Dur-

ing the period of O<t<40, the difference
grows in accordance with the liner growth
rate that the original set of equations have.

Both the codes (A) and (B) precisely recover

the linear growth rate, so that the relative

difference remains unchanged. On the
other hand, for t> 70 the initial noise non-

linearly grows according to the nonlinear de-

correlation rate of the system.- Deviation
saturates at around t> 120 and the value be-

comes the order of averaged value,

  E •- O.171. (15)
The nonlinear growth rate of the deviation l6J?M

fitting the data to the form of emp (ract) •

  racNO.4.

In this system, the typical mode number

decorrelation rate of such a mode due to the

O.3.

teractions of the turbulence mode. The
growth rate, and the small difference in the

correlation rate of the concerned mode.

ponent under the observed turbulence level.

mized due to the initial small noise.

    Let us show the differences in
code A (dashed lines) and of code B

The difference is very small in the linear

appreciable in the nonlinearly developed phase

  6WvÅë(ku) = W7Åë(ku;code A) -

(code B) --- M77Åë (code A)1 B
ap

 1 oo

1 o-2

1 o-4
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               t
The difference, MZvÅë(code A) -Wve(code B), is
plotted against time.

   1 o'1

   1 o-3
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   1 o-7

   1 o-9

      O 50 100 150 200
                     t
    Fig. 3 The time trace of the relative deviation

e Eii IPVvÅë(code A) - VV7Åë(code B) 1/1VVvip(code A) + VV
vip(code B)1is plotted. In the linear phase, the difference

which is caused by the initial noise remains constant. The
deviation grows associated with the nonlinear growth and
saturation of the mode.

                                 =I MZ7Åë (code A) - J71Zvip (code B)l is estimated by

                             We obtain the value of
                                                            ,
                                                                      (16)

                           of this turbulence is order of ku NO.3 and the nonlinear
                               nonlinear coupling is estimated to be rNLNxNL ku2N

This suggests that the initial noise due to the cancelling also grows under the nonlinear in-

                             initial noise itself grows in accordance with the linear

                               initial nonlinear phase grows with the nonlinear de-

                            This reflects that the system has positive Lyapunov ex-

                                Namely, the phase of the turbulence is also rando-

                                                '                        ku-spectrum. In Fig. 4 (a) the ku-spectrum 17Vvip (k,) of
                        (solid lines) are compares for the times tXIO of and t t150.

                             growth regime (tN10), but the discrepancy becomes
                                (t•-150). It is also noted that the difference

                     W7Åë(k,;code B,) (M
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  The ku spectrum of 6Wvip(ku) are plotted for tNIO
  and tN150 (a). The dashed lines are frorn code

  A and the solid lines are from code B. The Fig.6
  absolute values of the difference, IWvÅë(ku;code A)
  m PVvip(kv;code B)1, are plotted for tN10 (broken
  line) and for 150 (solid line), respectively, in (b).

   either positive or negative, depending on

      evolves due to nonlinear interactions.
     16MZvÅë`(k,)1 , are plotted in Fig. 4 (b) for

   phase, the initial noise also develops to large

 observations, we see that the instantaneous

           Namely, difference of the nonlinear

        small noise at the initial phase,

   .
The histogram in Fig. 5 shows the probability
            data 6Wvip(tj) points in
(n-1)6<SW7ip(tj)<n6, (n=1, 2•••, 6=O.04)
        contains 1261 points

04, shows the oversdale; however, these data
.) We are/interested in the data of fully

     between (n-1)6 and n6. It is seen

   '

          -O(1) .
  <pv>

The histogram of probability, that MZvip takes the
value in the region , (n-1)6<Wvip(tj)<n6, (n=
1, 2, •", O.04) is shown. The total number of
the data points, tj, is 1261. The fractaj nature
is seen.

1 o-i

Fig. 4

1 o-3

1 o-5

1 o-7

lo-i loO loi                f
The power spectrum of the relative deviation shown
in Fig.3 is plotted. The power' law, which indi-
cates the chaotic characteristics, is observed.

becomes the value of ky. Small but finite difference
617VvÅë(ky) The absolute values of the difference in
ky-space, t'v lO and tN 150. In the nonlinearly de-
veloped difference widely in the ku-space. From
these deviatio'n 6W/W reaches to the value of the
order of unity. simulation results, which is caused by the
infinitesimally become the order of the time averaged value the
solution

                                             distribution of Wvip(t) in the simulation.

The number of the the simulation steps, tj, whose value drops in the re-
gion ,are plotted. The time series data of J7V
vÅë(tj;code B) and their distribution is plotted. (Data close to zero, 'WvÅë(tj)

<O. are originated from the linear growth phaset
<40 nonlinearly developed phase, W7ip(tj)>O.5.
The number along the vertical axis corresponds to the probability that the J71Zvo(tj; code B) takes

the value that the averaged value isNl.42(t> 70).
However the deviation from the mean value is large as

   {W- < W> }2
                                                                             (18)
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The distribution is not Gaussian and has the tail component. It can be fitted to the power
distribution. This analysis sh6ws the characteristics of intrinsic nonlinearlity which the basic

equations have. The large value of the dispersion shown like in Fig. 5 corresponds to the fact
that the relative deviation of two solutions by code (A) and (B) becomes 'v O(1) after the initial

memory of phase is lost.
    Power spectrum of e(t) =1 MZ7Åë (code A) ' MZ7Åë (code B)l/1 MZ7ip (code A) + MZvip (code B)1

is plotted in Fig. 6. Power Spectrum E(f) is evaluated from the data E(t), by use of Maximum

Entropy Method. If it is fitted in a form of f-" in the range of O.1<f<1, the spectrum is fitted

to f-3'58. The value of 3.58 (> 3) is not accurate enough, however, the power spectrum of the

relative derivation shows the fractal characteristic and indicates the chaos nature of the
fluctuation.

                                 '                          4. SummaryandDiscussions

    In summary, we performed the bench mark test of a new nonlinear simulation code of four
field (code B), comparing it with the results from the code of three field (code A). It is found

that two different codes reproduce the same linear growth rate, nonlinear growth and saturation

level. However, the two codes do not show the same temporal evolution even if the model equa-
tions are physically identical (Fig. 1). This is because the infinitesimally small noise at the ini-

tial loading due to the cancelling of each code grows in the system of nonlinear equations and the

noise itself grows nonlinearly. The information of the phase is lost. The difference of the
two codes reflects the intrinsic chaos in the turbulence which is described by the set of equations.

    The derivation of code B's solution from that of code A's grows linearly and nonlinearly in
accordance with the linear and nonlinear solutions of (A) and (B) (Fig. 2). The relative de-

viation stays constant during the linear phase, grows nonlinearly and saturates in the nonlinear

phase. The deviation becomes order of the mean value of the solution and shows the chaotic
characteristics (Fig. 3). The deviations in ky space and in frequency range are analyzed and
the fractal (chaotic) characteristics are extracted (Fig. 4, 6). From the data of time series, we

find that the instantaneous deviation from the mean value becomes of the order of unity and that
the deviations show the chaotic nature in the nonlinearly developed phase (Fig. 5), where the ini-

tial memory of the phase is lost.

    The noise installed at the initial loading is inevitable in this kind of nonlinear simulations.

Therefore it is very important to know how this noise affects the simulational results. We ex-

plored some of them. The analyses made in this text correspond to the case that an artificial

passive noise is added to the basic nonlinear equations. Analyses using the passive noise may

contribute to a test probing method to understand the simulational results of the turbulence of

concern. In order to analyze the nonlinear development of the mode in the presence of noise,
the active noise (called noise pumping) has been introduced. The comparison study of the

cases of the active noise and the passive noise may elucidate an aspect of nonlinear dynamics of

the mode. These are open for future analysis.
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